
A POSTERIORI ERROR ANALYSIS OF MIXED FINITE ELEMENTAPPROXIMATIONS TO QUASI-NEWTONIAN INCOMPRESSIBLEFLOWS�JOHN W. BARRETT�, JANICE A. ROBSONy, AND ENDRE S�ULIzAbstrat. We develop the a posteriori error analysis of mixed �nite element approximationsof a general family of steady, visous, inompressible quasi-Newtonian uids in a bounded Lipshitzdomain 
 � Rd; the family inludes degenerate models suh as the power-law model, as well asnon-degenerate ones suh as the Carreau model. The uni�ed theoretial framework developed hereinyields a residual-based a posteriori bound whih measures the error in the approximation of theveloity in the W1;r(
) norm and that of the pressure in the Lr0(
) norm, 1=r + 1=r0 = 1.Key words. �nite elements, a posteriori error estimates, non-Newtonian uidsAMS subjet lassi�ations. 65N30, 65N15, 65G99, 76D07, 76D991. Introdution. Suppose that 
 is a bounded Lipshitz domain in Rd , d � 2,saled so that j
j = 1, and, for r 2 (1;1), let r0 = r=(r�1). The uid, whose motionin 
 is due to an external body fore f 2 [Lr0(
)℄d, has veloity u and kinematipressure p. For ease of exposition, u will be assumed to satisfy the homogeneousDirihlet boundary ondition uj�
 = 0. The funtions u 2 V and p 2 Q are to befound from the boundary value problem whose weak formulation isa(u;v) + b(p;v) = (f ;v) 8v 2 V;(1.1) b(q;u) = 0 8q 2 Q;(1.2)where V = [W1;r0 (
)℄d, Q = Lr00 (
) = Lr0(
)=R,a(u;v) = Z
 k(x; je(u)j)e(u) : e(v) d
; b(q;v) = � Z
(r � v) q d
:The strain tensor e(u) 2 Rd�dsymm has omponentse(u)ij = 12 � �ui�xj + �uj�xi � ; i; j = 1; : : : ; d;where Rd�dsymm denotes the set of all symmetri real-valued d� d matries.Assumption (A): We assume that k 2 C(�
 � (0;1)) and that, given r 2 (1;1)as above, there exist onstants � 2 [0; 1℄ and ", K1, K2 > 0 suh that, for all x 2 �
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2 J.W. BARRETT, J.A. ROBSON, AND E. S�ULIFor the sake of brevity and notational simpliity, we shall write k(�) instead ofk(x; �). The parameter � in (A) measures the degree of degeneray in k(�) for a givenvalue of r 2 (1;1) in the sense that the loser � is to 1 the more degenerate k(�) is.For example:(a) the power law model with k(t) = 2�tr�2 orresponds to � = 1; when r = 2,this redues to k(t) � 2�, yielding the Stokes equations whih govern thestationary ow of a visous inompressible Newtonian uid;(b) the Carreau law k(t) = k1 + (k0 � k1)(1 + �t2)(��2)=2 with k0 > k1 � 0,� > 0, � 2 (1;1) orresponds to � = 0 with r = � if k1 = 0, and r = 2 if� 2 (1; 2℄ and k1 > 0.Partial di�erential equations with nonlinearities of the kind onsidered here arise in anumber of appliation areas, inluding geophysial models of the lithosphere, as wellas hemial engineering, partiularly in the modelling of the ow of pastes and dies.We equip the spaes V and Q with the normskvkV = ke(v)kLr(
) and kqkQ = inf2Rkq + kLr0 (
);and reall from [1℄ that the bilinear form b(�; �) satis�es the following inf-sup ondition:there exists a positive onstant 0 suh thatinfq2Q supv2V b(q;v)kqkQkvkV � 0 8q 2 Q:(1.3)In Setion 2, we shall assume that the �nite element subspaes Vh and Qh of thespaes V and Q satisfy an analogous inf-sup ondition, with inf-sup onstant 00 > 0.The fat that k �kV is a norm on V is a onsequene of Korn's inequality (f. [12℄,[14℄) whih asserts the existene of a onstant C = C(r; d;
), 1 < r <1, suh thatkvkW1;r(
) � Cke(v)kLr(
) 8v 2 V:(1.4)In the sequel, for the sake of notational simpliity, we shall suppress the dependeneof all onstants on d and 
; in partiular, we shall write C(r) instead of C(r; d;
).The de�nition of the norm on Q reets the fat that in the ase of Dirihletboundary ondition on �
