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3 On the finite axiomatizability of some metabelian

profinite groups

Dan Segal

March 28, 2023

A group G is finitely axiomatizable (FA) in a class C if G satisfies a first-
order sentence σ such that every C group satisfying σ is isomorphic to G. Some
examples of this phenomenon where C consists of profinite groups were discussed
in [NST]; one of the questions raised in that paper was: are finitely generated

free pro-p groups FA, in either of the classes profinite groups, pro-p groups?
This is still unknown; a small step in that direction is the following:

Theorem 1 Each f.g. free metabelian pro-p group on at least two generators

is FA in the class of all profinite groups.

The proof depends on

Theorem 2 For each m, d ≥ 1 the profinite wreath productWm,d = Z
(m)
p ≀Z

(d)
p

is FA in the class of profinite groups.

Here,

Wm,d = lim
←−n→∞C

(m)
pn ≀ C

(d)
pn .

The analogue in the class of abstract groups of Theorem 1 was recently
established by Kharlampovich, Miasnikov and Sohrabi; they deduce it from the
stronger result that a free metabelian group is bi-interpretable with Z ([KMS]
Theorem 30). The proof of this is quite elaborate; it seems plausible that the
analogue should hold for free metabelian pro-p groups and Zp, but this seems
quite difficult.

Facts from Sections 2 and 5 of [NST] will be used without special mention.
We also often use the fact H: every finitely generated profinite group is Hopfian,
that is, each surjective endomorphism is an isomorphism.

Logical terms (‘formula’, ‘sentence’) all refer to the ordinary first-order lan-
guage of group theory. As discussed in [NST], ‘isomorphism’ for profinite groups
will mean ‘continuous isomorphism’ (among finitely generated profinite groups
these are actually equivalent, for non-trivial reasons).
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1 A reduction

A subgroup H of a profinite group G is definably closed if there is a formula
φ(x) such that

(i) for every profinite group P, the subset

φ(P ) := {s ∈ P | P |= φ(s)}

is a closed subgroup, and
(ii) H = φ(G).

Proposition 3 Let G be a pro-p group. Suppose that G has a definably closed

abelian normal subgroup A 6= 1 of infinite index such that A = CG(a) for each

1 6= a ∈ A. Then G satisfies a sentence χ such that for any profinite group H,

if H |= χ then H is a pro-p group.

For the proof, we combine Lemmas 4.5 and 4.6 of [S] to obtain

Lemma 4 Let Γ be a profinite group and A a profinite Γ-module such that

for a ∈ A, x ∈ Γ, ax = a =⇒ (a = 0 ∨ x = 1), (1)

pA+A(Γ− 1) < A, (2)
⋂

16=x∈Γ

A(x− 1) = 0. (3)

Then both Γ and A are pro-p groups.

Now set Γ = G/A in Proposition 3. Then the conditions (1), (2) and (3) are
satisfied (see the Remark following Lemma 4.6 in [S]). So G satisfies a sentence
α such that for any profinite group H satisfying α, H has a closed, definable
abelian normal subgroup B, and each of (1), (2) and (3) holds with B for A and
H/B for Γ. It follows by the preceding lemma that H is a pro-p group.

2 Ring lemmas

Lemma 5 Let R = Zp[[ζ]] and M = R(m), a free R-module of rank m ≥ 1. Let
K be an R-submodule of M such that

• M/(K +Mζ) ∼= Z
(m)
p

• aζ ∈ K =⇒ a ∈ K for all a ∈M.

Then K = 0.

Proof. The quotient map M →M/K induces an epimorphism

Z
(m)
p
∼= M/Mζ →M/(K +Mζ) ∼= Z

(m)
p .
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This must be an isomorphism (by H), so K ⊆ Mζ. Thus K = K ∩Mζ = Kζ,
which implies that K =

⋂
n∈N

Kζn = 0.

Let R = Zp[[ζ1, . . . , ζd]]. Let us call the tuple (ζ1, . . . , ζd) a base for R
(together with p it forms a particular kind of system of parameters for the local
ring R). The set of all such bases is denoted B(R), and for i < d set

Bi(R) = {(ζ1, . . . , ζi) | (ζ1, . . . , ζd) ∈ B(R) for some ζi+1, . . . , ζd} .

