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Model and viscosity

Equations

Let Ω ⊂ R3 be a three-dimensional domain.

We consider unsteady flows of an homogeneous fluid in Ω:

Balance of linear momentum

% (∂tv + div(v ⊗ v)) = divT + %f

Constraint of incompressibility

div v = 0

Cauchy stress tensor

T = −pI + 2µDv
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Model and viscosity

Viscosity

T = −pI + 2µ
↓

dynamic/shear viscosity

Dv

µ expresses resistance of the fluid to shearing flows.

classical Navier-Stokes fluids µ ≡ µ0 > 0

generalized Navier-Stokes fluids µ = µ(p, %, θ, c, |Dv|2, . . .)

our case µ = µ(p, |Dv|2)

=⇒ We consider a pressure- and shear-rate-dependent viscosity.
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Model and viscosity

Shear-rate-dependent viscosity

Viewed purely as a function of the shear rate, i.e.

µ = µ(|Dv|2),

the most popular relation characterizes the power-law fluids:

µ(|Dv|2) = µ0(1 + |Dv|2)(r−2)/2, µ0 > 0, r > 1,

where r is the power-law index that itself can vary with the
concentration or the pressure.
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Model and viscosity

Digression: r = r(c)

A shear-thinning experiment on synovial fluid over a wide range of
physiological concentration of hyaluronan. Viscosity vs. the shear rate.

(Petra Pustějovská, PhD Thesis, 2012)
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Model and viscosity

Power-law viscosity

Power-law relation

µ(|Dv|2) = µ0(1 + |Dv|2)(r−2)/2, µ0 > 0, r > 1.

r < 2: Shear-thinning/pseudoplastic behavior: An increase in relative flow
velocity effects a reduction in viscosity, e.g. ketchup, yogurt,
quicksand.

r = 2: Newtonian fluids: Viscosity is independent of shearing motion, e.g.
water, milk or alcohol.

r > 2: Shear-thickening/dilatant behavior: Viscosity goes up with relative
deformation, e.g. cornstarch in water (oobleck).
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Model and viscosity

Pressure-dependent viscosity

Provided the pressure range is of significant variation, its effect on
viscosity cannot be neglected.

Barus (1893) experimentally derived what we nowadays call

Barus’ law : µ(p) = µ1 exp(µ2p), µ1,2 > 0.

Unlike the power-law case, existence theory with µ = µ(p) is mostly
out of reach.
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Model and viscosity

µ as a function of both variables

There has been very little work concerning the response of fluids
whose viscosity depends on both the pressure and the shear rate
simultaneously.

In the studies concerned with µ = µ(p, |Dv|2), the viscosity has
generally satisfied

1 |µ(p, |Dv|2)| ≤ C(|Dv|2) for any p,

2 µ(p, |Dv|2) = µ1(p) · µ2(|Dv|2),

both of which are physically lacking.

=⇒ The existing theory for µ(p, |Dv|2) leaves a lot to be desired.
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Model and viscosity

Our viscosity

Wishing to combine the power law and Barus’ law, i.e.

µ(|Dv|2) = µ0(1 + |Dv|2)(r−2)/2,

µ(p) = µ1 exp(µ2p),

we set our aim to consider the following viscosity:

µ(p, |Dv|2) = µ0 exp

(
p− 2

2
ln(1 + |Dv|2)

)
= µ0(1 + |Dv|2)(p−2)/2, µ0 > 0.

=⇒ A power-law fluid with pressure as the power-law exponent
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Model and viscosity

Our equations

With the viscosity of the form

µ(p, |Dv|2) = µ0(1 + |Dv|2)(p−2)/2, µ0 > 0,

the investigated system becomes

% (∂tv + div(v ⊗ v))− div
[
µ0(1 + |Dv|2)(p−2)/2Dv

]
+∇p = %f ,

div v = 0.

No chance to develop existence theory for this level of generality!
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Model and viscosity

First glance

% (∂tv + div(v ⊗ v))− div
[
µ0(1 + |Dv|2)(p−2)/2Dv

]
+∇p = %f ,

div v = 0.

In its full generality, the problem is much too difficult; not even is the
power-law exponent non-constant p = p(t,x) but it is also unknown.

Mathematical tools have not been developed yet to tackle that
problem.

Therefore we consider a simplification, which allows us to compute
the pressure explicitly making the power-law exponent still
non-constant but at least known!
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Special solution

Simplification

Let Ω := R2 × (0, d) be a layer of a given depth d > 0.

Let %f = (0, 0,−%g)T , with g being the gravitational constant.

Denoting the Cartesian coordinates in R3 by x, y and z, we will
further assume that

v = v(t, z).

Let the boundary and initial conditions be of the form

v(0, z) = (f(z), 0, 0),

v(t, 0) = (g0(t), 0, 0),

v(t, d) = (gd(t), 0, 0),

p(t, d) = p0,


for every t > 0, z ∈ R, some smooth functions f , g0, gd and a
constant reference pressure p0.
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Special solution

Solution

Lemma

Assume that there is a smooth solution v = (u, v, w) and p to
our simplified problem. Then

v ≡ w ≡ 0 and p(t, x, y, z) = p0 + %g(d− z).
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Special solution

Proof of the lemma

Solenoidality and the simplifying assumptions read

(u, v, w) = v(t, z),

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= div v = 0,

⇒ ∂w

∂z
= 0.