 the pressure in the model is determined only up to anadditive onstant. Let V 0 denote the dual spae of V and let Q0 be the dual spae ofQ; the spaes V 0 and Q0 have the normskfkV 0 = supv2V hf ;vikvkV and kgkQ0 = supq2Q hg; qikqkQ :Here, in the de�nition of k � kV 0 , h�; �i denotes the duality pairing between V 0 and V ,and in the de�nition of k � kQ0 it signi�es the duality pairing between Q0 and Q; asthe hoie of spaes over whih the duality pairings at will always be lear from theontext we have hosen not to indiate them expliitly in our notation h�; �i.Over the last deade, there has been onsiderable interest both in the mathe-matial analysis of quasi-Newtonian ow problems of this kind and in their �niteelement approximation. The existene and uniqueness of solutions to the boundaryvalue problem (1.1), (1.2) was studied by Baranger and Najib [4℄ and Barrett and Liu[6℄. In partiular, it is known that (1.1), (1.2) has a unique solution (u; p) 2 V �Q.Conerning the a priori error analysis of �nite element methods for quasi-Newtonianow equations, we refer to Baranger and Najib [4℄, Du and Gunzburger [10℄, San-dri [16℄, Barrett and Liu [6, 7℄, Barrett and Bao [5℄, and Bao [2℄. Baranger and El



A POSTERIORI ERROR ANALYSIS FOR QUASI-NEWTONIAN FLOWS 3Amri [3℄ were the �rst to pursue the a posteriori error analysis of onforming �niteelement approximations to a quasi-Newtonian problem in the ase of the Carreaulaw. Subsequently, Simms [18℄ onsidered the a posteriori error analysis of Fortin'selement for onforming mixed �nite element approximations of quasi-Newtonian owproblems and, more reently, Sandri [17℄ studied the a posteriori error analysis ofonforming mixed �nite element approximations of the power-law model and deriveda posteriori error bounds for the ase of 1 < r < 2. In fat, Sandri's bounds onthe veloity and the pressure will emerge from our analysis for the speial ase ofk(t) = 2�tr�2, 1 < r < 2; similarly, the error bounds of Baranger and El Amri [3℄are arrived at by seleting k(t) = k1 + (k0 � k1)(1 + �t2)(��2)=2, 1 < � � 2. Fornononforming �nite element methods, Padra [15℄ derived a posteriori error boundsfor Fortin{Soulie [11℄ pieewise quadrati approximations of quasi-Newtonian ows.In the ase of Carreau-type nonlinearities in two spae dimensions, Bao and Barrett[5℄ developed a posteriori error bounds based on the linear nononforming element ofKouhia and Stenberg [13℄ whih involves ontinuous pieewise linear approximationfor one veloity omponent and a disontinuous linear Crouzeix{Raviart element forthe other in tandem with pieewise onstant approximation of the pressure. Morereently, Carstensen and Funken [9℄ established a posteriori error bounds for quitea general lass of onforming and nononforming �nite element methods for steadyquasi-Newtonian ows with uniformly monotone and uniformly Lipshitz-ontinuousnonlinearities.The purpose of the present paper is to develop the a posteriori error analysis of(V;Q)-onforming �nite element approximations to (1.1), (1.2), for the entire rangeof r 2 (1;1). A distintive feature of problem (1.1), (1.2) is that, in general, thereis no value of r > 1 other than r = 2 suh that the nonlinear di�erential operatoris both uniformly monotone and uniformly Lipshitz-ontinuous in the Sobolev normk � kW 1;r(
). Hene, following the work of Barrett and Liu [6℄, [7℄, we shall rely hereon uniform monotoniity and loal Lipshitz ontinuity properties in Sobolev quasi-norms.The paper is strutured as follows. In the next setion we state the �nite elementdisretisation of the boundary value problem and derive an error representation for-mula whih expresses the error between the analytial solution of the boundary-valueproblem and its �nite element approximation in terms of omputable �nite elementresiduals. In Setion 3, we establish some preliminary results whih will then be usedin Setion 4 to derive our a posteriori bounds on the error in the approximations uhand ph to the veloity and the pressure in k � kV and k � kQ, respetively. The mainresult of the paper is the following a posteriori upper bound on the error.Theorem 1.1. Let (u; p) 2 V � Q denote the solution to (1.1), (1.2), and let(uh; ph) 2 Vh � Qh denote its �nite element approximation de�ned by (2.2), (2.3).Then, there exists a positive onstant C = C(K1;K2; 0; 00; r; kfkV 0) suh thatku� uhkRV + kp� phk�Q � C �kS1kR0V 0 + kS2k�0Q0� ;(1.5)where R = maxfr; 2g, � = maxfr0; 2g, 1=R+1=R0 = 1, 1=�+1=�0 = 1, and S1 and S2residual funtionals whih are omputably bounded aording to (2.18) and (2.19).2. Finite element approximation. Heneforth, we shall suppose that 
 �Rd is a bounded polyhedral domain and that (Th)h>0 is a shape-regular family ofsubdivisions of 