Let Xi ⊆ Bi(R) for 1 ≤ i < d. I will call the sequence (X1, . . . ,Xd−1) rich if
X1 contains infinitely many pairwise non-associate elements, and for i > 1 and
each fixed (ζ1, . . . , ζi−1) ∈ Xi−1, there are infnitely many distinct ideals of the
form

ζ1R+ · · ·+ ζiR

with (ζ1, . . . , ζi) ∈ Xi.

Lemma 6 Assume that d ≥ 2. For 1 ≤ i < d let Xi be a subset of Bi(R) such

that (X1, . . . ,Xd−1) forms a rich sequence. Then for 1 ≤ i < d we have

Di :=
⋂

ζ∈Xi

(ζ1R+ · · ·+ ζiR) = 0.

Proof. Suppose first that i = 1. As ζ1 ranges over X1, ζ1R ranges over an
infinite set of prime ideals of height 1 in the Noetherian integral domain R,
which forces D1 = 0. (This step isn’t really necessary: we could allow i = 1 in
the following argument; but this way may be less confusing.)

Now let i > 1 and fix (ζ1, . . . , ζi−1) ∈ Xi−1. Set

Y = {ζi ∈ R | (ζ1, . . . , ζi) ∈ Xi.

Writing π : R→ R̃ = R/(ζ1R+ · · ·+ ζi−1R) we have

Diπ ⊆
⋂

ζi∈Y

(ζ1R+ · · ·+ ζiR)π

=
⋂

ζi∈Y

ζ̃iR̃.

This is the intersection of an infinite set of prime ideals of height 1 in the
Noetherian integral domain R̃. It follows that Diπ = 0, and hence that Di ⊆
ζ1R + · · · + ζi−1R. As (ζ1, . . . , ζi−1) ranges over Xi−1 these ideals intersect in
Di−1.

The result follows by induction.

Corollary 7 Suppose R = Zp[[X ]] where X is the free abelian pro-p group on

x1, . . . , xd and d ≥ 2. Let C ⊆ X(d) denote the set of all bases for X. Then

⋂

y∈C

((y1 − 1)R+ · · ·+ (yd−1 − 1)R)) = 0.
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Proof. The ring R is equal to Zp[[ξ1, . . . , ξd]] where ξi = xi− 1 ([DDMS] Thm.
7.20). Set

X = {(y1 − 1, . . . , yd − 1) | (y1, . . . , yd) ∈ C} ,

and let πi : R
(d) → R(i) denote the projection to the first i factors. Then

(Xπ1, . . . ,Xπd−1)

is a rich sequence. To see this, note that for i < d and (y1, . . . , yi−1) ∈ Cπi−1,

the group X̃ = X/〈y1, . . . , yi−1〉 is free abelian of rank at least 2, and Zp[[X̃ ]]

is naturally identified with R/
∑i−1

j=1(yj − 1)R. Now X̃ has infinitely many 1-

generator direct factors 〈ỹ〉, giving rise to infinitely many distinct augmentation

ideals (ỹ − 1)Zp[[X̃]], the required condition for a rich sequence. The corollary
now follows from the lemma with i = d− 1.

3 Wreath products

Now we prove Theorem 2.
W := Wm,d = M ⋊ X where X = 〈x1, . . . , xd〉 say is a free abelian pro-

p group and the X-module M is isomorphic to R(m) where R = Zp[[X ]] =
Zp[[ξ1, . . . , ξd]], writing ξi = xi − 1.

Taking G = W and A = M in Proposition 3, we see that W satisfies a
sentence χ such that every profinite group satisfying χ is a pro-p group. So it
will suffice to show that W is FA in the class of pro-p groups.

Assume to begin with that d = 1, and write x = x1 etc.
Say M = a1R ⊕ · · · ⊕ amR. Then W satisfies a sentence Ψ(a, x) asserting

the following (within the class of pro-p groups):

• The set {a1, . . . , am, x} generates W

• 〈x〉 = CW (x) ∼= Zp,

• CW (a1) = . . . = CW (am) := M, say,

• M is abelian and normal in W,

• M/[M,x] ∼= Z
(m)
p ,

• M ∩ CW (x) = 1.

