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FINITE ELEMENT APPROXIMATION AND AUGMENTED

LAGRANGIAN PRECONDITIONING FOR ANISOTHERMAL

IMPLICITLY-CONSTITUTED NON-NEWTONIAN FLOW

PATRICK FARRELL, PABLO ALEXEI GAZCA OROZCO, AND ENDRE SÜLI

Abstract. We devise 3-field and 4-field finite element approximations of a
system describing the steady state of an incompressible heat-conducting fluid

with implicit non-Newtonian rheology. We prove that the sequence of numer-

ical approximations converges to a weak solution of the problem. We develop
a block preconditioner based on augmented Lagrangian stabilisation for a dis-

cretisation based on the Scott–Vogelius finite element pair for the velocity

and pressure. The preconditioner involves a specialised multigrid algorithm
that makes use of a space decomposition that captures the kernel of the di-

vergence and non-standard intergrid transfer operators. The preconditioner

exhibits robust convergence behaviour when applied to the Navier–Stokes sys-
tem, including temperature-dependent viscosity, heat conductivity and viscous

dissipation.

1. Introduction

For d ∈ {2, 3}, let Ω ⊂ Rd be a bounded polytopal domain with a Lipschitz
boundary. The steady form of the Oberbeck–Boussinesq [48, 8] approximation
used in the modelling of natural convection reads:

−divSSS + ρ0 div(u⊗ u) +∇p = −ρ0βg(θ − θC)ed in Ω,(1.1a)

divu = 0 in Ω,(1.1b)

− div(κ̂(θ)∇θ) + ρ0cp div(uθ) + βρ0gθu · ed = SSS :DDD(u) in Ω,(1.1c)

where ed is the unit vector pointing against gravity, DDD(u) = 1
2 (∇u+∇u>) denotes

the symmetric gradient, and the quantities appearing in the equations are as follows:

u : Ω→ Rd velocity field

SSS : Ω→ Rd×dsym,tr shear stress
p : Ω→ R pressure
θ : Ω→ R temperature
κ̂ : R→ R heat conductivity

β thermal expansion coefficient
cp specific heat capacity
g acceleration due to gravity
ρ0 reference density
θC reference temperature
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The symbol Rd×dsym,tr above denotes the set of d × d symmetric and traceless
matrices. The system is supplemented with the boundary conditions

(1.2) u|∂Ω = 0, θ|ΓD = θb, κ̂(θ)∇θ · n|∂Ω\ΓD = 0,

where ΓD is a relatively open subset of ∂Ω with |ΓD| 6= 0, n is the unit outward-
pointing normal vector to the boundary, and θb is a given temperature distribution
on ΓD. In many applications the effects of viscous dissipation are ignored, i.e. only
the first two terms in the temperature equation (1.1c) are kept. However, it has
been observed that in some cases the effects of the viscous dissipation term SSS :DDD(u)
are non-negligible and should be taken into account [31, 62, 63, 49]. Furthermore,
as noted in [3, 62], the viscous dissipation must be balanced with the adiabatic
heating term βρ0gθu · ed; for a mathematically rigorous derivation of the system
(1.1) see [34]. The existence of distributional solutions of (1.1) with non-Newtonian
rheology of power-law type was shown in [55, 47].

The system must be closed with a constitutive relation that relates the stress SSS
and the symmetric velocity gradient DDD(u). The most commonly considered closure
is the Newtonian constitutive relation SSS = 2µ̂(θ)DDD(u), where µ̂ : R → R is the
viscosity. In this work we consider much more general implicit constitutive relations
of the form GGG(SSS,DDD(u), θ) = 0 and HHH(SSS,DDD(u)) = 0. The framework of implicitly
constituted fluids is a generalisation of classical continuum mechanics that allows
the study of a much wider class of materials in a thermodynamically consistent
manner (see [51, 52, 53]).

The first rigorous existence results within the implicitly constituted framework
for the isothermal system can be found in [10, 11] (see also [6]), while an extension to
a temperature-dependent system was carried out in [46]. Regarding the numerical
approximation of these systems, only the isothermal case has been considered so
far. The finite element approximation of the steady isothermal system was analysed
in [16, 38], and extensions to the unsteady problem can be found in [60, 22]. An
augmented Lagrangian preconditioner was proposed for a 3-field formulation of the
isothermal system in [21].

Our analysis focuses on the constitutive relation defined by

(1.3) GGG(SSS,DDD(u), θ) := 2µ̂(θ)
(|DDD(u)| − σ̂(θ))+

|DDD(u)|
DDD(u)− (|SSS| − τ̂(θ))+

|SSS|
SSS,

where τ̂ σ̂ = 0 (the precise assumptions on µ̂, τ̂ , σ̂ will be introduced later). The
relation (1.3) describes a fluid with either Bingham or activated-Euler rheology
in which the viscosity and activation parameters may depend on the temperature.
Naturally, this family of constitutive relations also includes the Navier–Stokes model
with a temperature-dependent viscosity (when τ̂ ≡ 0 ≡ σ̂). The relation (1.3)
was introduced to [46], where existence of weak solutions to the unsteady version
of a similar system was shown. Our results will also cover relations with more
general power-law behaviour if one restricts the system to have either an explicit
constitutive relation or constant rheological parameters.

We make two main contributions in this work. First, we introduce a finite
element approximation of the system (1.1) and prove convergence of the sequence
of finite element approximations to a weak solution. This represents the first finite
element convergence result for heat-conducting implicitly constituted fluids. For the
sake of simplicity, we will neglect the viscous dissipation in the analysis. However,
this can be included in the numerical algorithm without any difficulties. The main
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challenge associated with this term in the analysis stems from the fact that SSS :DDD(u)
belongs a priori to L1(Ω) only, and hence a suitable notion of renormalised solution
must be employed for the temperature equation. We note that this difficulty has
been circumvented in the PDE analysis of similar systems in the transient case
[9, 12]. We would expect that by imposing certain restrictions on the mesh and for
P1 elements, a similar convergence result would hold for an appropriately defined
renormalised solution (c.f. [14]). When restricted to constant rheological parameters
and the isothermal problem, the convergence result here improves on the result for
r-graphs from [16] by extending it to cover the whole admissible range r > 2d

d+2 ,
even without pointwise divergence-free elements. This is possible by making use
of reconstruction operators, which in recent years were introduced to restore the
pressure-robustness in the finite element formulations (see e.g. [33]).

The second main contribution is the development of a preconditioner based on
augmented Lagrangian stabilisation for linearisations of the discretisation of (1.1),
including the viscous dissipation term. After Newton linearisation the system takes
the following form

(1.4)

[
A B>

B 0

] [
z
p

]
=

[
f
g

]
,

where z = (θ,u)> or z = (SSS, θ,u)>, depending on whether a 3-field or a 4-field
formulation is employed, and B represents the divergence operator acting on the
velocity space. After performing Gaussian elimination on the blocks, the prob-
lem of solving (1.4) reduces to solving smaller systems involving A and the Schur
complement S := −BA−1B>. In many cases, such as in a velocity-pressure formu-
lation of the Stokes system, A represents a symmetric and coercive operator which
can be inverted efficiently, and so the challenge is to develop an effective and effi-
cient approximation for the Schur complement inverse S̃−1. For the Stokes system
with constant viscosity ν it is known that the choice S̃−1 = −νM−1

p , where Mp is
the pressure mass matrix, results in a spectrally equivalent preconditioner [59, 45].
When the convective term is introduced to the formulation, the performance of this
strategy degrades as the Reynolds number Re gets larger (meaning that the num-
ber of Krylov subspace iterations per nonlinear iteration grows with Re) [18]. This
loss of robustness occurs also with other well-known preconditioners, such as the
PCD [35] and LSC [18] preconditioners (see e.g. [19]). Block preconditioners based
on PCD for the system (1.1) without viscous dissipation were proposed in [32, 36],
where it was observed that the number of linear iterations increased strongly with
the Rayleigh number Ra.

Alternatively, one can consider the system with an augmented Lagrangian term,
with γ > 0:

(1.5)

[
A+ γB>M−1

p B B>

B 0

] [
z
p

]
,=

[
f + γB>M−1

p g
g

]
,

which has the same solution as (1.4), since Bz = g. The advantage of this is that us-
ing the Sherman–Morrison–Woodbury formula (see e.g. [1]), the Schur complement
can be approximated in a straightforward way:

S−1 = (−B(A+ γB>M−1
p B)−1B>)−1 = −(BA−1B>)−1 − γM−1

p

≈ −(ν + γ)M−1
p ,



4 P.E. FARRELL, P.A. GAZCA OROZCO, AND E. SÜLI

and the approximation gets better as γ → ∞. The difficulty now becomes solv-
ing the linear system associated with top block A + γB>M−1

p B efficiently, since
the augmented Lagrangian term possesses a large kernel (the set of all discretely
divergence-free velocities). This approach was used for the 2D Navier–Stokes sys-
tem by Benzi and Olshanskii [5] and later extended to three dimensions by Farrell,
Mitchell and Wechsung [26]. The strategy for efficiently solving the top block in
these works was based on ideas developed by Schöberl in the context of nearly
incompressible elasticity [57, 56], where it became clear that constructing robust
relaxation and transfer operators is essential for obtaining a γ-robust multigrid
algorithm.

These ideas will be applied here to develop a preconditioner for the anisothermal
system based on a discretisation using the Scott–Vogelius pair for the velocity and
pressure, which has the advantage of preserving the divergence constraint exactly
(to machine precision and solver tolerances). This builds on previous work for the
Navier–Stokes system [24] and a stress-velocity-pressure formulation for isothermal
non-Newtonian fluids with implicit rheology [21]. An augmented Lagrangian-based
preconditioner (AL) for buoyancy-driven flow was already presented in [37] for a
stabilised P1–P1 velocity-pressure pair, in which the augmented velocity block was
substituted by A+γB>diag(Mp)

−1B and handled by GMRES preconditioned with
algebraic multigrid; in that work it was shown that the AL preconditioner performed
better than non-augmented variants, at least for Prandtl and Rayleigh numbers in
the ranges 0.04 ≤ Pr ≤ 1, 500 ≤ Ra ≤ 10000. Numerical experiments with the
preconditioner will show good performance with the Navier–Stokes and power-law
models for a wider range of non-dimensional numbers, even with temperature-
dependent viscosity, heat conductivity, and viscous dissipation. It is remarkable
that the robustness properties of the preconditioner hold in this case, given that
the available parameter-robust multigrid theory pioneered by Schöberl does not
apply, since the block A is non-symmetric and non-coercive.

