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Equations

We consider unsteady flows of an homogeneous fluid in Q:

o Balance of linear momentum
00w +divivewv)) =divT + of
o Constraint of incompressibility
diveo =0

o Cauchy stress tensor

T = —pI + 2uDv
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Viscosity

[T = —pI+2,uDv]
-
dynamic/shear viscosity

1 expresses resistance of the fluid to shearing flows.

classical Navier-Stokes fluids = pug >0
generalized Navier-Stokes fluids u = u(p, 0,0, c, |Dv|?,...)
our case = pu(p,|Dv|?)
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Shear-rate-dependent viscosity

Viewed purely as a function of the shear rate, i.e.

= pu(| Do),

the most popular relation characterizes the power-law fluids:

[ #(1DoP) = po(1 + D)7, > 0,7 > 1, ]

where 7 is the power-law index that itself can vary with the
concentration or the pressure.
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A shear-thinning experiment on synovial fluid over a wide range of
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Power-law viscosity

Power-law relation

w(|Dv[?) = po(1 + |Dv)?)"=272 4y > 0,7 > 1.

r < 2: Shear-thinning/pseudoplastic behavior: An increase in relative flow
velocity effects a reduction in viscosity, e.g. ketchup, yogurt,
quicksand.
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Power-law relation

w(|Dv[?) = po(1 + |Dv)?)"=272 4y > 0,7 > 1.

r < 2: Shear-thinning/pseudoplastic behavior: An increase in relative flow
velocity effects a reduction in viscosity, e.g. ketchup, yogurt,
quicksand.

r = 2: Newtonian fluids: Viscosity is independent of shearing motion, e.g.
water, milk or alcohol.

r > 2: Shear-thickening/dilatant behavior: Viscosity goes up with relative
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o Provided the pressure range is of significant variation, its effect on
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Model and viscosity

Pressure-dependent viscosity

o Provided the pressure range is of significant variation, its effect on
viscosity cannot be neglected.

o Barus (1893) experimentally derived what we nowadays call

[BarUS’ law: pu(p) = pyexp(pap), pa,2 > 0.]

o Unlike the power-law case, existence theory with = u(p) is mostly
out of reach.
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1 as a function of both variables

o There has been very little work concerning the response of fluids
whose viscosity depends on both the pressure and the shear rate
simultaneously.
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1 as a function of both variables

o There has been very little work concerning the response of fluids

whose viscosity depends on both the pressure and the shear rate
simultaneously.

o In the studies concerned with p = u(p, | Dv|?), the viscosity has
generally satisfied

Q |ulp, IDvl*)| < C(|Dv|?) for any p,
Q wup.|Dv*) = pu(p) - p2(|Dvl*),
both of which are physically lacking.

== The existing theory for u(p,|Dv|?) leaves a lot to be desired.
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u(|Dv[*) = po(1+ | D)7,

p(p) = pa exp(p2p),

we set our aim to consider the following viscosity:

N e pp—— (p‘ 2 In(1 + |Dv|2>)

Ho(L+ [ DuP)P22, 1y > 0.
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Our equations

With the viscosity of the form
w(p, Do) = po(1+ [Do)P272 g > 0,

the investigated system becomes

0 (O + div(v ® v)) — div[uo(1 + | Dv[>)P2/2Dv] + Vp = of,
dive = 0.
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Our equations

With the viscosity of the form
w(p, Do) = po(1+ [Do)P272 g > 0,

the investigated system becomes

0 (O + div(v ® v)) — div[uo(1 + | Dv[>)P2/2Dv] + Vp = of,
dive = 0.

No chance to develop existence theory for this level of generality!
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First glance

0 (9 + div(v ® v)) — div [uo(1 + |Dv|?)P=2/2Do] + Vp = of,
dive = 0.

o In its full generality, the problem is much too difficult; not even is the
power-law exponent non-constant p = p(t, «) but it is also unknown.
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First glance

0 (9 + div(v ® v)) — div [uo(1 + |Dv|?)P=2/2Do] + Vp = of,
dive = 0.

o In its full generality, the problem is much too difficult; not even is the
power-law exponent non-constant p = p(t, «) but it is also unknown.

o Mathematical tools have not been developed yet to tackle that
problem.

o Therefore we consider a simplification, which allows us to compute
the pressure explicitly making the power-law exponent still
non-constant but at least known!
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Simplification

o Let of = (0,0, —0g)T, with g being the gravitational constant.

o Denoting the Cartesian coordinates in R? by z, y and z, we will
further assume that

v =v(t, 2).
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Simplification

o Let of = (0,0, —0g)T, with g being the gravitational constant.

o Denoting the Cartesian coordinates in R? by z, y and z, we will
further assume that

v =v(t, 2).
o Let the boundary and initial conditions be of the form

’U(O, Z) = (f(z)’ 0, 0)7

U(t, 0) = (go(t), 0, 0)7
’U(t, d) = (gd(t)a 0) 0)7
p(t, d) = po,
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Special solution

Solution

Lemma

Assume that there is a smooth solution v = (u,v,w) and p to
our simplified problem. Then

[vaEO and p(t,z,y,z) :po—i—gg(d—z).]
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Proof of the lemma

o Solenoidality and the simplifying assumptions read

(u,v,w) = v(t, 2),

ou Ov Ow .

