
A POSTERIORI ERROR ANALYSIS OF MIXED FINITE ELEMENTAPPROXIMATIONS TO QUASI-NEWTONIAN INCOMPRESSIBLEFLOWS�JOHN W. BARRETT�, JANICE A. ROBSONy, AND ENDRE S�ULIzAbstra
t. We develop the a posteriori error analysis of mixed �nite element approximationsof a general family of steady, vis
ous, in
ompressible quasi-Newtonian 
uids in a bounded Lips
hitzdomain 
 � Rd; the family in
ludes degenerate models su
h as the power-law model, as well asnon-degenerate ones su
h as the Carreau model. The uni�ed theoreti
al framework developed hereinyields a residual-based a posteriori bound whi
h measures the error in the approximation of thevelo
ity in the W1;r(
) norm and that of the pressure in the Lr0(
) norm, 1=r + 1=r0 = 1.Key words. �nite elements, a posteriori error estimates, non-Newtonian 
uidsAMS subje
t 
lassi�
ations. 65N30, 65N15, 65G99, 76D07, 76D991. Introdu
tion. Suppose that 
 is a bounded Lips
hitz domain in Rd , d � 2,s
aled so that j
j = 1, and, for r 2 (1;1), let r0 = r=(r�1). The 
uid, whose motionin 
 is due to an external body for
e f 2 [Lr0(
)℄d, has velo
ity u and kinemati
pressure p. For ease of exposition, u will be assumed to satisfy the homogeneousDiri
hlet boundary 
ondition uj�
 = 0. The fun
tions u 2 V and p 2 Q are to befound from the boundary value problem whose weak formulation isa(u;v) + b(p;v) = (f ;v) 8v 2 V;(1.1) b(q;u) = 0 8q 2 Q;(1.2)where V = [W1;r0 (
)℄d, Q = Lr00 (
) = Lr0(
)=R,a(u;v) = Z
 k(x; je(u)j)e(u) : e(v) d
; b(q;v) = � Z
(r � v) q d
:The strain tensor e(u) 2 Rd�dsymm has 
omponentse(u)ij = 12 � �ui�xj + �uj�xi � ; i; j = 1; : : : ; d;where Rd�dsymm denotes the set of all symmetri
 real-valued d� d matri
es.Assumption (A): We assume that k 2 C(�
 � (0;1)) and that, given r 2 (1;1)as above, there exist 
onstants � 2 [0; 1℄ and ", K1, K2 > 0 su
h that, for all x 2 �
,(A1) k(x; t)t� k(x; s)s � K1(t� s)[(t+ s)�(1+ t+ s)1��℄r�2 for all t � s > 0;(A2) k(x; t) � K2[t�(1 + t)1��℄r�2 for all t > 0, andjk(x; t)t� k(x; s)sj � K2jt� sj[(t+ s)�(1 + t+ s)1��℄r�2for all s; t > 0 satisfying j(s=t)� 1j � ".�Jani
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2 J.W. BARRETT, J.A. ROBSON, AND E. S�ULIFor the sake of brevity and notational simpli
ity, we shall write k(�) instead ofk(x; �). The parameter � in (A) measures the degree of degenera
y in k(�) for a givenvalue of r 2 (1;1) in the sense that the 
loser � is to 1 the more degenerate k(�) is.For example:(a) the power law model with k(t) = 2�tr�2 
orresponds to � = 1; when r = 2,this redu
es to k(t) � 2�, yielding the Stokes equations whi
h govern thestationary 
ow of a vis
ous in
ompressible Newtonian 
uid;(b) the Carreau law k(t) = k1 + (k0 � k1)(1 + �t2)(��2)=2 with k0 > k1 � 0,� > 0, � 2 (1;1) 
orresponds to � = 0 with r = � if k1 = 0, and r = 2 if� 2 (1; 2℄ and k1 > 0.Partial di�erential equations with nonlinearities of the kind 
onsidered here arise in anumber of appli
ation areas, in
luding geophysi
al models of the lithosphere, as wellas 
hemi
al engineering, parti
ularly in the modelling of the 
ow of pastes and dies.We equip the spa
es V and Q with the normskvkV = ke(v)kLr(
) and kqkQ = inf
2Rkq + 
kLr0 (
);and re
all from [1℄ that the bilinear form b(�; �) satis�es the following inf-sup 
ondition:there exists a positive 
onstant 
0 su
h thatinfq2Q supv2V b(q;v)kqkQkvkV � 
0 8q 2 Q:(1.3)In Se
tion 2, we shall assume that the �nite element subspa
es Vh and Qh of thespa
es V and Q satisfy an analogous inf-sup 
ondition, with inf-sup 
onstant 
00 > 0.The fa
t that k �kV is a norm on V is a 
onsequen
e of Korn's inequality (
f. [12℄,[14℄) whi
h asserts the existen
e of a 
onstant C = C(r; d;
), 1 < r <1, su
h thatkvkW1;r(
) � Cke(v)kLr(
) 8v 2 V:(1.4)In the sequel, for the sake of notational simpli
ity, we shall suppress the dependen
eof all 
onstants on d and 
; in parti
ular, we shall write C(r) instead of C(r; d;
).The de�nition of the norm on Q re
e
ts the fa
t that in the 
ase of Diri
hletboundary 
ondition on �
 the pressure in the model is determined only up to anadditive 
onstant. Let V 0 denote the dual spa
e of V and let Q0 be the dual spa
e ofQ; the spa
es V 0 and Q0 have the normskfkV 0 = supv2V hf ;vikvkV and kgkQ0 = supq2Q hg; qikqkQ :Here, in the de�nition of k � kV 0 , h�; �i denotes the duality pairing between V 0 and V ,and in the de�nition of k � kQ0 it signi�es the duality pairing between Q0 and Q; asthe 
hoi
e of spa
es over whi
h the duality pairings a
t will always be 
lear from the
ontext we have 
hosen not to indi
ate them expli
itly in our notation h�; �i.Over the last de
ade, there has been 
onsiderable interest both in the mathe-mati
al analysis of quasi-Newtonian 
ow problems of this kind and in their �niteelement approximation. The existen
e and uniqueness of solutions to the boundaryvalue problem (1.1), (1.2) was studied by Baranger and Najib [4℄ and Barrett and Liu[6℄. In parti
ular, it is known that (1.1), (1.2) has a unique solution (u; p) 2 V �Q.Con
erning the a priori error analysis of �nite element methods for quasi-Newtonian
ow equations, we refer to Baranger and Najib [4℄, Du and Gunzburger [10℄, San-dri [16℄, Barrett and Liu [6, 7℄, Barrett and Bao [5℄, and Bao [2℄. Baranger and El