 onsisting of d-dimensional open simplexes T 2 Th, eah of whih is



4 J.W. BARRETT, J.A. ROBSON, AND E. S�ULIan aÆne image of the open unit simplexT̂ = fx̂ = (x̂1; : : : ; x̂d) 2 Rd : 0 < x̂i < 1; i = 1; : : : ; d; 0 < x̂1 + : : :+ x̂d < 1g:Suppose that Vh � V is a �nite element spae onsisting of ontinuous pieewisepolynomial d-omponent vetor funtions de�ned on the triangulation Th of 
 andQh � Q is a �nite element spae onsisting of ontinuous or disontinuous pieewisepolynomial funtions de�ned on Th. We shall assume that the pair (Vh; Qh) satis�esthe following inf-sup ondition: there exists a positive onstant 00, independent of thedisretisation parameter h > 0, suh thatinfqh2Qh supvh2Vh b(qh;vh)kqhkQkvhkV � 00:(2.1)The �nite element approximation of our model problem has the following form:�nd uh 2 Vh and ph 2 Qh suh thata(uh;vh) + b(ph;vh) = (f ;vh) 8vh 2 Vh;(2.2) b(qh;uh) = 0 8qh 2 Qh:(2.3)Under the stated hypotheses problem (2.2), (2.3) has a unique solution (uh; ph) inVh �Qh (.f. [3℄, [6℄).In addition, we shall suppose that the �nite element spae Vh has the followingapproximation property: there exists a (possibly nonlinear) mapping Ih : V ! Vhand a positive onstant C1 suh that, for all w 2 V = [W1;r0 (
)℄d and all T 2 Th,kw� IhwkLr(T ) + hT jw� IhwjW1;r(T ) � C1hT jwjW1;r(ST );(2.4)where hT is the diameter of the element T , and ST is the path of elements sur-rounding T . Condition (2.4) an be ful�lled by seleting Ihw as the Sott{Zhangquasi-interpolant of w 2 V (f. [8℄ and [19℄).We dedue from (1.1) and (1.2) that, for all w 2 V and all q 2 Q,a(u;w)� a(uh;w) + b(p� ph;w) = (f ;w) � a(uh;w)� b(ph;w);(2.5) b(q;u� uh) = �b(q;uh):(2.6)Adding (2.5) to (2.6) and using (2.2) with vh = Ihw yieldsa(u;w)� a(uh;w) + b(p� ph;w) + b(q;u� uh)= f(f ;w � Ihw)� a(uh;w � Ihw)� b(ph;w � Ihw)g � b(q;uh);(2.7)for all w 2 V and all q 2 Q.We proeed by deomposing the inner produt (�; �), the semilinear form a(�; �)and the bilinear form b(�; �) as sums of integrals over elements T 2 Th, and integratingby parts over eah element T 2 Th; thus,a(u;w) � a(uh;w) + b(p� ph;w) + b(q;u� uh) = XT2Th ZT f � (w � Ihw) dT� XT2Th ZT k(je(uh)j)e(uh) : e(w� Ihw) dT



A POSTERIORI ERROR ANALYSIS FOR QUASI-NEWTONIAN FLOWS 5+ XT2Th ZT phr � (w � Ihw) dT + XT2Th ZT (r � uh)q dT= XT2Th (f +r � (k(je(uh)j)e(uh))�rph) � (w � Ihw) dT� XT2Th Z�T [k(je(uh)j)e(uh)nT � phnT ℄ � (w � Ihw) ds+ XT2Th ZT (r � uh) q dT� T1 +T2 +T3;(2.8)where nT is the unit outward normal vetor to the boundary �T of the simplex T 2 Th.Let us de�ne the residuals R1 and R3 on ST2Th T by setting, on eah T 2 Th,R1 = f +r � (k(je(uh)j)e(uh))�rphand R3 = r � uh:Clearly, R1 is a vetor and R3 is a salar, { and this is reeted by our notation.The term T2 in (2.8) an be rewritten asT2 = XT2Th Z�T (�TnT ) � (w � Ihw) ds;where � = � (k(je(uh)j)e(uh)� phI) ;I denotes the d � d identity matrix, and �T = �jT . As w � Ihw = 0 on �
, partsof �T whih interset �
 an be omitted from the region of integration in term T2.Hene, only faes e � �T internal to 
 need to be onsidered in detail.Let e � 
 be a (d � 1)-dimensional fae shared by elements T and T 0; i.e.,e = �T \�T 0. Then, during the summationPT2Th and surfae integration R�T : : : dsinvolved in T2, the fae e will be traversed twie: one in the ourse of integrationover �T and then in the ourse of integration over �T 0 (f. Figure 2.1).Sine during the two passes through e = �T \ �T 0 the orientation of the unitoutward normal hanges, we dedue thatT2 = XT2Th Xe��T\
 Ze 12 [[�n℄℄ � (w � Ihw) ds;where, on the fae e � �T \ 
,[[v℄℄ = vj�T 0\
 � vj�T\
:The presene of the fator 12 is due to the fat that in the double summation overT 2 Th and e � �T \ 
 eah fae e has been ounted twie. In the de�nition of [[�℄℄,for the sake of notational simpliity, we suppressed the referene to the element T



6 J.W. BARRETT, J.A. ROBSON, AND E. S�ULI
PSfrag replaements eT T 0nTFig. 2.1. A fae e shared by elements T and T 0 in the triangulation and the unit outwardnormal vetor nT to the boundary �T of T , in the ase d = 2.onsidered. A more preise notation would have been to write [[�℄℄T instead of [[�℄℄ tohighlight the fat that [[�℄℄T 0 = �[[�℄℄T .Motivated by the form of T2, for eah element T 2 Th and eah fae e � �T \ 
