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Abstract

We explore the existence of global weak solutions to the Hookean dumbbell model, a system of nonlinear
partial differential equations that arises from the kinetic theory of dilute polymers, involving the unsteady
incompressible Navier–Stokes equations in a bounded domain in two or three space dimensions, coupled
to a Fokker–Planck-type parabolic equation. We prove the existence of large-data global weak solutions
in the case of two space dimensions. Indirectly, our proof also rigorously demonstrates that, in two space
dimensions at least, the Oldroyd-B model is the macroscopic closure of the Hookean dumbbell model.
In three space dimensions, we prove the existence of large-data global weak subsolutions to the model,
which are weak solutions with a defect measure, where the defect measure appearing in the Navier–Stokes
momentum equation is the divergence of a symmetric positive semidefinite matrix-valued Radon measure.

Keywords: Kinetic polymer models, Hookean dumbbell model, Navier–Stokes–Fokker–Planck system, di-
lute polymer, Oldroyd-B model

1 Introduction

The aim of this paper is to explore the existence of global weak solutions to the Hookean dumbbell model, — a
system of nonlinear partial differential equations involving the coupling of the time-dependent incompressible
Navier–Stokes equations to a parabolic Fokker–Planck type equation, — which arises from the kinetic theory
of dilute polymeric fluids. In this model the solvent is assumed to be an isothermal, viscous, incompressible,
Newtonian fluid in a bounded open Lipschitz domain Ω ⊂ Rd, d = 2 or 3. We will admit both d = 2 and
d = 3 for the vast majority of the paper, even though our main result concerning the existence of large-data
global weak solutions is, ultimately, restricted to the case of d = 2. In the model the equation for conservation
of linear momentum in the Navier–Stokes system involves, as a source term, an elastic extra-stress tensor τ

≈
(i.e., the polymeric part of the Cauchy stress tensor), to be defined below in terms of the solution of a coupled
Fokker–Planck type equation.

Given T ∈ R>0, we seek a nondimensional velocity field u∼ : (x∼, t) ∈ Ω × [0, T ] 7→ u∼(x∼, t) ∈ Rd (which,
for simplicity, we shall require to satisfy a no-slip boundary condition on ∂Ω × (0, T ]) and a nondimensional
pressure p : (x∼, t) ∈ Ω× (0, T ] 7→ p(x∼, t) ∈ R, such that

∂u
∼

∂t
+ (u

∼
· ∇
∼
x)u
∼
− ν∆xu

∼
+∇
∼
xp = f

∼
+∇
∼
x · τ
≈

in Ω× (0, T ], (1.1a)

∇
∼
x · u
∼

= 0 in Ω× (0, T ], (1.1b)
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u
∼

= 0
∼

on ∂Ω× (0, T ], (1.1c)

u
∼

(x
∼
, 0) = u

∼
0(x
∼

) ∀x
∼
∈ Ω. (1.1d)

In these equations ν ∈ R>0 is the reciprocal of the Reynolds number and f is the nondimensional density of
body forces.

The simplest kinetic model for a dilute polymeric fluid is the dumbbell model, where long polymer chains
suspended in the viscous incompressible Newtonian solvent are assumed not to interact with each other, and
each chain is idealized as a pair of massless beads, connected with an elastic spring. The associated elastic
extra-stress tensor τ

≈
is defined by the Kramers expression in terms of ψ, the probability density function of the

(random) conformation vector q
∼

of the spring (cf. (1.9) below), and the domain D of admissible conformation

vectors q
∼

is either the whole of Rd or a bounded open d-dimensional ball centred at the origin 0∼ ∈ Rd. The
evolution of ψ from a given nonnegative initial datum, ψ0, is governed by a second-order parabolic partial
differential equation, the Fokker–Planck equation, whose transport coefficients depend on the velocity field u∼.

In [6] we were concerned with models where D is a bounded open ball in Rd, d = 2, 3, resulting in, what
are known as, finitely extensible nonlinear (FENE) models. Here, as in [7], we shall be concerned with the
technically more subtle case when D = Rd, i.e., the spring between the beads is allowed to have an arbitrarily
large extension. In fact, in both [6] and [7] we considered the more general case of polymer models involving
linear chains of K + 1 beads coupled with K springs, where K ≥ 1. Much of the analysis below carries
across to K > 1, but as our final result is restricted to K = 1 we shall confine ourselves to this case from
the start for simplicity. Although springs with arbitrarily large extension are physically unrealistic, thanks
to their simplicity models of this kind are, nevertheless, frequently used in practice. The elastic spring-force
F∼ : D = Rd → Rd of the spring is then defined by

F∼ (q
∼
) = U ′( 1

2 |q∼|
2) q
∼
, (1.2)

where U ∈W 2,∞
loc ([0,∞);R≥0), U(0) = 0 and U is monotonic nondecreasing and unbounded on [0,∞). We

note that, among all such potentials U , only the Hookean potential U(s) = s, with associated spring force
F∼ (q
∼
) = q

∼
, q
∼
∈ D = Rd, yields, formally at least, closure to a macroscopic model, the Oldroyd-B model (cf.

[24]), which we shall state below.
In our paper [7], we further assumed that there exist constants cj > 0, j = 1, 2, 3, 4, such that the

(normalized) Maxwellian M , is defined on D = Rd by

M(q
∼
) :=

1

Z
e
−U( 1

2 |q∼|
2)
, where Z :=

∫
D

e
−U( 1

2 |q∼|
2)

dq
∼
, yielding

∫
D

M(q
∼
) dq
∼

= 1, (1.3)

and the associated spring potential U satisfies, for ϑ > 1,

U( 1
2 |q
∼
|2) = c1 ( 1

2 |q
∼
|2)ϑ as |q

∼
| → ∞, (1.4a)

U ′( 1
2 |q
∼
|2) ≤ c2 + c3 ( 1

2 |q
∼
|2)ϑ−1 ∀q

∼
∈ D, (1.4b)

and hence

M(q
∼
) = c4 e

−c1( 1
2 |q
∼
|2)ϑ

as |q
∼
| → ∞. (1.4c)

Therefore, in [7] we were unable to cover the case of the Hookean model, which corresponds to the choice
ϑ = 1 in (1.4a–c). This was due to the failure of a compactness argument, used in passing to a limit on the
extra-stress tensor in the existence proof there, which required that the mapping s 7→ U(s) had superlinear
growth at infinity; see Section 6 below for further details. We note that apart from this step, all the other
results in [7] remain valid with ϑ ≥ 1 in (1.4a–c). Thus in [7] we could deal with a spring potential of the form

U(s) =

 s for s ∈ [0, s∞],

s∞
ϑ

[(
s
s∞

)ϑ
+ (ϑ− 1)

]
for s ≥ s∞

(1.5)
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for any s∞ > 0 and ϑ > 1, which approximates the Hookean potential U(s) = s. Hence our use of the terminol-
ogy Hookean-type model throughout the paper [7] (instead of Hookean model, which would have corresponded
to taking ϑ = 1 in the above).

In this paper, we overcome the difficulties encountered with the compactness result used on the extra-stress
term in [7] and so we are able to address the Hookean model. This is achieved by relating the Hookean model
to its macroscopic closure, the Oldroyd-B model, and using an existence result, and establishing regularity
results, for the latter. We shall assume henceforth, in place of (1.4a–c), that

U( 1
2 |q
∼
|2) = 1

2 |q
∼
|2. (1.6)

By recalling (1.3), we observe that the Maxwellian satisfies

M(q
∼
)∇∼ q[M(q

∼
)]−1 = −[M(q

∼
)]−1∇∼ qM(q

∼
) = ∇∼ qU( 1

2 |q∼|
2) = U ′( 1

2 |q∼|
2) q
∼

= q
∼
. (1.7)

It follows from (1.3) and (1.6) that, for any r ∈ [0,∞),∫
D

M(q
∼
) |q
∼
|r dq

∼
<∞. (1.8)

The governing equations of the Hookean dumbbell model are (1.1a–d), where the extra-stress tensor τ
≈
,

dependent on the probability density function ψ : (x∼, q∼, t) ∈ Ω ×D × [0, T ] 7→ ψ(x∼, q∼, t) ∈ R≥0, is defined by
the Kramers expression:

τ
≈
(ψ) := k

(
σ
≈

(ψ)− ρ(ψ) I
≈

)
, (1.9)

where the dimensionless constant k > 0 is a constant multiple of the product of the Boltzmann constant kB
and the absolute temperature T , I

≈
is the unit d× d tensor,

σ
≈

(ψ)(x∼, t) :=

∫
D

ψ(x∼, q∼, t) q∼ q∼
T U ′

(
1
2 |q∼|

2
)

dq
∼

=

∫
D

ψ(x∼, q∼, t) q∼ q∼
T dq

∼
(1.10a)

and the density of polymer chains located at x∼ at time t is given by

ρ(ψ)(x∼, t) :=

∫
D

ψ(x∼, q∼, t) dq
∼
. (1.10b)

The probability density function ψ is a solution, in Ω×D × (0, T ], of the Fokker–Planck equation

∂ψ

∂t
+ (u

∼
· ∇
∼
x)ψ +∇

∼
q ·
(

(∇
≈
x u
∼

) q
∼
ψ

)
= ε∆x ψ +

1

4λ
∇
∼
q ·
(
M ∇
∼
q

(
ψ

M

))
, (1.11)

where, for v∼ = v∼(x∼, t) ∈ Rd, (∇
≈ x v∼)(x∼, t) ∈ Rd×d and {∇

≈ x v∼}ij := ∂vi
∂xj

. In (1.11), ε > 0 is the dimensionless

centre-of-mass diffusion coefficient and the dimensionless parameter λ ∈ R>0 is the Deborah number; we refer
the reader to [6, 7, 5, 8] for further details.