2. Preliminaries

2.1. Function spaces. Throughout this work we will employ standard notation
for Sobolev and Lebesgue spaces (e.g. (W k,s(Ω), ‖·‖Wk,s(Ω)) and (Lq(Ω), ‖·‖Lq(Ω))).

The space W k,r
0 (Ω), for r ∈ [1,∞), is defined as the closure of the space of smooth

functions with compact support C∞0 (Ω) with respect to ‖ · ‖k,r; its dual space will

be denoted by W−1,r′(Ω), where r′ is the Hölder-conjugate of the number r, i.e.
1/r′ + 1/r = 1. When r = 2 we will write W k,2(Ω) = Hk(Ω) and W−1,2(Ω) =
H−1(Ω). Let us also define the following useful subspaces for r > 1 and Γ ⊂ ∂Ω:

Lr0(Ω) :=

{
q ∈ Lr(Ω):

∫
Ω

q = 0

}
,

W 1,r
0,div(Ω)d := {v ∈ C∞0 (Ω)d : div v = 0}

‖·‖W1,r(Ω) ,

W 1,r
Γ (Ω) := {w ∈ C∞(Ω) : w|Γ = 0}

‖·‖W1,r(Ω) ,

Lrsym(Ω)d×d := {τ ∈ Lr(Ω)
d×d

: τ> = τ},

Lrsym,tr(Ω)d×d := {τ ∈ Lrsym(Ω)d×d : tr τ = 0},

W
1/r′,r
00 (Γ) := {w|Γ : w ∈W 1,r(Ω), w = 0 on ∂Ω \ Γ}.
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The operator tr in the definition of Lrsym,tr(Ω)d×d denotes the trace of a d×d matrix.
The letter c will be used in various estimates to denote a generic positive constant
whose value might change from line to line (the dependence on the parameters will
be made explicit whenever necessary).

2.2. Implicit constitutive relations. Let us assume now that the material pa-
rameters µ̂, τ̂ , σ̂, κ̂ are continuous functions of one variable such that

(2.1)

0 ≤ τ̂(s), σ̂(s) ≤ c0,
c1 ≤ µ̂(s), κ̂(s) ≤ c2,

τ̂(s)σ̂(s) = 0,

for all s ∈ R, and some positive constants c0, c1, c2. It is not difficult to show
that under these assumptions, the relation (1.3) defines a monotone and coercive
2-graph [46, Lemma 3].

Lemma 2.1. Let GGG : Rd×dsym × Rd×dsym × R → R be the function defined by (1.3) and
suppose that µ̂, τ̂ , σ̂ ∈ C(R) satisfy (2.1). Then there exist two constants α, β > 0
such that

(2.2) SSS :DDD ≥ α(|SSS|2 + |DDD|2)− β

(2.3) (SSS− SSS) : (DDD−DDD) ≥ 0,

for any (SSS,DDD, θ), (SSS,DDD, θ) ∈ Rd×dsym ×Rd×dsym ×R such that GGG(SSS,DDD, θ) = 0 = GGG(SSS,DDD, θ).

In the same spirit as [16, 22], in the numerical scheme we will employ a sequence
of continuous explicit approximations of the implicit constitutive relation (1.3). Let
us define for n ∈ N the approximations as follows:

Dn(SSS, θ) := min

{
n+

1

2µ̂(θ)
,

1
2µ̂(θ) (|SSS| − τ̂(θ))+ + σ̂(θ)

|SSS|

}
,

Sn(DDD, θ) := min

{
n+ 2µ̂(θ),

2µ̂(θ)(|DDD| − σ̂(θ))+ + τ̂(θ)

|DDD|

}
.

(2.4)

Either of the two can be chosen, depending on whether one wishes to consider
explicit approximations of the stress in terms of the symmetric velocity gradient or
vice-versa. The functions Dn and Sn satisfy the same monotonicity and coercivity
conditions as those stated in Lemma 2.1, uniformly in n. More importantly, the
following localised Minty’s lemma is available for these approximations, which will
be useful when proving that the limit of the numerical approximations satisfies the
constitutive relation.

Lemma 2.2 ([46], Lemma 6). Let M ⊂ Ω be measurable and let GGG be defined by
(1.3). Now suppose that {DDDn}N and {θn}N are sequences of measurable functions
on Ω and let SSSn := Sn(DDDn, θn). Assume that the following conditions hold:

Sn(DDDn,θn) = 0 a.e. in M,

SSSn ⇀ SSS weakly in L2(M)d×d,

DDDn ⇀ DDD weakly in L2(M)d×d,

θn ⇀ θ a.e. in M,

lim sup
n→∞

∫
M

SSSn :DDDn ≤
∫
M

SSS :DDD.
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Then GGG(SSS,DDD, θ) = 0 and SSSn :DDDn ⇀ SSS :DDD weakly in L1(M). An analogous statement
holds for Dn.

If the rheological parameters are constant (i.e. do not depend on the tempera-
ture), it is possible to generalise the convergence result to cover implicit relations
of the form HHH(·,SSS,DDD(u)) = 0, where HHH : Ω×Rd×dsym ×Rd×dsym → Rd×dsym , that satisfy the
coercivity condition (2.2) with an exponent other than 2; this would for instance
capture the Herschel–Bulkley constitutive relation. For convenience, the assump-
tions will be written in terms of the graph induced by HHH, which is defined in the
standard way:

(DDD,SSS) ∈ A(·)⇐⇒ HHH(·,SSS,DDD) = 0.

Assumption 2.3. The graph A is a maximal monotone r-graph for some r > 2d
d+2 .

More precisely, the following properties hold for almost every x ∈ Ω:

• (A contains the origin). (0,0) ∈ A(x);
• (A is a monotone graph). For every (DDD1,SSS1), (DDD2,SSS2) ∈ A(x),

(SSS1 − SSS2) : (DDD1 −DDD2) ≥ 0;

• (A is maximal monotone). If (DDD,SSS) ∈ Rd×dsym × Rd×dsym is such that

(ŜSS− SSS) : (D̂DD−DDD) ≥ 0 for all (D̂DD, ŜSS) ∈ A(x),

then (DDD,SSS) ∈ A(x);
• (A is an r-graph). There is a non-negative function m ∈ L1(Ω) and a constant
c > 0 such that

SSS : DDD ≥ −m+ c(|DDD|r + |SSS|r
′
) for all (DDD,SSS) ∈ A(x);

• (Measurability). The set-valued map x 7→ A is L(Ω)–(B(Rd×dsym) ⊗ B(Rd×dsym))
measurable; here L(Ω) denotes the family of Lebesgue measurable subsets of
Ω and B is the family of Borel subsets of Rd×dsym ;

• (Compatibility). For any (DDD,SSS) ∈ A(x) we have that

tr(DDD) = 0⇐⇒ tr(SSS) = 0.

2.3. Finite element spaces. Let {Tn}n∈N be a family of shape-regular triangu-
lations such that the mesh size hn := maxK∈Tn hK tends to zero as n→∞, where
hK denotes the diameter of an element K ∈ Tn. We define the following conforming
families of finite element spaces:

Σn :=
{
σ ∈ L∞sym(Ω)d×d : σ|K ∈ PS(K)d×d, K ∈ Tn

}
,

V n :=
{
v ∈W 1,∞

0 (Ω)d : v|K ∈ PV(K)d, K ∈ Tn
}
,

Mn := {q ∈ L∞(Ω) : q|K ∈ PM(K), K ∈ Tn} ,

Un :=
{
w ∈W 1,∞

ΓD
(Ω) : w|K ∈ PU(K), K ∈ Tn

}
,

where PS(K),PV(K),PM(K),PU(K) are spaces of polynomials on the element K ∈
Tn. It will be convenient to define the following subspaces:

Mn
0 := Mn ∩ L2

0(Ω), Σntr := Σn ∩ L2
sym,tr(Ω)d×d,

V ndiv :=

{
v ∈ V n :

∫
Ω

q div v = 0 ∀q ∈Mn

}
.
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Assumption 2.4 (Approximability). For every s ∈ [1,∞) we have that

inf
v∈V n

‖v − v‖W 1,s(Ω) → 0 as n→∞ ∀v ∈W 1,s
0 (Ω)d,

inf
q∈Mn

‖q − q‖Ls(Ω) → 0 as n→∞ ∀ q ∈ Ls(Ω),

inf
σ∈Σn

‖σ − σ‖Ls(Ω) → 0 as n→∞ ∀σ ∈ Ls(Ω)d×d,

inf
w∈Un

‖w − w‖W 1,s(Ω) → 0 as n→∞ ∀w ∈W 1,s
ΓD

(Ω).

Assumption 2.5 (Fortin Projector Πn
Σ). For each n ∈ N there is a linear projector

Πn
Σ : L1

sym(Ω)d×d → Σn such that:

• (Preservation of divergence). For any σ ∈ L1
sym(Ω)d×d we have that∫

Ω

σ : DDD(v) =

∫
Ω

Πn
Σ(σ) : DDD(v) ∀v ∈ V ndiv.

• (Ls–stability). For every s ∈ (1,∞) there is a constant c > 0, independent of
n, such that:

‖Πn
Σσ‖Ls(Ω) ≤ c‖σ‖Ls(Ω) ∀σ ∈ Lssym(Ω)d×d.

Assumption 2.6 (Fortin Projector Πn
V ). For each n ∈ N there is a linear projector

Πn
V : W 1,1

0 (Ω)d → V n such that the following properties hold:

• (Preservation of divergence). For any v ∈W 1,1
0 (Ω)d we have that∫

Ω

q div v =

∫
Ω

q div(Πn
V v) ∀ q ∈Mn.

