A POSTERIORI ERROR ANALYSIS OF MIXED FINITE ELEMENT
APPROXIMATIONS TO QUASI-NEWTONIAN INCOMPRESSIBLE
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Abstract. We develop the a posteriori error analysis of mixed finite element approximations
of a general family of steady, viscous, incompressible quasi-Newtonian fluids in a bounded Lipschitz
domain @ C RY; the family includes degenerate models such as the power-law model, as well as
non-degenerate ones such as the Carreau model. The unified theoretical framework developed herein
yields a residual-based a posteriori bound which measures the error in the approximation of the
velocity in the WL (€) norm and that of the pressure in the L™ (Q) norm, 1/r 4+ 1/¢ = 1.

Key words. finite elements, a posteriori error estimates, non-Newtonian fluids

AMS subject classifications. 65N30, 65N15, 65G99, 76D07, 76D99

1. Introduction. Suppose that Q is a bounded Lipschitz domain in R¢, d > 2,
scaled so that |©2] = 1, and, for r € (1,00), let 7/ = r/(r —1). The fluid, whose motion
in Q is due to an external body force f € [L™ (Q)]%, has velocity u and kinematic
pressure p. For ease of exposition, u will be assumed to satisfy the homogeneous
Dirichlet boundary condition ul,, = 0. The functions u € V and p € @Q are to be
found from the boundary value problem whose weak formulation is

(L.1) a(u,v) + b(p,v) = (£f,v) Vv ev,
b(g,u) =0 Vg € Q,

where V = [WA" ()], Q = L (9) = L” () /R,
a(u,v) = /Q k(z,|e(u)])e(u) : e(v)de, b(q,v) = — /Q(V -v) g do.

The strain tensor e(u) € RX?  has components

1 Bui BUJ' ..
e(u)”_5<8z]~+8zi>’ Z,j—].,...,d,

where ]deyxn‘fm denotes the set of all symmetric real-valued d x d matrices.

Assumption (A): We assume that k € C(Q x (0,00)) and that, given r € (1,00)
as above, there exist constants a € [0, 1] and €, K3, K2 > 0 such that, for all z € 2,

(A1) k(z,t)t —k(z,8)s > Ki(t—3s)[(t+s)*(1+t+s)l72]"2  forallt>s>0;
(A2)  k(x,t) < Kqt*(1+t)!72]""2  forallt >0, and

[k, )t — k(z, 5)s| < Kalt — s|[(t +5)(1+ ¢ + 5)' ]2
for all s,t > 0 satisfying |(s/t) — 1| < e.
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For the sake of brevity and notational simplicity, we shall write k(-) instead of
k(z,-). The parameter o in (A) measures the degree of degeneracy in k(-) for a given
value of r € (1,00) in the sense that the closer a is to 1 the more degenerate k(-) is.
For example:

(a) the power law model with k(t) = 2ut"~2 corresponds to a = 1; when r = 2,
this reduces to k(t) = 2u, yielding the Stokes equations which govern the
stationary flow of a viscous incompressible Newtonian fluid;

(b) the Carreau law k(t) = koo + (ko — koo)(1 + M?)=2)/2 with kg > koo > 0,
A> 0,6 € (1,00) corresponds to a = 0 with r = 6§ if kx =0, and r = 2 if
0 € (1,2] and koo > 0.

Partial differential equations with nonlinearities of the kind considered here arise in a
number of application areas, including geophysical models of the lithosphere, as well
as chemical engineering, particularly in the modelling of the flow of pastes and dies.

We equip the spaces V' and @ with the norms

IVllv = lle)llir(2) and lglle = inf [lg + cll (o),

and recall from [1] that the bilinear form b(-, ) satisfies the following inf-sup condition:
there exists a positive constant cg such that

(1.3) inf sup M > ¢ Vq € Q.
1€Qvev llallellvilv
In Section 2, we shall assume that the finite element subspaces Vj, and @ of the
spaces V and @ satisfy an analogous inf-sup condition, with inf-sup constant ¢f > 0.
The fact that || -]y is a norm on V' is a consequence of Korn’s inequality (cf. [12],
[14]) which asserts the existence of a constant C' = C(r,d,?), 1 < r < 00, such that

(1.4) IVllwer @) < Clle()llur@) Vv eV

In the sequel, for the sake of notational simplicity, we shall suppress the dependence
of all constants on d and ; in particular, we shall write C'(r) instead of C(r,d, ).

The definition of the norm on @ reflects the fact that in the case of Dirichlet

boundary condition on 99 the pressure in the model is determined only up to an

additive constant. Let V' denote the dual space of V and let Q' be the dual space of

Q; the spaces V' and Q' have the norms
(f,v)

g,q
£}y = sup and |lgllg: = sup 2.
vev |[vllv ¢cq llalle

Here, in the definition of || - ||y, (-,-) denotes the duality pairing between V' and V,
and in the definition of || - ||/ it signifies the duality pairing between @' and Q; as
the choice of spaces over which the duality pairings act will always be clear from the
context we have chosen not to indicate them explicitly in our notation (-, -).

