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Theory of mixtures—1

Fluid of mixture with N constituents
(%α, vα, eα), α = 1, · · · ,N:

• balance of mass for each α . . . . . . . . . . . . . . . . . . . . .N equations,
• balance of linear momentum for each α . . . . . . . . dN equations,
• balance of energy for each α . . . . . . . . . . . . . . . . . . . .N equations.

Whole mixture (%, v, e)

• balance of mass for the whole mixture . . . . . . . . . . . . 1 equation,
• balance of linear momentum for the whole mixture d equations,
• balance of energy for the whole mixture . . . . . . . . . . .1 equation.



Theory of mixtures—2

In applications, we consider combinations such as:

Combination 1:

• balance of mass for each α . . . . . . . . . . . . . . . . . . . . .N equations,
• balance of linear momentum for each α . . . . . . . . dN equations,
• balance of energy for the whole mixture . . . . . . . . . . .1 equation.

Combination 2:

• balance of mass for each α . . . . . . . . . . . . . . . . . . . . .N equations,
• balance of linear momentum for the whole mixture d equations,
• balance of energy for the whole mixture . . . . . . . . . . .1 equation.



Two constituents under Combination 2

Given (%1, %2, v, e). Introduce

% = %1 + %2 (mass additivity), c :=
%1

%
(concentration).

There arises:

%̇ = −%div v,
%ċ = −div j,
%v̇ = divT + %b,

%(e +
1
2
|v|2). = div(Tv − qE ) + %b · v,

(1)

where ż := ∂tz + v · ∇xz .



Goal

Now the unknown is

(%, c , v, e).

There are still three ’unknowns’ (constitutive quantities):

(T, j,qE ).

To derive a model of PDEs and boundary conditions that is
compatible with thermodynamical principles and is solvable.
We focus on the fluids under quasi-incompressibility constraint. This
makes the constitutive process more delicate.



Quasi-incompressibility assumption:

Quasi-incompressibility:

% = %(c).

Volume additivity constraint:

1 = ϕ1+ϕ2, %α = ϕαραm, %αm are the true densities and are constants,

one has

%(c) =
%1
m%

2
m

(1− c)%1
m + c%2

m
.



Quasi-incompressible fluids

For quasi-incompressible fluids:

div v = R(c) div j, R(c) :=
%′(c)

%2(c)
.

With volume additivity:

R(c) = r∗ :=
%1
m − %2

m
%1
m%

2
m

.

If %1
m = %2

m, the fluids become homogeneous (% becomes constant)
and is then incompressible div v = 0.



Compatible constitutive theory

The modelling approach is also well presented by Rajagopal and
Srinivasa in [7], Heida, Málek and Rajagopal in [3] and [4].

Constitutive assumption:

η = η(e, %, c),
∂η

∂e
> 0, η is the entropy.

Then
e = e(η, %, c).



Modelling

Thermodynamic temperature, pressure and the chemical
potential:

θ :=
∂e
∂η
, p :=

∂e
∂%
, µ :=

∂e
∂c
.

With volume additivity,

%η̇ + div
(qη
θ

)
=

1
θ

(
Td : Dd − j · ∇x(µ+ r∗(m + p))− qη · ∇xθ

θ

)
=: ζ .

where m := trT/3,qη := qE −
(
µ+ mR(c)

)
j and

D :=
1
2
(
∇v + (∇v)t), Td := T− 1

3
trT, Dd := D− 1

3
trD.



Modelling

For the isothermal processes, i.e. θ is constant,

ζ = Td : Dd − j · ∇x(µ+ r∗(m + p)) . (2)

We impose the linear relations

Td = 2ν∗Dd ν∗ ∈ (0,∞) ,

j = −β∗∇x(µ+ r∗(m + p)) β∗ ∈ (0,∞) ,

Then
ζ ≥ 0

and

%̇ = −% divv,

%v̇ = ∇m + ν∗∆v +
ν∗
3
∇divv + %b,

−∆(m + p + r−1
∗ µ) = r−2

∗ β∗divv .



Modelling–Boundary conditions–1

We assume Dirichlet boundary condition for the velocity

v = 0 on ∂Ω× (0,T ).