(In [NST], §5.1 and §5.4, it is explained how these are expressed in first-order
language.)

Now suppose that G is a pro-p group and that G |= Ψ(b, y) for some
b1, . . . , bm, y ∈ G. Write B for the (topological) normal closure of {b1, . . . , bm}
and set Y = 〈y〉. Then Y = CG(y) ∼= Zp, B is an abelian normal subgroup con-
tained in CG(bi) for each i, andG = BY . It follows that CG(bi) = B.CY (bi) = B
for each i, because CG(bi) ∩CG(y) = 1. Thus G = B ⋊ Y. We consider B as an
R-module via x 7→ y, and then B = b1R+ · · ·+ bmR.
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Let K be the kernel of the epimorphism M → B that sends ai to bi for each

i. The sentence Ψ(b, y) implies that B/Bξ ∼= Z
(m)
p and that bξ = 0 =⇒ b = 0.

It follows that K satisfies the hypotheses of Lemma 5, and so K = 0. Thus B
is free of rank m as a module for ZpY, and so G ∼= W .

Thus Wm,1 is FA in pro-p groups. Suppose now that d ≥ 2, and W = Wm,d.
The subgroups X and M are definable by

X := CW (x1) = . . . = CW (xd) (4)

M := CW (a1) = . . . = CW (am). (5)

Let Φ(a,x) be a first-order formula which asserts (for the pro-p group W ) that
(4) and (5) hold and

X = 〈x1, . . . , xd〉 ∼= Z
(d)
p ,

W = 〈a1, . . . , am, x1, . . . , xd〉

[M,M ] = 1, M ⊳W

Suppose that G is a pro-p group and G |= Φ(b,y) for some bi, yj ∈ G. There
is an epimorphism φb,y : W → G sending a,x to b,y respectively. Then

Y = 〈y1, . . . , yd〉 ∼= Z
d
p
∼= X , so φ induces an isomorphism from X to Y (in view

of H), and so Kb,y := kerφb,y ≤M .
Suppose that (t1, . . . , td) is a basis for X . Denote the (topological) normal

closure of {t1, . . . , td−1} in W by Nt. So

Nt = [M, t1] . . . [M, td−1]〈t1, . . . , td−1〉,

and it is easy to see that

g ∈ Nt ⇐⇒ [W, g] ⊆ [M, t1] . . . [M, td−1].

Thus Nt is definable by a formula ν(t1, . . . , td), so by the first case, there is a
formula Υ(t1, . . . , td) which asserts that W/Nt

∼= Wm,1; this statement is true
whenever (t1, . . . , td) is a basis for X .

Finally, let Θ be the sentence asserting, for a pro-p group G, that there
exist b1, . . . , bm, y1, . . . yd ∈ G such that (a) G |= Φ(b,y) and (b) for each tuple
(s1, . . . sd) that generates Y := CG(y1), G |= Υ(s).

We have seen that W satifies Θ. Suppose that the pro-p group G satisfies
Θ. Then φ := φb,y maps W onto G and X onto Y . Let t be a basis for
X and set s = tφ. Then Ntφ ≤ Ns, so we have an induced epimorphism
φ∗ : F/Nt → G/Ns. Now Υ(s) asserts that G/Ns

∼= Wm,1
∼= F/Nt, and it

follows by H that Kb,y ≤ Nt. We know that Kb,y ≤M , and so

Kb,y ≤M ∩Nt =

d−1∑

i=1

M(ti − 1).

Corollary 7 shows that as t ranges over all bases for X , these modules intersect
in zero. It follows that Kb,y = 1, and so G ∼= W .
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4 Free metabelian groups

F = Fd is a free metabelian pro-p group on d ≥ 2 generators g1, . . . , gd. We set
xi = giF

′, X = F/F ′ = 〈x1, . . . , xd〉 and A = F ′. Then A is a module for the
completed group algebra R = Zp[[X ]]. For 1 ≤ j ≤ d set Xj = 〈x1, . . . , xj〉 and
Rj = Zp[[Xj ]].

Note that Rj is equal to the power series ring Zp[[ξ1, . . . , ξj ]] where ξi = xi−1
for each i ([DDMS] Thm. 7.20). Thus it is a regular local ring of dimension
1 + j.