Over the last decade, there has been considerable interest both in the mathe-
matical analysis of quasi-Newtonian flow problems of this kind and in their finite
element approximation. The existence and uniqueness of solutions to the boundary
value problem (1.1), (1.2) was studied by Baranger and Najib [4] and Barrett and Liu
[6]. In particular, it is known that (1.1), (1.2) has a unique solution (u,p) € V x Q.
Concerning the a priori error analysis of finite element methods for quasi-Newtonian
flow equations, we refer to Baranger and Najib [4], Du and Gunzburger [10], San-
dri [16], Barrett and Liu [6, 7], Barrett and Bao [5], and Bao [2]. Baranger and El
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Amri [3] were the first to pursue the a posteriori error analysis of conforming finite
element approximations to a quasi-Newtonian problem in the case of the Carreau
law. Subsequently, Simms [18] considered the a posteriori error analysis of Fortin’s
element for conforming mixed finite element approximations of quasi-Newtonian flow
problems and, more recently, Sandri [17] studied the a posteriori error analysis of
conforming mixed finite element approximations of the power-law model and derived
a posteriori error bounds for the case of 1 < r < 2. In fact, Sandri’s bounds on
the velocity and the pressure will emerge from our analysis for the special case of
k(t) = 2ut™2, 1 < r < 2; similarly, the error bounds of Baranger and El Amri [3]
are arrived at by selecting k(t) = koo + (ko — koo)(1 + X?)(?=2/2 1 < § < 2. For
nonconforming finite element methods, Padra [15] derived a posteriori error bounds
for Fortin—Soulie [11] piecewise quadratic approximations of quasi-Newtonian flows.
In the case of Carreau-type nonlinearities in two space dimensions, Bao and Barrett
[5] developed a posteriori error bounds based on the linear nonconforming element of
Kouhia and Stenberg [13] which involves continuous piecewise linear approximation
for one velocity component and a discontinuous linear Crouzeix—Raviart element for
the other in tandem with piecewise constant approximation of the pressure. More
recently, Carstensen and Funken [9] established a posteriori error bounds for quite
a general class of conforming and nonconforming finite element methods for steady
quasi-Newtonian flows with uniformly monotone and uniformly Lipschitz-continuous
nonlinearities.

The purpose of the present paper is to develop the a posteriori error analysis of
(V, Q)-conforming finite element approximations to (1.1), (1.2), for the entire range
of r € (1,00). A distinctive feature of problem (1.1), (1.2) is that, in general, there
is no value of r > 1 other than r = 2 such that the nonlinear differential operator
is both uniformly monotone and uniformly Lipschitz-continuous in the Sobolev norm
|| - [lw1.r (o). Hence, following the work of Barrett and Liu [6], [7], we shall rely here
on uniform monotonicity and local Lipschitz continuity properties in Sobolev quasi-
norms.

The paper is structured as follows. In the next section we state the finite element
discretisation of the boundary value problem and derive an error representation for-
mula which expresses the error between the analytical solution of the boundary-value
problem and its finite element approximation in terms of computable finite element
residuals. In Section 3, we establish some preliminary results which will then be used
in Section 4 to derive our a posteriori bounds on the error in the approximations uy,
and pp, to the velocity and the pressure in || - ||y and || - ||@, respectively. The main
result of the paper is the following a posteriori upper bound on the error.

THEOREM 1.1. Let (u,p) € V x @ denote the solution to (1.1), (1.2), and let
(up,pr) € Vi x Qn denote its finite element approzimation defined by (2.2), (2.3).
Then, there exists a positive constant C' = C(K1, K, co, ¢, 1, ||f||v') such that

(15) lu = wallf + i~ palld < € (IS11F + 112113

where R = max{r, 2}, a = max{r’,2}, I/R+1/R' =1, 1/a+1/a =1, and S1 and Sy
residual functionals which are computably bounded according to (2.18) and (2.19).

2. Finite element approximation. Henceforth, we shall suppose that Q C
R? is a bounded polyhedral domain and that (73)n>o is a shape-regular family of
subdivisions of 2 consisting of d-dimensional open simplexes T' € T}, each of which is
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an affine image of the open unit simplex
T={i= @, ., 280) R : 0<@;<1,i=1,...,d, 0< & +...+&4<1}.

Suppose that Vj, C V is a finite element space consisting of continuous piecewise
polynomial d-component vector functions defined on the triangulation 7, of Q and
Q1 C Q is a finite element space consisting of continuous or discontinuous piecewise
polynomial functions defined on 7j,. We shall assume that the pair (V},, Q) satisfies
the following inf-sup condition: there exists a positive constant ¢}, independent of the
discretisation parameter h > 0, such that

b(qhavh) S o

2.1 inf sup i
(2.1) 0n€Qn vy vy lanllQlIVallv

The finite element approximation of our model problem has the following form:
find uy € V}, and pp € Qp, such that

(22) a(uh,vh) + b(ph,vh) = (f, Vh) Vv, € Vi,
b(qh,uh) =0 th S Qh.

