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Quasi-incompressible fluids



Theory of mixtures—1

Fluid of mixture with N constituents
(Qonvaaea)a Q= 17 aN:

e balance of massforeach o ..................... N equations,
e balance of linear momentum for each o ........ dN equations,
e balance of energy foreach v .................... N equations.

Whole mixture (o, v, €)

e balance of mass for the whole mixture ............ 1 equation,
e balance of linear momentum for the whole mixture d equations,

e balance of energy for the whole mixture ........... 1 equation.



Theory of mixtures—2

In applications, we consider combinations such as:

Combination 1:

e balance of massforeacha ..................... N equations,
e balance of linear momentum for each o ........ dN equations,
e balance of energy for the whole mixture ........... 1 equation.

Combination 2:

e balance of massforeach  ..................... N equations,
e balance of linear momentum for the whole mixture d equations,

e balance of energy for the whole mixture ........... 1 equation.



Two constituents under Combination 2

Given (o', 0%,v, e). Introduce
_ 1, 2 o 0 .
0 =0 + o° (mass additivity), ¢ := = (concentration).
0

There arises:

0= —odivv,
o¢ = —divj,
ov =div T + gb, (1)

1
o(e+ §|v|2) =div(Tv—qg)+ob-v,

where Z := 0z +v - V,z.



Now the unknown is

(0,c,v,e).

There are still three 'unknowns’ (constitutive quantities):

(ijaqE)~

To derive a model of PDEs and boundary conditions that is
compatible with thermodynamical principles and is solvable.
We focus on the fluids under quasi-incompressibility constraint. This
makes the constitutive process more delicate.



Quasi-incompressibility assumption:

Quasi-incompressibility:
0= o(c).

Volume additivity constraint:

1= 4% 0% =%, 0% are the true densities and are constants,

one has

o(c) = Omlm
(1—c)ok, + co?,



Quasi-incompressible fluids

For quasi-incompressible fluids:

divv = R(c)divj, R(c):=

With volume additivity:

1 2
R(c)=r":= —le 29'"
OmOm

If oL, = 02, the fluids become homogeneous (o becomes constant)
and is then incompressible divv = 0.



Compatible constitutive theory

The modelling approach is also well presented by Rajagopal and
Srinivasa in [7], Heida, Malek and Rajagopal in [3] and [4].

Constitutive assumption:

0
n=n(e, o0, c), 6—: >0, 7 is the entropy.
Then
e=e(n,0,¢)



Modelling

Thermodynamic temperature, pressure and the chemical
potential:

e . _0e . _0Oe
“ap P T a0 HT ae
With volume additivity,

_1
0

on) + div (q—")

9 (T" DY —j- Vilp+ r(m+p)) -

where m := trT /3,9, :=qg — (1 + mR(c)) j and

1 1
D:=_(Vv+(Vv)), T =T- 0T, D?:=D - 50D.

1
2



Modelling

For the isothermal processes, i.e. 6 is constant,

(=T9:D?—j-Vi(u+r(m+p)). (2)
We impose the linear relations
T¢ =209 v, €(0,0),
i= =BVl + r(m+p)) Bie€(0,00),

Then
¢>0

and
0 = —odivv,
ov =Vm+ v, Av + %Vdivv + ob,

—A(m+p+rtp) = r?B.divy.



Modelling—Boundary conditions—1

We assume Dirichlet boundary condition for the velocity

v=0 on 02x(0,T).
If b =0, boundary condition
ge-n=0 on 90 x(0,T)

is sufficient to make sure the conservation of the energy

E(t) ::/Qg(e—i-%|v|2)dx.



Modelling—Boundary conditions—2

If we consider total entropy

5(t) = /Q on dx,

then for the rate of entropy production, that is dS/dt, there arises
the boundary integral

n .
/ qng dS, q;:=qeg — (n+ mR(c))]. (3)
o0
Then boundary condition
j'n=0 on 9Qx(0,T)

is sufficient to make sure that there is no contribution to the rate of
entropy production due to the boundary integral (3). This implies

I(p+ r(m+p))
on

=0 on (0,7)x09.



Modelling—The chemical concentration

Recall 0 < ¢ < 1, Following the ansatz corresponding to the
mixture of ideal gases (see Miiller [4]) it is reasonable to
choose y(c) of the form

p(c) == (Inc—In(1—c)).

N =

By volume additivity with ol = 1,02 = o,

- ry + Q - ]-
o(1— om) or:

Then
p(c(o)) =In((1+r)o—1) —In(l - o).