• (W 1,s–stability). For every s ∈ (1,∞) there is a constant c > 0, independent
of n, such that:

‖Πn
V v‖W 1,s(Ω) ≤ c‖v‖W 1,s(Ω) ∀v ∈W 1,s

0 (Ω)d.

Assumption 2.7 (Projectors Πn
M ,Π

n
U ). For each n ∈ N there is a linear projector

Πn
M : L1(Ω) → Mn and a linear projector Πn

U : W 1,1
ΓD

(Ω) → Un such that for all
s ∈ (1,∞) there is a constant c > 0, independent of n, such that:

‖Πn
Mq‖Ls(Ω) ≤ c‖q‖Ls(Ω) ∀ q ∈ Ls(Ω),

‖Πn
Uw‖Ls(Ω) ≤ c‖w‖W 1,s(Ω) ∀w ∈W 1,s

ΓD
(Ω).

The stability and approximability assumptions above imply immediately that
for any s ∈ [1,∞) we have:

‖σ −Πn
Σσ‖Ls(Ω) → 0 as n→∞ ∀σ ∈ Lssym(Ω)d×d,

‖v −Πn
V v‖W 1,s(Ω) → 0 as n→∞ ∀v ∈W 1,s

0 (Ω)d,

‖q −Πn
Mq‖Ls(Ω) → 0 as n→∞ ∀ q ∈ Ls(Ω),

‖w −Πn
Uw‖W 1,s(Ω) → 0 as n→∞ ∀w ∈W 1,s

ΓD
(Ω).

(2.5)
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In addition, the assumptions guarantee that the velocity-pressure and stress-velocity
pairs are inf-sup stable: for any s ∈ (1,∞) there are two constants βs, γs > 0, in-
dependent of n, such that the following inf-sup conditions are satisfied:

inf
q∈Mn\{0}

sup
v∈V n\{0}

∫
Ω
q div v

‖v‖W 1,s(Ω)‖q‖Ls′ (Ω)

≥ βs,(2.6)

inf
v∈V ndiv\{0}

sup
τ∈Σnsym,tr\{0}

∫
Ω
τ : DDD(v)

‖τ‖Ls′ (Ω)‖v‖W 1,s(Ω)
≥ γs.(2.7)

In the literature there are several well-known examples of velocity-pressure pairs
V n–Mn that satisfy the approximability and stability assumptions above. They
include, among others, the MINI element, the Taylor–Hood element Pk–Pk−1, and
the conforming Crouzeix–Raviart element (see e.g. [7, 29, 15]). The Scott–Vogelius
pair Pk–Pdisc

k−1 is another example that in addition has the remarkable property that
discretely divergence-free functions are also pointwise divergence-free [58]. This
element can be shown to be inf-sup stable for instance on barycentrically refined
meshes [50, 67], and the preconditioner to be introduced in Section 4 will be based
on a discretisation using this pair. As for the stress variable, if the velocity space
consists of continuous piecewise polynomials of degree k (as is the case of the Scott–
Vogelius element), then a space satisfying Assumption 2.5 is [22]:

(2.8) Σn = {σ ∈ L∞sym(Ω)d×d : σ|K ∈ Pk−1(K)d×d, for all K ∈ Tn}.

The space of discrete temperatures Un is not required to satisfy any inf-sup stability
conditions, and so it suffices to choose any H1-conforming space for which the
expected order of accuracy is consistent with that of the other variables.

2.4. Convective term. A useful property in the analysis of systems describing
incompressible fluids is that the convective term vanishes when testing with the
divergence-free velocity itself. This is a consequence of the identity

(2.9) −
∫

Ω

(v ⊗ v) :DDD(v) = 0 for all v ∈ C∞0 (Ω)d with div v = 0.

Such an identity will not be satisfied in general with only discretely divergence-free
elements. In order to recover this cancellation property at the discrete level let us
define a skew-symmetric form of the convective term as follows:

B(u,v,w) :=


−
∫

Ω

u⊗ v :∇w, if V ndiv ⊂W
1,1
0,div(Ω)d,

1

2

∫
Ω

u⊗w :∇v − u⊗ v :∇w, otherwise.

This new trilinear form now satisfies B(v,v,v) = 0 for any v ∈W 1,∞
0 (Ω)d, regard-

less of whether v is divergence-free or not, and it reduces to the original trilinear
form −

∫
Ω

(u⊗w) :∇w if div v = 0.
Let us now define

r̃ := min{r′, r∗/2}, where r∗ :=

{
dr
d−r if r < d,

∞, otherwise.

Observe that the condition r̃ > 1 is equivalent to r > 2d
d+2 , which is the natural

condition required to have a well-defined weak form of the convective term, be-
cause it ensures that W 1,r(Ω)d ↪→ L2(Ω)d. In this case, for exactly divergence-free
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functions u,v,w ∈ V ndiv one has that

(2.10) |B(u,v,w)| ≤
∫

Ω

|u⊗ v :∇w| ≤ c‖u‖W 1,r(Ω)‖v‖W 1,r(Ω)‖w‖W 1,r̃′ (Ω) .

Otherwise one needs the stronger assumption r > 2d
d+1 ; this ensures that there is

an s ∈ (1,∞) such that 1
r + 1

2r̃ + 1
s = 1 and so (c.f. [16])∫

Ω

|u⊗w :∇v| ≤ ‖u‖L2r̃(Ω)‖v‖W 1,r(Ω)‖w‖Ls(Ω)

≤ c‖u‖W 1,r(Ω)‖v‖W 1,r(Ω)‖w‖W 1,r̃′ (Ω) ,
(2.11)

for any u,v ∈ W 1,r(Ω)d,w ∈ W 1,r̃′(Ω)d. Thus we deduce that the trilinear form

B(·, ·, ·) is bounded on W 1,r(Ω)d ×W 1,r(Ω)d ×W 1,r̃′(Ω)d if r > 2d
d+2 when using

exactly divergence-free elements and if r > 2d
d+1 otherwise. This does not pose a

problem when working with the constitutive relation (1.3) (for which r = 2), but for
relations with more general r-growth the more demanding requirement that r > 2d

d+1

would impose a restriction on the convergence result that can be obtained (see [16,
Thm. 18]). In order to circumvent this issue we shall make use of a reconstruction
operator.

Assumption 2.8 (Reconstruction operator πn). Let Xn be an auxiliary H(div; Ω)-
conforming finite element space. There exists a map πn : W 1,1(Ω)d → V n + Xn

(usually called a reconstruction operator) that satisfies:

• (Preservation of Divergence). If v ∈ V ndiv then div(πnv) = 0 pointwise.
• (Consistency). For every v ∈ V n and K ∈ Tn it holds that

‖v − πnv‖Ls(K) ≤ chmK |v|Wm,s(K), for s ∈ [1,∞), m ∈ {0, 1, 2}.

Operators with the properties described above have been constructed in [41,
43, 42, 44, 33] for elements with discontinuous pressures; the construction is based
on the interpolation operators associated with the Raviart–Thomas and Brezzi–
Douglas–Marini elements. A slightly more complicated construction for elements
with continuous pressures was introduced in [39]. These reconstruction operators
have been employed to obtain pressure-robust discretisations by “repairing” the
L2-orthogonality between discretely divergence-free functions and gradient fields;
see [33] for more details. In order to exploit the advantages of this framework one
has to replace the L2 inner products in the discrete formulation in the following
way:

(2.12)

∫
Ω

w · v 7→
∫

Ω

w · πnv,

where v ∈ V n is a test function. As for the convective term, let us define

(2.13) B̃n(u,v,w) :=


−
∫

Ω

u⊗ v :∇w, if V ndiv ⊂W
1,1
0,div(Ω)d,

−
∫

Ω
u⊗ πnv :∇w, otherwise.

From the properties of πn stated in Assumption 2.8 one readily sees that the trilinear
form B̃n is bounded on W 1,r(Ω)d×W 1,r(Ω)d×W 1,r̃′(Ω)d, and that B̃n(v,v,v) = 0
for any v ∈ V ndiv.
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For the advective term for the temperature one can analogously define the tri-
linear form

C(u, θ, η) :=


−
∫

Ω

uθ · ∇η, if V ndiv ⊂W
1,1
0,div(Ω)d,

1

2

∫
Ω

uη · ∇θ − uθ · ∇η, otherwise,

which is well defined and bounded on W 1,r(Ω)d × H1(Ω) × W 1,∞(Ω) assuming
that r > 2d

d+2 . In addition, this form satisfies C(u, η, η) = 0 for any η ∈ W 1,∞(Ω),
regardless of whether u is divergence-free or not. The form C does not impose addi-
tional restrictions like B does for small r, but a trilinear form using a reconstruction
operator C̃n could be used instead (and defined analogously).

3. Finite Element Approximation

Let us now set the physical constants to unity for ease of readability (appropriate
non-dimensional forms of the system will be employed in Section 5). Suppose that

θb ∈ H1/2
00 (ΓD) := W

1/2,2
00 (ΓD), and let θ̂b ∈ H1(Ω) be such that θ̂b|ΓD = θb. We

can now define the weak formulation of the system (without viscous heating).

Formulation A0. Find (SSS, θ,u, p) ∈ L2
sym,tr(Ω)d×d × (θ̂b + H1

ΓD
(Ω)) ×H1

0 (Ω)d ×
L2

0(Ω) such that:∫
Ω

SSS : DDD(v)−
∫

Ω

u⊗ u : DDD(v)−
∫

Ω

p div v =

∫
Ω

θv · ed ∀v ∈ C∞0 (Ω)d,(3.1a)

−
∫

Ω

q divu = 0 ∀ q ∈ C∞0 (Ω),(3.1b) ∫
Ω

κ̂(θ)∇θ · ∇η − uθ · ∇η = 0 ∀ η ∈ C∞ΓD (Ω),(3.1c)

GGG(SSS,DDD(u), θ) = 0 a.e. in Ω.(3.1d)

Let θ̂nb be the standard Scott–Zhang interpolant of θ̂b into Ûn, where Ûn is the
same finite element space as Un, but without strongly imposed boundary condi-
tions. We have everything in place to state the finite element approximation of the
problem.