Under the stated hypotheses problem (2.2), (2.3) has a unique solution (up,pp) in
Vi x Qp (c.f. [3], [6])-

In addition, we shall suppose that the finite element space V}, has the following
approximation property: there exists a (possibly nonlinear) mapping I, : V — V},
and a positive constant Cy such that, for all w € V = [W3" (Q)]? and all T € Ty,

(2.4) [|[w — IhW“L"(T) + hp|lw — IhW|W1,7‘(T) < ClhT|W|W1w(ST),

where hp is the diameter of the element T, and St is the patch of elements sur-
rounding T'. Condition (2.4) can be fulfilled by selecting I w as the Scott—Zhang
quasi-interpolant of w € V' (cf. [8] and [19]).

We deduce from (1.1) and (1.2) that, for all w € V and all ¢ € Q,

(2.5) a(u,w) — a(uy, w) + b(p — pn, w) = (f,w) — a(up, w) — b(ps, w),
b(g,u—uy) = —b(q,uy).

Adding (2.5) to (2.6) and using (2.2) with v, = I w yields

a(u,w) — a(us, w) + b(p — pr, w) + b(g,u — up)
(2.7) ={(f,w — Iw) —a(up, w — I,w) — b(pp, w — Iyw)} — b(q,usn),

for all w € V' and all ¢ € Q.

We proceed by decomposing the inner product (-,-), the semilinear form a(:,-)
and the bilinear form b(-,-) as sums of integrals over elements T € Ty, and integrating
by parts over each element T' € Tj; thus,

a(u,w) —a(up, w) + b(p — pp,w) + b(q,u—up) = Z /f-(W—Ihw)dT
TeT, ' T

= 3 [ Ketwetun) - elw ~ tyw)ar

TeTh
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+ TGZT}L /Tphv . (W - IhW) dT +T€Z7—h /T(V . uh)da
= Y (£+ V- (k(le(un)De(un)) = Vpr) - (w = Iyw) dT
TETh

_ Tg;-h /,9T [k(|€(11h)|)€(llh)nT _phnT] . (W _ IhW) ds

+ Z /T(V-uh)da

TeTh
(28) = T1 + TQ + T3,

where ny is the unit outward normal vector to the boundary 9T of the simplex T € Tj,.
Let us define the residuals R; and Rz on UTeTh T by setting, on each T € Ty,

Ry =1+ V- (k(le(un)[)e(un)) = Vpn
and
R3 =V up.-

Clearly, R is a vector and Rj is a scalar, — and this is reflected by our notation.
The term T in (2.8) can be rewritten as

Ty = Z /9T(UTHT) - (w — Inw)ds,

TeTh

where
o= — (k(le(un)|)e(ur) — pul),

I denotes the d x d identity matrix, and o7 = o|;. As w — Iw = 0 on 012, parts
of 0T which intersect 92 can be omitted from the region of integration in term Ts.
Hence, only faces e C 0T internal to  need to be considered in detail.

Let e C Q be a (d — 1)-dimensional face shared by elements T and T'; i.e.,
e =T NAT'. Then, during the summation ) .. and surface integration [,,.... ds
involved in Ty, the face e will be traversed twice: once in the course of integration
over 0T and then in the course of integration over 07" (cf. Figure 2.1).

Since during the two passes through e = T N AT' the orientation of the unit
outward normal changes, we deduce that

Ty = Z Z /%[[Un]]-(w—lhw)ds,

TET, eCOTNQ Y €

where, on the face e C 0T N,

[v] = v]srne — V]sTno-

The presence of the factor % is due to the fact that in the double summation over

T € Ty and e C 0T N Q each face e has been counted twice. In the definition of [],
for the sake of notational simplicity, we suppressed the reference to the element T
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T~
N

Fic. 2.1. A face e shared by elements T and T’ in the triangulation and the unit outward
normal vector ny to the boundary 0T of T, in the case d = 2.

considered. A more precise notation would have been to write [-]r instead of [-] to
highlight the fact that [-]7» = —[-]z.

Motivated by the form of Ts, for each element T € T, and each face e C 0T N Q)
we define

R, = %ﬂan]].
On expressing the right-hand side of (2.7) in terms of Ry, Ry and R3, we obtain the
following error representation formula:

a(u, w) — a(un, W) +b(p — pn, W) + b(¢,u — uy)

= Z /TRl-(W—[hW)dT

TeTh

+Z Z Ry (w—Ipw)ds

TETh eCATNQ Y €
(2.9) + 3 /R?,(q-l-c)dT
TeT, ' T

for all w € V, all ¢ € @, and all ¢ € R; here we made use of the fact that

CZ /Rng:c/V-uth:c/ u, -nds=0
T Q a0

TeTh

for all ¢ € R since ug|sq = 0.
Applying Holder’s inequality to each of the terms on the right-hand side of (2.9)
and then taking the infimum over all ¢ € R, we have that

a(u,w) —a(up, w) + b(p — pn, w) + b(g, u — uy)

