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Conservation principles

The fluid flows is modeled using
The equation of conservation of the momentum.
The equation of the conservation of mass.

Assuming that the flow is incompressible and isothermal, we get{
ρ (∂tu + u · ∇u) +∇p = divσ + f
divu = 0

The unknowns: velocity u, pressure p, stress σ.
The data: density ρ, external body forces f .

This system is closed using a constitutive equation connecting the stress σ
and the deformation Du = 1

2(∇u + t∇u).
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Many possible closures

X For a perfect fluid, we impose σ = 0
→ Euler equations

X For a Newtonian viscous fluid, σ = 2ηsDu (viscosity ηs > 0)
→ Navier-Stokes equations

X For a generalized Newtonian fluid, σ = 2ηs(|Du|)Du

To take into account some elasticity aspect, appearing for instance in
polymer solution, we add an elastic contribution: σ = 2ηsDu + τ .

X Differential models,
∂τ

∂t
= · · · (example: Oldroyd)

X Micro-macro models, τ =

∫
E(Q)⊗Qψ(Q)dQ (example: FENE)

X Integral model
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Integral models

To take into account the past history of the fluid:

τ (t, x) =

∫ t

−∞
m(t − T )S

(
F (T , t, x)

)
dT

m is the memory function,
S is a model-dependent strain measure,
F (T , t, ·) is the deformation gradient from a time T to a next time t.

The deformation gradient F is coupled with the velocity field u:{
∂tF + u · ∇F = F · ∇u
F |t=T = δ
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Two physical assumptions and examples

Due to physical principles, the functions m and S must satisfy assumptions.

1o) Fading memory =⇒ m must be positive and decreases to 0.

Examples

m(s) = 1
λ e−s/λ (λ > 0 is a relaxation time).

Use several relaxation times is possible.
The Doi-Edwards model with Independent Alignment Assumption

m(s) =
8
π2 λ

+∞∑
k=0

e−(2k+1)2s/λ

In practice, we will assume that

(H1) m : R+ 7−→ R is positive, decreasing and
∫ +∞

0
m(s) ds = 1.
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Two physical assumptions and examples

2o) Frame indifference =⇒ τ depends on the Finger tensor B = tF · F

Examples
The "linear" case: S(F ) = B
K-BKZ models

S(F ) = φ1(I1, I2)(B − δ) + φ2(I1, I2)(δ − B−1)

where I1 = Tr(B) and I2 = Tr(B−1) are the strain invariants.
PSM models like

S(F ) =
B

1 + Tr(B)

In practice, we will assume that

(H2) S : G ∈ L(Rd ) 7−→ S(G ) ∈ L(Rd ) is of class C1.
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Oldroyd as an integral model

In the more simple case, the stress given by

τ (t, x) =

∫ t

−∞
m(t − T )S

(
F (T , t, x)

)
dT

with m(s) = e−s and S(F ) = tF · F − δ

where

{
∂tF + u · ∇F = F · ∇u
F |t=T = δ

It satisfies the well-known Oldroyd constitutive relation:

∂tτ + u · ∇τ − t∇u · τ − τ · ∇u + τ = 2Du

Remark
For other integral models, there is no equivalent differential law.
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Assumptions and first results

The complete system can be written as

∂tu + u · ∇u +∇p −∆u = div τ + f
divu = 0

τ (t, x) =

∫ t

−∞
m(t − T )S

(
F (T , t, x)

)
dT

∂tF + u · ∇F = F · ∇u

Remark
The time T can be view as a parameter. It is interesting to select as
independent variable the age s = t − T , which is measured relative to the
current time t.

We now introduce G (s, t, x) = F (t − s, t, x).

The "initial" conditions associated to the system are

u
∣∣
t=0 = u0, G

∣∣
t=0 = G old, G

∣∣
s=0 = δ.
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Local result

Theorem 1 (local existence and uniqueness)

Let T > 0, r > 1 and p > d = 2 or 3.
Assume that (H1) and (H2) hold.
If u0 ∈ Dr

p, G old ∈ L∞(R+; W 1,p), ∂sG old ∈ Lr (R+; Lp), f ∈ Lr (0,T ; Lp),
there exists T? ∈]0,T ] and a unique strong solution (u, p, τ ,G ) in [0,T?]:

∂tu + u · ∇u +∇p −∆u = div τ + f
divu = 0

τ (t, x) =

∫ +∞

0
m(s)S

(
G (s, t, x)

)
ds

∂tG + ∂sG + u · ∇G = G · ∇u
u
∣∣
t=0 = u0, G

∣∣
t=0 = G old, G

∣∣
s=0 = δ
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Ideas of proof: fixed point (Schauder’s theorem)



∂tu + u · ∇u +∇p −∆u = div τ + f ,
divu = 0,

τ (t, x) =

∫ +∞

0
m(s)S

(
G (s, t, x)

)
ds,

∂tG + ∂sG + u · ∇G = G · ∇u,
u
∣∣
t=0 = u0, G

∣∣
t=0 = G old, G

∣∣
s=0 = δ.