A POSTERIORI ERROR ANALYSIS FOR QUASI-NEWTONIAN FLOWS 3Amri [3℄ were the �rst to pursue the a posteriori error analysis of 
onforming �niteelement approximations to a quasi-Newtonian problem in the 
ase of the Carreaulaw. Subsequently, Simms [18℄ 
onsidered the a posteriori error analysis of Fortin'selement for 
onforming mixed �nite element approximations of quasi-Newtonian 
owproblems and, more re
ently, Sandri [17℄ studied the a posteriori error analysis of
onforming mixed �nite element approximations of the power-law model and deriveda posteriori error bounds for the 
ase of 1 < r < 2. In fa
t, Sandri's bounds onthe velo
ity and the pressure will emerge from our analysis for the spe
ial 
ase ofk(t) = 2�tr�2, 1 < r < 2; similarly, the error bounds of Baranger and El Amri [3℄are arrived at by sele
ting k(t) = k1 + (k0 � k1)(1 + �t2)(��2)=2, 1 < � � 2. Fornon
onforming �nite element methods, Padra [15℄ derived a posteriori error boundsfor Fortin{Soulie [11℄ pie
ewise quadrati
 approximations of quasi-Newtonian 
ows.In the 
ase of Carreau-type nonlinearities in two spa
e dimensions, Bao and Barrett[5℄ developed a posteriori error bounds based on the linear non
onforming element ofKouhia and Stenberg [13℄ whi
h involves 
ontinuous pie
ewise linear approximationfor one velo
ity 
omponent and a dis
ontinuous linear Crouzeix{Raviart element forthe other in tandem with pie
ewise 
onstant approximation of the pressure. Morere
ently, Carstensen and Funken [9℄ established a posteriori error bounds for quitea general 
lass of 
onforming and non
onforming �nite element methods for steadyquasi-Newtonian 
ows with uniformly monotone and uniformly Lips
hitz-
ontinuousnonlinearities.The purpose of the present paper is to develop the a posteriori error analysis of(V;Q)-
onforming �nite element approximations to (1.1), (1.2), for the entire rangeof r 2 (1;1). A distin
tive feature of problem (1.1), (1.2) is that, in general, thereis no value of r > 1 other than r = 2 su
h that the nonlinear di�erential operatoris both uniformly monotone and uniformly Lips
hitz-
ontinuous in the Sobolev normk � kW 1;r(
). Hen
e, following the work of Barrett and Liu [6℄, [7℄, we shall rely hereon uniform monotoni
ity and lo
al Lips
hitz 
ontinuity properties in Sobolev quasi-norms.The paper is stru
tured as follows. In the next se
tion we state the �nite elementdis
retisation of the boundary value problem and derive an error representation for-mula whi
h expresses the error between the analyti
al solution of the boundary-valueproblem and its �nite element approximation in terms of 
omputable �nite elementresiduals. In Se
tion 3, we establish some preliminary results whi
h will then be usedin Se
tion 4 to derive our a posteriori bounds on the error in the approximations uhand ph to the velo
ity and the pressure in k � kV and k � kQ, respe
tively. The mainresult of the paper is the following a posteriori upper bound on the error.Theorem 1.1. Let (u; p) 2 V � Q denote the solution to (1.1), (1.2), and let(uh; ph) 2 Vh � Qh denote its �nite element approximation de�ned by (2.2), (2.3).Then, there exists a positive 
onstant C = C(K1;K2; 
0; 
00; r; kfkV 0) su
h thatku� uhkRV + kp� phk�Q � C �kS1kR0V 0 + kS2k�0Q0� ;(1.5)where R = maxfr; 2g, � = maxfr0; 2g, 1=R+1=R0 = 1, 1=�+1=�0 = 1, and S1 and S2residual fun
tionals whi
h are 
omputably bounded a

ording to (2.18) and (2.19).2. Finite element approximation. Hen
eforth, we shall suppose that 
 �Rd is a bounded polyhedral domain and that (Th)h>0 is a shape-regular family ofsubdivisions of 
 