Finally, we impose the following decay/boundary and initial conditions on ψ:∣∣∣∣M [
1

4λ
∇
∼
q

(
ψ

M

)
− (∇

≈
x u
∼

) q
∼

ψ

M

]∣∣∣∣→ 0 as |q
∼
| → ∞ on Ω× (0, T ], (1.12a)

ε∇
∼
xψ · n

∼
= 0 on ∂Ω×D × (0, T ], (1.12b)

ψ(·, ·, 0) = ψ0(·, ·) ≥ 0 on Ω×D, (1.12c)

where n∼ is the unit outward normal vector to ∂Ω.
Here ψ0 is a nonnegative function defined on Ω×D, with

∫
D
ψ0(x∼, q∼) dq

∼
= 1 for a.e. x∼ ∈ Ω. The boundary

conditions for ψ on ∂Ω×D× (0, T ] and the decay conditions for ψ on Ω× (0, T ] as |q
∼
| → ∞ have been chosen

so as to ensure that ∫
D

ψ(x
∼
, q
∼
, t) dq

∼
=

∫
D

ψ(x
∼
, q
∼
, 0) dq

∼
∀(x
∼
, t) ∈ Ω× (0, T ]. (1.13)
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Definition 1.1 The set of equations and hypotheses (1.1a–d), (1.3), (1.6) and (1.9)–(1.12a–c) will be referred
to henceforth as model (P), or as the Hookean dumbbell model (with centre-of-mass diffusion).

Next, for any a∼ ∈ Rd, we note the following results:

(a
∼
· ∇
∼
q) q
∼
q
∼

T = a
∼
q
∼

T + q
∼
a
∼

T, ∆q [q
∼
q
∼

T] = 2 I
≈
, (a

∼
· ∇
∼
q) |q
∼
|2 = 2 a

∼
· q
∼

and ∆q |q
∼
|2 = 2 d. (1.14)

Multiplying (1.11) by q
∼
q
∼

T, integrating over D, performing integration by parts (assuming that ψ and ∇∼ qψ

decay to zero, sufficiently fast as |q
∼
| → ∞) and noting (1.14), and, similarly, integrating (1.11) over D and

noting (1.12a), yields formally that σ
≈

(ψ)(x∼, t) ∈ Rd×d and ρ(ψ)(x∼, t) ∈ R satisfy

∂σ
≈

(ψ)

∂t
+ (u

∼
· ∇
∼
x)σ
≈

(ψ)−
[
(∇
≈
x u
∼

)σ
≈

(ψ) + σ
≈

(ψ) (∇
≈
x u
∼

)T
]
− ε∆x σ

≈
(ψ) =

1

2λ

[
ρ(ψ) I

≈
− σ
≈

(ψ)
]

in Ω× (0, T ], (1.15a)

∂ρ(ψ)

∂t
+ (u

∼
· ∇
∼
x)ρ(ψ)− ε∆x ρ(ψ) = 0 in Ω× (0, T ], (1.15b)

subject to the boundary and initial conditions

ε∇
∼
xσ
≈

(ψ) · n
∼

= 0
≈

on ∂Ω× (0, T ], σ
≈

(ψ)(·, 0) = σ
≈

(ψ0)(·) on Ω,

ε∇
∼
xρ(ψ) · n

∼
= 0 on ∂Ω× (0, T ], ρ(ψ)(·, 0) = ρ(ψ0)(·) on Ω. (1.15c)

As it is assumed that
∫
D
ψ0(x∼, q∼) dq

∼
= 1 for a.e. x∼ ∈ Ω, it follows that ρ(ψ) ≡ 1 is the unique solution of

(1.15b,c).

Definition 1.2 The collection of equations (1.1a–d), (1.9) and (1.15a–c) will be referred to throughout the
paper as model (Q), or as the Oldroyd-B model (with stress-diffusion).

A remark is in order concerning the evolution equation (1.15a) for the extra stress tensor σ
≈

.

Remark 1.1 By suppressing in our notation the dependence of σ
≈

and ρ on ψ and setting ε = 0, equation
(1.15a) becomes

∂σ
≈

∂t
+ (u

∼
· ∇
∼
x)σ
≈
−
[
(∇
≈
x u
∼

)σ
≈

+ σ
≈

(∇
≈
x u
∼

)T
]

=
1

2λ

(
ρ I
≈
− σ
≈

)
. (1.16)

This is precisely the classical Oldroyd-B evolution equation for the elastic extra-stress, with our factor 1/2λ
usually replaced by 1/λ, which is easily derived from equation (59) in Oldroyd’s paper [24]. Indeed, by inter-
preting the convective derivative d

dt in equation (59) in [24] as the upper convected derivative

∇· defined by
∇
σ
≈

:=
∂σ
≈

∂t
+ (u∼ · ∇∼ x)σ

≈
−
[
(∇
≈ x u∼)σ

≈
+ σ
≈

(∇
≈ x u∼)T

]
,

and by additively splitting the (total) Cauchy stress tensor into a part T
≈

, to be defined below, related to the
distortion (deformation at constant volume), and an isotropic tensor that is a scalar multiple of I

≈
, as in

equation (52) in [24], equation (59) in [24] states that

T
≈

+ λ
∇
T
≈

= 2µ (D
≈

+ α
∇
D
≈

), where D
≈

= D
≈

(u∼) :=
1

2
(∇
≈ x u∼ + (∇

≈ x u∼)T)

is the symmetric velocity gradient, µ = µs + µp is the sum of the solvent viscosity µs > 0 and the polymeric
viscosity µp > 0; and λ > 0, the relaxation time, and α > 0, the retardation time, are two constants with
the dimension of time. By splitting the tensor T

≈
additively into its solvent part T

≈ s
and polymeric part T

≈ p
as

T
≈

= T
≈ s

+ T
≈ p

, where T
≈ s

:= 2µsD≈ , and setting α := λµs/(µp + µs), it follows that

T
≈ p

+ λ
∇
T
≈ p

= 2µpD≈ .
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As
∇
I
≈

= −2D
≈

, we then have that T
≈ p

+ λ
∇
T
≈ p

= −µp
∇
I
≈

. Thus, by defining σ
≈

:= ρλ
µp
T
≈ p

+ ρ I
≈

, where ρ is the

solution of ∂ρ
∂t + (u∼ · ∇∼ x)ρ = 0 (i.e. (1.15b) with ε = 0) subject to a given initial condition ρ(x∼, 0) = ρ0(x∼), we

deduce that
∇
σ
≈

=
1

λ
(ρ I
≈
− σ
≈

),

which is precisely (1.16) upon replacing Oldroyd’s λ by our 2λ; in particular, the choice of ρ0(x∼) ≡ 1 yields
ρ(x∼, t) ≡ 1 for all (x∼, t) ∈ Ω× (0, T ], in agreement with the statement in the sentence preceding Definition 1.2.
In summary then, T

≈
:= T
≈ s

+ T
≈ p

, with T
≈ s

:= 2µsD≈ and T
≈ p

:=
µp
ρλ (σ

≈
− ρI

≈
), where σ

≈
and ρ are solutions to the

partial differential equations appearing in the previous sentence, with ρ(x, t) ≡ 1 being an admissible special
case. For an alternative, thermodynamically consistent, derivation of the Oldroyd-B model we refer to [22].