Write ∆ji =
∑i

l=1 ξlRj ; the unique maximal ideal of Rj is mj = pRj +∆jj .

Recall that if G = 〈h1, . . . , hd〉 is a pro-p group then G′ = [h1, G] . . . [hd, G],
a definably closed normal subgroup. In particular, A is definably closed in F .

We will often use the ‘Jacobi identity’ for metabelian groups,

[a, b, c][b, c, a][c, a, b] = 1;

this follows at once from the Hall-Witt identity when the derived group is
abelian.

Putting uij = [gi, gj] we have

Proposition 8 Each element of A is uniquely expressible as

a =
∑

1≤i<j≤d

uijrij (6)

with rij ∈ Rj for each i and j.

Proof. The analogue of this result for the abstract free metabelian group, F0

say, is established in [MR], section 6 (cf. also [B], [BR]). The existence of
a representation (6), also in the pro-p case, is easily deduced from the Jacobi
identity. The proof of uniqueness explained in [MR] uses Fox derivatives; these
induce mappings dj : F ′

0 → Z(F ab
0 ) which are F0-module homomorphisms and

satisfy

dj(uik) =






0 j 6= i, k
xk − 1 j = i
1− xi j = k

.

It is easy to verify that each dj extends by continuity to an R-module homo-
morphism from A to R, noting that A is the completion of F ′

0 w.r.t. the I-adic
topology where I is the ideal of Z(F ab

0 ) generated by p and ξ1, . . . , ξd, while R
is the completion of Z(F ab

0 ) w.r.t. the I-adic topology.
Now suppose that a in (6) is equal to 0. We have to show that each rij is

zero. Arguing by induction on d, we may suppose that rij = 0 for all i < j < d.
Then for 1 ≤ j < d we have

0 = dj(a) = (xd − 1)rjd,

and the result follows.
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The uniqueness of expression in (6) implies in particular that ax1 6= a if
a 6= 0. It follows by symmetry that axd 6= a if a 6= 0, so the mapping a 7−→ aξd
is injective. Noting that for i < j < d we have uijξd = uidξj−ujdξi, we see that
A embeds in a free submodule:

Corollary 9

A ∼= Aξd ≤
d−1⊕

i=1

uidR.

It follows in turn that 0 6= a ∈ A implies A = CF (a). So we may apply
Proposition 3 to find a sentence χ, satisfied by F , such that every profinite
group satisfying χ is a pro-p group. Thus to complete the proof of Theorem 1
it will suffice to show that F is FA in the class of pro-p groups.

Now set

C = Cg = CF (gd)

H = Hg = AC

B = Bg = Aξ1 + · · ·+Aξd−1

Z = Zg = {a ∈ A | aξd ∈ B} .

(If d = 2, this means that Z = B.)
It follows from Proposition 8 that

A/B = Z/B ⊕ (D +B)/B

where

D =
d−1⊕

i=1

uidR,

and that D ∩B =
⊕d−1

i=1 uid(Rξ1 + · · ·+Rξd−1). This implies that

A/Z ∼= (D +B)/B ∼= D/(D ∩B) ∼= S(d−1)

where S = Zp[[〈xd〉]].

Also C = 〈gd〉. Thus

H

Z
=

A

Z
〈gd〉 ∼= Z

(d−1)
p ≀Zp = Wd−1,1,

the wreath product discussed above.
Now all the subgroups mentioned, with the possible exception of D, are

definable relative to the parameters (g1, . . . , gd). In view of Theorem 2, there is
a formula Ω(t1, . . . , td) such that F |= Ω(g) expresses the fact that Cg = 〈gd〉
and Hg/Zg

∼= Wd−1,1.
Let µ be a sentence asserting for a pro-p group G that G is metabelian and

that G/γ3(G) ∼= F/γ3(F ) (recall that F/γ3(F ) is FA in pro-p groups by [NST],
Theorem 5.15). In particular, if G |= µ then G is generated by d elements.
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Suppose now that G is a pro-p group and that G satisfies

µ ∧ (∀t1, . . . , td) (βd(t1, . . . , td)→ Ω(t1, . . . , td))

where G |= βd(t1, . . . , td) iff G = 〈t1, . . . , td〉. Let θ : F → G be an epimorphism
and set K = ker θ.