If b = 0, boundary condition

qE · n = 0 on ∂Ω× (0,T )

is sufficient to make sure the conservation of the energy

E(t) :=

∫
Ω
%
(
e +

1
2
|v|2
)
dx .



Modelling–Boundary conditions–2
If we consider total entropy

S(t) :=

∫
Ω
%η dx ,

then for the rate of entropy production, that is dS/dt, there arises
the boundary integral∫

∂Ω

qη · n
θ

dS , qη := qE −
(
µ+ mR(c)

)
j. (3)

Then boundary condition

j · n = 0 on ∂Ω× (0,T )

is sufficient to make sure that there is no contribution to the rate of
entropy production due to the boundary integral (3). This implies

∂(µ+ r∗(m + p))

∂n
= 0 on (0,T )× ∂Ω .



Modelling–The chemical concentration
Recall 0 < c < 1, Following the ansatz corresponding to the
mixture of ideal gases (see Müller [4]) it is reasonable to
choose µ(c) of the form

µ(c) =
1
2
(
ln c − ln(1− c)

)
.

By volume additivity with %1
m = 1, %2

m = %m,

c(%) =
%− %m

%(1− %m)
=
%r∗ + (%− 1)

%r∗
.

Then
µ(c(%)) = ln

(
(1 + r∗)%− 1

)
− ln(1− %).

This implies, unconditionally

1
1 + %∗

≤ % ≤ 1.



A selected problem—preparation

We set

β∗ = ν∗ = 1, b = 0.

We introduce the standard Helmholtz decomposition

z = H[z] + H⊥[z] , H⊥[z] := ∇(∆N)−1divz.

Here (∆N)−1 the solution operator of the homogeneous Neumann
problem associated to the Laplace operator.



A selected problem—the equations

Then

∂t%+ div(%v) = 0,

∂t(%v) + div(%v ⊗ v) +
1
r∗
∇q(%) = 2divDd − 1

r2
∗
H⊥[v],

(4)

Here q is defined as

q(%) := r∗p(%) + µ(c(%)).

Then
lim

%→ 1
1+r∗

+
q(%) = −∞, lim

%→1−
q(%) = +∞.



A selected problem—initial and boundary data

Boundary condition

v = 0 on [0,T ]× Ω. (5)

Initial data

v0 ∈ L2(Ω;R3),
1

1 + r∗
< %0 < 1,

∫
Ω

Q(%0)dx <∞. (6)

Pressure potential Q:

Q(%) := %

∫ %

%∗

q(z)

z2 dz ,

where %∗ is the only zero point of q(·).



Questions

1, Existence of solution?

2, Asymptotic behavior as r∗ → 0? From quasi-incompressible
fluids to incompressible fluids?



Definition of finite energy global weak solution

Definition
We say [%, v] to be a global finite energy weak solution for problem
(4), (5) and (6), if there holds for any T > 0:
• 1

1+r∗ ≤ % ≤ 1 a.e. in (0,T )× Ω, v|(0,T )×∂Ω = 0 and

q(%) ∈ L1((0,T )×Ω), v ∈ Cw (0,T ; L2(Ω))∩L2(0,T ; W 1,2
0 (Ω)).

• For any 0 ≤ τ ≤ T and any test functions

ϕ ∈ C∞c ([0,T ]× Ω), ψ ∈ C∞c ([0,T ]× Ω;R3),

there holds



Definition of finite energy global weak solution

∫ τ

0

∫
Ω
%∂tϕ+ %v · ∇xϕ dx dt +

∫
Ω
%0ϕ(0, ·) dx =

∫
Ω
%(τ, ·)ϕ(τ, ·) dx

(7)
and∫ τ

0

∫
Ω
%v · ∂tψ + %v ⊗ v : ∇xψ +

1
r∗

q(%)divψ dx dt +

∫
Ω
%0v0 · ψ(0, ·) dx

=

∫ τ

0

∫
Ω
2Dd (v) : ∇xψ +

1
r2
∗
H⊥[v] · ψ dx dt +

∫
Ω
%v(τ, ·) · ψ(τ, ·) dx .