<y IRl (7 lW = oWl (7)
TETh

+Z Z HRQHLT'(e)HW_IhW”L"(e)

TeTr eCOTNQ

(2.10) + Z IIR3(lL (1) (}Telﬂg llg + clly, (T)
TETh
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for all w € V and all ¢ € Q.
According to the Trace Inequality, there exists a positive constant Cy such that,
for all w € [WH"(T)]¢, 1 < r < oo, and any face e C 9T,

Iwlliro) < Co (B Iwlle iy + b " (Wi ) -
Hence, (2.4) implies that, for any w € V, any T € T;, and any face e C 9T,
(2.11) W = Inwllir () < CoCrihy!™ [Wlwir (sm)-

Applying (2.4) and (2.11) in (2.10) and using Holder’s inequality for finite sums,
we have that

a(u,w) —a(up, w) + b(p — pn, w) + b(g, u — uy)

1/r
<O S iRl ] IWlwir)
(T)

TeTh

1/r
+C Z Z hT”RQ”;’,J e |W|W1r(Q)
(e)

TETh eCOTNQ
1/r
(2.12) + ( > ||R3||£"(T)> inf [lg + cllp (o)
TETh

for all w € V and all ¢ € @. Inequality (2.12) implies that
a(u,w) —a(up, w) + b(p — pr, W) + b(q,u — ux)

1/r 1/r'
<C (Z hrTl||R1||r’~(T)> + (Z > hT||R2||rr’(e)> |Wlwi.r (o)

TETh TeTr eCOTNQ
1/r
(213)  + IR3IL(r inf [l + ¢l
(ry | L (@)
TeTh

for all w € V and all ¢ € ). Taking ¢ = 0 in (2.13) and then the supremum over all
wevV = [Wé’r(Q)]d, using (1.4), and recalling that [[e(w)||Lrq) = ||[Wl|v, we get

oy 20 ) = o, W) + blp = piw)
e wllv

1/r 1/r'
(214) <C [< S hTT’HRlew(T)) + (Z > hT||R2||£'T,(e)> ]
[ TeTh TETr eCOTNQ J
On the other hand, taking w = 0 in (2.13) and then the supremum over ¢ € @ yields
1/r
(215) sup A1) ( > ||R3||£rm> .

w6 Tl =

Now, let us rewrite the left-hand side of (2.14) as the norm of a certain element
S; € V' and the left-hand side of (2.15) as the norm of a certain element S; € Q';
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S1 and S» are referred to as residual functionals. We shall complete the a posteriori
error analysis by showing that ||u — u||y and ||p — prllg can be bounded in terms of
[IS1||v+ and ||Sz||q’, and thereby, also, in terms of the right-hand sides of (2.14) and
(2.15). We define S; € V' by

(2.16) (S1,w) = (f,w) — a(up, w) — b(ph, w) Ywe V.
Similarly, we define Sy € @' by

The existence of the functionals S; and Sy as elements of V' and @', respectively, is
the consequence of Remark 1 following Lemma 3.4 in the next section.

Let us compute the norms ||S1||y+ and ||Sa||g'. We begin by noting that (1.1) and
(2.16) imply that

(S1,w) = a(u,w) —a(uy,w) + b(p,w) — b(pn, W).

Hence,

s - b(p —
81l = sup S gy 2l w) Z alun, )+ 0p = pr, W)
wev [[wllv wevV Iwllv

Applying (2.14) to the right-most expression in this chain, we deduce that

TET TeT, eCOTNQ

1/r' /v
(2.18) [|Sy][y < C {(Z hTT’HRleT’(T)) + (Z Z hT”R2”£Ir’(e)> }

Analogously, by (2.17),

[IS2[lqr = sup (S2,0) _ sup —blg,un) _ sup M,

o lldle  seo  llallo e lldlle
and therefore, by (2.15),

1/r
(2.19) 1S2]lqr < (Z ||R3||£*(T)> :

TeTh

For 1 < r < oo the reflexive Banach space V is continuously and densely embedded
into the reflexive Banach space [L"(€2)]?. Hence, [L" (2)]%, the dual space of [L" ()],
is continuously and densely embedded into V’. In particular, f € [L" (Q)]? can be
identified with an element of V' (also denoted f for the sake of notational simplicity)
via (f,w) = (f,w) for all w € V. Hence, the definitions (2.16) and (2.17) imply that

a(up,w) + b(pn,w) = (f — Sy, w) Yw eV,
b(g,un) = (=S2,q) Vg € Q.
On subtracting these from (1.1) and (1.2), respectively, we obtain

(2.20) a(u,w) — a(up, w) + b(p — pp, w) = (S1, w) Yw eV,
(221) b(q,ll - uh) = <827q> VQ € Q
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Since ||S1]|y+ and ||S2||g- have been bounded in terms of the computable residuals
Ri, R> and Rs through (2.18) and (2.19), the desired a posteriori error bound will
be arrived at by deducing from (2.20) and (2.21) that |ju — u,||v and ||p — prl|o can,
in turn, be bounded in terms of ||S;||y+ and ||Sz||q’, as stated in the next proposition.