We continue with a brief literature survey. In our paper [7] we proved the existence and equilibration
of large-data global weak solutions to general noncorotational Hookean-type bead-spring chain models with
stress-diffusion in both two and three space dimensions, under the assumption that the spring potentials
appearing in the model exhibit superlinear growth at infinity. We were, however, unable to cover the classical
Hookean dumbbell model, where the spring potential has linear growth at infinity. Our objective here is to
close this gap, in the case of two space dimensions at least. The relevance of the Hookean dumbbell model
is that it has a formal macroscopic closure: the Oldroyd-B model. Lions and Masmoudi [21] proved global
existence of large-data weak solutions to a corotational Oldroyd-B model (i.e. one where the gradient of the
velocity field in the stress evolution equation is replaced by the skew-symmetric part of the velocity gradient)
without stress-diffusion, in both two and three space dimensions. Returning to the general noncorotational
case, Hu and Lin [20] proved the global existence of weak solutions to incompressible viscoelastic flows,
including the Oldroyd-B model, without stress-diffusion, in two spatial dimensions, under the assumption that
the initial deformation gradient is close to the identity matrix in L

≈
2(Ω) ∩ L

≈
∞(Ω) and the initial velocity is

small in L∼
2(Ω) and bounded in L∼

p(Ω) for some p > 2. In [3], Barrett & Boyaval proved the existence of large-
data global weak solutions to the Oldroyd-B model, in the presence of stress-diffusion, again in two spatial
dimensions. Constantin and Kliegl [11] subsequently showed the global regularity of solutions to the Oldroyd-
B model with stress-diffusion in two space dimensions. Motivated by [3] and maximal regularity results for
the unsteady Stokes and Navier–Stokes systems (cf. [19], [26], [14], for example, and references therein), we
revisit the classical Hookean dumbbell model and prove, in the general noncorotational case, in two space
dimensions, the existence of large-data global weak solutions. Indirectly, our argument also rigorously proves
that, in two space dimensions at least, the Oldroyd-B model with stress-diffusion is the macroscopic closure
of the Hookean dumbbell model with centre-of-mass diffusion. In the case of three dimensions the question
of existence of large-data global weak solutions to both the general noncorotational Hookean dumbbell model
and the noncorotational Oldroyd-B model with stress-diffusion remains open, although we will show here the
existence of large-data global weak subsolutions to the general noncorotational Hookean dumbbell model for
d = 3.

The paper is structured as follows. In the next section we introduce our notation and useful results, such
as compactness theorems. Henceforth, we shall frequently write

ψ̂ := ψ/M, ψ̂0 := ψ0/M.

In Section 3, we recall from [3] a global-in-time existence result for the Oldroyd-B model when d = 2. We then
establish some regularity results for this solution, (u∼OB, σ≈OB), and a uniqueness result for the stress equation.

In Section 4, we prove the existence of a global-in-time weak solution, ψ̂?, to the Fokker–Planck equation, for
a given velocity field u∼?, via regularization and time discretization. In addition, we show that σ

≈
(M ψ̂?) solves

the corresponding Oldroyd-B stress equation with given velocity field u∼?. In Section 5 we combine the results

of the previous two sections to establish the the existence of a global-in-time weak solution, (u∼OB, ψ̂OB), to

the Hookean dumbbell model when d = 2. Moreover, we show that (u∼OB, σ≈(M ψ̂OB)) solves the Oldroyd-B
model. Finally in Section 6 we explain why we had to resort to the reasoning upon which our existence proof
is based, and why a more direct argument is only capable of showing, for both d = 2 and d = 3, the existence
of large-data global weak subsolutions (in a sense to be made precise in Section 6).
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2 Preliminaries

Let Ω ⊂ Rd, d = 2 or 3, be a bounded open set with a Lipschitz-continuous boundary ∂Ω, and the set of
elongation vectors q

∼
∈ D ≡ Rd. Let

H∼ := {w∼ ∈ L∼ 2(Ω) : ∇∼ x · w∼ = 0, (w∼ · n∼)|∂Ω = 0} and V∼ := {w∼ ∈ H∼ 1
0(Ω) : ∇∼ x · w∼ = 0}, (2.1)

where the divergence operator ∇∼ x· is to be understood in the sense of vector-valued distributions on Ω. Let
[H∼

1
0(Ω)]′ denote the dual of H∼

1
0(Ω). We recall the following well-known Gagliardo–Nirenberg inequality. Let

r ∈ [2,∞) if d = 2, and r ∈ [2, 6] if d = 3 and θ = d
(

1
2 −

1
r

)
. Then, there is a constant C = C(Ω, r, d), such

that, for all η ∈ H1(Ω):
‖η‖Lr(Ω) ≤ C ‖η‖1−θL2(Ω) ‖η‖

θ
H1(Ω). (2.2)

Let LpM (Ω×D), p ∈ [1,∞), denote the Maxwellian-weighted Lp space over Ω×D with norm

‖ϕ̂‖LpM (Ω×D) :=

{∫
Ω×D

M |ϕ̂|p dq
∼

dx∼

} 1
p

.

Similarly, we introduce LpM (D), the Maxwellian-weighted Lp space over D. On defining

‖ϕ̂‖H1
M (Ω×D) :=

{∫
Ω×D

M

[
|ϕ̂|2 +

∣∣∣∇
∼
xϕ̂
∣∣∣2 +

∣∣∣∇
∼
qϕ̂
∣∣∣2 ] dq

∼
dx
∼

} 1
2

, (2.3)

we then set

X̂ ≡ H1
M (Ω×D) :=

{
ϕ̂ ∈ L1

loc(Ω×D) : ‖ϕ̂‖H1
M (Ω×D) <∞

}
. (2.4)

Similarly, we introduce H1
M (D), the Maxwellian-weighted H1 space over D. It is shown in Appendix A of [7]

that

C∞0 (D) is dense in H1
M (D) and hence C∞(Ω, C∞0 (D)) is dense in X̂. (2.5)

In addition, we note that the embeddings

H1
M (D) ↪→ L2

M (D), (2.6a)

H1
M (Ω×D) ≡ L2(Ω;H1

M (D)) ∩H1(Ω;L2
M (D)) ↪→ L2

M (Ω×D) ≡ L2(Ω;L2
M (D)) (2.6b)

are compact; see Appendix D and Appendix F of [7], respectively.
Next, we note that (1.10a) and (1.8) yield, for ϕ̂ ∈ L2

M (Ω×D) and any r ∈ [0,∞), that∫
Ω

|σ
≈

(M ϕ̂)|2 dx
∼

=

∫
Ω

∣∣∣∣∫
D

M ϕ̂ q
∼
q
∼

T dq
∼

∣∣∣∣2 dx
∼
≤
(∫

D

M |q
∼
|4 dq

∼

)(∫
Ω×D

M |ϕ̂|2 dq
∼

dx
∼

)
≤ C ‖ϕ̂‖2L2

M (Ω×D), (2.7a)(∫
Ω×D

M |q
∼
|r |ϕ̂|dq

∼
dx
∼

)2

≤
(∫

D

M |q
∼
|2r dq

∼

)(∫
Ω×D

M |ϕ̂|2 dq
∼

dx
∼

)
≤ C ‖ϕ̂‖2L2

M (Ω×D). (2.7b)

In addition, the following simple lemma will be useful (cf. Lemma 5.1 in [5] for the proof).

Lemma 2.1 Suppose that a sequence {ϕ̂n}∞n=1 converges in L1(0, T ;L1
M (Ω×D)) to ϕ̂ ∈ L1(0, T ;L1

M (Ω×D)),
and is bounded in L∞(0, T ;L1

M (Ω ×D)), i.e., there exists K0 > 0 such that ‖ϕn‖L∞(0,T ;L1
M (Ω×D)) ≤ K0 for

all n ≥ 1. Then, ϕ̂ ∈ Lp(0, T ;L1
M (Ω × D)) for all p ∈ [1,∞), and the sequence {ϕ̂n}n≥1 converges to ϕ̂ in

Lp(0, T ;L1
M (Ω×D)) for all p ∈ [1,∞).

We shall use the symbol | · | to denote the absolute value when the argument is a real number, the Euclidean
norm when the argument is a vector, and the Frobenius norm when the argument is a square matrix. For a
square matrix B

≈
∈ Rd×d, we recall that the symbol tr(B

≈
) will signify the trace of B

≈
.

We state a simple integration-by-parts formula (cf. Lemma 3.1 in [7] and note that U ′ ≡ 1).
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Lemma 2.2 Suppose that ϕ̂ ∈ H1
M (D) and let B

≈
∈ Rd×d be a square matrix such that tr(B

≈
) = 0; then,∫

D

M(q
∼
) (B
≈
q
∼
) · ∇
∼
qϕ̂(q

∼
) dq
∼

=

∫
D

M(q
∼
) ϕ̂(q

∼
) q
∼
q
∼

T : B
≈

dq
∼
. (2.8)

Let F ∈ C(R>0) be defined by

F(s) := s (log s− 1) + 1, s > 0; F(0) := 1. (2.9)

Clearly, F ∈ C([0,∞)), and is a nonnegative, strictly convex function. We note the following result.