1 Stokes problem
2 Explicit
3 Linear transport equation
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Ideas of proof: fixed point (Schauder’s theorem)



∂tu + u · ∇u +∇p −∆u = div τ + f ,
divu = 0,

τ (t, x) =

∫ +∞

0
m(s)S

(
G (s, t, x)

)
ds,

∂tG + ∂sG + u · ∇G = G · ∇u,
u
∣∣
t=0 = u0, G

∣∣
t=0 = G old, G

∣∣
s=0 = δ.

H(T ,R) =
{

(u,G , τ ) ; u ∈ Lr (0,T ; W 2,p), ∂tu ∈ Lr (0,T ; Lp),

G ∈ L∞(R+×(0,T ); W 1,p), ∂sG , ∂tG ∈ L∞(R+; Lr (0,T ; Lp)),

τ ∈ L∞(0,T ; W 1,p), ∂tτ ∈ Lr (0,T ; Lp), ‖(u,G , τ )‖ ≤ R
}
.

For T small enough, there exists R such that

Φ : (u,G , τ ) ∈ H(T ,R) 7−→ (u,G , τ ) ∈ H(T ,R).
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Some known global existence results

Small data (very many results)
X [Guillopé, Saut] Existence results for the flow of viscoelastic fluids with
a differential constitutive law. Nonlinear Anal. (1990)
X [Renardy] An existence theorem for model equations resulting from
kinetic theories of polymer solutions. SIAM J. Math. Anal. (1991)
Oldroyd with co-rotational assumption
X [Lions, Masmoudi] Global solutions for some Oldroyd models of
non-Newtonian flows. Chinese Ann. Math. Ser. B (2000)
FENE model
X [Masmoudi] Global existence of weak solutions to the FENE dumbbell
model of polymeric flows. Inventiones (2013)
Oldroyd with diffusive stress
X [Barrett, Süli] Existence of global weak solutions for some polymeric
flow models. Math. Models Methods Appl. Sci. (2005)
X [Constantin, Kliegl] Note on global regularity for two-dimensional
Oldroyd-B fluids with diffusive stress. A.R.M.A. (2012)
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Assumptions and results

(H2’) S : L(R2) 7−→ L(R2) is of class C1 and satisfies
∃S∞ ≥ 0 ; ∀G ∈ L(R2) |S(G )| ≤ S∞
∃S ′∞ ≥ 0 ; ∀G ∈ L(R2) |G ||S ′(G )| ≤ S ′∞

Examples

For the PSM model where S(G ) =
tG · G

1 + Tr( tG · G )
, we have

|S(G )| ≤ 1 and |G ||S ′(G )| ≤ 2(1 +
√
2)

All usual models of type K-BKZ
Doi-Edwards model with independent alignment approximation

Remark
(H2’) is not satisfied for the "linear" case S(G ) = tG · G
(consequently, the following result is not proved for the Oldroyd model).
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Assumptions and results

Theorem 2 (global existence and uniqueness)

Let T > 0, r > 1 and p > d = 2 such that 1
r + 1

p ≤
1
2 .

Assume that (H1) and (H2’) hold.
If u0 ∈ Dr

p, G old ∈ L∞(R+; W 1,p), ∂sG old ∈ Lr (R+; Lp), f ∈ Lr (0,T ; Lp),
there exists a unique strong solution (u, p, τ ,G ) on [0,T ]:

∂tu + u · ∇u +∇p −∆u = div τ + f ,
divu = 0,

τ (t, x) =

∫ +∞

0
m(s)S

(
G (s, t, x)

)
ds,

∂tG + ∂sG + u · ∇G = G · ∇u,
u
∣∣
t=0 = u0, G

∣∣
t=0 = G old, G

∣∣
s=0 = δ.

Laurent Chupin (UCA - France) Viscoelastic models with an integral law Equadiff 2017 14 / 19



Ideas of proof: main difficulties

X Idea: obtain additional bounds on the local solution.

X Free:
(
(H1) and (H2’)

)
=⇒ ‖τ‖L∞(0,T ;L∞) ≤ S∞

X What else: τ ∈ Lr (0,T ; Lp) =⇒ ∇u ∈ Lr (0,T ; Lp)

True for all 1 < r , p < +∞ but false for r = p =∞

We only have , for all t ∈ (0,T ), and for r , p such that 1
r + 1

p ≤
1
2 ,

‖∇u(t, ·)‖L∞ ≤ C + ‖g‖L∞(0,T ;L∞) ln(e + ‖∇g‖Lr (0,t;Lp)),

where g = τ − u ⊗ u

Proof: based on the Duhamel formulation

∇u(t, x) = eηt∆∇u0 +

∫ t

0
eη(t−σ)∆P∆(τ − u ⊗ u)(σ, x) dσ.
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Ideas of proof: main difficulties