we de�ne R2 = 12 [[�n℄℄:On expressing the right-hand side of (2.7) in terms of R1, R2 and R3, we obtain thefollowing error representation formula:a(u;w)� a(uh;w) + b(p� ph;w) + b(q;u� uh)= XT2Th ZT R1 � (w � Ihw) dT+ XT2Th Xe��T\
 ZeR2 � (w � Ihw) ds+ XT2Th ZT R3(q + ) dT(2.9)for all w 2 V , all q 2 Q, and all  2 R; here we made use of the fat that XT2Th ZT R3 dT =  Z
r � uh d
 =  Z�
 uh � n ds = 0for all  2 R sine uhj�
 = 0.Applying H�older's inequality to eah of the terms on the right-hand side of (2.9)and then taking the in�mum over all  2 R, we have thata(u;w)� a(uh;w) + b(p� ph;w) + b(q;u� uh)� XT2Th kR1kLr0 (T )kw� IhwkLr(T )+ XT2Th Xe��T\
 kR2kLr0 (e)kw � IhwkLr(e)+ XT2Th kR3kLr(T ) inf2Rkq + kLr0 (T )(2.10)



A POSTERIORI ERROR ANALYSIS FOR QUASI-NEWTONIAN FLOWS 7for all w 2 V and all q 2 Q.Aording to the Trae Inequality, there exists a positive onstant C0 suh that,for all w 2 [W1;r(T )℄d, 1 < r <1, and any fae e � �T ,kwkLr(e) � C0 �h�1=rT kwkLr(T ) + h1=r0T jwjW1;r(T )� :Hene, (2.4) implies that, for any w 2 V , any T 2 Th and any fae e � �T ,kw� IhwkLr(e) � C0C1h1=r0T jwjW1;r(ST ):(2.11)Applying (2.4) and (2.11) in (2.10) and using H�older's inequality for �nite sums,we have thata(u;w)� a(uh;w) + b(p� ph;w) + b(q;u� uh)� C  XT2Th hr0T kR1kr0Lr0 (T )!1=r0 jwjW1;r(
)+ C  XT2Th Xe��T\
 hT kR2kr0Lr0 (e)!1=r0 jwjW1;r(
)+ XT2Th kR3krLr(T )!1=r inf2Rkq + kLr0 (
)(2.12)for all w 2 V and all q 2 Q. Inequality (2.12) implies thata(u;w)� a(uh;w) + b(p� ph;w) + b(q;u� uh)� C 24 XT2Th hr0T kR1kr0Lr0 (T )!1=r0 + XT2Th Xe��T\
hT kR2kr0Lr0 (e)!1=r035 jwjW1;r(
)+ XT2Th kR3krLr(T )!1=r inf2Rkq + kLr0 (
)(2.13)for all w 2 V and all q 2 Q. Taking q = 0 in (2.13) and then the supremum over allw 2 V = [W1;r0 (
)℄d, using (1.4), and realling that ke(w)kLr(
) = kwkV , we getsupw2V a(u;w) � a(uh;w) + b(p� ph;w)kwkV� C 24 XT2Th hr0T kR1kr0Lr0 (T )!1=r0 + XT2Th Xe��T\
 hT kR2kr0Lr0 (e)!1=r035:(2.14)On the other hand, taking w = 0 in (2.13) and then the supremum over q 2 Q yieldssupq2Q b(q;u� uh)kqkQ �  XT2Th kR3krLr(T )!1=r :(2.15)Now, let us rewrite the left-hand side of (2.14) as the norm of a ertain elementS1 2 V 0 and the left-hand side of (2.15) as the norm of a ertain element S2 2 Q0;



8 J.W. BARRETT, J.A. ROBSON, AND E. S�ULIS1 and S2 are referred to as residual funtionals. We shall omplete the a posteriorierror analysis by showing that ku� uhkV and kp� phkQ an be bounded in terms ofkS1kV 0 and kS2kQ0 , and thereby, also, in terms of the right-hand sides of (2.14) and(2.15). We de�ne S1 2 V 0 byhS1;wi = (f ;w) � a(uh;w)� b(ph;w) 8w 2 V:(2.16)Similarly, we de�ne S2 2 Q0 byhS2; qi = �b(q;uh) 8q 2 Q:(2.17)The existene of the funtionals S1 and S2 as elements of V 0 and Q0, respetively, isthe onsequene of Remark 1 following Lemma 3.4 in the next setion.Let us ompute the norms kS1kV 0 and kS2kQ0 . We begin by noting that (1.1) and(2.16) imply thathS1;wi = a(u;w) � a(uh;w) + b(p;w)� b(ph;wh):Hene, kS1kV 0 = supw2V hS1;wikwkV = supw2V a(u;w)� a(uh;w) + b(p� ph;w)kwkV :Applying (2.14) to the right-most expression in this hain, we dedue thatkS1kV 0 � C 24 XT2Th hr0T kR1kr0Lr0 (T )!1=r0+ XT2Th Xe��T\
 hT kR2kr0Lr0 (e)!1=r035:(2.18)Analogously, by (2.17),kS2kQ0 = supq2Q hS2; qikqkQ = supq2Q �b(q;uh)kqkQ = supq2Q b(q;u� uh)kqkQ ;and therefore, by (2.15), kS2kQ0 �  XT2Th kR3krLr(T )!1=r :(2.19)For 1 < r < 1 the reexive Banah spae V is ontinuously and densely embeddedinto the reexive Banah spae [Lr(
)℄d. Hene, [Lr0(
)℄d, the dual spae of [Lr(
)℄d,is ontinuously and densely embedded into V 0. In partiular, f 2 [Lr0(
)℄d an beidenti�ed with an element of V 0 (also denoted f for the sake of notational simpliity)via hf ;wi = (f ;w) for all w 2 V . Hene, the de�nitions (2.16) and (2.17) imply thata(uh;w) + b(ph;w) = hf � S1;wi 8w 2 V;b(q;uh) = h�S2; qi 8q 2 Q:On subtrating these from (1.1) and (1.2), respetively, we obtaina(u;w) � a(uh;w) + b(p� ph;w) = hS1;wi 8w 2 V;(2.20) b(q;u� uh) = hS2; qi 8q 2 Q:(2.21)