Formulation An
0 . Find (θn,un, pn) ∈ (θ̂nb + Un)× V n ×Mn

0 such that:

∫
Ω

Sn(DDD(un), θn) :DDD(v) + B(un,un,v)−
∫

Ω

pn div v =

∫
Ω

θnv · ed ∀v ∈ V n,

(3.2a)

−
∫

Ω

q divun = 0 ∀ q ∈Mn,(3.2b) ∫
Ω

κ̂(θn)∇(θn) · ∇η + C(un, θn, η) = 0 ∀ η ∈ Un.(3.2c)

In case one wishes to compute the shear stress directly, a 4-field formulation may
be employed instead. We refer to this formulation as Formulation Bn0 . We will
prove that the solutions to the discrete formulations An

0 and Bn0 converge to a weak
solution of Formulation A0.
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Formulation Bn
0 . Find (SSSn, θn,un, pn) ∈ Σn × (θ̂nb + Un)× V n ×Mn

0 such that:∫
Ω

(Dn(SSSn, θn)−DDD(un)) : τ = 0 ∀ τ ∈ Σn,(3.3a) ∫
Ω

SSSn :DDD(v) + B(un,un,v)−
∫

Ω

pn div v =

∫
Ω

θnv · ed ∀v ∈ V n,(3.3b)

−
∫

Ω

q divun = 0 ∀ q ∈Mn,(3.3c) ∫
Ω

κ̂(θn)∇θn · ∇η + C(un, θn) = 0 ∀ η ∈ Un.(3.3d)

We define Formulations Ã
n

0 and B̃
n

0 as the analogues of the formulations An
0 and

Bn0 , respectively, in which we replace B and C by B̃n and C̃n. The following lemma
asserts that all of these formulations have a solution.

Lemma 3.1. Suppose the material parameters satisfy condition (2.1) and suppose
that {Un, V n,Mn}n∈N (respectively {Σn, Un, V n,Mn}n∈N) is a family of finite ele-
ment spaces satisfying Assumptions 2.4 and 2.6–2.7 (resp. 2.4–2.7). In the case of

formulations Ãn
0 and B̃n0 suppose further that Assumption 2.8 holds. Then, for every

n ∈ N, Formulations An
0 and Ãn

0 (resp. Bn0 and B̃n0 ) admit a solution (θn,un, pn) ∈
(θ̂nb +Un)×V n×Mn

0 (resp. (SSSn, θn,un, pn) ∈ Σn×(θ̂nb +Un)×V n×Mn
0 ). Moreover,

the following a priori estimate holds:

(3.4a) ‖un‖H1(Ω) + ‖θn‖H1(Ω) + ‖pn‖L2(Ω) + ‖SSSn‖L2(Ω) ≤ c,

where the constant c is independent of n; we denote SSSn := Sn(DDD(un), θn) in the

case of Formulations An
0 and Ãn

0 . In addition, for Formulations Bn0 and B̃n0 we
have

(3.4b) ‖Dn(SSSn, θn)‖L2(Ω) ≤ c.

Proof. We will carry out the proof for Formulation Bn0 ; the proof for the other
formulations is analogous with some simplifications. The existence proof will make

use of a fixed point argument. Let θn0 be an arbitrary nonzero element of θ̂nb + Un

and define, for j ∈ N, the function θnj ∈ θ̂nb +Un as follows: given θnj−1 we first find
(SSSnj ,u

n
j , p

n
j ) ∈ Σn × V n ×Mn

0 by solving∫
Ω

(Dn(SSSnj , θ
n
j−1)−DDD(unj )) : τ = 0 ∀ τ ∈ Σn,(3.5a)

∫
Ω

(
1

j
DDD(unj ) + SSSnj

)
:DDD(v) + B(unj ,u

n
j ,v)−

∫
Ω

pnj div v =

∫
Ω

θnj−1v · ed ∀v ∈ V n,

(3.5b)

−
∫

Ω

q divunj = 0 ∀ q ∈Mn,(3.5c)

and then θnj is defined as θ̂nb + θ̃nj , where θ̃nj ∈ Un is the solution of the nonlinear
problem

(3.6)

∫
Ω

κ̂(θ̃nj + θ̂nb )∇(θ̃nj + θ̂nb ) · ∇η + C(unj , θ̃nj + θ̂nb , η) = 0 ∀ η ∈ Un.
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In order to show that the problem (3.5) is well-posed, let us define a mapping
Fnj : Σn × V ndiv → (Σn × V ndiv)∗ by

〈Fnj (σ,v); (τ ,w)〉 :=

∫
Ω

(Dn(σ, θnj−1) : τ −DDD(v) : τ +
1

j
DDD(v) :DDD(w)

+ σ :DDD(w) + B(v,v,w)− θnj v · ed).

By using the coercivity of Dn and the fact that B(v,v,v) = 0, one obtains using
the inequalities of Young, Korn and Poincaré that there exists a δ(j) > 0 such that

〈Fnj (σ,v), (σ,v)〉 > 0 if ‖(σ,v)‖ = δ(j).

A corollary of Brouwer’s fixed point theorem [29, Ch. 4, Cor. 1.1] guarantees the
existence of functions (SSSnj ,u

n
j ) ∈ Σn × V ndiv satisfying Fnj (SSSnj ,u

n
j ) = 0 (which is

equivalent to (3.5) with divergence-free test functions) and such that ‖(SSSnj ,unj )‖ ≤
δ(j). The existence of pnj ∈ Mn

0 then follows from the inf-sup condition (2.6). A
similar argument can be used to prove the well-posedness of the problem (3.6).

Now, the inf-sup condition (2.7) and the discrete form of the constitutive relation
(3.3a) allow us to control, uniformly in j and n, the norm of the velocity in terms
of the stress:

(3.7) γ2‖unj ‖H1(Ω) ≤ ‖SSSnj ‖L2(Ω) .

Therefore, testing (3.5) with (SSSnj ,u
n
k , p

n
j ) yields the estimate

(3.8) ‖Dn(SSSnj , θ
n
j−1)‖2L2(Ω) + ‖SSSnj ‖2L2(Ω) + ‖unj ‖2H1(Ω) ≤ c‖θ

n
j−1‖2L2(Ω) ,

where c > 0 is independent of j and n. The inf-sup condition (2.6) and the discrete
momentum equation in turn imply an estimate for the pressure:

(3.9) ‖pnj ‖2L2(Ω) ≤ c‖θ
n
j−1‖2L2(Ω) .

Furthermore, testing (3.6) with θnj − θ̂nb results in

(3.10) ‖θnj ‖2H1(Ω) ≤ c‖u
n
j ‖2H1(Ω) .

Hence, up to a subsequence, we have as j →∞ that

Dn(SSSnj , θ
n
j−1) ⇀ DDD

n
weakly in L2

sym(Ω)d×d,

SSSnj → SSSn strongly in L2
sym(Ω)d×d,

unj → un strongly in H1(Ω)d,(3.11)

pnj → pn strongly in L2(Ω),

θnj → θn strongly in H1(Ω),

where we used the fact that weak and strong convergence are equivalent in finite-
dimensional spaces. Since Dn is continuous and the convergences are strong, one

can straightforwardly identify DDD
n

= Dn(SSSn, θn) and pass to the limit to show
that (SSSn, θn,un, pn) solve Formulation Bn0 . Now, testing Formulation Bn0 with

(SSSn, θn − θ̂nb ,un, pn) allows one to obtain the estimate (3.4). Note that the inf-sup
conditions were essential to obtain estimates that are uniform in n. �

Having shown that the discrete problems are well-posed, we now consider the
question of convergence.
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Theorem 3.2. Suppose the same assumptions as in Lemma 3.1 hold and suppose
that {(θn,un, pn)}n∈N (respectively ({SSSn, θn,un, pn}N)) is a sequence of solutions of

Formulation An
0 or Ãn

0 (resp. Formulation Bn0 or B̃n0 ). Then there exists a solution

(SSS, θ,u, p) ∈ L2
sym,tr(Ω)d×d × (θ̂b +H1

ΓD
(Ω))×H1

0 (Ω)d × L2
0(Ω) of Formulation A0

such that, up to a subsequence, as n→∞:

SSSn ⇀ SSS weakly in L2
sym(Ω)d×d,

un ⇀ u weakly in H1(Ω)d,

pn ⇀ p weakly in L2(Ω),

θn ⇀ θ weakly in H1(Ω),

(3.12)

where in the case of Formulations An
0 and Ãn

0 we denote SSSn := Sn(DDD(un), θn).

Proof. We will once again focus on Formulation Bn0 , since the other cases are com-

pletely analogous. From the a priori estimate (3.4) and the fact that θ̂nb → θ̂b in
H1(Ω), we immediately obtain the convergences (3.12) (for a not relabelled subse-

quence) for some (SSS, θ,u, p) ∈ L2
sym(Ω)d×d× (θ̂b+H1

ΓD
(Ω))×H1

0 (Ω)d×L2
0(Ω), and

that

(3.13) Dn(SSSn, θn) ⇀ DDD weakly in L2
sym(Ω)d×d.

All that is left to prove is that the limiting functions are a solution of Formulation
A0.

Let τ ∈ L2
sym(Ω)d×d be arbitrary. Then (3.12) and (2.5) result in

(3.14) 0 =

∫
Ω

(Dn(SSSn, θn)−DDD(un)) : Πn
Στ −−−−→

n→∞

∫
Ω

(DDD−DDD(u)) : τ ,

and therefore DDD = DDD(u) almost everywhere. Similarly, for an arbitrary q ∈ L2
0(Ω)

one obtains that

(3.15) 0 =

∫
Ω

divun Πn
Mq −−−−→

n→∞

∫
Ω

divu q,

and so u is pointwise divergence-free. One can pass to the limit in (3.3b) and (3.3d)
in a similar manner, but perhaps the convective terms are worth looking at in more
detail. To that end, first note that the Sobolev embedding theorem ensures that
(up to a subsequence) we have, for any p ∈ [1, 2∗),

un → u strongly in Lp(Ω)
d
,

θn → θ strongly in Lp(Ω),(3.16)

θn → θ a.e. in Ω.