oz Ty T~ dive =0
ow
=9 =0

Therefore w = w(t).
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Special solution

UN_IVERSIT‘T\T
WURZBURG

Proof of the lemma

dality and the simplitying assumptions read

(u,v,w) = v(t, 2),

ou Ov Ow .

oz Ty T~ dive =0
ow
=9 =0

Therefore w = w(t).
o v(t,0) = (go(t),0,0) then implies
[w(t) —w(t,0)=0 forall . ]
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Proof of the lemma

o We then observe

¥l

u-u
divivev)=—|v-u |+
w-u

o e =
+
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Proof of the lemma

o We then observe

o (v u o [u-v o [vw
divvev)=—|vu|+—|vv]|+=—[v-w]|]=0
Oz w-u 0y w- v 0z w-w
o It also holds that

ou

Dv—l 8 8 33

2\ ow o0 §

0z 0z
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Proof of the lemma

00w = —pdiv(v @ v) — Vp + 2div(u(p, |Dv|?)Dv) + of
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Proof of the lemma

00w = —odiv(v ® v) — Vp + 2div(u(p, | Dv|*) Dv) + of
can therefore be written as

_ Op O 9, OU
0O =—7"+ o (u(plevl )5)

_ 9p 0 5. Ov
001w = 9y + 3 (u(pyDvl )az>
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Proof of the lemma

00w = —odiv(v ® v) — Vp + 2div(u(p, | Dv|*) Dv) + of
can therefore be written as

_ Op O 9, OU
0O =—7"+ o (u(plevl )—)

0z
00w =3+ 7 (ulp Do) 3
0=t % (unlDoP)GE ) + o (e[ DOPGE) - oa
o But then
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Special solution

Proof of the lemma

vVVe have a wave equation tor p:

o We can solve the equation explicitly.

o Let

o' =(2,y) and B2’ z2) = {(t,7,7,2); o' — 7| < z}.
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Proof of the lemma

vVVe have a wave equation tor p:

o We can solve the equation explicitly.

o Let
o' = (z,y) and Bi(z',z) = {(t,7,7,2); " = T'| < z}.

o Poisson’s formula therefore yields

1 poz + 092> —/
t, ) 7d - ) dz’ = 5
plt, 2y ) 222 /Bt(z’,z) (22 — o’ — &'[2)1/2 TS potegs

so that

p(2) = po + o0g(d — 2).
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Proof of the lemma

o Since p = p(z), from the equation

_ 0p .0 5 O
00w = 8y+82 (u(p, | D )az>’
=0

we deduce

2
dz <0,

d
od 9 B 9y | OV
800 == [ o Do) |5

leading to v = 0, because v(0) = (f(z),0,0) = (u(O),’u(O),w(O)).D
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Implications

00w = —odiv(v ® v) — Vp + 2div(u(p, |Dv|*) Dv) + of

becomes
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Implications

00w = —pdiv(v ® v) — Vp + 2div(u(p, |Dv|*) Dv) + of

becomes
00 =2 (u(p,10-uP)0u) i (0,00) x (0,d),
,00) X (0,d),

p=po+ 09(d— ) in
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Existence for the original problem

— | u(p, |Dv|?) = po(1 + | Do|?)Potes(d—2)-2)/2
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Existence for the original problem

— | u(p, |Dv|?) = po(1 + | Do|?)Potes(d—2)-2)/2

Theorem

Let us further assume py > 1 so that inf, p(z) > 1. There is a unique
weak solution to the above equation, i.e. a function u satisfying

u € L™(0,T; L2(0,d)) N LPO(0,T; W) (0, d)),
Opu € (LPO(0,T; WHP0(0,d)))",

Jim [[u(t) = fllz20.0 = 0

and solving the balance equation in the sense of distribution.

Power-law index proportional to the pressure

20 / 22



Existence theorem

== Rough sketch of the proof
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power-law fluids with a fixed exponent r > 1, i.e.
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Rough sketch of the proof

o Informally,
power-law fluids with a fixed exponent r > 1, i.e.

@ Galerkin approximation

@ Energy estimates uniform in the approximation parameter
© Minty method to identify the weak limit of the Cauchy tensor

o Key ingredient: s — pu(p, s2)s is monotone for any p > 1.
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@ Galerkin approximation

@ Energy estimates uniform in the approximation parameter
© Minty method to identify the weak limit of the Cauchy tensor

o Key ingredient: s — pu(p, s2)s is monotone for any p > 1.

o However, a major detour from the standard theory are the Lebesgue
and Sobolev spaces with variable exponents, i.e. LP() and W1»(),
respectively.
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Existence theorem

Rough sketch of the proof

y, the theorem is shown in a similar way as for the classica
power-law fluids with a fixed exponent r > 1, i.e.

@ Galerkin approximation
@ Energy estimates uniform in the approximation parameter
© Minty method to identify the weak limit of the Cauchy tensor

o Key ingredient: s — pu(p, s2)s is monotone for any p > 1.

o However, a major detour from the standard theory are the Lebesgue
and Sobolev spaces with variable exponents, i.e. LP() and W1»(),
respectively.

o When the power law exponent p(-) satisfies the so-called log-Holder

condition, in particular when it is linear like here, then the resulting
function spaces with a variable exponent behave much like their
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Thank you for your attention!
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