A POSTERIORI ERROR ANALYSIS FOR QUASI-NEWTONIAN FLOWS 9Sine kS1kV 0 and kS2kQ0 have been bounded in terms of the omputable residualsR1, R2 and R3 through (2.18) and (2.19), the desired a posteriori error bound willbe arrived at by deduing from (2.20) and (2.21) that ku�uhkV and kp� phkQ an,in turn, be bounded in terms of kS1kV 0 and kS2kQ0 , as stated in the next proposition.Proposition 2.1. Let (u; p) 2 V � Q denote the solution to (1.1), (1.2), andlet (uh; ph) 2 Vh�Qh denote its �nite element approximation de�ned by (2.2), (2.3);then, there exists a positive onstant C = C(K1;K2; 0; r; kfkV 0) suh thatku� uhkRV � C �kS1kR0V 0 + kS2k�0Q0 + kS1kV 0kS2kQ0� ;(2.22) kp� phk�Q � C �kS1k�V 0 + kS1kR0V 0 + kS2k�0Q0 + kS1kV 0kS2kQ0� ;(2.23)where R = maxfr; 2g, � = maxfr0; 2g, 1=R + 1=R0 = 1, 1=� + 1=�0 = 1, and S1 andS2 are bounded aording to (2.18) and (2.19).In the speial ase of a power law-model, k(t) = 2�tr�2 with r 2 (1; 2), the bounds(2.22) and (2.23) ollapse to those of Sandri [17℄. To prove the theorem, we requiresome preliminary results.3. Preliminary results. For � 2 [0; 1℄ and t 2 (0;1), we de�ne��(t) = t�(1 + t)1��:Hene,�0�(t) = (� + t)(1 + t)��t��1 and �00�(t) = ��(1� �)t��2(1 + t)���1:Therefore, for any � 2 [0; 1℄, t 7! ��(t) is a stritly monotoni inreasing funtion oft 2 (0;1); in partiular, t 7! �0(t) and t 7! �1(t) are aÆne funtions of t 2 (0;1).Furthermore, for � 2 (0; 1), t 7! ��(t) is a stritly onave funtion of t 2 (0;1).The following Jensen-type inequality is easily proved by using H�older's inequality andthe triangle inequality in Lr(
): for any r 2 [1;1), � 2 [0; 1℄, and all w 2 Lr(
),� 1j
j Z
[��(jw(x)j)℄r d
� 1r � �� � 1j
j Z
 jw(x)jr d
� 1r! :Aording to our simplifying assumption from the start of the paper, j
j = 1; hene,k��(jwj)kLr(
) � ��(kwkLr(
))(3.1)for all r 2 [1;1), � 2 [0; 1℄, and all w 2 Lr(
).We reall the following result from the paper of Barrett and Liu [6℄.Lemma 3.1. Let k satisfy assumption (A1) for r 2 (1;1) and � 2 [0; 1℄. Then,for all M1, M2 in Rd�dsymm and Æ � 0, we have that(k(jM1j)M1�k(jM2j)M2) : (M1�M2)�K1[��(jM1j+ jM2j)℄r�2�Æ jM1�M2j2+Æ :(3.2)Let k satisfy assumption (A2) for r 2 (1;1) and � 2 [0; 1℄. Then, for all M1;M2 inRd�dsymm and Æ � 0, we have thatjk(jM1j)M1 � k(jM2j)M2j � K2[��(jM1j+ jM2j)℄r�2+Æ jM1 �M2j1�Æ:(3.3)



10 J.W. BARRETT, J.A. ROBSON, AND E. S�ULINext, we introdue the notationjvj2(w;r;�) = Z
[��(je(v)j + je(w)j)℄r�2je(v)j2 d
; v;w 2 [W1;r(
)℄d; 1 < r <1:Proposition 3.2. Suppose that r 2 (1;1), � 2 [0; 1℄ and w 2 [W1;r(
)℄d; then,the following hold:(i) jvj(w;r;�) � 0 for all v 2 [W1;r(
)℄d. In partiular, when v 2 V = [W1;r0 (
)℄d,jvj(w;r;�) = 0 if, and only if, v = 0;(ii) (Quasi-triangle-inequality): there exists a onstant C = C(r) suh thatjv1 + v2j(w;r;�) � C �jv1j(w;r;�) + jv2j(w;r;�)�for all v1;v2 2 [W1;r(
)℄d;(iii) For 1 < r � 2,jvj2=r(w;r;�) � ke(v)kLr(
) � [��(ke(v)kLr(
) + ke(w)kLr(
))℄(2�r)=2 jvj(w;r;�)for all v 2 [W1;r(
)℄d.For 2 � r <1,ke(v)kr=2Lr(
)� jvj(w;r;�)� [��(ke(v)kLr(
) + ke(w)kLr(
))℄(r�2)=2 ke(v)kLr(
)for all v 2 [W1;r(
)℄d.Part (i) of this proposition follows from the de�nition of j � j(w;r;�), and Korn'sinequality. Part (ii) has been proved in the paper of Barrett and Liu [7℄. The proofof (iii) is based on a straightforward appliation of H�older's inequality and Jensen'sinequality (3.1). Properties (i) and (ii) in Proposition 3.2 are the axioms of quasi-norm. Thus, for w 2 V = [W1;r(
)℄d, j � j(w;r;�) is a quasi-norm on V . Property (iii)relates the Sobolev norm k � kV = j � jW1;r(
) to the quasi-norm j � j(w;r;�).Now, we show the uniform monotoniity and loal Lipshitz ontinuity of thesemilinear form a(�; �) with respet to the quasi-norm.Lemma 3.3. Suppose that r 2 (1;1) and de�ne the onstants C2 = 2�jr�2jK1and C3 = 2jr�2j=maxf2;r0gK2; then, for i = 1; 2, and all v1;v2;w in V ,a(v1;v1 � v2)� a(v2;v1 � v2) � C2jv1 � v2j2(vi;r;�);(3.4) ja(v1;w)�a(v2;w)j�C3jv1�v2jminf1; 2r0 g(vi;r;�) [��(kv1kV +kv2kV )℄maxf0; r�22 gkwkV :(3.5)Proof. To prove (3.4), we use (3.2) with Æ = 0, and Mi = e(vi), i = 1; 2. Hene,we dedue that, for any v1;v2 2 V ,a(v1;v1 � v2)� a(v2;v1 � v2)� K1 Z
 je(v1)� e(v2)j2[��(je(v1)j+ je(v2)j)℄r�2 d
:(3.6)We note that, for i = 1; 2,12 (je(v1 � v2)j+ je(vi)j) � je(v1)j+ je(v2)j � 2 (je(v1 � v2)j+ je(vi)j) :(3.7)