onsisting of d-dimensional open simplexes T 2 Th, ea
h of whi
h is



4 J.W. BARRETT, J.A. ROBSON, AND E. S�ULIan aÆne image of the open unit simplexT̂ = fx̂ = (x̂1; : : : ; x̂d) 2 Rd : 0 < x̂i < 1; i = 1; : : : ; d; 0 < x̂1 + : : :+ x̂d < 1g:Suppose that Vh � V is a �nite element spa
e 
onsisting of 
ontinuous pie
ewisepolynomial d-
omponent ve
tor fun
tions de�ned on the triangulation Th of 
 andQh � Q is a �nite element spa
e 
onsisting of 
ontinuous or dis
ontinuous pie
ewisepolynomial fun
tions de�ned on Th. We shall assume that the pair (Vh; Qh) satis�esthe following inf-sup 
ondition: there exists a positive 
onstant 
00, independent of thedis
retisation parameter h > 0, su
h thatinfqh2Qh supvh2Vh b(qh;vh)kqhkQkvhkV � 
00:(2.1)The �nite element approximation of our model problem has the following form:�nd uh 2 Vh and ph 2 Qh su
h thata(uh;vh) + b(ph;vh) = (f ;vh) 8vh 2 Vh;(2.2) b(qh;uh) = 0 8qh 2 Qh:(2.3)Under the stated hypotheses problem (2.2), (2.3) has a unique solution (uh; ph) inVh �Qh (
.f. [3℄, [6℄).In addition, we shall suppose that the �nite element spa
e Vh has the followingapproximation property: there exists a (possibly nonlinear) mapping Ih : V ! Vhand a positive 
onstant C1 su
h that, for all w 2 V = [W1;r0 (
)℄d and all T 2 Th,kw� IhwkLr(T ) + hT jw� IhwjW1;r(T ) � C1hT jwjW1;r(ST );(2.4)where hT is the diameter of the element T , and ST is the pat
h of elements sur-rounding T . Condition (2.4) 
an be ful�lled by sele
ting Ihw as the S
ott{Zhangquasi-interpolant of w 2 V (
f. [8℄ and [19℄).We dedu
e from (1.1) and (1.2) that, for all w 2 V and all q 2 Q,a(u;w)� a(uh;w) + b(p� ph;w) = (f ;w) � a(uh;w)� b(ph;w);(2.5) b(q;u� uh) = �b(q;uh):(2.6)Adding (2.5) to (2.6) and using (2.2) with vh = Ihw yieldsa(u;w)� a(uh;w) + b(p� ph;w) + b(q;u� uh)= f(f ;w � Ihw)� a(uh;w � Ihw)� b(ph;w � Ihw)g � b(q;uh);(2.7)for all w 2 V and all q 2 Q.We pro
eed by de
omposing the inner produ
t (�; �), the semilinear form a(�; �)and the bilinear form b(�; �) as sums of integrals over elements T 2 Th, and integratingby parts over ea
h element T 2 Th; thus,a(u;w) � a(uh;w) + b(p� ph;w) + b(q;u� uh) = XT2Th ZT f � (w � Ihw) dT� XT2Th ZT k(je(uh)j)e(uh) : e(w� Ihw) dT



A POSTERIORI ERROR ANALYSIS FOR QUASI-NEWTONIAN FLOWS 5+ XT2Th ZT phr � (w � Ihw) dT + XT2Th ZT (r � uh)q dT= XT2Th (f +r � (k(je(uh)j)e(uh))�rph) � (w � Ihw) dT� XT2Th Z�T [k(je(uh)j)e(uh)nT � phnT ℄ � (w � Ihw) ds+ XT2Th ZT (r � uh) q dT� T1 +T2 +T3;(2.8)where nT is the unit outward normal ve
tor to the boundary �T of the simplex T 2 Th.Let us de�ne the residuals R1 and R3 on ST2Th T by setting, on ea
h T 2 Th,R1 = f +r � (k(je(uh)j)e(uh))�rphand R3 = r � uh:Clearly, R1 is a ve
tor and R3 is a s
alar, { and this is re
e
ted by our notation.The term T2 in (2.8) 
an be rewritten asT2 = XT2Th Z�T (�TnT ) � (w � Ihw) ds;where � = � (k(je(uh)j)e(uh)� phI) ;I denotes the d � d identity matrix, and �T = �jT . As w � Ihw = 0 on �
, partsof �T whi
h interse
t �
 
an be omitted from the region of integration in term T2.Hen
e, only fa
es e � �T internal to 
 need to be 
onsidered in detail.Let e � 
 be a (d � 1)-dimensional fa
e shared by elements T and T 0; i.e.,e = �T \�T 0. Then, during the summationPT2Th and surfa
e integration R�T : : : dsinvolved in T2, the fa
e e will be traversed twi
e: on
e in the 
ourse of integrationover �T and then in the 
ourse of integration over �T 0 (
f. Figure 2.1).Sin
e during the two passes through e = �T \ �T 0 the orientation of the unitoutward normal 
hanges, we dedu
e thatT2 = XT2Th Xe��T\
 Ze 12 [[�n℄℄ � (w � Ihw) ds;where, on the fa
e e � �T \ 
,[[v℄℄ = vj�T 0\
 � vj�T\
:The presen
e of the fa
tor 12 is due to the fa
t that in the double summation overT 2 Th and e � �T \ 
 ea
h fa
e e has been 
ounted twi
e. In the de�nition of [[�℄℄,for the sake of notational simpli
ity, we suppressed the referen
e to the element T



6 J.W. BARRETT, J.A. ROBSON, AND E. S�ULI
PSfrag repla
ements eT T 0nTFig. 2.1. A fa
e e shared by elements T and T 0 in the triangulation and the unit outwardnormal ve
tor nT to the boundary �T of T , in the 
ase d = 2.
onsidered. A more pre
ise notation would have been to write [[�℄℄T instead of [[�℄℄ tohighlight the fa
t that [[�℄℄T 0 = �[[�℄℄T .Motivated by the form of T2, for ea
h element T 2 Th and ea
h fa
e e � �T \ 
we de�ne R2 = 12 [[�n℄℄:On expressing the right-hand side of (2.7) in terms of R1, R2 and R3, we obtain thefollowing error representation formula:a(u;w)� a(uh;w) + b(p� ph;w) + b(q;u� uh)= XT2Th ZT R1 � (w � Ihw) dT+ XT2Th Xe��T\
 ZeR2 � (w � Ihw) ds+ XT2Th ZT R3(q + 
) dT(2.9)for all w 2 V , all q 2 Q, and all 
 2 R; here we made use of the fa
t that
 XT2Th ZT R3 dT = 
 Z
r � uh d
 = 
 Z�
 uh � n ds = 0for all 
 2 R sin
e uhj�
 = 0.Applying H�older's inequality to ea
h of the terms on the right-hand side of (2.9)and then taking the in�mum over all 
 2 R, we have thata(u;w)� a(uh;w) + b(p� ph;w) + b(q;u� uh)� XT2Th kR1kLr0 (T )kw� IhwkLr(T )+ XT2Th Xe��T\
 kR2kLr0 (e)kw � IhwkLr(e)+ XT2Th kR3kLr(T ) inf
2Rkq + 
kLr0 (T )(2.10)