(8)



Definition of finite energy global weak solution

For a.a. τ ∈ (0,T ), there holds the energy inequality for any
constant %̄:

∫
Ω

(
1
2
%|v|2 +

1
r∗

(Q(%)− Q(%̄)− Q ′(%̄)(%− %̄))

)
(τ, ·) dx

+

∫ τ

0

∫
Ω
2|Dd (v)|2 +

1
r2
∗
|H⊥[v]|2 dx dt

≤
∫

Ω

(
1
2
%0|v0|2 +

1
r∗

(Q(%0)− Q(%̄)− Q ′(%̄)(%0 − %̄))

)
dx .

(9)



Energy inequality

By the continuity equation and the Drichlet boundary
condition ∫

Ω
%(τ, ·) dx =

∫
Ω
%0 dx , ∀τ ∈ [0,T ].

Then (9) is equivalent to∫
Ω

(
1
2
%|v|2 +

1
r∗

Q(%)

)
(τ, ·) dx +

∫ τ

0

∫
Ω
2|Dd (v)|2 +

1
r2
∗
|H⊥[v]|2 dx dt

≤
∫

Ω

(
1
2
%0|v0|2 +

1
r∗

Q(%0)

)
dx .

However, it is more convenient to use (9) in studying the asymptotic
behavior of the solution v as r∗ → 0.



Existence of weak solution

Theorem
Suppose for some β0 > 5/2:

lim inf
%→ 1

1+r∗
+

∣∣∣∣q(%)(%− 1
1 + r∗

)β0

∣∣∣∣ > 0, lim inf
%→1−

∣∣∣q(%)(1− %)β0
∣∣∣ > 0.

(10)
Then there exists a finite energy global weak solution [%, v].



Proof–Approximate solutions

We employ the idea by Feireisl and Zhang [2]

Regularized pressure for α > 0 small and γ > 3/2 large:

qα(%) :=


q(

1
1 + r∗

+ α), % ≤ 1
1 + r∗

+ α,

q(%),
1

1 + r∗
+ α ≤ % ≤ 1− α,

q(1− α) + (%− 2)γ+, % ≥ 1− α.

By replacing the pressure term q by qα in (4), we obtain an
approximate system:

∂t%α + div(%αvα) = 0,

∂t(%αvα) + div(%αvα ⊗ vα) +
1
r∗
∇xqα(%α) = 2divDd (vα)− 1

r2
∗
H⊥[vα].



Proof–Approximate solutions

Existence for approximate system
Armed with same initial data and boundary condition, the global
existence of weak solution [%α, vα] to this approximate system is
known (see [5] and [1]).

Uniform bound

{%α|vα|2}0<α<α0 bounded in L∞(0,T ; L1(Ω;R3)),

{Qα(%α)}0<α<α0 bounded in L∞(0,T ; L1(Ω;R3)),

{vα}0<α<α0 bounded in L2(0,T ; W 1,2
0 (Ω;R3)).



Proof–passing to the limit

Weak convergence

%α → % weakly(*) in L∞(0,T ; Lγ(Ω;R3)),

vα → v weakly in L2(0,T ; W 1,2
0 (Ω;R3)).

For the nonlinear terms in the approximate system (at least
in the sense of distribution):

%αvα → %v, %αvα ⊗ vα → %v ⊗ v.

The difficulty is to show

qα(%α)→ q(%) weakly in L1?



Proof–Uniform bound for the pressure

Uniform bound of Qα(%α) does not imply uniform bound for
qα(%α), not even in L1((0,T )× Ω).
Indeed, for singular q(%) such that

q(%) = O(
1

(%− 1
1+r∗ )β1

) near
1

1 + r∗
+,

q(%) = O(
1

(1− %)β2
) near 1−,

where β1 and β2 are numbers larger than 5/2, the pressure potential
functional Q is less singular:

Q(%) = O(
1

(%− 1
1+r∗ )β1−1

) near
1

1 + r∗
+,

Q(%) = O(
1

(1− %)β2−1 ) near 1− .



Proof–Uniform L1 estimate of the pressure

To show the integrability of qα(%α), introduce

ϕ = ψ(t)B(%α − 〈%α〉), 〈%α〉 :=
1
|Ω|

∫
Ω
%α dx ,

with ψ ∈ C∞c (0,T ) and B a bounded linear operator from
{g ∈ Lp(Ω), 〈g〉 = 0} to W 1,p

0 (Ω;R3) for 1 < p <∞ such that

divB(g) = g , B(g)|∂Ω = 0.