A POSTERIORI ERROR ANALYSIS FOR QUASI-NEWTONIAN FLOWS 11Suppose that 1 < r � 2; then, (3.6), the seond inequality in (3.7) and thede�nition of the quasi-norm j � j(vi;r;�) imply thata(v1;v1 � v2)� a(v2;v1 � v2) � 2r�2K1jv1 � v2j2(vi;r;�); i = 1; 2;and hene (3.4) with C2 = 2r�2K1 for 1 < r � 2.Similarly, when 2 � r < 1, the �rst inequality in (3.7) and the de�nition of thequasi-norm j � j(vi;r;�) imply thata(v1;v1 � v2)� a(v2;v1 � v2) � 22�rK1jv1 � v2j2(vi;r;�); i = 1; 2;and hene (3.4) with C2 = 22�rK1 for 2 � r <1.To show (3.5), we apply H�older's inequality, the fat that ke(w)kLr(
) = kwkV ,and the inequality (3.2) with Mi = e(vi), i = 1; 2; hene, we dedue thatja(v1;w)� a(v2;w)j = Z
 (k(je(v1)j)e(v1)� k(je(v2)j)e(v2)) : e(w) d
� �Z
 jk(je(v1)j)e(v1)� k(je(v2)j)e(v2)jr0 d
�1=r0 kwkV� K2�Z
 je(v1)� e(v2)j(1�Æ)r0 [��(je(v1)j+ je(v2)j)℄(r�2+Æ)r0 d
�1=r0 kwkV :(3.8)Let 1 < r � 2 and de�ne Æ = 1� (2=r0); then (1� Æ)r0 = 2, (r � 2+ Æ)r0 = r� 2.Therefore, using the �rst inequality in (3.7),ja(v1;w)� a(v2;w)j � 2(2�r)=r0K2jv1 � v2j2=r0(vi;r;�)kwkV ;whih is (3.5) with C3 = 2(2�r)=r0K2 for 1 < r � 2.Now, let 2 < r � 1 and hene r0 = r=(r � 1) 2 (1; 2); we shall use H�older'sinequality in the integral on the right-hand side of (3.8). Thus, we take Æ = 0, split[��(je(v1)j+je(v2)j)℄(r�2)r0 = [��(je(v1)j+je(v2)j)℄ (r�2)r02 [��(je(v1)j+je(v2)j)℄ (r�2)r02and group the �rst fator on the right with je(v1) � e(v2)jr0 . The appliation ofH�older's inequality with exponents � = 2=r0 and �0 = 2=(2 � r0), 1=� + 1=�0 = 1,orresponding to the fatorsje(v1)� e(v2)jr0 [��(je(v1)j+ je(v2)j)℄(r�2)r0=2 and [��(je(v1)j+ je(v2)j)℄(r�2)r0=2;respetively, yieldsja(v1;w)� a(v2;w)j � K2�Z
 je(v1)� e(v2)j2[��(je(v1)j+ je(v2)j)℄r�2 d
�1=2��Z
[��(je(v1)j+ je(v2)j)℄ (r�2)r02 � 22�r0 d
�(2�r0)=(2r0)kwkV :As (r�2)r02 � 22�r0 = r, 2�r02r0 = r�22r , using the seond inequality in (3.7) we get thatja(v1;w)� a(v2;w)j � C3jv1 � v2j(vi;r;�) k[��(je(v1)j+ je(v2)j)℄k(r�2)=2Lr(
) kwkV



12 J.W. BARRETT, J.A. ROBSON, AND E. S�ULIfor all v1;v2 in V , with C3 = 2(r�2)=2K2. On noting (3.1), the triangle inequalityfor the k � kLr(
) norm, and that t 7! ��(t) is monotoni inreasing, we have (3.5) for2 < r <1.Next, we show that the solutions to problems (1.1), (1.2) and (2.2), (2.3) an bebounded in terms of kfkV 0 .Lemma 3.4. Let (u; p) 2 V �Q and (uh; ph) 2 Vh �Qh denote the solutions toproblems (1.1), (1.2) and (2.2), (2.3), respetively, and let r 2 (1;1); thenkukV � G�1( 1K1 kfkV 0); kpkQ � 10 �kfkV 0 +K2(H ÆG�1)( 1K1 kfkV 0)�;(3.9) kuhkV � G�1( 1K1 kfkV 0); kphkQ � 100 �kfkV 0 +K2(H ÆG�1)( 1K1 kfkV 0)�;(3.10)where 0 and 00 are the inf-sup onstants from (1.3) and (2.1), respetively, and Gand H are ontinuous stritly monotoni inreasing funtions de�ned on [0;1).Proof. Taking v = u in (1.1) and using (1.2), we have thata(u;u) = (f ;u) = hf ;ui � kfkV 0kukV :Now, using (3.2) with M1 = e(u), M2 = 0, Æ = 0, and (iii) of Proposition 3.2 withw = 0, we obtaina(u;u) � K1juj2(0;r;�) � K1kukV G(kukV ); G(t) = � t � [��(t)℄r�2; 1 < r � 2;tr�1; r � 2:Sine G : t 7! G(t) is ontinuous and stritly monotoni inreasing on [0;1), itsinverse funtion G�1 is ontinuous and stritly monotoni inreasing on [0;1). Hene,kukV � G�1( 1K1 kfkV 0):To bound kpkQ, note that, by the inf-sup ondition (1.3),0kpkQ � supv2V b(p;v)kvkV :On the other hand, from (1.1), and using using (3.3) with M1 = e(u), M2 = 0, Æ = 0,and (iii) of Proposition 3.2 with w = 0, we obtainb(p;v) = (f ;v) � a(u;v) = hf ;vi � a(u;v) � kfkV 0kvkV +K2H(kukV )kvkV ;where H(t) = � tr�1; 1 < r � 2;t � [��(t)℄r�2; 2 � r;and therefore, 0kpkQ � kfkV 0 +K2H(kukV ):Clearly, H : t 7! H(t) is ontinuous and stritly monotoni inreasing on [0;1).Together with our earlier bound kukV � G�1( 1K1 kfkV 0), this proves (3.9); the proofof (3.10) is idential, exept that (2.1) is used instead of (1.3).



A POSTERIORI ERROR ANALYSIS FOR QUASI-NEWTONIAN FLOWS 13Remark 1. As j(f ;w)j = jhf ;wij � kfkV 0kwkV and, by H�older's inequality,ja(v;w)j � K2H(kvkV )kwkV and jb(q;w)j � kqkQkwkV , it follows, using (3.10),thatj(f ;w)� a(uh;w)� b(ph;w)j��1 + 100��kfkV 0 +K2(H ÆG�1)( 1K1 kfkV 0)� kwkV :Hene, for f 2 [Lr0(