A POSTERIORI ERROR ANALYSIS FOR QUASI-NEWTONIAN FLOWS 7for all w 2 V and all q 2 Q.A

ording to the Tra
e Inequality, there exists a positive 
onstant C0 su
h that,for all w 2 [W1;r(T )℄d, 1 < r <1, and any fa
e e � �T ,kwkLr(e) � C0 �h�1=rT kwkLr(T ) + h1=r0T jwjW1;r(T )� :Hen
e, (2.4) implies that, for any w 2 V , any T 2 Th and any fa
e e � �T ,kw� IhwkLr(e) � C0C1h1=r0T jwjW1;r(ST ):(2.11)Applying (2.4) and (2.11) in (2.10) and using H�older's inequality for �nite sums,we have thata(u;w)� a(uh;w) + b(p� ph;w) + b(q;u� uh)� C  XT2Th hr0T kR1kr0Lr0 (T )!1=r0 jwjW1;r(
)+ C  XT2Th Xe��T\
 hT kR2kr0Lr0 (e)!1=r0 jwjW1;r(
)+ XT2Th kR3krLr(T )!1=r inf
2Rkq + 
kLr0 (
)(2.12)for all w 2 V and all q 2 Q. Inequality (2.12) implies thata(u;w)� a(uh;w) + b(p� ph;w) + b(q;u� uh)� C 24 XT2Th hr0T kR1kr0Lr0 (T )!1=r0 + XT2Th Xe��T\
hT kR2kr0Lr0 (e)!1=r035 jwjW1;r(
)+ XT2Th kR3krLr(T )!1=r inf
2Rkq + 
kLr0 (
)(2.13)for all w 2 V and all q 2 Q. Taking q = 0 in (2.13) and then the supremum over allw 2 V = [W1;r0 (
)℄d, using (1.4), and re
alling that ke(w)kLr(
) = kwkV , we getsupw2V a(u;w) � a(uh;w) + b(p� ph;w)kwkV� C 24 XT2Th hr0T kR1kr0Lr0 (T )!1=r0 + XT2Th Xe��T\
 hT kR2kr0Lr0 (e)!1=r035:(2.14)On the other hand, taking w = 0 in (2.13) and then the supremum over q 2 Q yieldssupq2Q b(q;u� uh)kqkQ �  XT2Th kR3krLr(T )!1=r :(2.15)Now, let us rewrite the left-hand side of (2.14) as the norm of a 
ertain elementS1 2 V 0 and the left-hand side of (2.15) as the norm of a 
ertain element S2 2 Q0;



8 J.W. BARRETT, J.A. ROBSON, AND E. S�ULIS1 and S2 are referred to as residual fun
tionals. We shall 
omplete the a posteriorierror analysis by showing that ku� uhkV and kp� phkQ 
an be bounded in terms ofkS1kV 0 and kS2kQ0 , and thereby, also, in terms of the right-hand sides of (2.14) and(2.15). We de�ne S1 2 V 0 byhS1;wi = (f ;w) � a(uh;w)� b(ph;w) 8w 2 V:(2.16)Similarly, we de�ne S2 2 Q0 byhS2; qi = �b(q;uh) 8q 2 Q:(2.17)The existen
e of the fun
tionals S1 and S2 as elements of V 0 and Q0, respe
tively, isthe 
onsequen
e of Remark 1 following Lemma 3.4 in the next se
tion.Let us 
ompute the norms kS1kV 0 and kS2kQ0 . We begin by noting that (1.1) and(2.16) imply thathS1;wi = a(u;w) � a(uh;w) + b(p;w)� b(ph;wh):Hen
e, kS1kV 0 = supw2V hS1;wikwkV = supw2V a(u;w)� a(uh;w) + b(p� ph;w)kwkV :Applying (2.14) to the right-most expression in this 
hain, we dedu
e thatkS1kV 0 � C 24 XT2Th hr0T kR1kr0Lr0 (T )!1=r0+ XT2Th Xe��T\
 hT kR2kr0Lr0 (e)!1=r035:(2.18)Analogously, by (2.17),kS2kQ0 = supq2Q hS2; qikqkQ = supq2Q �b(q;uh)kqkQ = supq2Q b(q;u� uh)kqkQ ;and therefore, by (2.15), kS2kQ0 �  XT2Th kR3krLr(T )!1=r :(2.19)For 1 < r < 1 the re
exive Bana
h spa
e V is 
ontinuously and densely embeddedinto the re
exive Bana
h spa
e [Lr(
)℄d. Hen
e, [Lr0(
)℄d, the dual spa
e of [Lr(
)℄d,is 
ontinuously and densely embedded into V 0. In parti
ular, f 2 [Lr0(
)℄d 
an beidenti�ed with an element of V 0 (also denoted f for the sake of notational simpli
ity)via hf ;wi = (f ;w) for all w 2 V . Hen
e, the de�nitions (2.16) and (2.17) imply thata(uh;w) + b(ph;w) = hf � S1;wi 8w 2 V;b(q;uh) = h�S2; qi 8q 2 Q:On subtra
ting these from (1.1) and (1.2), respe
tively, we obtaina(u;w) � a(uh;w) + b(p� ph;w) = hS1;wi 8w 2 V;(2.20) b(q;u� uh) = hS2; qi 8q 2 Q:(2.21)