The strong convergence of un suffices to prove that, for an arbitrary v ∈ H1
0 (Ω)d:

(3.17) B(un,un,Πn
V v) −−−−→

n→∞

1

2

∫
Ω

u⊗ v :∇u− u⊗ u :∇v = −
∫

Ω

u⊗ u :DDDv,

where the last equality is a consequence of the fact that divu = 0. Now, from
testing the discrete momentum equation with un and taking (3.16) into account
we observe that

(3.18) lim sup
n→∞

∫
Ω

SSSn :DDD(un) = lim
n→∞

∫
Ω

θnun · ed =

∫
Ω

θu · ed =

∫
Ω

SSS :DDD(u),
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and hence by Lemma 2.2 we conclude that GGG(SSS,DDD(u), θ) = 0. Finally, by taking
traces on both sides of the constitutive relation we also obtain that trSSS = 0 and so
SSS ∈ L2

sym,tr(Ω)d×d, which concludes the proof. �

In the proof of Theorem 3.2 it becomes clear that the only bottleneck that
prevents one from considering constitutive laws with more general r-coercivity (e.g.
a power-law with temperature dependent consistency), is the fact that Lemma 2.2 is
tied to the particular function GGG defined in (1.3). Using Minty’s trick it is possible to
show that if an explicit constitutive relation is available, an analogous convergence
result will hold.

Assumption 3.3. Let S : Ω × Rd×dsym × R → Rd×dsym be a continuous function satis-

fying, for some r > 2d
d+2 :

• (Monotonicity). For every τ1, τ2 ∈ Rd×dsym :

(S(τ1, s)− S(τ2, s)) : (τ1 − τ2) ≥ 0 for fixed s ∈ R;

• (Coercivity). There is a non-negative function m ∈ L1(Ω) and a constant
c > 0 such that

S(τ , s) : τ ≥ −m+ c(|S(τ , s)|r
′
+ |τ |r) for all τ ∈ Rd×dsym , s ∈ R;

• (Growth). There is a function n ∈ Lr′(Ω) and a constant c > 0 such that

|S(τ , s)| ≤ c(|τ |r
′−1 + n);

• (Compatibility). For a fixed s ∈ R we have that tr(S(τ , s)) = 0 if and only if
tr(τ ) = 0, for any τ ∈ Rd×dsym .

When r < 3d
d+2 the velocity u is not an admissible test function anymore and

so obtaining an identity such as (3.18) is not straightforward. This difficulty can
be overcome by testing instead with a discrete Lipschitz truncation of the error
en := u − un. The discrete Lipschitz truncation was introduced in [16], and the
idea is that it turns en into a Lipschitz function belonging to V n in such a way that
the size of the set where the truncation does not equal the original function can
be controlled. We note that the construction of this discrete Lipschitz truncation
requires a refined version of Assumption 2.6.

Assumption 3.4 (Fortin Projector Πn
V ). For each n ∈ N there is a linear projector

Πn
V : W 1,1

0 (Ω)d → V n such that it preserves the divergence in the same sense as in
assumption 2.6, but the stability condition is replaced by:

• (Local W 1,1-stability). For every s ∈ (1,∞) there is a constant c > 0, inde-
pendent of n, such that

1

|K|

∫
K

|∇Πn
V v| ≤ c

1

|ΩnK |

∫
ΩnK

|∇v| ∀v ∈W 1,s
0 (Ω)d,K ∈ Tn,

where ΩnK denotes the patch of elements in Tn whose intersection with K is
nonempty.

It can be shown that the local W 1,1-stability from Assumption 3.4 implies the
global W 1,s-stability of Assumption 2.6 [4, 16]. Some examples of finite elements
satisfying Assumption 3.4 include the conforming Crouzeix–Raviart element, the
MINI element, the Bernardi–Raugel element, the P2–P0 and the Taylor–Hood pair
Pk–Pk−1 for k ≥ d [4]; the lowest order Taylor–Hood pair in 3D also satisfies
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the assumption if the mesh has a certain macroelement structure [28]. As for
exactly divergence-free elements, this assumption can also be verified for low order
Guzmán–Neilan elements and the Scott–Vogelius pair [16, 61].

Corollary 3.5. Let r > 2d
d+2 and let S : Rd×dsym ×R→ Rd×dsym be a function satisfying

Assumption 3.3 and suppose that {Un, V n,Mn}n∈N is a family of finite element
subspaces satisfying Assumptions 2.4, 2.7, 2.8, and 3.4. Then, for any n ∈ N, the
finite element formulation obtained by replacing Sn by S in Formulation Ãn

0 admits

a solution (θn,un, pn) ∈ (θ̂nb + Un) × V n ×Mn
0 and we have, up to subsequences,

that

un ⇀ u weakly in W 1,r(Ω)d,

pn ⇀ p weakly in Lr̃(Ω),

θn ⇀ θ weakly in H1(Ω),

S(DDD(un), θn) ⇀ SSS weakly in Lr
′

sym(Ω)d×d,

where (SSS, θ,u, p) ∈ Lr′sym,tr(Ω)d×d× (θ̂b+H1
ΓD

(Ω))×W 1,r
0 (Ω)d×Lr̃0(Ω) is a solution

of Formulation A0.

Proof. The proof is entirely analogous to the proofs of Lemma 3.1 and Theorem
3.2, with a couple of small differences. Firstly, the a priori estimate (3.4) changes
to

(3.19) ‖un‖W 1,r(Ω)d + ‖θn‖H1(Ω) + ‖pn‖Lr̃(Ω) + ‖SSSn‖Lr′ (Ω) ≤ c,

which implies the desired weak convergences. On the other hand, since r > 2d
d+2 ,

for a small enough ε > 0 we have that r > (2+ε)d
d+(2+ε) , which implies that un → u

strongly in L2+ε(Ω)
d

as n → ∞. Furthermore, from the consistency condition in
Assumption 2.8 we see that

‖πnun − u‖L2+ε(K) ≤ ‖un − u‖L2+ε(K) + ch
1+d( 1

2+ε−
1
r )

K ‖un‖W 1,r(K),

where we have used a standard local inverse inequality; the exponent of hK is

positive by the choice of ε, which implies that πnun → u strongly in L2+ε(Ω)
d

as
n→∞. This is enough to pass to the limit in the convective term:

(3.20) B̃n(un,un,Πnv) −−−−→
n→∞

−
∫

Ω

u⊗ u :DDD(v),

for any v ∈W 1,( 2+ε
2 )′

0 (Ω)d. As for the identification of the constitutive relation, by
testing the discrete momentum equation with the discrete Lipschitz truncation of
the error en := u−un it is possible to prove that (see [61] for a similar argument)

(3.21) lim sup
n→∞

∫
Ω

S(DDD(un), θn) :DDD(un) ≤
∫

Ω

SSS :DDD(u).

Furthermore, from the growth condition of S and the dominated convergence the-
orem (note that, up to a subsequence, we have that θn → θ almost everywhere, c.f.
(3.16)) we see, that for any τ ∈ Lrsym(Ω)d×d,

(3.22) S(τ , θn)→ S(τ , θ) strongly in Lr
′
(Ω)

d×d
,
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as n → ∞. Combining the monotonicity of S with (3.21) and (3.22) yields for an
arbitrary τ ∈ Lrsym(Ω)d×d:

0 ≤ lim sup
n→∞

∫
Ω

(S(DDD(un), θn)− S(τ , θn)) : (DDD(un)− τ )

≤
∫

Ω

(SSS− S(τ , θ)) : (DDD(un)− τ ).

Choosing τ = DDD(u) ± εσ with an arbitrary σ ∈ C∞0 (Ω)d×d and letting ε → 0
concludes the proof. �

Remark 3.6. The use of the discrete Lipschitz truncation is only necessary when
the velocity u is not an admissible test function in the momentum equation, which
occurs when r < 3d

d+2 . If r ≥ 3d
d+2 then one can substitute Assumption 3.4 with

Assumption 2.6. It is also important to note that if the trilinear form B is used
instead, the stronger assumption r > 2d

d+1 is required (see (2.11)).

Remark 3.7. If the constitutive relation can be written in the form DDD(u) = D(SSS, θ),
where D satisfies analogous conditions to the ones stated in Assumption 3.3, then
the corresponding 4-field formulation will also satisfy an analogous convergence
result. An example of a constitutive relation captured by these assumptions is the
Ostwald–de Waele power-law model with r > 2d

d+2 :

S(DDD, θ) := K(θ)|DDD|r−2DDD,

D(SSS, θ) :=
1

K(θ)

∣∣∣∣ SSS

K(θ)

∣∣∣∣r′−2

SSS,

where K : R→ R is a continuous function satisfying c1 ≤ K(s) ≤ c2 for any s ∈ R,
where c1, c2 are two positive constants.

As mentioned in Section 2.2, if the rheological parameters are not temperature-
dependent, the convergence result can cover very general constitutive relations de-
fined by maximal monotone r-graphs (which include, for instance, Herschel–Bulkley
fluids). For this problem let us define Formulation C0 in exactly the same way as
Formulation A0, but replacing (3.1d) with

(3.23) HHH(·,SSS,DDD(u)) = 0 a.e. in Ω.

In order to introduce the finite element formulation, the only necessary ingredient
is an approximation to the graph A, for which a result analogous to Lemma 2.2
holds. This is the case e.g. for the generalised Yosida approximation described in
[61]:

(3.24) Dn(x,SSS) := {DDD ∈ Rd×dsym : (DDD,SSS) ∈ An(x)},

where the approximate graph An is defined as follows

(3.25) An(x) := {
(
DDD,SSS + 1

n |DDD|
r−2DDD

)
∈ Rd×dsym × Rd×dsym : (DDD,SSS) ∈ A(x)},

where x ∈ Ω. The relation (3.24) defines in fact a single-valued function that can

be employed in the definition of the finite element formulation. Formulation C̃n0 is

then defined in the same way as Formulation B̃n0 , but with Dn(SSSn, θn) replaced by
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(3.24). However, it is worth pointing out that in the numerical computations one
can simply work with the implicit function directly by writing

(3.26)

∫
Ω

HHH(·,SSSn,DDD(un)) : τ = 0 ∀ τ ∈ Σn,

instead of (3.3a).