)℄d �xed, and the orresponding unique solution (uh; ph) of (2.2),(2.3) in Vh �Qh � V �Q thereby also �xed, w 7! (f ;w) � a(uh;w) � b(ph;w) is abounded (and therefore ontinuous) linear funtional on V ; as suh, it belongs to V 0.It is this element of V 0 that was denoted earlier by S1. Similarly, for uh 2 Vh � V�xed, q 7! b(q;uh) is a bounded (and therefore ontinuous) linear funtional on Q,and as suh, it belongs to Q0; it is this element of Q0 that was denoted above by S2.Using v1 = u and v2 = uh in (3.4) and (3.5), together with the bounds on kukVand kuhkV from Lemma 3.4, we obtain the following result.Lemma 3.5. Let (u; p) 2 V �Q and (uh; ph) 2 Vh �Qh denote the solutions toproblems (1.1), (1.2) and (2.2), (2.3), respetively, and suppose that r 2 (1;1); then,a(u;u� uh)� a(uh;u� uh) � C2ju� uhj2(u;r;�);(3.11) ja(u;w) � a(uh;w)j � C4ju� uhjminf1; 2r0 g(u;r;�) kwkV ;(3.12)where C4 = C32maxf0; r�22 g[(�� Æ G�1)( 1K1 kfkV 0)℄maxf0; r�22 g, and C2 = C2(K1; r),C3 = C3(K2; r) are as in Lemma 3.3.4. Proof of the a posteriori error bound. Equipped with the results of theprevious setion, we now return to the proof of Proposition 2.1, whereupon we shallprove Theorem 1.1. Our starting point is the following result.Proposition 4.1. Let (u; p) 2 V � Q denote the solution to (1.1), (1.2), andlet (uh; ph) 2 Vh�Qh denote its �nite element approximation de�ned by (2.2), (2.3);then, there exists a positive onstant C = C(K1;K2; 0; r; kfkV 0) suh thatju� uhj2(u;r;�) � C �kS1kR0V 0 + kS2k�0Q0 + kS1kV 0kS2kQ0� ;(4.1) kp� phk�Q � C �kS1k�V 0 + ju� uhj2(u;r;�)� ;(4.2)where R = maxfr; 2g, � = maxfr0; 2g, 1=R + 1=R0 = 1, 1=� + 1=�0 = 1, and S1 andS2 are bounded aording to (2.18) and (2.19).Proof. (Proposition 4.1.) Aording to the inf-sup ondition (1.3), identity (2.20),the de�nition of the norm k � kV 0 and (3.12), we have that0kp� phkQ � kS1kV 0 + C4ju� uhjminf1; 2r0 g(u;r;�) ;(4.3)and hene (4.2) on noting that minf1; 2r0 g = 2minf 12 ; 1r0 g = 2=�.On the other hand, taking w = u�uh in (2.20), then using (2.21) with q = p�ph,(3.11), and the de�nitions of the norms k � kV 0 and k � kQ0 , we get thatC2ju� uhj2(u;r;�) � kS1kV 0ku� uhkV + kS2kQ0kp� phkQ:(4.4)



14 J.W. BARRETT, J.A. ROBSON, AND E. S�ULIMultiplying (4.4) by 0 and then eliminating 0kp� phkQ using (4.3) gives0C2ju� uhj2(u;r;�) � 0kS1kV 0ku� uhkV + kS1kV 0kS2kQ0+C4kS2kQ0 ju� uhjminf1; 2r0 g(u;r;�) :(4.5)Part (iii) of Proposition 3.2, with v = u� uh and w = u implies thatku� uhkV � [��(ku� uhkV + kukV )℄maxf0; 2�r2 g ju� uhjminf1; 2r g(u;r;�) :(4.6)Also, realling from Lemma 3.4 thatkukV � G�1( 1K1 kfkV 0) and kuhkV � G�1( 1K1 kfkV 0)gives ku� uhkV + kukV � 2 (kukV + kuhkV ) � 2G�1( 1K1 kfkV 0):(4.7)Hene, (4.6) and the fat that t 7! ��(t) is monotoni inreasing on [0;1) imply thatku� uhkV � 2maxf0; 2�r2 g[(�� ÆG�1)( 1K1 kfkV 0)℄maxf0; 2�r2 gju� uhjminf1; 2r g(u;r;�) :We substitute this into the right-hand side of (4.5) to eliminate ku� uhkV ; thus,ju� uhj2(u;r;�) � C �kS1kV 0 ju� uhjminf1; 2r g(u;r;�) + kS1kV 0kS2kQ0+ kS2kQ0 ju� uhjminf1; 2r0 g(u;r;�) � ;(4.8)where C = C(K1;K2; 0; r; kfkV 0) is a positive onstant. We apply Young's inequalityab � "1�s ass + "bs0s0 ; 1=s+ 1=s0 = 1; 1 < s <1; a; b � 0; " > 0;to the �rst and the third terms on the right-hand side of (4.8), with a = CkS1kV 0and s0 = 2=minf1; 2=rg = maxfr; 2g in the ase of the �rst term and a = CkS2kQ0and s0 = 2=minf1; 2=r0g = maxfr0; 2g in the ase of the third term, and take " > 0suÆiently small so as to hide the term "(1=maxfr; 2g+1=maxfr0; 2g)ju�uhj2(u;r;�)thus resulting from the right-hand side of (4.8) into ju � uhj2(u;r;�) appearing on theleft-hand side of (4.8); any " 2 (0; 1) will suÆe. Hene we dedue thatju� uhj2(u;r;�) � C �kS1kR0V 0 + kS1kV 0kS2kQ0 + kS2k�0Q0� ;(4.9)where R = maxfr; 2g, � = maxfr0; 2g, 1=R + 1=R0 = 1, 1=� + 1=�0 = 1, and C is atmost 1=(1� ") times what it was in (4.8).Proof. (Proposition 2.1.) Part (iii) of Proposition 3.2 with v = u�uh and w = u,(4.7) and (4.9) imply thatku� uhkRV � C �kS1kR0V 0 + kS1kV 0kS2kQ0 + kS2k�0Q0� ;(4.10)and hene (2.22).For the error in the pressure, substitution of (4.9) into the right-hand side of (4.2)yields (2.23). That ompletes the proof of Proposition 2.1.