A POSTERIORI ERROR ANALYSIS FOR QUASI-NEWTONIAN FLOWS 9Sin
e kS1kV 0 and kS2kQ0 have been bounded in terms of the 
omputable residualsR1, R2 and R3 through (2.18) and (2.19), the desired a posteriori error bound willbe arrived at by dedu
ing from (2.20) and (2.21) that ku�uhkV and kp� phkQ 
an,in turn, be bounded in terms of kS1kV 0 and kS2kQ0 , as stated in the next proposition.Proposition 2.1. Let (u; p) 2 V � Q denote the solution to (1.1), (1.2), andlet (uh; ph) 2 Vh�Qh denote its �nite element approximation de�ned by (2.2), (2.3);then, there exists a positive 
onstant C = C(K1;K2; 
0; r; kfkV 0) su
h thatku� uhkRV � C �kS1kR0V 0 + kS2k�0Q0 + kS1kV 0kS2kQ0� ;(2.22) kp� phk�Q � C �kS1k�V 0 + kS1kR0V 0 + kS2k�0Q0 + kS1kV 0kS2kQ0� ;(2.23)where R = maxfr; 2g, � = maxfr0; 2g, 1=R + 1=R0 = 1, 1=� + 1=�0 = 1, and S1 andS2 are bounded a

ording to (2.18) and (2.19).In the spe
ial 
ase of a power law-model, k(t) = 2�tr�2 with r 2 (1; 2), the bounds(2.22) and (2.23) 
ollapse to those of Sandri [17℄. To prove the theorem, we requiresome preliminary results.3. Preliminary results. For � 2 [0; 1℄ and t 2 (0;1), we de�ne��(t) = t�(1 + t)1��:Hen
e,�0�(t) = (� + t)(1 + t)��t��1 and �00�(t) = ��(1� �)t��2(1 + t)���1:Therefore, for any � 2 [0; 1℄, t 7! ��(t) is a stri
tly monotoni
 in
reasing fun
tion oft 2 (0;1); in parti
ular, t 7! �0(t) and t 7! �1(t) are aÆne fun
tions of t 2 (0;1).Furthermore, for � 2 (0; 1), t 7! ��(t) is a stri
tly 
on
ave fun
tion of t 2 (0;1).The following Jensen-type inequality is easily proved by using H�older's inequality andthe triangle inequality in Lr(
): for any r 2 [1;1), � 2 [0; 1℄, and all w 2 Lr(
),� 1j
j Z
[��(jw(x)j)℄r d
� 1r � �� � 1j
j Z
 jw(x)jr d
� 1r! :A

ording to our simplifying assumption from the start of the paper, j
j = 1; hen
e,k��(jwj)kLr(
) � ��(kwkLr(
))(3.1)for all r 2 [1;1), � 2 [0; 1℄, and all w 2 Lr(
).We re
all the following result from the paper of Barrett and Liu [6℄.Lemma 3.1. Let k satisfy assumption (A1) for r 2 (1;1) and � 2 [0; 1℄. Then,for all M1, M2 in Rd�dsymm and Æ � 0, we have that(k(jM1j)M1�k(jM2j)M2) : (M1�M2)�K1[��(jM1j+ jM2j)℄r�2�Æ jM1�M2j2+Æ :(3.2)Let k satisfy assumption (A2) for r 2 (1;1) and � 2 [0; 1℄. Then, for all M1;M2 inRd�dsymm and Æ � 0, we have thatjk(jM1j)M1 � k(jM2j)M2j � K2[��(jM1j+ jM2j)℄r�2+Æ jM1 �M2j1�Æ:(3.3)



10 J.W. BARRETT, J.A. ROBSON, AND E. S�ULINext, we introdu
e the notationjvj2(w;r;�) = Z
[��(je(v)j + je(w)j)℄r�2je(v)j2 d
; v;w 2 [W1;r(
)℄d; 1 < r <1:Proposition 3.2. Suppose that r 2 (1;1), � 2 [0; 1℄ and w 2 [W1;r(
)℄d; then,the following hold:(i) jvj(w;r;�) � 0 for all v 2 [W1;r(
)℄d. In parti
ular, when v 2 V = [W1;r0 (
)℄d,jvj(w;r;�) = 0 if, and only if, v = 0;(ii) (Quasi-triangle-inequality): there exists a 
onstant C = C(r) su
h thatjv1 + v2j(w;r;�) � C �jv1j(w;r;�) + jv2j(w;r;�)�for all v1;v2 2 [W1;r(
)℄d;(iii) For 1 < r � 2,jvj2=r(w;r;�) � ke(v)kLr(
) � [��(ke(v)kLr(
) + ke(w)kLr(
))℄(2�r)=2 jvj(w;r;�)for all v 2 [W1;r(
)℄d.For 2 � r <1,ke(v)kr=2Lr(
)� jvj(w;r;�)� [��(ke(v)kLr(
) + ke(w)kLr(
))℄(r�2)=2 ke(v)kLr(
)for all v 2 [W1;r(
)℄d.Part (i) of this proposition follows from the de�nition of j � j(w;r;�), and Korn'sinequality. Part (ii) has been proved in the paper of Barrett and Liu [7℄. The proofof (iii) is based on a straightforward appli
ation of H�older's inequality and Jensen'sinequality (3.1). Properties (i) and (ii) in Proposition 3.2 are the axioms of quasi-norm. Thus, for w 2 V = [W1;r(
)℄d, j � j(w;r;�) is a quasi-norm on V . Property (iii)relates the Sobolev norm k � kV = j � jW1;r(
) to the quasi-norm j � j(w;r;�).Now, we show the uniform monotoni
ity and lo
al Lips
hitz 
ontinuity of thesemilinear form a(�; �) with respe
t to the quasi-norm.Lemma 3.3. Suppose that r 2 (1;1) and de�ne the 
onstants C2 = 2�jr�2jK1and C3 = 2jr�2j=maxf2;r0gK2; then, for i = 1; 2, and all v1;v2;w in V ,a(v1;v1 � v2)� a(v2;v1 � v2) � C2jv1 � v2j2(vi;r;�);(3.4) ja(v1;w)�a(v2;w)j�C3jv1�v2jminf1; 2r0 g(vi;r;�) [��(kv1kV +kv2kV )℄maxf0; r�22 gkwkV :(3.5)Proof. To prove (3.4), we use (3.2) with Æ = 0, and Mi = e(vi), i = 1; 2. Hen
e,we dedu
e that, for any v1;v2 2 V ,a(v1;v1 � v2)� a(v2;v1 � v2)� K1 Z
 je(v1)� e(v2)j2[��(je(v1)j+ je(v2)j)℄r�2 d
:(3.6)We note that, for i = 1; 2,12 (je(v1 � v2)j+ je(vi)j) � je(v1)j+ je(v2)j � 2 (je(v1 � v2)j+ je(vi)j) :(3.7)