Corollary 3.8. Let r > 2d
d+2 and let HHH : Ω × Rd×dsym × Rd×dsym → Rd×dsym be a function

satisfying Assumption 2.3. Suppose that {Σn, Un, V n,Mn}n∈N is a family of finite
element subspaces satisfying Assumptions 2.4, 2.5, 2.7, 2.8, and 3.4. Then, for any

n ∈ N, Formulation C̃n0 admits a solution (SSSn, θn,un, pn) ∈ Σn× (θ̂nb +Un)×V n×
Mn, and we have, up to subsequences, that

un ⇀ u weakly in W 1,r(Ω)d,

pn ⇀ p weakly in Lr̃(Ω),

θn ⇀ θ weakly in H1(Ω),

SSSn ⇀ SSS weakly in Lr
′

sym(Ω)d×d,

where (SSS, θ,u, p) ∈ Lr′sym,tr(Ω)d×d× (θ̂b+H1
ΓD

(Ω))×W 1,r
0 (Ω)d×Lr̃0(Ω) is a solution

of Formulation C0.

Remark 3.9. When restricted to the isothermal case, the convergence result from
Corollary 3.8 improves the one presented in [16] in two respects: the graph is not
required to be strictly monotone here, which allows models with a yield stress, for
instance, and the result holds for the whole admissible range r > 2d

d+2 even without
the use of pointwise divergence-free elements, thanks to the modified convective
term B̃n. In addition, the argument used here in the identification of the constitutive
relation avoids the use of Young measures, simplifying the proof.

4. Augmented Lagrangian Preconditioner

Henceforth we employ the Scott–Vogelius pair for the velocity and pressure, and
discontinuous and continuous elements for the stress and temperature, respectively,
with k ≥ d:

Σh = {σ ∈ L∞sym,tr(Ω)d×d : σ|K ∈ Pk−1(K)d×d for all K ∈ Tn},

Uh = {η ∈W 1,∞
ΓD

(Ω) : η|K ∈ Pk−1(K) for all K ∈ Tn},

V h = {w ∈W 1,∞
0 (Ω)d : w|K ∈ Pk(K)d for all K ∈ Tn},

Mh = {q ∈ L∞0 (Ω) : q|K ∈ Pk−1(K) for all K ∈ Tn}.

(4.1)

In order to ensure the inf-sup stability of the velocity-pressure pair, each level Tn of
the mesh hierarchy is barycentrically refined, with the hierarchy itself constructed
by uniform refinement, to prevent the appearance of degenerate elements (Figure
1). A drawback of this approach is that the resulting mesh hierarchy is non-nested,
which introduces some difficulties when dealing with the transfer operators in the
multigrid algorithm.

As mentioned in Section 2.3, this choice of finite element space for the stress
satisfies the inf-sup condition (2.7). In fact, since the Scott–Vogelius element has
the property that on barycentrically refined meshes discretely divergence-free ve-
locities are exactly divergence-free, one can work with traceless stresses and hence
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Figure 1. Non-nested two-level barycentrically refined mesh hierarchy.

fewer degrees of freedom will be required (c.f. [21]). This exact enforcement of the
divergence constraint was one of the motivations behind our choice of elements; it
is known that a failure to enforce the divergence-free constraint appropriately can
lead to unphysical behaviour in the solution of buoyancy-driven flow [33].

At this point the viscous dissipation and the adiabatic heating terms can be
incorporated into the formulation. For instance, when working with the setting
described by Corollary 3.5, in the finite element formulation we seek (θn,un, pn) ∈
(θ̂b + Un)× V n ×Mn

0 such that

∫
Ω

S(DDD(un), θn) :DDD(v)−
∫

Ω

(un ⊗ un) :DDD(v)−
∫

Ω

pn div v =

∫
Ω

θnv · ed ∀v ∈ V n,

−
∫

Ω

q divun = 0 ∀ q ∈Mn,(4.2a)∫
Ω

(κ̂(θn)∇θn − unθn) · ∇η +

∫
Ω

θnun · edη =

∫
Ω

S(DDD(un), θn) :DDD(un)η ∀ η ∈ Un,

with analogous modifications for the other formulations. Note that the form of the
convective term could be simplified since the elements are exactly divergence-free.
The nonlinear finite element formulations are linearised using Newton’s method; for
instance, if the current guess for the solution of (4.2) is (θ̃, ũ, p̃), then the method

is defined by the correction step (θ̃, ũ, p̃) 7→ (θ̃, ũ, p̃) + (θ,u, p) where (θ,u, p) is the
solution of a linear system whose matrix has the block structure

(4.3)

A1 C 0

E A2 B̃>

0 B̃ 0

θu
p

 .
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The blocks in (4.3) are defined through the linear operators:

〈A1θ, η〉 :=

∫
Ω

θκ̂′(θ̃)∇θ̃ · ∇η +

∫
Ω

κ̂(θ̃)∇θ · ∇η −
∫

Ω

ũθ · ∇η

+

∫
Ω

ũθ · edη−
∫

Ω

Sθ(DDD(ũ), θ̃) :DDD(ũ)θη ∀ θ, η ∈ Un,

〈Cu, η〉 :=

∫
Ω

θ̃u · (edη −∇η)−
∫

Ω

SDDD(DDD(ũ), θ̃)DDD(u) :DDD(v)η

−
∫

Ω

S(DDD(ũ),θ̃) :DDD(u)η ∀u ∈ V n, η ∈ Un,

〈Eθ,v〉 :=

∫
Ω

Sθ(DDD(ũ), θ̃)θ :DDD(v)−
∫

Ω

θv · ed ∀ θ ∈ Un,v ∈ V n,

〈A2u,v〉 :=

∫
Ω

(
SDDD(DDD(ũ), θ̃) DDD(u)− ũ⊗ u− u⊗ ũ) :DDD(v) ∀u,v ∈ V n,

〈B̃v, q〉 := −
∫

Ω

q div v ∀v ∈ V n, q ∈Mn.

We use the notation SDDD,Sθ to denote the partial derivatives of S; for instance, for
the Navier–Stokes model one would have SDDD(DDD(ũ), θ̃) = 2µ̂(θ̃)I and Sθ(DDD(ũ), θ̃) =

2µ̂′(θ̃)DDD(ũ), where I is the fourth-order identity tensor.

4.1. Robust relaxation and prolongation. Keeping (4.3) as an illustrative ex-
ample, we see that after augmentation the top block can be written in the form

(4.5) A+ γB>M−1
p B =

[
A1 C
E A2

]
+ γ

[
0

B̃>

]
M−1
p

[
0 B̃

]
,

where A is invertible and γB>M−1
p B is symmetric and semi-definite. Let us define

Zn := Un × V n whenever the 3-field formulation is employed and Zn := Σn ×
Un × V n otherwise. Relaxation methods in multigrid algorithms are often studied
as subspace correction methods [65, 66]. Consider the space decomposition

(4.6) Zn =
∑
i

Zni ,

where the sum is not necessarily direct. The key insight from [57, 40] is that,
assuming A is symmetric and coercive, the subspace correction method induced by
the decomposition (4.6) will be robust in γ if the decomposition stably captures
the kernel Nn of the semi-definite term:

(4.7) Nn =
∑
i

Zni ∩Nn.

Here Nn consists of the elements of the form (θ,v)> and (σ, θ,v)> for the 3-
field and 4-field formulations, respectively, where v ∈ V ndiv, and σ ∈ Σn, θ ∈ Un
are arbitrary. This means that the decomposition must allow for sufficiently rich
subspaces such that divergence-free velocities can be written as combinations of
divergence-free elements of the subspaces. A local characterisation of the kernel
of the divergence for Scott–Vogelius elements on meshes with the macro element
structure shown in Figure 1 was presented in [25] and used to construct a precon-
ditioner for a system of nearly incompressible elasticity; this construction was then
employed in [24] and [21] to precondition the isothermal Navier–Stokes system and
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Figure 2. Macrostar patches on a barycentrically refined mesh.

a 3-field non-Newtonian formulation, respectively. In [25] it was shown that the
kernel is captured by using a decomposition based on the subspaces

(4.8) Zni := {z ∈ Zn : supp(z) ⊂ macrostar(qi)},
where for a vertex qi, the macrostar patch macrostar(qi) is defined as the union of
all macro cells touching the vertex (Figure 2). In the algorithm presented here the
relaxation solves based on the decomposition (4.8) are performed additively.

The work of Schöberl [57] also revealed the necessity of controlling the continuity
constant of the prolongation operator in order to obtain a robust solver. In our
setting, this entails ensuring that the prolongation operator PN : V N → V n map-
ping coarse grid functions in V N into fine grid functions in V n has the property
that divergence-free velocities get mapped to (nearly) divergence-free velocities;
note that when using a standard prolongation based on interpolation, the condi-
tion div vN = 0 does not necessarily imply that div(PNv

n) = 0. For the setting
described here a modified prolongation operator can be defined by computing a
correction using local Stokes solves on the macro cells (see [25] for details).

For the formulations including the stress there is an additional difficulty: it is not
obvious how to transfer piecewise discontinuous fields between non-nested meshes.
Here we employ the supermesh projection described in [21]. For the temperature
variables we employ a standard interpolation-based prolongation operator.

While the macrostar iteration mentioned above results in a robust relaxation
scheme for the linear elasticity problem considered in [25], on its own it ceases to
be effective when applied to the substantially more complex problem (4.5). How-
ever, we find that a handful of GMRES iterations preconditioned by the macrostar
iteration are very effective for the problem under consideration.