This implies, unconditionally




A selected problem—preparation

We set

We introduce the standard Helmholtz decomposition

z=H[z] + Hi[z], H1[z] = V(Ay) ldivz.

Here (Apn)~! the solution operator of the homogeneous Neumann
problem associated to the Laplace operator.



A selected problem—the equations

Then

Oro + div(ov) =0,
. 1 O (4)
O¢(ov) + div(ov ® v) + r—Vq(,Q) = 2divD? — r_2H [v],

*

Here q is defined as

q(o) := rep(o) + p(c(o))-

Then

lim g(e) = —o0,  lim g(o) = +oo.
o—

o— 1+ry +




A selected problem—initial and boundary data

Boundary condition
v=0 on[0, T]xQ. (5)

Initial data

Vo € LZ(Q;Ra), 117

<op <1, /QQ(Qo)dx <00 (6)

Pressure potential Q:

where g, is the only zero point of g(-).



1, Existence of solution?

2, Asymptotic behavior as r, — 0?7 From quasi-incompressible
fluids to incompressible fluids?



Definition of finite energy global weak solution

Definition
We say [0, v] to be a global finite energy weak solution for problem
(4), (5) and (6), if there holds for any T > 0:

o ljr* <o<lae in(0,T)xQ, v|oT)xon =0 and

(o) € LX((0, T)xQ), v e Cu(0, T; L2(Q))NLA(0, T; Wy 2 (Q)).
e Forany 0 < 7 < T and any test functions
pe (0, T xQ), e (0 T]x R,

there holds



Definition of finite energy global weak solution

/ / 00 + ov - Vip dic dt + / 00(0, ) dx = / or, Yo (r, ) dx
0 Q Q Q (7)

and
T 1

/ /QV'8t¢+QV®V3vx¢+r_q(0)div¢dth+/QOVO'QP(O?')d)
0 Q * Q

:/T/2Dd(v):VX¢+%HL[V]'¢dxdt+/QV(T,~)'¢(T,‘)dx.
o Ja rs Q (8)



Definition of finite energy global weak solution

For a.a. 7 € (0, T), there holds the energy inequality for any
constant p:

[ (Gav? + (00 - 0@ - Q@ - 2)) () ox
+ [ [ 2DAwP + I P de (9)

< /Q <%Q0|Vo|2 + rl(Q(Qo) - Q(2) — Q'(2)(00 — &3))) dx.

*



Energy inequality

By the continuity equation and the Drichlet boundary
condition

/Q(T,~)dx=/godx, V1 € [0, T].
Q Q

Then (9) is equivalent to
1 oo, 1 ! a2 o L Lion2
SolvIT+ =Q(e) | (7,-) dx + 2DV + 5 [H V]| dx dt
a\2 F o Ja rs

1 1
S/ <§QO|VO|2+_Q(QO)) dx.
Q £

However, it is more convenient to use (9) in studying the asymptotic
behavior of the solution v as r, — 0.



Existence of weak solution

Theorem
Suppose for some [y > 5/2:

lim inf — Fo
Jminf, aee— 1)

>0, liminf|q(o)(1—0)%|> 0.
o—1—

(10)
Then there exists a finite energy global weak solution [0, v].



Proof—Approximate solutions

We employ the idea by Feireisl and Zhang [2]

Regularized pressure for a > 0 small and v > 3/2 large:

1
<
1+r*+a), Q_1+r*

q(0),

q( + a,

da(0) =

<o<1l-
1+r*+a_g_ “

ql-a)+(e—2)}, e>1-a.
By replacing the pressure term g by g, in (4), we obtain an
approximate system:
0t0a + div(gava) =0,

1 1
8t(QaVa) + diV(QaVa & Va) + r_vx‘h(@a) = 2diVDd(VOz) - ﬁHJ—[Va]'

*



Proof—Approximate solutions

Existence for approximate system

Armed with same initial data and boundary condition, the global
existence of weak solution [g,, V,] to this approximate system is
known (see [5] and [1]).

Uniform bound

{Qa|va|2}0<a<ao bounded in LOO(O’ T: LI(Q;R3))’
{Qa(ga)}0<a<ao bounded in LOO(O’ T; LI(Q;R3))’
{Va}o<a<ao bounded in L2(0, T: W&Q(Q;R?})).



Proof—passing to the limit

Weak convergence

0o — 0 weakly(*) in L>(0, T; L7(Q; R?)),
Vo — v weakly in L%(0, T; Wg’z(Q;R‘?’)).