A POSTERIORI ERROR ANALYSIS FOR QUASI-NEWTONIAN FLOWS 11Suppose that 1 < r � 2; then, (3.6), the se
ond inequality in (3.7) and thede�nition of the quasi-norm j � j(vi;r;�) imply thata(v1;v1 � v2)� a(v2;v1 � v2) � 2r�2K1jv1 � v2j2(vi;r;�); i = 1; 2;and hen
e (3.4) with C2 = 2r�2K1 for 1 < r � 2.Similarly, when 2 � r < 1, the �rst inequality in (3.7) and the de�nition of thequasi-norm j � j(vi;r;�) imply thata(v1;v1 � v2)� a(v2;v1 � v2) � 22�rK1jv1 � v2j2(vi;r;�); i = 1; 2;and hen
e (3.4) with C2 = 22�rK1 for 2 � r <1.To show (3.5), we apply H�older's inequality, the fa
t that ke(w)kLr(
) = kwkV ,and the inequality (3.2) with Mi = e(vi), i = 1; 2; hen
e, we dedu
e thatja(v1;w)� a(v2;w)j = Z
 (k(je(v1)j)e(v1)� k(je(v2)j)e(v2)) : e(w) d
� �Z
 jk(je(v1)j)e(v1)� k(je(v2)j)e(v2)jr0 d
�1=r0 kwkV� K2�Z
 je(v1)� e(v2)j(1�Æ)r0 [��(je(v1)j+ je(v2)j)℄(r�2+Æ)r0 d
�1=r0 kwkV :(3.8)Let 1 < r � 2 and de�ne Æ = 1� (2=r0); then (1� Æ)r0 = 2, (r � 2+ Æ)r0 = r� 2.Therefore, using the �rst inequality in (3.7),ja(v1;w)� a(v2;w)j � 2(2�r)=r0K2jv1 � v2j2=r0(vi;r;�)kwkV ;whi
h is (3.5) with C3 = 2(2�r)=r0K2 for 1 < r � 2.Now, let 2 < r � 1 and hen
e r0 = r=(r � 1) 2 (1; 2); we shall use H�older'sinequality in the integral on the right-hand side of (3.8). Thus, we take Æ = 0, split[��(je(v1)j+je(v2)j)℄(r�2)r0 = [��(je(v1)j+je(v2)j)℄ (r�2)r02 [��(je(v1)j+je(v2)j)℄ (r�2)r02and group the �rst fa
tor on the right with je(v1) � e(v2)jr0 . The appli
ation ofH�older's inequality with exponents � = 2=r0 and �0 = 2=(2 � r0), 1=� + 1=�0 = 1,
orresponding to the fa
torsje(v1)� e(v2)jr0 [��(je(v1)j+ je(v2)j)℄(r�2)r0=2 and [��(je(v1)j+ je(v2)j)℄(r�2)r0=2;respe
tively, yieldsja(v1;w)� a(v2;w)j � K2�Z
 je(v1)� e(v2)j2[��(je(v1)j+ je(v2)j)℄r�2 d
�1=2��Z
[��(je(v1)j+ je(v2)j)℄ (r�2)r02 � 22�r0 d
�(2�r0)=(2r0)kwkV :As (r�2)r02 � 22�r0 = r, 2�r02r0 = r�22r , using the se
ond inequality in (3.7) we get thatja(v1;w)� a(v2;w)j � C3jv1 � v2j(vi;r;�) k[��(je(v1)j+ je(v2)j)℄k(r�2)=2Lr(
) kwkV



12 J.W. BARRETT, J.A. ROBSON, AND E. S�ULIfor all v1;v2 in V , with C3 = 2(r�2)=2K2. On noting (3.1), the triangle inequalityfor the k � kLr(
) norm, and that t 7! ��(t) is monotoni
 in
reasing, we have (3.5) for2 < r <1.Next, we show that the solutions to problems (1.1), (1.2) and (2.2), (2.3) 
an bebounded in terms of kfkV 0 .Lemma 3.4. Let (u; p) 2 V �Q and (uh; ph) 2 Vh �Qh denote the solutions toproblems (1.1), (1.2) and (2.2), (2.3), respe
tively, and let r 2 (1;1); thenkukV � G�1( 1K1 kfkV 0); kpkQ � 1
0 �kfkV 0 +K2(H ÆG�1)( 1K1 kfkV 0)�;(3.9) kuhkV � G�1( 1K1 kfkV 0); kphkQ � 1
00 �kfkV 0 +K2(H ÆG�1)( 1K1 kfkV 0)�;(3.10)where 
0 and 
00 are the inf-sup 
onstants from (1.3) and (2.1), respe
tively, and Gand H are 
ontinuous stri
tly monotoni
 in
reasing fun
tions de�ned on [0;1).Proof. Taking v = u in (1.1) and using (1.2), we have thata(u;u) = (f ;u) = hf ;ui � kfkV 0kukV :Now, using (3.2) with M1 = e(u), M2 = 0, Æ = 0, and (iii) of Proposition 3.2 withw = 0, we obtaina(u;u) � K1juj2(0;r;�) � K1kukV G(kukV ); G(t) = � t � [��(t)℄r�2; 1 < r � 2;tr�1; r � 2:Sin
e G : t 7! G(t) is 
ontinuous and stri
tly monotoni
 in
reasing on [0;1), itsinverse fun
tion G�1 is 
ontinuous and stri
tly monotoni
 in
reasing on [0;1). Hen
e,kukV � G�1( 1K1 kfkV 0):To bound kpkQ, note that, by the inf-sup 
ondition (1.3),
0kpkQ � supv2V b(p;v)kvkV :On the other hand, from (1.1), and using using (3.3) with M1 = e(u), M2 = 0, Æ = 0,and (iii) of Proposition 3.2 with w = 0, we obtainb(p;v) = (f ;v) � a(u;v) = hf ;vi � a(u;v) � kfkV 0kvkV +K2H(kukV )kvkV ;where H(t) = � tr�1; 1 < r � 2;t � [��(t)℄r�2; 2 � r;and therefore, 
0kpkQ � kfkV 0 +K2H(kukV ):Clearly, H : t 7! H(t) is 
ontinuous and stri
tly monotoni
 in
reasing on [0;1).Together with our earlier bound kukV � G�1( 1K1 kfkV 0), this proves (3.9); the proofof (3.10) is identi
al, ex
ept that (2.1) is used instead of (1.3).