5. Numerical experiments

Let us suppose that the parameters in the constitutive relation (1.3) can be
written as

(5.1)
µ̂(θ)

µ0
= µ(θ),

κ̂(θ)

κ0
= κ(θ),

τ̂(θ)

τ0
= τ(θ),

σ̂(θ)

σ0
= σ(θ),

where µ0, κ0 > 0 are reference values for the viscosity and heat conductivity,
τ, σ ≥ 0 are reference values for the activation parameters, and µ, κ, τ, σ are then
non-dimensional functions. In practice the system can be non-dimensionalised in
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distinct ways to give more importance to different physical regimes. For example,
suppose that the time scale is chosen based on the diffusion of heat, and that the
non-dimensional variables are introduced in the following way:
(5.2)

t̃ :=
α

L2
t, x̃ :=

x

L
, ũ :=

L

α
u, p̃ :=

L2

ρ0α2
p, θ̃ :=

θ − θC
θH − θC

, S̃SS :=
L2

µ0α
SSS,

where L is a characteristic length scale, θH is a reference temperature (e.g. the
temperature of the hot plate in a Bénard problem), and α = κ0

ρ0cp
is the thermal

diffusion rate. Then, the non-dimensional form of the system reads (dropping the
tildes):

−Pr divSSS + div(u⊗ u) +∇p = Ra Pr θed in Ω,(5.3a)

divu = 0 in Ω,(5.3b)

−div(κ(θ)∇θ) + div(uθ) + Di(θ + Θ)u · ed =
Di

Ra
SSS :DDD(u) in Ω,(5.3c)

where the Rayleigh, Prandtl, Dissipation and Theta numbers are defined respec-
tively as

(5.4) Ra =
βg(θH − θC)L3

να
, Pr =

ν0

α
, Di =

βgL

cp
, Θ =

θC
θH − θC

,

where ν0 := µ0

ρ0
is the reference kinematic viscosity (more non-dimensional numbers

could arise with a non-Newtonian constitutive relation). Alternatively, if one as-
sumes that the gravitational potential energy is completely transformed into kinetic
energy [31, 49], the characteristic velocity is chosen as U = (gLβ(θH − θC))1/2 and
the resulting non-dimensional system becomes

− 1√
Gr

divSSS + div(u⊗ u) +∇p = θed in Ω,(5.5a)

divu = 0 in Ω,(5.5b)

− 1

Pr
√

Gr
div(κ(θ)∇θ) + div(uθ) + Di(θ + Θ)u · ed =

Di√
Gr

SSS :DDD(u) in Ω,

(5.5c)

where the Grashof number is defined as

(5.6) Gr =
gL3β(θH − θC)

ν2
0

.

In the following section we will test the solver using the different forms (5.3), (5.5)
with a heated cavity problem. The computational examples were implemented in
Firedrake [54], and PCPATCH [23] (a recently developed tool for subspace decom-
position in multigrid in PETSc [2]) was employed for the macrostar patch solves in
the multigrid algorithm. The augmented Lagrangian parameter was set to γ = 104,
and unless specified otherwise, the Newton solver was deemed to have converged
when the Euclidean norm of the residual fell below 1× 10−8 and the corresponding
tolerance for the linear solver in 2D was set to 1 × 10−10 (1 × 10−8 in 3D). In
the implementation the uniqueness of the pressure was enforced by orthogonalizing
against the nullspace of constants in the Krylov solver, instead of enforcing a zero
mean condition.
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5.1. Heated cavity. The problem is solved on the unit square/cube Ω = (0, 1)d

with boundary data

u = 0 on ∂Ω, ∇θ · n = 0 on ∂Ω \ (ΓH ∪ ΓC), θ =

{
1, on ΓH ,
0, on ΓC ,

where ΓH := {x1 = 0} and ΓC := {x1 = 1}. For the problems with temperature-
dependent viscosity and conductivity we choose the following functional depen-
dences:

µ(θ) := e−
θ
10 ,(5.7a)

κ(θ) :=
1

2
+
θ

2
+ θ2.(5.7b)

The viscosity defined by (5.7a) decreases with temperature, as is the case with most
liquids [27]; heat conductivities of the form (5.7b) are a good fit for most liquid
metals and gases [20]. Let us denote the problem solved with µ(θ) ≡ 1 ≡ κ(θ) by
(P1), the one using (5.7a) and κ(θ) ≡ 1 by (P2), and by (P3) the one using both
forms in (5.7).

A simple continuation algorithm was used to reach the different values of the
parameters; for instance, the solution corresponding to a Rayleigh number Ra was
used as an initial guess in Newton’s method for the problem with Ra+Rastep, where
Rastep is some predetermined step. In some cases (most notably shear-thinning
fluids) the use of advective stabilisation was essential; here we have added to the
formulation an advective stabilisation term based on penalising the jumps between
facets [13, 17]:

(5.8) Sh(v,w) :=
∑

K∈Mh

1

2

∫
∂K

δ h2
∂K J∇vK : J∇wK,

where JzK denotes the jump of z across ∂K, h∂K is the diameter of each face in ∂K,
and δ is an arbitrary stabilization parameter. In the numerical experiments the sta-
bilization parameter was chosen to be cell-dependent and set to 5×10−3‖ũ‖L∞(K);
an analogous term was added to the temperature equation. The choice of stabili-
sation (5.8) was preferred over the more common SUPG stabilisation because the
latter introduces additional couplings between the velocity and the pressure in the
momentum equation, and between the velocity, stress and temperature in the en-
ergy equation, which can spoil the convergence of the nonlinear solver (this was
already observed in the isothermal case in [24]). The disadvantage is that (5.8)
introduces an additional kernel consisting of C1 functions, that might not be cap-
tured by the relaxation. This means that unless k ≥ 3 in 2D or k ≥ 5 in 3D, a
slight loss of robustness might be expected [24].

Tables 1–3 show the average number of Krylov iterations for the problem with
non-dimensional form (5.5) and increasingly large Grashof number, comparing with
different values of the Dissipation number; Tables 4–6 show the same for the three-
dimensional problem. It can be observed that the iteration count remains under
control, and the previously mentioned loss of robustness occurs when k = 2. Figure
3 shows the streamlines and temperature contours for the problem (P2); it can be
observed that the presence of the viscous dissipation term has a stabilising effect
on the flow. Table 7 shows the number of iterations for the problem using the
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Di k # refs # dofs
Gr

1× 106 5× 106 1× 107 1.5× 107

0
2

1 1.8× 104 5 7.66 10 22
2 7.2× 104 4.25 7 8 8.5

3
1 4.1× 104 2 3.5 4 4.5
2 1.6× 105 1.66 2 2.5 3

0.6
2

1 1.8× 104 4.75 8 13.3 18.7
2 7.2× 104 4 7 7.5 7

3
1 4.1× 104 2 3.5 4.5 5.5
2 1.6× 105 1.67 2 3.5 4

1.3
2

1 1.8× 104 5.67 8 12.67 18.67
2 7.2× 104 4 6.5 6.5 7

3
1 4.1× 104 2 2.5 4 4
2 1.6× 105 1.67 2 2.5 2.5

2.0
2

1 1.8× 104 5.67 9.33 12.67 18.67
2 7.2× 104 4 6.5 6.5 8

3
1 4.1× 104 2 2.5 3 3
2 1.6× 105 1.67 2 2 2

Table 1. Average number of Krylov iterations per Newton step
as Gr increases for the 2D problem (P1) with Pr = 1, obtained

using 2 multigrid cycles with 4 relaxation sweeps.

temperature-dependent power-law relation

(5.9) SSS = S(DDD(u), θ) := e−
θ
10 |DDD(u)|r−2DDD(u),

using r = 1.6 and the streamlines are shown in Figure 5 alongside the ones of the
Newtonian problem (r = 2). In this case the tolerances for the linear and nonlinear
iterations were set to 1× 10−10.

5.2. Bingham flow in a cooling channel. Let Ω := (0, 40)×(−1, 1), and consider
the following boundary conditions for the temperature:

∇θ · n = 0 on ∂Ω \ (ΓH ∪ ΓC), θ =

{
θH , on ΓH ,
0, on ΓC ,

where θH > 0, and ΓH := {(x1, x2)> ∈ ∂Ω : x1 ≤ 10} and ΓC := {(x1, x2)> ∈ ∂Ω :
x2 ∈ {−1, 1}, 10 < x1}. The Bingham constitutive relation for viscoplastic fluids
is obtained by setting σ̂ ≡ 0 in (1.3). This relation is not described by a Fréchet
differentiable function and therefore Newton’s method cannot be directly applied;
for this reason we will introduce a regularised version of the constitutive relation.
In this example we will consider a forced convection regime, in which the buoyancy
effects are not taken into account. The non-dimensional form of the system then
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Di k # refs # dofs
Gr

1× 106 5× 106 1× 107 1.25× 107

0
2

1 1.8× 104 5.25 8.33 18 23.25
2 7.2× 104 4.25 7.5 9 9.5

3
1 4.1× 104 2 3.5 4.5 5
2 1.6× 105 1.67 2 2.5 2.5

0.6
2

1 1.8× 104 4.75 8.67 15 15.5
2 7.2× 104 4.33 7 7.5 7.5

3
1 4.1× 104 2.33 3.5 5.5 5.5
2 1.6× 105 1.67 2 3.5 4.5

1.3
2

1 1.8× 104 4.75 9.33 15.67 20.67
2 7.2× 104 4 7 6.5 6.5

3
1 4.1× 104 2 3.5 4 4.5
2 1.6× 105 1.67 2 3 3.5

2.0
2

1 1.8× 104 5.67 10.67 16.33 19
2 7.2× 104 4 7 6.5 7.5

3
1 4.1× 104 2 2.5 3 3
2 1.6× 105 1.67 2 2.5 2.5

Table 2. Average number of Krylov iterations per Newton step
as Gr increases for the 2D problem (P2) with Pr = 1, obtained

using 2 multigrid cycles with 4 relaxation sweeps.

reads:

−divSSS + Re div(u⊗ u) +∇p = 0 in Ω,(5.10a)

divu = 0 in Ω,(5.10b)

− 1

Pe
div(∇θ) + div(uθ) =

Br

Pe
SSS :DDD(u) in Ω,(5.10c) √

ε2 + |DDD(u)|2SSS = (Bn τ(θ) + 2µ(θ)|DDD(u)|)DDD(u), in Ω,(5.10d)

where ε > 0 is the regularisation parameter, and the Reynolds, Péclet, Bingham
and Brinkman numbers are defined as

(5.11) Re =
ρ0UR

ν0
, Pe =

ρ0cpUR

κ0
, Bn =

τ0R

ν0U
, Br =

ν0U
2

κ0θH
,

where R is the radius of the pipe, U is the average velocity at the inlet and τ0 is
the value of the yield stress at the inlet. Two choices for the (non-dimensional)
viscosity and yield stress are considered here:

Problem (Q1): µ(θ) := a1θ + a2 τ(θ) := 1.