Lemma 2.3 For all ϕ̂ such that F(ϕ̂) ∈ L1
M (Ω×D) we have that∫

Ω×D
M

(
1

2
|q
∼
|2
)
ϕ̂dq

∼
dx
∼
≤ 2

c

[∫
Ω×D

M F(ϕ̂) dq
∼

dx
∼

+ |Ω|
∫
D

M e
c
2 ( 1

2 |q
∼
|2)

dq
∼

]
, (2.10)

where c = 1.

Proof See the proof of Lemma 4.1 in [7], where it is proved with 1
2 |q∼|

2 and c replaced by ( 1
2 |q∼|

2)ϑ and c1,

respectively, and M , recall (1.3), based on U , satisfying (1.4a–c); but the proof given there is valid for ϑ = 1
and hence for M based on (1.6). 2

We recall the Aubin–Lions–Simon compactness theorem, see, e.g., Temam [27] and Simon [25]. Let B0,
B and B1 be Banach spaces, where Bi, i = 0, 1, are reflexive, with a compact embedding B0 ↪→ B and a
continuous embedding B ↪→ B1. Then, for αi > 1, i = 0, 1, the embedding

{ η ∈ Lα0(0, T ;B0) : ∂η∂t ∈ L
α1(0, T ;B1) } ↪→ Lα0(0, T ;B) (2.11)

is compact.
We shall also require the following generalization of the Aubin–Lions–Simon compactness theorem due to

Dubinskĭı [13]; see also [9]. Before stating the result, we recall the concept of a seminormed set (in the sense
of Dubinskĭı). A subset M of a linear space A over R is said to be a seminormed set if c ϕ ∈ M, for any
c ∈ [0,∞) and ϕ ∈ A, and there exists a functional (namely the seminorm ofM), denoted by [ϕ]M, such that:

(i) [ϕ]M ≥ 0 ∀ϕ ∈M; and [ϕ]M = 0 if, and only if, ϕ = 0;

(ii) [c ϕ]M = c [ϕ]M ∀ϕ ∈M, ∀c ∈ [0,∞).

A subset B of a seminormed set M is said to be bounded if there exists a positive constant K0 such that
[ϕ]M ≤ K0 for all ϕ ∈ B. A seminormed setM contained in a normed linear space A with norm ‖·‖A is said to
be continuously embedded in A, and we writeM ↪→ A, if there exists a K0 ∈ R>0 such that ‖ϕ‖A ≤ K0[ϕ]M
for all ϕ ∈M. The embedding of a seminormed set M into a normed linear space A is said to be compact if
from any bounded infinite set of elements of M one can extract a subsequence that converges in A.

Theorem 2.1 (Dubinskĭı [13]) Suppose that A0 and A1 are Banach spaces, A0 ↪→ A1, and M is a semi-
normed subset of A0 such that the embedding M ↪→ A0 is compact. Then, for αi > 1, i = 0, 1, the embedding

{ η ∈ Lα0(0, T ;M) :
∂η

∂t
∈ Lα1(0, T ;A1) } ↪→ Lα0(0, T ;A0)

is compact.

3 The Oldroyd-B model

We start with noting the following existence result for problem (Q), Oldroyd-B, with ρ ≡ 1.
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Theorem 3.1 Let d = 2 and ∂Ω ∈ C0,1. In addition, let u∼0 ∈ H∼ , σ
≈0 ∈ L≈

2(Ω) with σ
≈0 = σ

≈
T
0 ≥ 0 a.e. in Ω

and f
∼
∈ L∼ 2(0, T ; [H∼

1
0(Ω)]′). Then there exist

u
∼

OB ∈ L∞(0, T ;L
∼

2(Ω)) ∩ L2(0, T ;V
∼

) and σ
≈

OB ∈ L∞(0, T ;L
≈

2(Ω)) ∩ L2(0, T ;H
≈

1(Ω)) (3.1)

with σ
≈OB = σ

≈
T
OB ≥ 0 a.e. in Ω× (0, T ] such that

−
∫ T

0

∫
Ω

u
∼

OB ·
∂w
∼

∂t
dx
∼

dt+

∫ T

0

∫
Ω

[[
(u
∼

OB · ∇
∼
x)u
∼

OB

]
· w
∼

+ ν∇
≈
x u
∼

OB : ∇
∼
xw
∼

]
dx
∼

dt

=

∫ T

0

[
〈f
∼
, w
∼
〉H1

0 (Ω) − k
∫

Ω

σ
≈

OB : ∇
∼
xw
∼

dx
∼

]
dt+

∫
Ω

u
∼

0(x
∼

) · w
∼

(x
∼
, 0) dx

∼

∀w
∼
∈W 1,1(0, T ;V

∼
) with w

∼
(·, T ) = 0

∼
, (3.2a)

where 〈·, ·〉H1
0 (Ω) denotes the duality pairing between [H∼

1
0(Ω)]′ and H∼

1
0(Ω), and

−
∫ T

0

∫
Ω

σ
≈

OB :

∂ξ
≈

∂t
dx
∼

dt+

∫ T

0

∫
Ω

[[
(u
∼

OB · ∇
∼
x)σ
≈

OB

]
: ξ
≈

+ ε∇
∼
xσ
≈

OB :: ∇
∼
xξ
≈

]
dx
∼

dt

+

∫ T

0

∫
Ω

[
1

2λ
(σ
≈

OB − I
≈
)−

(
(∇
≈
x u
∼

OB)σ
≈

OB + σ
≈

OB (∇
≈
x u
∼

OB)T
)]

: ξ
≈

dx
∼

dt

=

∫
Ω

σ
≈

0(x
∼

) : ξ
≈

(x
∼
, 0) dx

∼
∀ξ
≈

∈W 1,1(0, T ;H
≈

1(Ω)) with ξ
≈

(·, T ) = 0
≈
. (3.2b)

Proof Existence of a solution to (Q) with ρ ≡ 1 is proved in [3] via a finite element approximation for a
polygonal domain Ω ⊂ R2 under the stronger assumption σ

≈0 ∈ L
≈
∞(Ω) with σ

≈0 = σ
≈

T
0 > 0 a.e. in Ω. The

restriction on Ω was purely for ease of exposition for the finite element approximation. Existence of a solution
to a compressible version of (Q) is proved in [4] under the stronger assumptions C2,µ, for µ ∈ (0, 1), and
f
∼
∈ L∞(Ω × (0, T )), with u∼0 ∈ L∼ 2(Ω). The proof there is easily adapted to the far simpler incompressible

case for ∂Ω ∈ C0,1 and f
∼
∈ L∼

2(0, T ; [H∼
1
0(Ω)]′), with u∼0 ∈ H∼ . For example, in the existence proof for the

compressible version of (Q) discussed in [4] the assumption ∂Ω ∈ C2,µ is only needed because one requires
high regularity for a parabolic Neumann problem; see Lemma 3.2 below, which, however, is not needed in the
existence proof for (Q) in the incompressible case. 2

Remark 3.1 Since the test functions in V∼ are divergence-free, the pressure has been eliminated in (3.2a); it
can be recovered in a very weak sense following the same procedure as for the incompressible Navier–Stokes
equations discussed on p. 208 in [27]; i.e., one obtains that

∫ t
0
pOB(·, t′) dt′ ∈ C([0, T ];L2(Ω)).

We now deduce additional regularity for this Oldroyd-B model.