A POSTERIORI ERROR ANALYSIS FOR QUASI-NEWTONIAN FLOWS 13Remark 1. As j(f ;w)j = jhf ;wij � kfkV 0kwkV and, by H�older's inequality,ja(v;w)j � K2H(kvkV )kwkV and jb(q;w)j � kqkQkwkV , it follows, using (3.10),thatj(f ;w)� a(uh;w)� b(ph;w)j��1 + 1
00��kfkV 0 +K2(H ÆG�1)( 1K1 kfkV 0)� kwkV :Hen
e, for f 2 [Lr0(
)℄d �xed, and the 
orresponding unique solution (uh; ph) of (2.2),(2.3) in Vh �Qh � V �Q thereby also �xed, w 7! (f ;w) � a(uh;w) � b(ph;w) is abounded (and therefore 
ontinuous) linear fun
tional on V ; as su
h, it belongs to V 0.It is this element of V 0 that was denoted earlier by S1. Similarly, for uh 2 Vh � V�xed, q 7! b(q;uh) is a bounded (and therefore 
ontinuous) linear fun
tional on Q,and as su
h, it belongs to Q0; it is this element of Q0 that was denoted above by S2.Using v1 = u and v2 = uh in (3.4) and (3.5), together with the bounds on kukVand kuhkV from Lemma 3.4, we obtain the following result.Lemma 3.5. Let (u; p) 2 V �Q and (uh; ph) 2 Vh �Qh denote the solutions toproblems (1.1), (1.2) and (2.2), (2.3), respe
tively, and suppose that r 2 (1;1); then,a(u;u� uh)� a(uh;u� uh) � C2ju� uhj2(u;r;�);(3.11) ja(u;w) � a(uh;w)j � C4ju� uhjminf1; 2r0 g(u;r;�) kwkV ;(3.12)where C4 = C32maxf0; r�22 g[(�� Æ G�1)( 1K1 kfkV 0)℄maxf0; r�22 g, and C2 = C2(K1; r),C3 = C3(K2; r) are as in Lemma 3.3.4. Proof of the a posteriori error bound. Equipped with the results of theprevious se
tion, we now return to the proof of Proposition 2.1, whereupon we shallprove Theorem 1.1. Our starting point is the following result.Proposition 4.1. Let (u; p) 2 V � Q denote the solution to (1.1), (1.2), andlet (uh; ph) 2 Vh�Qh denote its �nite element approximation de�ned by (2.2), (2.3);then, there exists a positive 
onstant C = C(K1;K2; 
0; r; kfkV 0) su
h thatju� uhj2(u;r;�) � C �kS1kR0V 0 + kS2k�0Q0 + kS1kV 0kS2kQ0� ;(4.1) kp� phk�Q � C �kS1k�V 0 + ju� uhj2(u;r;�)� ;(4.2)where R = maxfr; 2g, � = maxfr0; 2g, 1=R + 1=R0 = 1, 1=� + 1=�0 = 1, and S1 andS2 are bounded a

ording to (2.18) and (2.19).Proof. (Proposition 4.1.) A

ording to the inf-sup 
ondition (1.3), identity (2.20),the de�nition of the norm k � kV 0 and (3.12), we have that
0kp� phkQ � kS1kV 0 + C4ju� uhjminf1; 2r0 g(u;r;�) ;(4.3)and hen
e (4.2) on noting that minf1; 2r0 g = 2minf 12 ; 1r0 g = 2=�.On the other hand, taking w = u�uh in (2.20), then using (2.21) with q = p�ph,(3.11), and the de�nitions of the norms k � kV 0 and k � kQ0 , we get thatC2ju� uhj2(u;r;�) � kS1kV 0ku� uhkV + kS2kQ0kp� phkQ:(4.4)