X Control of ‖∇τ‖Lr (0,t;Lp)

τ (t, x) =

∫ +∞

0
m(s)S

(
G (s, t, x)

)
ds

∇τ (t, x) =

∫ ∞
0

m(s)S ′(G (s, t, x)) : ∇G (s, t, x) ds

|∇τ (t, x)| ≤ S ′∞
∫ ∞

0
m(s)

∣∣∣∇G (s, t, x)

|G (s, t, x)|

∣∣∣ ds see (H2’)

‖∇τ‖rLr (0,t;Lp) ≤ S
′
∞

∫ t

0

∫ ∞
0

m(s)
∥∥∥∇G
|G |

∥∥∥r

Lp
(s, t) dsdt︸ ︷︷ ︸

y(t)
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Ideas of proof: main difficulties

X Control of y(t) =

∫ t

0

∫ ∞
0

m(s)
∥∥∥∇G
|G |

∥∥∥r

Lp
(s, t) dsdt

Lemma 1

|G | ≥ Cte > 0.

Proof:

∂tG + ∂sG + u · ∇G = G · ∇u
∂t detG + ∂s detG + u · ∇ detG = detG × divu = 0
detG ≥ C > 0 (constant along characteristic lines)
Due to the inequality of arithmetic and geometric means, we have

|G |2 = Tr( tG · G ) ≥ 2
√

det( tG · G ) = 2| det(G )| ≥ 2C > 0.

Laurent Chupin (UCA - France) Viscoelastic models with an integral law Equadiff 2017 17 / 19



Ideas of proof: main difficulties

X Control of y(t) =

∫ t

0

∫ ∞
0

m(s)
∥∥∥∇G
|G |

∥∥∥r

Lp
(s, t) dsdt

Lemma 1

|G | ≥ Cte > 0.

Lemma 2

y ′(t) ≤ C + y(t) + y(t)‖∇u‖L∞(0,T ;L∞) + ‖∇2u‖rLr (0,t;Lp).

Proof: "Classical" estimates (Cauchy-Schwarz, Hölder, Young inequalities)
from the definition of G :

∂tG + ∂sG + u · ∇G = G · ∇u
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|G | ≥ Cte > 0.

Lemma 2

y ′(t) ≤ C + y(t) + y(t)‖∇u‖L∞(0,T ;L∞) + ‖∇2u‖rLr (0,t;Lp).

Lemma 3

y ′(t) ≤ C (e + y(t)) ln(e + y(t)).

We conclude that y(t) ≤ eeCt
for all t ∈ (0,T ). �
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The Doi-Edwards model

X M. Doi and S.F. Edwards wrote a series of papers (1978, 1980)
expanding the concept of reptation introduced by P.G. de Gennes in 1971.

'1

w

I

4.

rn: I
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The Doi-Edwards model

X They obtain a model describing the dynamics of flexible polymers in
melts and concentrated solutions:

∂tu + u · ∇u +∇p −∆u = div τ
divu = 0

τ (t, x) =

∫ 1
2

− 1
2

S(t, x , `) d`

S(t, x , `) = −
∫ +∞

0
∂sK (s, t, x , `)S(G (s, t, x)) ds

∂tG + u · ∇G + ∂sG = G · ∇u

∂tK + u · ∇K + ∂sK +
(
∇u :

∫ `

0
S
)
∂`K − ∂2

`K = 0

where S(G ) =
1

〈|G · u|〉0

〈(G · u)⊗ (G · u)

|G · u|

〉
0
− 1

d
δ

the brackets 〈·〉0 corresponding to the average over the isotropic
distribution of unit vectors u ∈ Sd−1.
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The Doi-Edwards model

Theorem 3
For all time T > 0, the two dimensional Doi-Edwards model admits a
strong solution on the interval time [0,T ].



∂tu + u · ∇u +∇p −∆u = div τ
divu = 0

τ (t, x) =

∫ 1
2

− 1
2

S(t, x , `) d`

S(t, x , `) = −
∫ +∞

0
∂sK (s, t, x , `)S(G (s, t, x)) ds

∂tG + u · ∇G + ∂sG = G · ∇u

∂tK + u · ∇K + ∂sK +
(
∇u :

∫ `

0
S
)
∂`K − ∂2

`K = 0

where S(G ) =
1

〈|G · u|〉0

〈(G · u)⊗ (G · u)

|G · u|

〉
0
− 1

d
δ
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Other models?

X "Rolie-Poly" model
 ROuse LInear Entangled POLY-

mers

X "Pom-Pom" model
 developed in order to take into

account the morphology of branched
polymer melts

X · · ·

Question
What are the physically relevant models for which we know to show the
global existence of a regular solution?

THANK YOU.
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