Lemma 3.1 Let d = 2 and suppose that the hypotheses of Theorem 3.1 hold; then,

u
∼

OB ∈ L4(0, T ;L
∼

4(Ω)), σ
≈

OB ∈ L4(0, T ;L
≈

4(Ω)) (u
∼

OB · ∇
∼
x)u
∼

OB ∈ L
4
3 (0, T ;L

∼

4
3 (Ω))

and (u
∼

OB · ∇
∼
x)σ
≈

OB, (∇
≈
x u
∼

OB)σ
≈

OB ∈ L
4
3 (0, T ;L

≈

4
3 (Ω)). (3.3)

Proof The first two results in (3.3) follow directly from (3.1) and (2.2). The remaining results in (3.3) follow
directly from the first two results in (3.3) and (3.1) using Hölder’s inequality. 2

In order to improve the regularity results (3.1) and (3.3), we consider the parabolic initial-boundary-value
problem:

∂η

∂t
− ε∆xη = g in Ω× (0, T ], (3.4a)

ε∇
∼
xη · n

∼
= 0 on ∂Ω× (0, T ], (3.4b)
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η(·, 0) = η0(·) on Ω, (3.4c)

where ε ∈ R>0. We require the following definitions to state a regularity result for (3.4a–c). First we introduce
fractional-order Sobolev spaces. For any k ∈ N, β ∈ (0, 1) and s ∈ (1,∞), we define

W k+β,s(Ω) :=
{
ζ ∈W k,s(Ω) : ‖ζ‖Wk+β,s(Ω) <∞

}
,

where

‖ζ‖Wk+β,s(Ω) := ‖ζ‖Wk,s(Ω) +
∑
|α|=k

(∫
Ω

∫
Ω

|∂αx ζ(x∼)− ∂αy ζ(y
∼
)|s

|x∼ − y∼|
d+βs

dx∼ dy
∼

) 1
s

and ∂αx = ∂α/∂α1
x1
. . . ∂αdxd . We then define W

2− 2
r ,s

n (Ω), for r, s ∈ (1,∞), to be the completion of {ζ ∈ C∞(Ω) :

∇∼ xζ · n∼ = 0 on ∂Ω} in the norm of W 2− 2
r ,s(Ω). We now recall the following regularity result for (3.4a–c); see

e.g. Lemma 7.37 in [23].

Lemma 3.2 Let Ω ⊂ Rd with ∂Ω ∈ C2,µ, for µ ∈ (0, 1). In addition, let η0 ∈ W
2− 2

r ,s
n (Ω) and g ∈

Lr(0, T ;Ls(Ω)), for r, s ∈ (1,∞). Then, there exists a unique function

η ∈ C([0, T ];W 2− 2
r ,s(Ω)) ∩ Lr(0, T ;W 2,s(Ω)) ∩W 1,r(0, T ;Ls(Ω))

solving (3.4a–c). Here (3.4b) is satisfied in the sense of the normal trace, which is well defined since ∆xη ∈
Lr(0, T ;Ls(Ω)). Moreover, we have that

‖η‖
L∞(0,T ;W 2− 2

r
,s(Ω))

+ ‖η‖Lr(0,T ;W 2,s(Ω)) +

∥∥∥∥∂η∂t
∥∥∥∥
Lr(0,T ;Ls(Ω))

≤ C(ε, r, s,Ω)
[
‖η0‖

W 2− 2
r
,s(Ω)

+ ‖g‖Lr(0,T ;Ls(Ω))

]
.

We now apply Lemma 3.2 to the stress equation (3.2b).

Lemma 3.3 Let d = 2, ∂Ω ∈ C2,µ, for µ ∈ (0, 1), and σ
≈0 ∈ W≈

1
2 ,

4
3

n (Ω) with σ
≈0 = σ

≈
T
0 ≥ 0 a.e. in Ω. Then we

have that

σ
≈

OB ∈ L
4
3 (0, T ;W

≈

2, 43 (Ω))⇒ ∇
∼
x · σ
≈

OB ∈ L
4
3 (0, T ;W

∼

1, 43 (Ω))⇒ ∇
∼
x · σ
≈

OB ∈ L
4
3 (0, T ;L

∼

4(Ω)). (3.5)

Proof Applying Lemma 3.2 with r = s = 4
3 to each component of (3.2b) and noting (3.3) yields the first,

and hence the second, result in (3.5). The final result in (3.5) follows from the second result and Sobolev
embedding as d = 2. 2

To improve the regularity results (3.1), (3.3) and (3.5) further, we now consider the Stokes initial-boundary-
value problem for ν ∈ R>0:

∂v
∼

∂t
− ν∆xv

∼
+∇
∼
xπ = g

∼
, ∇

∼
x · v
∼

= 0 in Ω× (0, T ], (3.6a)

v
∼

= 0
∼

on ∂Ω× (0, T ], (3.6b)

v
∼
(·, 0) = v

∼
0(·) on Ω; (3.6c)

and the Navier–Stokes initial-boundary-value problem, where (3.6a) is replaced by

∂v
∼

∂t
+ (v

∼
· ∇
∼
x)v
∼
− ν∆xv

∼
+∇
∼
xπ = g

∼
, ∇

∼
x · v
∼

= 0 in Ω× (0, T ]. (3.7)

In order to state a regularity result for (3.6a–c), we require the following definitions. The first is a
generalisation of H∼ , let L∼

s
div(Ω) be the completion of {w∼ ∈ C∼ ∞0 (Ω) : ∇∼ x ·w∼ = 0 in Ω} in L∼

s(Ω) for s ∈ (1,∞).
So H∼ ≡ L∼ 2

div(Ω). Next, we introduce, for α ∈ (0, 1) and r, s ∈ (1,∞),

D
∼

α,r
s (Ω) :=

{
w
∼
∈ L
∼

s
div(Ω) : ‖w

∼
‖Dα,rs (Ω) := ‖w

∼
‖Ls(Ω) +

(∫ ∞
0

‖t1−αAs e−t As w
∼
‖rLs(Ω) t

−1 dt

) 1
r

<∞

}
, (3.8)
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where As = −Ps ∆ is the Stokes operator with domain D(As) = L∼
s
div(Ω) ∩ W∼

1,s
0 (Ω) ∩ W∼ 2,s(Ω) and Ps :

L∼
s(Ω) → L∼

s
div(Ω) is the Helmholtz projection, see [19] for details and Remark 3.2 below. We now recall the

following regularity result for (3.6a–c), see Theorem 2.8 in [19].

Lemma 3.4 Let Ω ⊂ Rd with ∂Ω ∈ C2,µ, for µ ∈ (0, 1). In addition, let v∼0 ∈ D∼
1− 1

r ,r
s (Ω) and g

∼
∈

Lr(0, T ;L∼
s
div(Ω)), for r, s ∈ (1,∞). Then, there exist unique functions v∼ and ∇∼ xπ satisfying

v∼ ∈ L
r(0, T ;W∼

2,s(Ω)) ∩W 1,r(0, T ;L∼
s(Ω)), ∇∼ xπ ∈ Lr(0, T ;L∼

s(Ω))

and solving (3.6a–c). Moreover, we have that

‖v
∼
‖Lr(0,T ;W 2,s(Ω)) +

∥∥∥∥∥∂v∼∂t
∥∥∥∥∥
Lr(0,T ;Ls(Ω))

+ ‖∇
∼
xπ‖Lr(0,T ;Ls(Ω))

≤ C(ν, r, s,Ω)

[
‖v
∼

0‖
D

1− 1
r
,r

s (Ω)
+ ‖g

∼
‖Lr(0,T ;Ls(Ω))

]
.

In addition, we recall the following regularity result for (3.7), (3.6b,c), see Theorem 3.10 on p.213 in [27].

Lemma 3.5 Let d = 2, ∂Ω ∈ C2, v∼0 ∈ V∼ and g
∼
∈ L2(0, T ;L∼

2
div(Ω)). Then, there exists a function

v∼ ∈ L
∞(0, T ;V∼ ) ∩ L2(0, T ;H∼

2(Ω)) ∩H1(0, T ;H∼ )

solving (3.7), (3.6b,c). Moreover, we have that

‖v
∼
‖L∞(0,T ;H1(Ω)) + ‖v

∼
‖L2(0,T ;H2(Ω)) +

∥∥∥∥∥∂v∼∂t
∥∥∥∥∥
L2(0,T ;L2(Ω))

≤ C(ν,Ω)

[
‖v
∼

0‖H1(Ω) + ‖g
∼
‖L2(0,T ;L2(Ω))

]
.

Remark 3.2 We note that Lemmas 3.4 and 3.5 can be applied to g
∼
∈ Lr(0, T ;L∼

s(Ω)) (with r, s ∈ (1,∞) in

the case of Lemma 3.4, and r = s = 2 in the case of Lemma 3.5), by using the Helmholtz decomposition of g
∼

and adjusting the pressure, since any such g
∼

can be uniquely decomposed as

g
∼

= g
∼

0 +∇∼ xη, where g
∼

0 ∈ Lr(0, T ;L∼
s
div(Ω)) and ∇∼ xη ∈ Lr(0, T ;L∼

s(Ω)).

On applying Lemmas 3.4 and 3.5 to the flow equation (3.2a), we have the following result.