PROPOSITION 2.1. Let (u,p) € V x Q denote the solution to (1.1), (1.2), and
let (up,pr) € Vi X Qp denote its finite element approzimation defined by (2.2), (2.3);
then, there exists a positive constant C = C(Ky, Ka,co, 1, ||f]|v') such that

(222)  fu—wil® <O (IS + 18215 +ISullvlIS: o)
(223)  lp=pall < C (ISilIF + IS + 18208 + 1Sl 1S2ller) -

where R = max{r,2}, 2 = max{r’,2}, I/R+1/R' =1, 1/a+ 1/a" =1, and Sy and
Sy are bounded according to (2.18) and (2.19).

In the special case of a power law-model, k(t) = 2ut"~2 with r € (1,2), the bounds
(2.22) and (2.23) collapse to those of Sandri [17]. To prove the theorem, we require
some preliminary results.

3. Preliminary results. For a € [0,1] and ¢ € (0, 00), we define
Eat) =t (1 + )t
Hence,
L) =(a+t)(1+t) >t and EL(t) = —a(l —a)t* 2(14+t) L

Therefore, for any a € [0,1], t = E,(t) is a strictly monotonic increasing function of
t € (0,00); in particular, t — Z¢(t) and ¢ — Z;(¢) are affine functions of ¢ € (0, 00).
Furthermore, for a € (0,1), t — Z,(¢) is a strictly concave function of ¢ € (0, c0).
The following Jensen-type inequality is easily proved by using Holder’s inequality and
the triangle inequality in L"(Q2): for any r € [1,00), a € [0, 1], and all w € L"(),

<ﬁ /Q[EQ(W(HJ)I)]" dQ)1 < E“((ﬁ /Q ol dﬂ) 1) |

According to our simplifying assumption from the start of the paper, |©2| = 1; hence,

(3.1) IEa(lw)ll- (@) < Ealllwlli-(o)

for all 7 € [1,00), a € [0,1], and all w € L"(Q).

We recall the following result from the paper of Barrett and Liu [6].

LEMMA 3.1. Let k satisfy assumption (A1) for r € (1,00) and o € [0,1]. Then,
for all My, My in REXL and § > 0, we have that

ymm

(3.2) (k(|My ) My — k(| Ma|) My) : (My — M) > Ky [Eo (| My | + | Ma])]" 270 | My — M, >+

Let k satisfy assumption (A2) for r € (1,00) and a € [0,1]. Then, for all My, My in
dxd —ond § > 0, we have that

ymm

(3.3)  [k(|M1|) My — k(|Ma|)Ms| < Ko[So(|Mi] + | Ma])]" 2| My — Ma|*°.
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Next, we introduce the notation
V) = / Ealle)] + W) 2le(v)2d2, v, w € W (@)Y, 1< r < oo,
Q

PROPOSITION 3.2. Suppose that r € (1,00), a € [0,1] and w € [WLT(Q)]¢; then,
the following hold:
(i) [V|iw,ra) = 0 forallv € [WET(Q)]?. In particular, whenv € V = [Wo ()],
[V|(w,r,a) = 0 if, and only if, v = 0;
(1) (Quasi-triangle-inequality): there exists a constant C = C(r) such that

|V1 + V2|(w,r,oz) S c (|V1|(w,r,a) + |V2|(w,r,a))

for all vi,vy € [WHT(Q)]4;
(i5i) For 1 <r <2,

VITL o) < el < [Ealle®)lr @) + el @) 72 [Viiw.ra)

for all v e (WL (Q)]7.
For 2 <r < oo,

el < IVlowra) < [Eallle™llr@) + le®)llr@)] 272 le(W)llLr(@)

for all v e (WL (Q)]?.

Part (i) of this proposition follows from the definition of | - [(w ), and Korn’s
inequality. Part (ii) has been proved in the paper of Barrett and Liu [7]. The proof
of (iii) is based on a straightforward application of Holder’s inequality and Jensen’s
inequality (3.1). Properties (i) and (ii) in Proposition 3.2 are the axioms of quasi-
norm. Thus, for w € V = [WH" ()], | - |(w,ra) is a quasi-norm on V. Property (iii)
relates the Sobolev norm |[| - [l = | - |w1.r(q) to the quasi-norm | - |(w,y.q)-

Now, we show the uniform monotonicity and local Lipschitz continuity of the
semilinear form a(-,-) with respect to the quasi-norm.

LEMMA 3.3. Suppose that r € (1,00) and define the constants Cy = 21" 21K
and Cy = 2I7—21/max{2.r'}Y i - hen, for i = 1,2, and all vi,vo,w in V,

(3.4) a(vy, vy —va) —a(va, vy — va) > Ca|vy — V2|%Vima);

min{1,2} _ max
(3:3) la(v1, ) = a(va, w)| < Calvi=valy' s o Ea v ly + [[vally) (0

r—

2
= |wlly.