14 J.W. BARRETT, J.A. ROBSON, AND E. S�ULIMultiplying (4.4) by 
0 and then eliminating 
0kp� phkQ using (4.3) gives
0C2ju� uhj2(u;r;�) � 
0kS1kV 0ku� uhkV + kS1kV 0kS2kQ0+C4kS2kQ0 ju� uhjminf1; 2r0 g(u;r;�) :(4.5)Part (iii) of Proposition 3.2, with v = u� uh and w = u implies thatku� uhkV � [��(ku� uhkV + kukV )℄maxf0; 2�r2 g ju� uhjminf1; 2r g(u;r;�) :(4.6)Also, re
alling from Lemma 3.4 thatkukV � G�1( 1K1 kfkV 0) and kuhkV � G�1( 1K1 kfkV 0)gives ku� uhkV + kukV � 2 (kukV + kuhkV ) � 2G�1( 1K1 kfkV 0):(4.7)Hen
e, (4.6) and the fa
t that t 7! ��(t) is monotoni
 in
reasing on [0;1) imply thatku� uhkV � 2maxf0; 2�r2 g[(�� ÆG�1)( 1K1 kfkV 0)℄maxf0; 2�r2 gju� uhjminf1; 2r g(u;r;�) :We substitute this into the right-hand side of (4.5) to eliminate ku� uhkV ; thus,ju� uhj2(u;r;�) � C �kS1kV 0 ju� uhjminf1; 2r g(u;r;�) + kS1kV 0kS2kQ0+ kS2kQ0 ju� uhjminf1; 2r0 g(u;r;�) � ;(4.8)where C = C(K1;K2; 
0; r; kfkV 0) is a positive 
onstant. We apply Young's inequalityab � "1�s ass + "bs0s0 ; 1=s+ 1=s0 = 1; 1 < s <1; a; b � 0; " > 0;to the �rst and the third terms on the right-hand side of (4.8), with a = CkS1kV 0and s0 = 2=minf1; 2=rg = maxfr; 2g in the 
ase of the �rst term and a = CkS2kQ0and s0 = 2=minf1; 2=r0g = maxfr0; 2g in the 
ase of the third term, and take " > 0suÆ
iently small so as to hide the term "(1=maxfr; 2g+1=maxfr0; 2g)ju�uhj2(u;r;�)thus resulting from the right-hand side of (4.8) into ju � uhj2(u;r;�) appearing on theleft-hand side of (4.8); any " 2 (0; 1) will suÆ
e. Hen
e we dedu
e thatju� uhj2(u;r;�) � C �kS1kR0V 0 + kS1kV 0kS2kQ0 + kS2k�0Q0� ;(4.9)where R = maxfr; 2g, � = maxfr0; 2g, 1=R + 1=R0 = 1, 1=� + 1=�0 = 1, and C is atmost 1=(1� ") times what it was in (4.8).Proof. (Proposition 2.1.) Part (iii) of Proposition 3.2 with v = u�uh and w = u,(4.7) and (4.9) imply thatku� uhkRV � C �kS1kR0V 0 + kS1kV 0kS2kQ0 + kS2k�0Q0� ;(4.10)and hen
e (2.22).For the error in the pressure, substitution of (4.9) into the right-hand side of (4.2)yields (2.23). That 
ompletes the proof of Proposition 2.1.



A POSTERIORI ERROR ANALYSIS FOR QUASI-NEWTONIAN FLOWS 15The a posteriori error bounds stated in Proposition 2.1 
an be simpli�ed, thusleading to Theorem 1.1 whi
h we now prove.Proof. (Theorem 1.1.) By virtue of (2.16) and Remark 1,kS1kV 0 � �1 + 1
00��kfkV 0 +K2(H ÆG�1)( 1K1 kfkV 0)� :Thus, on noting that R0 = minfr0; 2g � maxfr0; 2g = �, we have thatkS1kR0V 0 + kS1k�V 0 = kS1kR0V 0 �1 + kS1k��R0V 0 � � CkS1kR0V 0 ;(4.11)where C = C(K1;K2; 
00; r; kfkV 0). Also, by Young's inequality and (4.11),kS1kV 0kS2kQ0 � 1�kS1k�V 0 + 1�0 kS2k�0Q0 � C �kS1kR0V 0 + kS2k�0Q0� ;(4.12)where C = C(K1;K2; 
00; r; kfkV 0). Hen
e, (4.11), (4.12), together with (2.22) and(2.23) of Proposition 2.1, yield the a posteriori error bound (1.5) of Theorem 1.1stated in the Introdu
tion.5. Con
luding remarks. We presented a general framework for energy-norm-based a posteriori error analysis of 
onforming mixed �nite element approximations toquasi-Newtonian 
ow models. As has been noted in the Introdu
tion, Proposition 2.1and Theorem 1.1 re
over a number of known a posteriori bounds from the literature;they also provide new bounds for a very general 
lass of quasi-Newtonian 
ow models.When r = 2, we have R = R0 = � = �0 = 2; then, (1.5) of Theorem 1.1 
ollapses tothe a posteriori error bound of Barrett and Bao [5℄ for inf-sup-stable mixed �nite ele-ment approximations of Carreau-type quasi-Newtonian 
ows, the linear Stokes prob-lem being a spe
ial 
ase [20℄. For r 6= 2, the bound (1.5) represents an improvementover several earlier results (
f. [3℄ and [15℄, in parti
ular) in that the powers of kS1kV 0and kS2kQ0 in our a posteriori error bound are larger than the ones in those papers.The validity of Propositions 2.1 and 4.1 is independent of whether or not the pairof spa
es (Vh; Qh) is inf-sup stable in the sense of (2.1): it is only in the transitionfrom Proposition 2.1 to Theorem 1.1 that we made use of the bound on kphkQ from(3.10) whi
h relied on (1.3). Indeed, suppose that problem (1.1), (1.2) has beenapproximated by the �nite element method: �nd uh 2 Vh and ph 2 Qh su
h thata(uh;vh) + b(ph;vh) = (f ;vh) 8vh 2 Vh;b(qh;uh) = 
h(qh; ph) 8qh 2 Qh;where 
h(�; �) is a bilinear form on Qh � Qh satisfying 
h(qh; qh) � 0, qh 2 Qh (thedis
retisation (2.2), (2.3) being a spe
ial 
ase with 
h(qh; ph) = 0 for all qh 2 Qh).A number of pressure-stabilised �nite element dis
retisations of (1.1), (1.2) are ofthis form. It is then easy to see that the bound on kuhkV from (3.10) still holdsirrespe
tive of (2.1), and, if instead of assuming (2.1) we suppose that the sequen
e(kphkQ)h>0 is bounded, independent of h, then, on
e again, Theorem 1.1 follows fromProposition 2.1 in exa
tly the same way as before.The 
omputational assessment of the sharpness of the a posteriori upper boundstated in Theorem 1.1 and the derivation of a posteriori lower bounds on the errorwill be 
onsidered in forth
oming papers.
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