Problem (Q2): µ(θ) := 1 τ(θ) := b1θ + b2.

The values of a1 and a2 are chosen so that the viscosity is unity at the inlet and
increases by a factor of 20 at the outlet (which means that the effective Bingham
number decreases by the same factor). The constants b1 and b2 are such that the
Bingham number is 1.5 at the inlet, and 9 at the outlet when a temperature drop
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Di k # refs # dofs
Gr

1× 106 5× 106 1× 107 1.25× 107

0
2

1 1.8× 104 5.75 9 17.75 23
2 7.2× 104 4.25 6.33 10 11

3
1 4.1× 104 2 3 5 6
2 1.6× 105 1.67 2 1.5 1.5

0.6
2

1 1.8× 104 5.5 9 17.33 24.4
2 7.2× 104 4.67 8 9 9.5

3
1 4.1× 104 2.33 3.5 5 6
2 1.6× 105 1.67 2.5 3.5 4

1.3
2

1 1.8× 104 4.75 9.67 18 23.67
2 7.2× 104 4 8 9.5 9

3
1 4.1× 104 2.33 2.5 4 4
2 1.6× 105 1.67 2 2.5 2.5

2.0
2

1 1.8× 104 5.66 10.33 18.33 24.33
2 7.2× 104 4.33 10 10 8.5

3
1 4.1× 104 2.33 2.5 2.5 3
2 1.6× 105 1.67 2 1.5 1.5

Table 3. Average number of Krylov iterations per Newton step
as Gr increases for the 2D problem (P3) with Pr = 1, obtained

using 2 multigrid cycles with 4 relaxation sweeps.

Di # refs # dofs
Gr

2.52× 105 6.30× 105 9.45× 105 1.26× 106

0
1 3.2× 105 3.33 4 4.5 9
2 2.6× 106 6 4.5 3.5 3.5

0.6
1 3.2× 105 3.33 4 4 10.5
2 2.6× 106 4.33 5 4.5 4.5

1.3
1 3.2× 105 3.33 4 4 10.5
2 2.6× 106 6 4.5 4.5 4

2
1 3.2× 105 3 4 4.5 12
2 2.6× 106 6 4.5 3.5 3.5

Table 4. Average number of Krylov iterations per Newton step
as Gr increases for the 3D problem (P1) with Pr = 1 and k = 3,

obtained using 2 multigrid cycles with 4 relaxation sweeps.

of 15 is applied. As for the velocity, we impose the following boundary conditions:

(SSS− pI)(1, 0)> · (1, 0)> = 0, u · (0, 1)> = 0 on Γout, u = uB on Γin,

u = 0 on ∂Ω \ (Γin ∪ Γout),
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Di # refs # dofs
Gr

2.52× 105 6.30× 105 9.45× 105 1.26× 106

0
1 3.2× 105 3.67 4 5 13.5
2 2.6× 106 5 5.5 5.5 5.5

0.6
1 3.2× 105 3.33 4 4.5 14
2 2.6× 106 4.33 5.5 4.5 5

1.3
1 3.2× 105 3.33 4 5 16.5
2 2.6× 106 6 4.5 4.5 4.5

2
1 3.2× 105 3.67 4 5 13.5
2 2.6× 106 6 4.5 3.5 4

Table 5. Average number of Krylov iterations per Newton step
as Gr increases for the 3D problem (P2) with Pr = 1 and k = 3,

obtained using 2 multigrid cycles with 4 relaxation sweeps.

Di # refs # dofs
Gr

2.52× 105 6.30× 105 9.45× 105 1.26× 106

0
1 3.2× 105 3.67 5 7.5 19
2 2.6× 106 5 6 6 9.5

0.6
1 3.2× 105 3.33 4 4 10.5
2 2.6× 106 4.33 5.5 4.5 7

1.3
1 3.2× 105 3.33 4 10 28.5
2 2.6× 106 6 4.5 4.5 4

2
1 3.2× 105 3 4 11.5 41.5
2 2.6× 106 6 4.5 3.5 3.5

Table 6. Average number of Krylov iterations per Newton step
as Gr increases for the 3D problem (P3) with Pr = 1 and k = 3,

obtained using 2 multigrid cycles with 4 relaxation sweeps.

k # refs # dofs
Ra

5000 10000 15000 20000

2
1 1.8× 104 3.64 5.25 6.42 6.38
2 7.2× 104 3.78 5.78 7 9.75
3 2.9× 105 3.22 4.8 6.3 8.3

3
1 7.3× 104 2.57 3.11 3.5 4.25
2 1.6× 105 2.5 2.8 3.33 4.75
3 6.5× 105 1.9 2.22 2.44 4

Table 7. Average number of Krylov iterations per Newton step
as Ra increases for the constitutive relation - with r = 1.6 and

Di = 0, obtained using 7 multigrid cycles with 7 relaxation
sweeps.
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(a) Streamlines for Di = 2. (b) Streamlines for Di = 0.

(c) Temperature contour for Di = 2. (d) Temperature contour for Di = 0.

Figure 3. Streamlines and temperature contours for the heated
cavity with temperature dependent viscosity and Gr = 1.25× 107.

where Γin := {x1 = 0}, Γout := {x1 = 40}, and uB is the fully developed Poiseuille
flow for the isothermal problem with Bn = 1.5, for which the exact solution is avail-
able (see e.g. [30]). In order to obtain better initial guesses for Newton’s method,
secant continuation was employed: given two previously computed solutions z1, z2

corresponding to the parameters ε1, ε2, respectively, the initial guess for Newton’s
method at ε is chosen as

ε− ε2

ε2 − ε1
(z2 − z1) + z2.

For this (arguably more complex) problem, the multigrid algorithm for the top
block ceased to be effective. Tables 8–9 show the average number of Krylov itera-
tions per Newton step obtained when using a sparse direct solver for the top block.
It can be observed that for large values of the augmented Lagrangian parameter
γ it is still possible to have an excellent control of the Schur complement. This
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(a) Problem (P1). (b) Problem (P3).

Figure 4. Temperature contours for the 3D heated cavity with
Gr = 1.26× 106.

γ # refs # dofs
ε

1× 10−3 1× 10−4 2× 10−5 1× 10−5

103

1 2.7× 104 12.8 22 51 48
2 1.0× 105 14.8 33.5 55 49
3 4.3× 105 13.5 17 25 17
4 1.7× 106 11.71 8.8 13 12

105

1 2.7× 104 2.6 2 2 1.33
2 1.0× 105 2.6 2.25 1.4 1.15
3 4.3× 105 2 1.33 1.14 1
4 1.7× 106 1.75 1.33 1.15 1.07

Table 8. Average number of Krylov iterations per Newton step
as ε decreases for Problem (Q1) with k = 2, Pe = 10, θH = 10,

Br = 0.1.

suggests that it might be worthwile to follow the same strategy of using a block
preconditioner that singles out the pressure, while attempting a different strategy
for constructing a scalable solver for the top block.

Figures 6–7 show the temperature field and the yielded/unyielded regions of
the fluid. The results are qualitatively similar to those found in [64], where an
algorithm based on the augmented Lagrangian method was applied to a similar
problem (neglecting the convective term and viscous dissipation). While it is known
that a method based on regularisation, such as the one applied here, is not the most
appropriate if one wishes to locate the exact position of the yield surfaces, it can
still be useful to obtain the general features of the flow. For example, the solutions
found here show no unyielded regions in the transition zone where the temperature
field varies with the mean flow direction, which is the expected behaviour [64].
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(a) Streamlines for r = 2. (b) Streamlines for r = 1.6.

(c) Temperature contour for r = 2. (d) Temperature contour for r = 1.6.

Figure 5. Streamlines and temperature contours for the heated
cavity with the power-law constitutive relation (5.9) and Ra =
2× 104.
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9. M. Buĺıček, E. Feireisl, and J. Málek. A Navier-Stokes-Fourier system for incompressible
fluids with temperature dependent material coefficients. Nonlinear Anal. Real World Appl.,

10:992–1015, 2009.
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12. M. Buĺıček, J. Málek, and K. R. Rajagopal. Mathematical analysis of unsteady flows of flu-

ids with pressure, shear-rate, and temperature dependent material moduli that slip at solid

boundaries. SIAM J. Math. Anal., 41(2):665–707, 2009.
13. E. Burman and A. Linke. Stabilized finite element schemes for incompressible flow using

Scott–Vogelius elements. Appl. Numer. Math., 58(11):1704–1719, 2008.

14. J. Casado-Dı́az, T. Chacón-Rebollo, V. Girault, M. Gómez-Mármol, and F. Murat. Finite
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34. Y. Kagei, M. Růžička, and G. Thäter. Natural convection with dissipative heating. Commun.
Math. Phys., 214:287–313, 2000.

35. D. Kay, D. Loghin, and A. Wathen. A preconditioner for the steady-state Navier–Stokes

equations. SIAM J. Sci. Comput., 24(1):237–256, 2002.
36. G. Ke, E. Aulisa, G. Bornia, and V. Howle. Block triangular preconditioners for lineariza-

tion schemes of the Rayleigh–Bénard convection problem. Numer. Linear Algebra Appl.,
24(5):e2096, 2017.

37. G. Ke, E. Aulisa, G. Dillon, and V. Howle. Augmented Lagrangian-based preconditioners for

steady buoyancy driven flow. Appl. Math. Lett., 82:1–7, 2018.
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