Proof. To prove (3.4), we use (3.2) with § =0, and M; = e(v;), i = 1,2. Hence,
we deduce that, for any vi,vs € V,

a(vy, vy — va) —a(va, vy — Vo)
(3.6) > Kl/ le(vi) — e(va)P[Za(le(vi)] + [e(v2)])]" =2 d9.
Q
We note that, for ¢ = 1,2,

3.7) 5 (le(vi —va)| +le(vi)]) < le(vi)] + le(v2)] < 2(Je(vi — va)| + |e(vi)]) -

1
2
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Suppose that 1 < r < 2; then, (3.6), the second inequality in (3.7) and the
definition of the quasi-norm |- |, ) imply that

a(vi,vi — v2) — a(va, vy — va) > 2" 2K |v; — v2|%vi7r7a), i=1,2,

and hence (3.4) with Cy = 272K for 1 <r < 2.
Similarly, when 2 < r < oo, the first inequality in (3.7) and the definition of the
quasi-norm | - | (v, , ) imply that

a(vi,vi —Va) —a(vy, vy — Vo) > 22K |vy — V2|%vi7r7a), i=1,2,

and hence (3.4) with Cy = 227"K; for 2 < r < oo.
To show (3.5), we apply Holder’s inequality, the fact that |le(w)||r) = [[W(lv,
and the inequality (3.2) with M; = e(v;), i = 1, 2; hence, we deduce that

|a(vi, w) —a(vs, w)] Z/Q(k(|6(V1)|)6(V1) — k(le(va2)])e(v2)) : e(w) dQ2
, /7'
< (/Q|k(|6(V1)|)6(V1)—k(|6(V2)|)6(V2)|r dQ) [lwlly

, , 1/r'
(3.8) <K, (/Q le(v1) = e(va)| "~ [Eale(vi)] + le(va) D] 20" dQ) lIwllv.

Let 1 <7 <2 and define 6 =1—(2/r'); then (1 =8)r' =2, (r —240)r' =r —2.
Therefore, using the first inequality in (3.7),

la(vi, w) — a(va, w)| < 2@/ Ky |vy — V2|?‘/,:7T7a)||W||V,

which is (3.5) with C5 = 2@="/" K, for 1 < r < 2.
Now, let 2 < r < oo and hence ' = r/(r — 1) € (1,2); we shall use Holder’s
inequality in the integral on the right-hand side of (3.8). Thus, we take § = 0, split

Ea(le)+lev2)DIT2" = [Zalle(vi)|+e(va))] =" [Eale(v)|+le(v))] "5

and group the first factor on the right with |e(vy) — e(v2)|”. The application of
Holder’s inequality with exponents « = 2/r' and o' = 2/(2 —1+'), 1/a+1/a’ =1,
corresponding to the factors

le(v1) = e(v2)|" [Ea(le(va)| + le(v2) D)7/ and [ (le(va)] + le(va) D)7/,

respectively, yields

1/2
la(vi, w) —a(ve, w)| < K> </Q le(v1) — e(va)2[Za(le(vi)| + [e(va))] 2 dQ)

> (2—r')/(2r")

2)r!

=a(le(vy e(vay e
x(/ﬁ[uau( )+ le(v2))] a0

lTwllv-

As (T*TW . 2%0, , 22_/,"’ = r2—_702, using the second inequality in (3.7) we get that

ja(vi, w) = a(vs, w)| < Cslvi = Vo (v, o) [Za(le(vi)] + [e(v2) ]I o) 1wl
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for all vi,vy in V, with C3 = 2("=2/2K,. On noting (3.1), the triangle inequality
for the [ - ||~ (q) norm, and that ¢ — Z,(t) is monotonic increasing, we have (3.5) for
2<r<oo.

Next, we show that the solutions to problems (1.1), (1.2) and (2.2), (2.3) can be
bounded in terms of ||f]y-.

LEMMA 3.4. Let (u,p) € V x Q and (up,pr) € Vi X Qp denote the solutions to
problems (1.1), (1.2) and (2.2), (2.3), respectively, and let r € (1,00); then

— ¢o

(310) fuilly <G EIEl),  onlle < & (il + Ko(H 0 G™)(R 1)),

(39 Il <G &), lle < & (Il + Ko( 0 G lEllv)),

where ¢y and ¢}y are the inf-sup constants from (1.8) and (2.1), respectively, and G
and H are continuous strictly monotonic increasing functions defined on [0, 00).
Proof. Taking v =u in (1.1) and using (1.2), we have that

a(u,u) = (f,u) = (£, u) <|[|f]lv[[ul]v.