The induced epimorphism F/γ3(F )→ G/γ3(G) is an isomorphism by H, so
K ≤ γ3(F ) = [A,F ].

Let ti = giθ for each i. Then Hgθ = Ht and Zgθ ⊆ Zt, so θ induces an
epimorphism θ∗ : H/Z → Ht/Zt. Since t1, . . . , td generate G, G |= Ω(t), so
Ht/Zt

∼= Wd−1,1
∼= H/Z, whence θ∗ is an isomorphism (by H); since K ≤

[A,F ] ≤ H it follows that K ≤ Z. Thus

K ≤ Z ∩ [A,F ] = Z ∩ (B +Aξd) ≤ Z ∩D ≤ B = Bg.

This holds irrespective of the chosen basis g for F . Now Corollaries 9 and 7
together show that as g runs over all such bases, the submodules Bg interesct
in zero. Thus K = 1, and so G ∼= F .

This completes the proof of Theorem 1.

5 The case d = 2

There is a much simpler proof when d = 2. Assume now that F is the free
metabelian pro-p group on generators g, h. Adapting the notation of the pre-
ceding section, write A = F ′, x = Ag, y = Ah, u = [g, h], R = Zp[[F/F

′]] =
Zp[[ξ, η]] where ξ = x− 1, η = y − 1. Thus

A = uR ∼= R

by Proposition 8, and

γ3(F ) = [A, g][A, h]

= Aξ +Aη

using additive notation for the F/F ′-module A.
Set

H = F/γ3(F ),

this is the free class-2 nilpotent pro-p group (the Heisenberg group over Zp).
Let Ψ(s, t) be a first-order formula such that for a pro-p group G and s, t ∈

G, G |= Ψ(s, t) if and only if

1. s and t generate G

2. B := [G, s][G, t] is abelian (recall that given 1., B is in fact the derived
group of G)

3. G/[B, s][B, t] ∼= H (note that given 2., [B, s][B, t] = γ3(G) )

8



4. For a, b ∈ B,

[a, s][b, t] = 1⇐⇒ a = [c, t] ∧ b = [c−1, s] for some c ∈ B.

(Here we use the fact that H is FA in the class of pro-p groups, a special
case of [NST], Theorem 5.15.)

Now I claim (a) F satisfies Ψ(g, h) and (b) if G is a pro-p group G, s, t ∈ G,
and G |= Ψ(s, t) then F ∼= G by a map sending g to s and h to t.

This shows that F is FA in the class of pro-p groups; as above we quote
Proposition 3 to infer that F is FA in the class of all profinite groups.

Proof of (a). Only condition 4. needs comment. Writing A additively, this
asserts for a, b ∈ A that

aξ + bη = 0⇐⇒ a = cη ∧ b = −cξ for some c ∈ A.

As A ∼= R, this follows from the fact that Rξ ∩Rη = Rξη (while neither of ξ, η
is a zero-divisor).

Proof of (b). Now G is a metabelian pro-p group generated by s and t, so
there exists an epimorphism θ : F → G with gθ = s and hθ = t. In view of H,
Condition 3. implies that the induced epimorphism F/γ3(F )→ G/γ3(G) is an
isomorphism. It follows that ker θ := K is contained in γ3(F ) = [A, g][A, h].

Suppose now that w = [a, g][b, h] ∈ K. Then

1 = [a, g][b, h]θ = [a′, s][b′, t]

where a′ = aθ, b′ = bθ ∈ Aθ = B. According to 4., there exists c′ ∈ B such that
a′ = [c′, t] and b′ = [c′−1, s]. Say c′ = cθ for some c ∈ A (this exists because θ
maps A onto B). Then

a = [c, h]w1, b = [c−1, g]w2

with w1, w2 ∈ K. Thus translating into additive notation we have

w = [[c, h]w1, g][[c
−1, g]w2, h]

= (cη + w1)ξ + (−cξ + w2)η

= w1ξ + w2η.

It follows that K ⊆ [K,F ]. As F is a pro-p group this forces K = 1, so θ is an
isomorphism as required.
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