A POSTERIORI ERROR ANALYSIS FOR QUASI-NEWTONIAN FLOWS 15The a posteriori error bounds stated in Proposition 2.1 an be simpli�ed, thusleading to Theorem 1.1 whih we now prove.Proof. (Theorem 1.1.) By virtue of (2.16) and Remark 1,kS1kV 0 � �1 + 100��kfkV 0 +K2(H ÆG�1)( 1K1 kfkV 0)� :Thus, on noting that R0 = minfr0; 2g � maxfr0; 2g = �, we have thatkS1kR0V 0 + kS1k�V 0 = kS1kR0V 0 �1 + kS1k��R0V 0 � � CkS1kR0V 0 ;(4.11)where C = C(K1;K2; 00; r; kfkV 0). Also, by Young's inequality and (4.11),kS1kV 0kS2kQ0 � 1�kS1k�V 0 + 1�0 kS2k�0Q0 � C �kS1kR0V 0 + kS2k�0Q0� ;(4.12)where C = C(K1;K2; 00; r; kfkV 0). Hene, (4.11), (4.12), together with (2.22) and(2.23) of Proposition 2.1, yield the a posteriori error bound (1.5) of Theorem 1.1stated in the Introdution.5. Conluding remarks. We presented a general framework for energy-norm-based a posteriori error analysis of onforming mixed �nite element approximations toquasi-Newtonian ow models. As has been noted in the Introdution, Proposition 2.1and Theorem 1.1 reover a number of known a posteriori bounds from the literature;they also provide new bounds for a very general lass of quasi-Newtonian ow models.When r = 2, we have R = R0 = � = �0 = 2; then, (1.5) of Theorem 1.1 ollapses tothe a posteriori error bound of Barrett and Bao [5℄ for inf-sup-stable mixed �nite ele-ment approximations of Carreau-type quasi-Newtonian ows, the linear Stokes prob-lem being a speial ase [20℄. For r 6= 2, the bound (1.5) represents an improvementover several earlier results (f. [3℄ and [15℄, in partiular) in that the powers of kS1kV 0and kS2kQ0 in our a posteriori error bound are larger than the ones in those papers.The validity of Propositions 2.1 and 4.1 is independent of whether or not the pairof spaes (Vh; Qh) is inf-sup stable in the sense of (2.1): it is only in the transitionfrom Proposition 2.1 to Theorem 1.1 that we made use of the bound on kphkQ from(3.10) whih relied on (1.3). Indeed, suppose that problem (1.1), (1.2) has beenapproximated by the �nite element method: �nd uh 2 Vh and ph 2 Qh suh thata(uh;vh) + b(ph;vh) = (f ;vh) 8vh 2 Vh;b(qh;uh) = h(qh; ph) 8qh 2 Qh;where h(�; �) is a bilinear form on Qh � Qh satisfying h(qh; qh) � 0, qh 2 Qh (thedisretisation (2.2), (2.3) being a speial ase with h(qh; ph) = 0 for all qh 2 Qh).A number of pressure-stabilised �nite element disretisations of (1.1), (1.2) are ofthis form. It is then easy to see that the bound on kuhkV from (3.10) still holdsirrespetive of (2.1), and, if instead of assuming (2.1) we suppose that the sequene(kphkQ)h>0 is bounded, independent of h, then, one again, Theorem 1.1 follows fromProposition 2.1 in exatly the same way as before.The omputational assessment of the sharpness of the a posteriori upper boundstated in Theorem 1.1 and the derivation of a posteriori lower bounds on the errorwill be onsidered in forthoming papers.



16 J.W. BARRETT, J.A. ROBSON, AND E. S�ULIREFERENCES[1℄ C. Amrouhe and V. Girault, Propri�et�es fontionelles d'op�erateurs. Appliation au probl�emede Stokes en dimension quelonque, Publiations du Laboratoire d'Analyse Num�erique, n.90025, Universit�e Pierre et Marie Curie, Paris, 1990.[2℄ W. Bao, An eonomial �nite element approximation of generalized Newtonian ows, Comput.Methods Appl. Meh. Engnrg. 191 (2002) 3637{3648.[3℄ J. Baranger and H. El Amri, Estimateurs a posteriori d'erreur pour alul adaptifd'�eoulements quasi-Newtoniens, RAIRO M 2AN 25 (1991), 31{48.[4℄ J. Baranger and K. Najib, Analyse num�erique des �eoulements quasi-Newtoniens dont lavisosit�e ob�eit �a la loi puissane ou la loi de Carreau, Numer. Math. 58 (1990) 35{49.[5℄ J.W. Barrett and W. Bao, A priori and a posteriori error bounds for a nononforming linear�nite element approximation of non-Newtonian ow, M 2AN 32 (1998) 843{858.[6℄ J.W. Barrett and W.B. Liu, Finite element error analysis of quasi-Newtonian ow obeyingthe Carreau or power law, Numer. Math. 64 (1993) 433{453.[7℄ J.W. Barrett and W.B. Liu, Quasi-norm error bounds for �nite element approximations ofquasi-Newtonian ows, Numer. Math. 68 (1994) 437{456.[8℄ S.C. Brenner and L.R. Sott, The Mathematial Theory of Finite Element Methods,Springer{Verlag, Berlin, 2002.[9℄ C. Carstensen and S.A. Funken, A posteriori error ontrol in low-order �nite element disreti-sations of inompressible stationary ow problems. Math. Comput. 70 (2001) 1353-1381.[10℄ Q. Du and M. Gunzburger, Finite element approximation of Ladyzhenskaya model for sta-tionary inompressible visous ow, SIAM J. Numer. Anal. 27 (1990) 1{19.[11℄ M. Fortin and M. Soulie, A non-onforming pieewise quadrati �nite element on triangles.Internat. J. Numer. Methods Engrg., 19 (1983) 505-520.[12℄ C.O. Horgan, Korn's inequalities and their appliations in ontinuummehanis. SIAM Review37 (1995) 491{511.[13℄ R. Kouhia and R. Stenberg, A linear nononforming �nite element method for nearly inom-pressible elastiity and Stokes ow, Comput. Methods Appl. Meh. Engnrg. 124 (1995)195{212.[14℄ P.P. Mosolov and V.P. Myasnikov, A proof of Korn's inequality, Soviet Math. Dokl. 12(1971) 1618{1622.[15℄ C. Padra, A posteriori error estimators for nononforming approximation of some quasi-Newtonian ows, SIAM J. Numer. Anal. 34 (1997) 1600{1615.[16℄ D. Sandri, Sur l'approximation num�eriqui des �eoulements quasi-Newtoniens dont la visosit�esuit loi puissane ou la loi de Carreau, RAIRO M 2AN 27 (1993) 131{155.[17℄ D. Sandri, A posteriori error estimators for mixed �nite element approximations of a uidobeying the power law, Comput. Methods Appl. Meh. Engnrg. 166 (1998) 329{340.[18℄ G. Simms, Finite element approximation of some nonlinear ellipti and paraboli problems.Ph.D. Thesis. Imperial College London, London 1995.[19℄ L.R. Sott and S. Zhang, Finite element interpolation of nonsmooth funtions satisfyingboundary onditions, Mathematis of Computation 54 (1990) 483{493.[20℄ R. Verf�urth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Re�nementTehniques. Teubner Verlag and J. Wiley, Stuttgart, 1996.