Now, using (3.2) with M; = e(u), My =0, § = 0, and (iii) of Proposition 3.2 with
w = 0, we obtain

P2, 1<r<2,

a(w,w) > Kifuly, ) > Kilully G(lullv): G(#) = { i Sy

Since G : t — G(t) is continuous and strictly monotonic increasing on [0, c0), its
inverse function G~ is continuous and strictly monotonic increasing on [0, c0). Hence,

lully < G (g lIfllv).
To bound [|p||g, note that, by the inf-sup condition (1.3),

b(p, V)_

lIvilv

collpllg < sup
v

On the other hand, from (1.1), and using using (3.3) with M; = e(u), My =0, § =0,
and (iii) of Proposition 3.2 with w = 0, we obtain

b(p,v) = (£,v) —a(u,v) = (f,v) —a(u,v) < [[f]v[[vl]lv + K2H(|[ul[v)[|v]v,
where

o 1<r<2,
H(t) - { t- [Ea(t)]ria 2 S r,

and therefore,
collplle < lIfllv: + Ko H(([ullv).

Clearly, H : t — H(t) is continuous and strictly monotonic increasing on [0, 00).
Together with our earlier bound |jully < G’l(KLleHVz), this proves (3.9); the proof
of (3.10) is identical, except that (2.1) is used instead of (1.3). O
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ReMARK 1. As [(£,w)] = |(£,w)] < [[fllv-[|wllv and, by Hélder’s inequality,
la(v,w)| < KaH(IV[)liwlly and [b(g, w)| < lalloliwlly, it follows, using (3.10),
that

6.) — atun w) = b )| < (1 5 ) (Il + Kol 2 G v Il

Hence, for f € [L’"I ()]¢ fized, and the corresponding unique solution (ay,pp) of (2.2),
(2.3) in Vi, x Qn, CV x Q thereby also fized, w — (£, w) — a(up,w) — b(pn,w) is a
bounded (and therefore continuous) linear functional on V; as such, it belongs to V'.
It is this element of V' that was denoted earlier by Sy. Similarly, foru, € V, C V
fized, ¢ — b(q,up,) is a bounded (and therefore continuous) linear functional on @,
and as such, it belongs to Q'; it is this element of Q' that was denoted above by S,.

Using vi = u and vy = uy in (3.4) and (3.5), together with the bounds on ||u||v
and ||up||v from Lemma 3.4, we obtain the following result.

LeEMMA 3.5. Let (u,p) € V x Q and (up,pr) € Vi X Qn denote the solutions to
problems (1.1), (1.2) and (2.2), (2.3), respectively, and suppose that r € (1,00); then,

(3.11) a(u,u —up) — a(up,u—uy) > Cylu— uh|%u7r,a);
min{l,%}
(3.12) |la(a, w) —a(ap, w)| < Calu—un|, . )" lIwllv,

r—2 2

where Cy = C520@{0 57 H(Z, o G_l)(KLleHV/)]maX{O’%}, and Co = Co(Ky,r),
C3 = C3(Ka,r) are as in Lemma 3.3.

4. Proof of the a posteriori error bound. Equipped with the results of the
previous section, we now return to the proof of Proposition 2.1, whereupon we shall
prove Theorem 1.1. Our starting point is the following result.

PROPOSITION 4.1. Let (u,p) € V x @ denote the solution to (1.1), (1.2), and
let (up,pr) € Vi X Qp denote its finite element approzimation defined by (2.2), (2.3);
then, there exists a positive constant C = C(Ky, Ka,co, 1, ||f]|v') such that

(4.1) [ =y < C (ISUE + 1S5 + 18111y 1S:lle )

(42) I = pallF < € (IS4 + [ = wnly )

where R = max{r,2}, s = max{r’,2}, 1/R+1/R' =1, 1/a+1/a =1, and S; and
Ss are bounded according to (2.18) and (2.19).

Proof. (Proposition 4.1.) According to the inf-sup condition (1.3), identity (2.20),
the definition of the norm || - ||y+ and (3.12), we have that

min{l,%}

(a,rya) 0

(4.3) collp = prlle < [[Saflvr + Cialu — uy|

and hence (4.2) on noting that min{1, 2} = 2min{}, -} = 2/a.

On the other hand, taking w = u—uy, in (2.20), then using (2.21) with ¢ = p—py,
(3.11), and the definitions of the norms || - ||y+ and || - ||gr, we get that

(4.4) Colu = s [fy 0y < ISullvellu = wnlly + [IS2llellp = palle-
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Multiplying (4.4) by co and then eliminating co||p — pnl|g using (4.3) gives

coChu — un|fy 0y < collStllvellw = wplv + (ISt llv[ISallr
min{Lf—,}

(a,r,@)

(4.5) +C4[S2/lq [u — |

Part (iii) of Proposition 3.2, with v =u — u and w = u implies that

min{1,2}

max{0,25%
(46) Il —wnlly < Ealllu—wplly + all)]" = - w000

Also, recalling from Lemma 3.4 that

lully <G (% [Ifllv) and Jlusllvy <G (Z[Ifllv)
gives
(4.7) lu —wunlly + llally <2(ullv +[lunllv) < 267 (g ]IEllv).