Therefore w = w(t).

v(t, 0) = (g0(t), 0, 0) then implies

w(t) = w(t, 0) = 0 for all t.
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Special solution

Proof of the lemma

We then observe

div(v ⊗ v) =
∂

∂x

u · uv · u
w · u

+
∂

∂y

u · vv · v
w · v

+
∂

∂z

u · wv · w
w · w

 = 0

It also holds that

Dv =
1

2

 0 0 ∂u
∂z

0 0 ∂v
∂z

∂u
∂z

∂v
∂z 0


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Special solution

Proof of the lemma

Our system

%∂tv = −%div(v ⊗ v)−∇p+ 2 div(µ(p, |Dv|2)Dv) + %f

can therefore be written as

% ∂tu = −∂p
∂x

+
∂

∂z

(
µ(p, |Dv|2)

∂u

∂z

)
% ∂tv = −∂p

∂y
+

∂

∂z

(
µ(p, |Dv|2)

∂v

∂z

)
0 = −∂p

∂z
+

∂

∂x

(
µ(p, |Dv|2)

∂u

∂z

)
+

∂

∂y

(
µ(p, |Dv|2)

∂v

∂z

)
− %g

But then (
∂2

∂z2
− ∂2

∂x2
− ∂2

∂y2

)
p = 0.
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Special solution

Proof of the lemma

=⇒ We have a wave equation for p!

We can solve the equation explicitly.

Let

x′ = (x, y) and Bt(x
′, z) =

{
(t, x̄, ȳ, z); |x′ − x̄′| < z

}
.

Poisson’s formula therefore yields

p(t, x, y, d− z) =
1

2πz2

∫
Bt(x′,z)

p0z + %gz2

(z2 − |x′ − x̄′|2)1/2
dx̄′ = p0 + %gz,

so that

p(z) = p0 + %g(d− z).
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Special solution

Proof of the lemma

Since p = p(z), from the equation

% ∂tv = −∂p
∂y︸ ︷︷ ︸
=0

+
∂

∂z

(
µ(p, |Dv|2)

∂v

∂z

)
,

we deduce

%

2

d

dt
‖v(t)‖2L2(0,d) = −

∫ d

0

µ(p, |Dv|2)

∣∣∣∣∂v∂z
∣∣∣∣2 dz ≤ 0,

leading to v ≡ 0, because v(0) = (f(z), 0, 0) = (u(0), v(0), w(0)).
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Existence theorem

Implications
Due to the lemma, the original equation

%∂tv = −%div(v ⊗ v)−∇p+ 2 div(µ(p, |Dv|2)Dv) + %f

becomes

% ∂tu = 2
∂

∂z

(
µ(p, |∂zu|2)∂zu

)
in (0,∞)× (0, d),

p = p0 + %g(d− z) in (0,∞)× (0, d),

u(0, z) = f(z) in (0, d),

u(t, 0) = g0(t) in (0,∞),

u(t, d) = gd(t) in (0,∞).

That is, a PDE for a scalar function of one spatial and one temporal
variable.
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Due to the lemma, the original equation

%∂tv = −%div(v ⊗ v)−∇p+ 2 div(µ(p, |Dv|2)Dv) + %f

becomes

% ∂tu = 2
∂

∂z

(
µ(p, |∂zu|2)∂zu

)
in (0,∞)× (0, d),

p = p0 + %g(d− z) in (0,∞)× (0, d),

u(0, z) = f(z) in (0, d),
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Existence theorem

Existence for the original problem

=⇒ µ(p, |Dv|2) = µ0(1 + |Dv|2)(p0+%g(d−z)−2)/2

Theorem

Let us further assume p0 > 1 so that infz p(z) > 1. There is a unique
weak solution to the above equation, i.e. a function u satisfying

u ∈ L∞(0, T ;L2(0, d)) ∩ Lp(·)(0, T ;W 1,p(·)(0, d)),

∂tu ∈
(
Lp(·)(0, T ;W 1,p(·)(0, d))

)∗
,

lim
t→0+

‖u(t)− f‖L2(0,d) = 0

and solving the balance equation in the sense of distribution.
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Existence theorem

Rough sketch of the proof

Informally, the theorem is shown in a similar way as for the classical
power-law fluids with a fixed exponent r > 1, i.e.

1 Galerkin approximation
2 Energy estimates uniform in the approximation parameter
3 Minty method to identify the weak limit of the Cauchy tensor

Key ingredient: s 7→ µ(p, s2)s is monotone for any p > 1.

However, a major detour from the standard theory are the Lebesgue
and Sobolev spaces with variable exponents, i.e. Lp(·) and W 1,p(·),
respectively.

When the power law exponent p(·) satisfies the so-called log-Hölder
condition, in particular when it is linear like here, then the resulting
function spaces with a variable exponent behave much like their
standard counterparts with respect to reflexivity, separability, density
of smooth functions etc.
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Thank you for your attention!
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