For the nonlinear terms in the approximate system (at least
in the sense of distribution):

Qava — va gava ® Va — QV ® V.
The difficulty is to show

do(00) = q(0) weakly in L1?



Proof—Uniform bound for the pressure

Uniform bound of Q,(0.) does not imply uniform bound for
da(0a), not even in L1((0, T) x Q).

Indeed, for singular g(o) such that

1 1
ale) = 0(¢, = I ) e
1
q(0) = O(m) near 1-,

where 31 and (3, are numbers larger than 5/2, the pressure potential
functional @ is less singular:

1 1
Q(Q) = O(W) near T

+,

x

Qo) = O(W) near 1—.



Proof-Uniform L! estimate of the pressure

To show the integrability of g,(¢.), introduce

o= W(t)B(2a — (0a)).  (20) = ﬁ /Q 0o d.

with ¢ € C2°(0, T) and B a bounded linear operator from
{g € LP(Q), (g)=0}to Wol”’(Q;R3) for 1 < p < oo such that

divB(g) =g, B(g)lsa =0.

Taking ¢ as a test function implies

{9a(0a) }o<a<a, bounded in Ll((O, T) x Q).



Proof—Equi-integrability of the pressure

Introduce

© = Y(t)B(1a(0a) — (Mal0a))),
where ¢ € C2°(0, T) and

1
- ) — — <s<1-—
log(s o r*) log(1 — s), T +a<s< a,

Na(s) =3¢ —log(a), s>1-q,

I <
ogla). s<

Taking ¢ as a test function implies

{9a(0a)1a(0a)}ocaca, boundedin  L1((0, T) x Q).

This gives the equi-integrability of the pressure. Then

da(00) — @ weakly in Ll((O, T) x Q)).



Proof—Growth assumption for the pressure-1

The growth assumption (10) is to control

T
/ ::/ / V0aVaB (0 (0a)0adivve — (7, (0a)0adivv,)) dx dt.
0 Q

A direct fact is

|,30

Qu(0a) > c1lnh(0a)l® ™t — 2, 1ga(0a)l > c1lnl(0a)l® — co.

Then
1',(0a) uniformy bounded in L>LP0  [PofPo,

We need [y > 5/2 to get the uniform bound of /.



Proof—Growth assumption for the pressure-2

Recall

0 € LXL®7 ) \JoaVa € L®L2, v, € 12,7
We choose By > 5/2, then
e (0a)0adivv, € L%"F(L%‘F)
which implies

10 19+

B (n/oz(ch)QadiVVoz - (n;(ga)gadivva» € L?+(Wo )

and Sobolev embedding gives

B (n(00) 0adivva — (11(0a)0adivva)) € L's T(LT7T).



Proof—Growth assumption for the pressure-3

On the other hand

{0aVaYoca<ca, bounded in L°(L27) N L2(L57).

By interpolation,

{0aVa}o<a<a, bounded in LlO(L%_),

Then the quantity / is uniformly bounded with respect to a.



Proof-Strong convergence of density

By employing the arguments of Lions [3], we can obtain

/ olog(o) — elog(e) < 0.
Q

This imples

olog(o) = olog(o),

and furthermore
O — 0 a.ein (0,T) x Q.

Then L
q(e) = q(o)-



Convergence for r, =¢ — 0

The first observation is that, unconditionally,

sup [lo=(7,) = 1| joc () < & (11)
te(0,T)

We then assume initial data satisfies

1
Mocliams < €. a7 /Q Q00.) dx < Qo) + ec.

This implies the right-hand side of energy inequality is uniformly
bounded. Then we have uniform bound for the solution [g., v].



Convergence for r, =¢ — 0

Then

v. — Uweakly in L%(0, T; W01’2(Q) and weakly-* in L>°(0, T; [2(Q))
and moreover,

Ht[v.] = 0in L2((0, T) x Q).
For any ¢ € C}(;R3), div ¢ =0,

t— / V: - ¢ dx precompact in C([0, T]). (12)
Q
Then, by means of the standard Lions-Aubin argument,

H[v.] = U in L?((0, T) x Q;R3), (13)



From quasi-incompressible to incompressible fluids

Consequently

v. — Uin L2((0, T) x Q; R?),

where U is a weak solution to the incompressible Navier-Stokes
system

divU =0, (14)
0tU+VU-U+ VP =AU, Ulpg =0, (15)

supplemented with the initial condition
U(O7 ) = H[VO]v (16)

where vg is a weak limit of vo . in L?(Q;R3).
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Thank you for your attention!