Hence, (4.6) and the fact that ¢t = Z,(¢) is monotonic increasing on [0, 00) imply that

min{1,2}

2=ry _ max{0 2="
=yl < 27O (2 0 G (4 Il )05 F u — g ol

We substitute this into the right-hand side of (4.5) to eliminate |[u — uy||y; thus,
inf1,2
[ = wn ) < C (ISt fu = w00 + ISl 182l

(a,r,@)

min{Lf—,})
)

(a,r,@)

(4.8) + ISzl [u — uy|

where C' = C (K1, K2, co,r, ||f]||v) is a positive constant. We apply Young’s inequality

1/s+1/s=1, 1<s<oo, ab>0, >0,

to the first and the third terms on the right-hand side of (4.8), with a = C||Sy||v-
and s’ = 2/ min{1,2/r} = max{r,2} in the case of the first term and a = C||S2]|¢
and s’ = 2/ min{1,2/r'} = max{r’,2} in the case of the third term, and take £ > 0
sufficiently small so as to hide the term £(1/ max{r, 2} + 1/ max{r’,2})ju — uh|%u7r,a)
thus resulting from the right-hand side of (4.8) into |u — uh|%u7r’a) appearing on the
left-hand side of (4.8); any € € (0,1) will suffice. Hence we deduce that

(49) [ = w20y < C (ISUE + 1811 Ssller + 2113

where R = max{r,2}, 1 = max{r’,2}, 1/R+1/R' =1, 1/a+ 1/ =1, and C is at
most 1/(1 — €) times what it was in (4.8). O

Proof. (Proposition 2.1.) Part (iii) of Proposition 3.2 with v = u—uy, and w = u,
(4.7) and (4.9) imply that

(4.10) ha =l < C (IS + 181l 1Saller + 1S:115:)
and hence (2.22).

For the error in the pressure, substitution of (4.9) into the right-hand side of (4.2)
yields (2.23). That completes the proof of Proposition 2.1. O
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The a posteriori error bounds stated in Proposition 2.1 can be simplified, thus
leading to Theorem 1.1 which we now prove.
Proof. (Theorem 1.1.) By virtue of (2.16) and Remark 1,

ISillv < (14 2) (Il + Kot o G l)).
Thus, on noting that R’ = min{r’,2} < max{r’,2} = a, we have that
@1 S IS = IS (1 IS < lsi I
where C' = C(Ky, Ko, ¢, 1, ||f|lv/). Also, by Young’s inequality and (4.11),
@12 8ilvlSile < TISuE + LISl < € (IS + 5:08).

where C' = C(Ky, Ka,cp, 1, ||f|lv/). Hence, (4.11), (4.12), together with (2.22) and
(2.23) of Proposition 2.1, yield the a posteriori error bound (1.5) of Theorem 1.1
stated in the Introduction. O

5. Concluding remarks. We presented a general framework for energy-norm-
based a posteriori error analysis of conforming mixed finite element approximations to
quasi-Newtonian flow models. As has been noted in the Introduction, Proposition 2.1
and Theorem 1.1 recover a number of known a posteriori bounds from the literature;
they also provide new bounds for a very general class of quasi-Newtonian flow models.

When r = 2, we have R = R’ = a = a' = 2; then, (1.5) of Theorem 1.1 collapses to
the a posteriori error bound of Barrett and Bao [5] for inf-sup-stable mixed finite ele-
ment approximations of Carreau-type quasi-Newtonian flows, the linear Stokes prob-
lem being a special case [20]. For r # 2, the bound (1.5) represents an improvement
over several earlier results (cf. [3] and [15], in particular) in that the powers of ||S1||y-
and ||S2]|qr in our a posteriori error bound are larger than the ones in those papers.

The validity of Propositions 2.1 and 4.1 is independent of whether or not the pair
of spaces (V3, Q) is inf-sup stable in the sense of (2.1): it is only in the transition
from Proposition 2.1 to Theorem 1.1 that we made use of the bound on ||p||g from
(3.10) which relied on (1.3). Indeed, suppose that problem (1.1), (1.2) has been
approximated by the finite element method: find uy, € V}, and pp € @y, such that

a(llh,Vh) + b(phavh) = (f7 vh) VVh S Vh7
b(qn, un) = cn(qn,pn) Van € @,

where ¢p(+, ) is a bilinear form on Qp x @y, satisfying cp(qn,qn) > 0, gn € Qp (the
discretisation (2.2), (2.3) being a special case with cp(gn,pr) = 0 for all g, € Qn).
A number of pressure-stabilised finite element discretisations of (1.1), (1.2) are of
this form. It is then easy to see that the bound on ||uy||y from (3.10) still holds
irrespective of (2.1), and, if instead of assuming (2.1) we suppose that the sequence
(Ilprll@)n>o is bounded, independent of h, then, once again, Theorem 1.1 follows from
Proposition 2.1 in exactly the same way as before.

The computational assessment of the sharpness of the a posteriori upper bound
stated in Theorem 1.1 and the derivation of a posteriori lower bounds on the error
will be considered in forthcoming papers.
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