Taking ϕ as a test function implies

{qα(%α)}0<α<α0 bounded in L1((0,T )× Ω).



Proof–Equi-integrability of the pressure
Introduce

ϕ = ψ(t)B(ηα(%α)− 〈ηα(%α)〉),

where ψ ∈ C∞c (0,T ) and

ηα(s) =


log(s − 1

1 + r∗
)− log(1− s),

1
1 + r∗

+ α ≤ s ≤ 1− α,

− log(α), s ≥ 1− α,

log(α), s ≤ 1
1 + r∗

− α.

Taking ϕ as a test function implies

{qα(%α)ηα(%α)}0<α<α0 bounded in L1((0,T )× Ω).

This gives the equi-integrability of the pressure. Then

qα(%α)→ q(%) weakly in L1((0,T )× Ω)).



Proof–Growth assumption for the pressure-1

The growth assumption (10) is to control

I :=

∫ T

0

∫
Ω
ψ%αvαB

(
η′α(%α)%αdivvα − 〈η′α(%α)%αdivvα〉

)
dx dt.

A direct fact is

Qα(%α) ≥ c1|η′α(%α)|β0−1 − c2, |qα(%α)| ≥ c1|η′α(%α)|β0 − c2.

Then
η′α(%α) uniformy bounded in L∞Lβ0 ∩ Lβ0Lβ0 .

We need β0 > 5/2 to get the uniform bound of I .



Proof–Growth assumption for the pressure-2

Recall

%α ∈ L∞L∞−,
√
%αvα ∈ L∞L2, vα ∈ L2W 1,2

0 .

We choose β0 > 5/2, then

η′α(%α)%αdivvα ∈ L
10
9 +(L

10
9 +)

which implies

B
(
η′α(%α)%αdivvα − 〈η′α(%α)%αdivvα〉

)
∈ L

10
9 +(W

1, 10
9 +

0 )

and Sobolev embedding gives

B
(
η′α(%α)%αdivvα − 〈η′α(%α)%αdivvα〉

)
∈ L

10
9 +(L

30
17 +).



Proof–Growth assumption for the pressure-3

On the other hand

{%αvα}0<α<α0 bounded in L∞(L2−) ∩ L2(L6−).

By interpolation,

{%αvα}0<α<α0 bounded in L10(L
30
13−).

Then the quantity I is uniformly bounded with respect to α.



Proof–Strong convergence of density

By employing the arguments of Lions [3], we can obtain∫
Ω
% log(%)− % log(%) ≤ 0.

This imples
% log(%) = % log(%),

and furthermore

%α → % a.e in (0,T )× Ω.

Then
q(%) = q(%).



Convergence for r∗ = ε→ 0

The first observation is that, unconditionally,

sup
t∈(0,T )

‖%ε(τ, ·)− 1‖L∞(Ω) ≤ ε. (11)

We then assume initial data satisfies

‖v0,ε‖L2(Ω;R3) ≤ c ,
1
|Ω|

∫
Ω

Q(%0,ε) dx ≤ Q(%0,ε) + εc .

This implies the right-hand side of energy inequality is uniformly
bounded. Then we have uniform bound for the solution [%ε, vε].



Convergence for r∗ = ε→ 0

Then

vε → U weakly in L2(0,T ; W 1,2
0 (Ω) and weakly-* in L∞(0,T ; L2(Ω))

and moreover,

H⊥[vε]→ 0 in L2((0,T )× Ω).

For any ϕ ∈ C 1
c (Ω;R3), div ϕ = 0,

t 7→
∫

Ω
vε · ϕ dx precompact in C ([0,T ]). (12)

Then, by means of the standard Lions-Aubin argument,

H[vε]→ U in L2((0,T )× Ω;R3), (13)



From quasi-incompressible to incompressible fluids

Consequently

vε → U in L2((0,T )× Ω;R3),

where U is a weak solution to the incompressible Navier-Stokes
system

divU = 0, (14)

∂tU +∇U ·U +∇P = ∆U, U|∂Ω = 0, (15)

supplemented with the initial condition

U(0, ·) = H[v0], (16)

where v0 is a weak limit of v0,ε in L2(Ω;R3).
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