Lemma 3.6 Let the assumptions of Lemma 3.3 hold. In addition let u∼0 ∈ V∼ ∩D∼
1− 1

r ,r
s (Ω) and f

∼
∈ L2(0, T ;L∼

2(Ω))

∩Lr(0, T ;L∼
s(Ω)), for r ∈ (1, 4

3 ] and s ∈ (2, 4). Then, we have that

u
∼

OB ∈ L∞(0, T ;V
∼

) ∩ L2(0, T ;H
∼

2(Ω)) ∩H1(0, T ;H
∼

)

⇒ ∇
≈
x u
∼

OB ∈ L∞(0, T ;L
≈

2(Ω)) ∩ L2(0, T ;H
≈

1(Ω))

⇒ ∇
≈
x u
∼

OB ∈ L4(0, T ;L
≈

4(Ω)). (3.9)

In addition, (3.9) yields, for any y ∈ [1,∞) and any z ∈ [1, 4), that

u
∼

OB ∈ L∞(0, T ;L
∼

y(Ω)) and (u
∼

OB · ∇
∼
x)u
∼

OB ∈ L4(0, T ;L
∼

z(Ω)). (3.10)

Moreover, we have that

u
∼

OB ∈ Lr(0, T ;W
∼

2,s(Ω))⇒ u
∼

OB ∈ Lr(0, T ;W
∼

1,∞(Ω)). (3.11)

Proof Applying Lemma 3.5 to the flow equation (3.2a), on noting (3.1) and Remark 3.2, yields the first result
in (3.9). The second result in (3.9) follows immediately from the first. The third result in (3.9) follows from
the second and (2.2). As d = 2, it follows from the first result in (3.9) and Sobolev embedding that the first
result in (3.10) holds. The second result in (3.10) follows from this and the last result in (3.9).

Applying Lemma 3.4 with r = r and s = s to the flow equation (3.2a), on noting (3.5), (3.10) and Remark
3.2, yields the first result in (3.11). The second result in (3.11) follows from the first and Sobolev embedding
as d = 2. 2
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Theorem 3.2 Let d = 2, ∂Ω ∈ C2,µ, for µ ∈ (0, 1), u∼0 ∈ V∼ ∩ D∼
1− 1

r ,r
s (Ω) and f

∼
∈ L2(0, T ;L∼

2(Ω)) ∩
Lr(0, T ;L∼

s(Ω)), for r ∈ (1, 4
3 ] and s ∈ (2, 4), and σ

≈0 = σ
≈

T
0 ∈W≈

1,2
n (Ω). Then,

u
∼

OB ∈ L∞(0, T ;V
∼

) ∩ L2(0, T ;H
∼

2(Ω)) ∩ Lr(0, T ;W
∼

1,∞(Ω)) ∩H1(0, T ;H
∼

) (3.12a)

and σ
≈

OB ∈ C([0, T ];H
≈

1(Ω)) ∩ L2(0, T ;H
≈

2(Ω)) ∩H1(0, T ;L
≈

2(Ω)) (3.12b)

solves (3.2a,b).
Moreover, for given u∼OB satisfying (3.12a), the solution σ

≈OB to (3.2b) is unique.

Proof The result (3.12a) for u∼OB follows immediately from (3.9) and (3.11). It follows from (3.3), (3.9),
(3.10) and (3.1) that (∇

≈ x u∼OB)σ
≈OB ∈ L2(0, T ;L

≈
2(Ω)) and (u∼OB · ∇∼ x)σ

≈OB ∈ L2(0, T ;L
≈
z(Ω)) for any z ∈ [1, 2).

Applying Lemma 3.2 with r = 2 and s = z to each component of (3.2b) and noting the above yields that
σ
≈OB ∈ C([0, T ];W

≈
1,z(Ω)) ∩ L2(0, T ;W

≈
2,z(Ω)) ∩H1(0, T ;L

≈
z(Ω)). From this and Sobolev embedding, as d = 2,

we obtain that σ
≈OB ∈ L2(0, T,W

≈
1,y(Ω)) for any y ∈ [1,∞). Hence, combining this with (3.10) we now have

that (u∼OB · ∇∼ x)σ
≈OB ∈ L2(0, T ;L

≈
2(Ω)). Applying Lemma 3.2 again with r = s = 2 now to each component of

(3.2b) yields the desired result (3.12b).
If there existed another solution σ

≈
′
OB ∈ L∞(0, T ;L

≈
2(Ω))∩L2(0, T ;H

≈
1(Ω)) to (3.2b) for given u∼OB satisfying

(3.12a), then, as in Lemma 7.1 and the above, one could establish that σ
≈
′
OB satisfies the same regularity as

σ
≈OB in (3.12b). Hence the difference z

≈
= σ
≈OB − σ≈

′
OB satisfies

∫ T

0

∫
Ω

∂z
≈

∂t
: ξ
≈

dx
∼

dt+

∫ T

0

∫
Ω

[[
(u
∼

OB · ∇
∼
x)z
≈

]
: ξ
≈

+ ε∇
∼
xz
≈

:: ∇
∼
xξ
≈

]
dx
∼

dt

+

∫ T

0

∫
Ω

[
1

2λ
z
≈
−
(

(∇
≈
x u
∼

OB) z
≈

+ z
≈

(∇
≈
x u
∼

OB)T
)]

: ξ
≈

dx
∼

dt = 0 ∀ξ
≈

∈ L2(0, T ;H
≈

1(Ω)) (3.13)

and z
≈
(·, 0) = 0

≈
. Choosing ξ

≈
= χ[0,t] z≈, where χ[0,t] denotes the characteristic function of the interval [0, t], in

the above yields for all t ∈ [0, T ] that

1

2
‖z
≈
(t)‖2L2(Ω) +

∫ t

0

[
ε ‖∇
∼
xz
≈
(t′)‖2L2(Ω) +

1

2λ
‖z
≈
(t′)‖2L2(Ω)

]
dt′

=

∫ t

0

∫
Ω

[
(∇
≈
x u
∼

OB) z
≈

+ z
≈

(∇
≈
x u
∼

OB)T
]

: z
≈

dx
∼

dt′ ≤ 2

∫ t

0

|u
∼

OB(t′)|W 1,∞(Ω) ‖z
≈
(t′)‖2L2(Ω) dt′. (3.14)

Applying a Grönwall inequality yields that z
≈
≡ 0
≈
, and hence the required uniqueness result. 2

Remark 3.3 As is noted in [19], Solonnikov proved in [26] that, for Ω ∈ C2,1, D∼
1− 1

r ,r
s (Ω) is the completion of

D(As) in W∼
2− 2

r ,s(Ω) when r = s 6= 3
2 and d = 3. For the characterization of D∼

1− 1
r ,r

s (Ω) in terms of Besov spaces
of divergence-free vector functions, we refer to the Appendix in [14], where d = 3 and Ω ∈ C2,1, and Theorem

3.4 in Amann [2], where d ≥ 2 and Ω ∈ C2. Specifically, D∼
1− 1

r ,r
s (Ω) = B∼

2− 2
r

s,r,0(Ω)∩L∼ s
div(Ω), where B∼

2− 2
r

s,r,0(Ω) :=

{w∼ ∈ B∼
2− 2

r
s,r (Ω) : w∼ |∂Ω = 0∼} for 2− 2

r >
1
s ; B∼

2− 2
r

s,r,0(Ω) := {w∼ ∈ B∼
2− 2

r
s,r (Rd) : supp (w∼ ) ⊂ Ω} for 2− 2

r = 1
s ; and

B∼
2− 2

r
s,r,0(Ω) := B∼

2− 2
r

s,r (Ω) for 0 ≤ 2− 2
r <

1
s , with r, s ∈ (1,∞). We note, for example, that B∼

r
s,s(Ω) = W∼

r,s(Ω), for
s ∈ (1,∞) and fractional r > 0, and B∼

r
2,2(Ω) = H∼

r(Ω), for r ∈ N (cf. Triebel [28], Sec. 4.4.1, Remark 2 and Sec.

4.6.1, Theorem (b)). Consequently, for r = s = 2 we have that D∼
1
2 ,2
2 (Ω) = B∼

1
2,2,0(Ω)∩L∼ 2

div(Ω) = {w∼ ∈ B∼ 1
2,2(Ω) :

w∼ |∂Ω = 0∼} ∩ L∼ 2
div(Ω) = H∼

1
0(Ω) ∩ L∼ 2

div(Ω) = V∼ . As B∼
1
2,2(Ω) ↪→ B∼

1
2,∞(Ω) ↪→ B∼

1−ε
2,1 (Ω) ↪→ B∼

1−ε
2,r (Ω) ↪→ B∼

2− 2
r

s,r (Ω)

for all r, s ∈ (1,∞) such that 1 < r ≤ 2
1+ε and d

s + 2
r ≥ 1+ε+ d

2 , ε ∈ (0, 1) (cf. [28], Sec. 4.6.1, Theorem (a) and

(c)), it follows that V∼ = D∼
1
2 ,2
2 (Ω) = B∼

1
2,2,0(Ω)∩L∼ 2

div(Ω) ⊂ B∼
2− 2

r
s,r,0(Ω)∩L∼ 2

div(Ω) = B∼
2− 2

r
s,r,0(Ω)∩(L∼

s(Ω)∩L∼ 2
div(Ω)) =

B∼
2− 2

r
s,r,0(Ω)∩L∼ s

div(Ω) (cf. Theorem III.2.3 in Galdi [18] for the final equality), and therefore V∼ ⊂ D∼
1− 1

r ,r
s (Ω) for

all such r, s. Thus, in particular, V∼ ⊂ D∼
1− 1

r ,r
s (Ω) for d = 2, r ∈ (1, 2), and 1

r + 1
s > 1; hence, for d = 2 also

V∼ ∩D∼
1− 1

r ,r
s (Ω) = V∼ for r ∈ (1, 4

3 ] and s ∈ (2, 4).
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4 The Fokker–Planck equation

On setting u∼ = u∼? ∈ L∞(0, T ;V∼ )∩L1(0, T ;W
≈

1,∞(Ω)) in (1.11), we now want to prove the existence of a weak

solution, ψ = ψ? = M ψ̂?, to this Fokker–Planck equation. We restate this as the following problem.

(FP): Find ψ̂? : (x∼, q∼, t) 7→ ψ̂?(x∼, q∼, t) such that

M

(
∂ψ̂?
∂t

+ (u
∼
? · ∇
∼
x)ψ̂?

)
+∇
∼
q ·
(

(∇
≈
x u
∼
?) q
∼
M ψ̂?

)
= εM ∆x ψ̂? +

1

4λ
∇
∼
q ·
(
M ∇
∼
qψ̂?

)
(4.1)

subject to the following decay/boundary and initial conditions:∣∣∣∣M [
1

4λ
∇
∼
qψ̂? − (∇

≈
x u
∼
?) q
∼
ψ̂?

]∣∣∣∣→ 0 as |q
∼
| → ∞ on Ω× (0, T ], (4.2a)

ε∇
∼
xψ̂? · n

∼
= 0 on ∂Ω×D × (0, T ], (4.2b)

ψ̂?(·, ·, 0) = ψ̂0(·, ·) on Ω×D. (4.2c)

We shall assume that

ψ̂0 ∈ L2
M (Ω×D) with ψ̂0 ≥ 0 a.e. on Ω×D,

and [ρ(M ψ̂0)](x
∼

) =

∫
D

M(q
∼
) ψ̂0(x

∼
, q
∼
) dq
∼

= 1 for a.e. x
∼
∈ Ω. (4.3)

In addition, we shall assume in this section that

Ω ⊂ Rd, d = 2 or 3, with ∂Ω ∈ C0,1 and u
∼
? ∈ L∞(0, T, V

∼
) ∩ L1(0, T,W

∼

1,∞(Ω)). (4.4)

4.1 A discrete-in-time regularized problem, (FP∆t
L )

Similarly to [6] and [7], in order to prove existence of a weak solution to (FP), we consider a discrete-in-time
approximation, (FP∆t

L ), of a regularization of (FP) based on the parameter L > 1, where the drag term, i.e.
the term involving ∇

≈ x u∼?, in (4.1) and the corresponding term in (4.2a) are modified using the cut-off function

βL ∈ C(R) defined as

βL(s) := min(s, L) =

{
s for s ≤ L,
L for s ≥ L.

(4.5)

The weak formulation of the regularization of (FP) leads to the following problem involving the cut-off function
βL.

(FPL): Find ψ̂?,L ∈ L∞(0, T ;L2
M (Ω×D)) ∩ L2(0, T ; X̂) such that

−
∫ T

0

∫
Ω×D

M ψ̂?,L
∂ϕ̂

∂t
dq
∼

dx
∼

dt+

∫ T

0

∫
Ω×D

M
[
ε∇
∼
xψ̂?,L − u

∼
? ψ̂?,L

]
· ∇
∼
xϕ̂ dq

∼
dx
∼

dt

+

∫ T

0

∫
Ω×D

M

[
1

4λ
∇
∼
qψ̂?,L − [ (∇

≈
x u
∼
?) q
∼
]βL(ψ̂?,L)

]
· ∇
∼
qϕ̂ dq

∼
dx
∼

dt =

∫
Ω×D

M βL(ψ̂0) ϕ̂dq
∼

dx
∼

∀ϕ̂ ∈W 1,1(0, T ; X̂) with ϕ(·, ·, T ) = 0. (4.6)

We now formulate our discrete-in-time approximation of (FPL). We set, for n = 1, . . . , N ,

u
∼

∆t,+
? (·, t) = u

∼

n
? (·) :=

1

∆t

∫ tn

tn−1

u
∼
?(·, t) dt ∈ V

∼
∩W
∼

1,∞(Ω), t ∈ (tn−1, tn]. (4.7)

It follows from (4.4) and (4.7) that

‖u
∼

∆t,+
? ‖L∞(0,T ;H1(Ω)) ≤ ‖u

∼
?‖L∞(0,T ;H1(Ω)) (4.8a)

12



and u
∼

∆t,+
? → u

∼
? strongly in L1(0, T ;W

∼

1,∞(Ω)) as ∆t→ 0+. (4.8b)

Next, we shall assign a certain ‘smoothed’ initial datum,

ψ̂0 = ψ̂0(L,∆t) ∈ H1
M (Ω×D),

to the given initial datum ψ̂0 such that∫
Ω×D

M
[
ψ̂0 ϕ̂+ ∆t

(
∇
∼
xψ̂

0 · ∇
∼
xϕ̂+∇

∼
qψ̂

0 · ∇
∼
qϕ̂
)]

dq
∼

dx
∼

=

∫
Ω×D

M βL(ψ̂0) ϕ̂dq
∼

dx
∼

∀ϕ̂ ∈ H1
M (Ω×D). (4.9)

For r ∈ [1,∞), let

Ẑr := {ϕ̂ ∈ LrM (Ω×D) : ϕ̂ ≥ 0 a.e. on Ω×D;

∫
D

M(q
∼
) ϕ̂(x

∼
, q
∼
) dq
∼
≤ 1 for a.e. x

∼
∈ Ω}. (4.10)

In the Appendix of [8] it is proved for FENE-type potentials and ψ̂0 satisfying (4.3), with ψ̂0 ∈ L2
M (Ω×D)

replaced by the weaker assumption F(ψ̂0) ∈ L1
M (Ω×D), recall (2.9), that ψ̂0 ∈ H1

M (Ω×D), satisfying (4.9),

is such that ψ̂0 ∈ Ẑ2,∫
Ω×D

M F(ψ̂0) dq
∼

dx
∼

+ 4 ∆t

∫
Ω×D

M

[∣∣∇
∼
x

√
ψ̂0
∣∣2 +

∣∣∇
∼
q

√
ψ̂0
∣∣2]dq

∼
dx
∼
≤
∫

Ω×D
M F(ψ̂0) dq

∼
dx
∼

(4.11a)

and

ψ̂0 = βL(ψ̂0)→ ψ̂0 weakly in L1
M (Ω×D) as L→∞, ∆t→ 0+. (4.11b)

The proof given in [8] for FENE-type potentials carries across immediately to potentials satisfying (1.6). In

addition, with the stronger assumption (4.3) on ψ̂0, it is easy to show that∫
Ω×D

M |ψ̂0|2 dq
∼

dx
∼

+ ∆t

∫
Ω×D

M
[∣∣∇
∼
xψ̂

0
∣∣2 +

∣∣∇
∼
qψ̂

0
∣∣2] dq

∼
dx
∼
≤
∫

Ω×D
M |ψ̂0|2 dq

∼
dx
∼

(4.12a)

and

ψ̂0 = βL(ψ̂0)→ ψ̂0 weakly in L2
M (Ω×D) as L→∞, ∆t→ 0+. (4.12b)

Moreover, it follows from (2.7b), (4.12a) and (4.3), for any r ∈ [0,∞) that∫
Ω×D

M |q
∼
|r ψ̂0 dq

∼
dx
∼
≤ C ‖ψ̂0‖L2

M (Ω×D) ≤ C ‖ψ̂0‖L2
M (Ω×D) ≤ C. (4.13)

Our discrete-in-time approximation of (FPL) is then defined as follows.

(FP∆t
L ): Let ψ̂0

?,L = ψ̂0 ∈ Ẑ2. Then, for n = 1, . . . , N , given ψ̂n−1
?,L ∈ Ẑ2, find ψ̂n?,L ∈ X̂ ∩ Ẑ2 such that

∫
Ω×D

M
ψ̂n?,L − ψ̂

n−1
?,L

∆t
ϕ̂ dq

∼
dx
∼

+

∫
Ω×D

M
[
ε∇
∼
xψ̂

n
?,L − u

∼

n
? ψ̂

n
?,L

]
· ∇
∼
xϕ̂ dq

∼
dx
∼

+

∫
Ω×D

M

[
1

4λ
∇
∼
qψ̂

n
?,L − [ (∇

≈
x u
∼

n
? ) q
∼

] βL(ψ̂n?,L)

]
· ∇
∼
qϕ̂ dq

∼
dx
∼

= 0 ∀ϕ̂ ∈ X̂. (4.14)

We note that if βL(ψ̂n?,L) in (4.14) is replaced by ψ̂n?,L then the resulting integral is not well-defined.

Lemma 4.1 Let the assumptions (4.3) and (4.4) hold; then, there exists a solution {ψ̂n?,L}Nn=1 to (FP∆t
L ).
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Proof It is convenient to rewrite (4.14) as

a(ψ̂n?,L, ϕ̂) = `(βL(ψ̂n?,L))(ϕ̂) ∀ϕ̂ ∈ X̂, (4.15)

where, for all ϕ̂1, ϕ̂2 ∈ X̂,

a(ϕ̂1, ϕ̂2) :=

∫
Ω×D

M

(
ϕ̂1 ϕ̂2 + ∆t

[
ε∇
∼
xϕ̂1 − u

∼

n
? ϕ̂1

]
· ∇
∼
xϕ̂2 +

∆t

4λ
∇
∼
qϕ̂1 · ∇

∼
qi ϕ̂2

)
dq
∼

dx
∼
, (4.16a)

and, for all η̂ ∈ L∞(Ω×D) and ϕ̂ ∈ X̂,

`(η̂)(ϕ̂) :=

∫
Ω×D

M

[
ψ̂n−1
?,L ϕ̂+ ∆t η̂ [(∇

≈
x u
∼

n
? ) q
∼
] · ∇
∼
qϕ̂

]
dq
∼

dx
∼
. (4.16b)

On noting (4.7) and that ψ̂n−1
?,L ∈ Ẑ2, it is easily deduced that a(·, ·) is a continuous nonsymmetric coercive

bilinear functional on X̂ × X̂, and `(η̂)(·) is a continuous linear functional on X̂ for all η̂ ∈ L∞(Ω×D).
In order to prove existence of a solution to (4.14), i.e., (4.15), we consider a regularized system for a given

δ ∈ (0, 1): Find ψ̂n?,L,δ ∈ X̂ such that

a(ψ̂n?,L,δ, ϕ̂) = `(βLδ (ψ̂n?,L,δ))(ϕ̂) ∀ϕ̂ ∈ X̂, (4.17)

where βLδ (s) := max(βL(s), δ). In order to prove the existence of a solution to (4.17), we consider a fixed-point

argument. Given ψ̂ ∈ L2
M (Ω×D), let G(ψ̂) ∈ X̂ be such that

a(G(ψ̂), ϕ̂) = `(βLδ (ψ̂))(ϕ̂) ∀ϕ̂ ∈ X̂. (4.18)

The Lax–Milgram theorem yields the existence of a unique solution G(ψ̂) ∈ X̂ to (4.18) for each ψ̂ ∈ L2
M (Ω×

D). Thus the nonlinear map G : L2
M (Ω × D) → X̂ ⊂ L2

M (Ω × D) is well-defined. On recalling (2.6b), we

have that G is compact. Next, we show that G is continuous. Let {ψ̂(p)}p≥0 be such that ψ̂(p) → ψ̂ strongly

in L2
M (Ω×D) as p → ∞. It follows immediately that βLδ (ψ̂(p)) → βLδ (ψ̂) strongly in L2

M (Ω×D) as p → ∞.

As ‖G(ψ̂(p))‖X̂ ≤ C(L, (∆t)−1), independent of p, it follows from (2.6b) that there exists a subsequence

{G(ψ̂(pk))}pk≥0 and a function η̂ ∈ X̂ such that G(ψ̂(pk)) → η̂ weakly in X̂ and strongly in L2
M (Ω × D), as

pk → ∞; see the argument on p. 1233 in [6] for details. We deduce from the above, the definition of G and
the density result (2.5) that

a(η̂, ϕ̂) = `(βLδ (ψ̂))(ϕ̂) ∀ϕ̂ ∈ C∞(Ω;C∞0 (D)). (4.19)

Noting again (2.5) yields that (4.19) holds for all ϕ̂ ∈ X̂, and hence η̂ = G(ψ̂) ∈ X̂. Therefore the whole

sequence G(ψ̂(p))→ G(ψ̂) strongly in L2
M (Ω×D), as p→∞, and so G is continuous.

Finally, to show that G has a fixed point, i.e. there exists a solution to (4.17), using Schauder’s fixed point

theorem we need to show that there exists a C? ∈ R>0 such that ‖ψ̂‖L2
M (Ω×D) ≤ C? for every ψ̂ ∈ L2

M (Ω×D)

and κ ∈ (0, 1] satisfying ψ̂ = κG(ψ̂); that is,

a(ψ̂, ϕ̂) = κ `(βLδ (ψ̂), ϕ̂) ∀ϕ̂ ∈ X̂. (4.20)

In order to prove this, we introduce the following convex regularization FLδ ∈ C2,1(R) of F defined, for any
δ ∈ (0, 1) and L > 1, by

FLδ (s) :=


s2−δ2

2 δ + s (log δ − 1) + 1 for s ≤ δ,
F(s) ≡ s (log s− 1) + 1 for s ∈ [δ, L],
s2−L2

2L + s (logL− 1) + 1 for s ≥ L.
(4.21)

We note that

FLδ (s) ≥


s2

2 δ for s ≤ 0,

s2

4L − C(L) for s ≥ 0
(4.22a)
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and ([FLδ ]′′)(s) = (βLδ (s))−1 ≥ L−1 ∀s ∈ R. (4.22b)

Choosing ϕ̂ = [FLδ ]′(ψ̂) in (4.20), noting (4.22b), (4.7) and that ψ̂∇∼ x[FLδ ]′(ψ̂) = ∇∼ xGLδ (ψ̂), where [GLδ ]′(s) =
s/βLδ (s), yields that∫

Ω×D
M

(
FLδ (ψ̂) + ∆t L−1

[
ε |∇
∼
xψ̂|2 +

1

4λ
|∇
∼
qψ̂|2

])
dq
∼

dx
∼
≤
∫

Ω×D
M FLδ (κ ψ̂n−1

?,L ) dq
∼

dx
∼
. (4.23)

It is easy to show that FLδ (s) is nonnegative for all s ∈ R, with FLδ (1) = 0. In addition, for any κ ∈ (0, 1],
FLδ (κ s) ≤ FLδ (s) if s < 0 or 1 ≤ κ s, and also FLδ (κ s) ≤ FLδ (0) ≤ 1 if 0 ≤ κ s ≤ 1. Thus we deduce that
FLδ (κ s) ≤ FLδ (s) + 1 for all s ∈ R, and κ ∈ (0, 1]. Hence, on applying the above bound and (4.22a) to (4.23)

yields that ‖ψ̂‖L2
M (Ω×D) ≤ C? with C∗ dependent only on δ, L, ∆t, u∼

n
? and ψ̂n−1

?,L . Therefore G has a fixed

point. Thus we have proved the existence of a solution to (4.17).

Choosing ϕ̂ = [FLδ ]′(ψ̂n?,L,δ) in (4.17) yields, similarly to (4.23), that∫
Ω×D

M

(
FLδ (ψ̂n?,L,δ) + ∆t L−1

[
ε |∇
∼
xψ̂

n
?,L,δ|2 +

1

4λ
|∇
∼
qψ̂

n
?,L,δ|2

])
dq
∼

dx
∼

≤
∫

Ω×D
M FLδ (ψ̂n−1

?,L ) dq
∼

dx
∼
≤ C, (4.24)

where C is independent of δ as ψ̂n?,L ∈ Ẑ2. We obtain from (4.24) and (4.22a) that ‖ψ̂n?,L,δ‖X̂ ≤ C. Similarly
to the continuity argument for the mapping G above, it follows from (2.6b) that there exists a subsequence

{ψ̂n?,L,δk}δk≥0 and a function ψ̂n?,L ∈ X̂ such that ψ̂n?,L,δk → ψ̂n?,L weakly in X̂ and strongly in L2
M (Ω×D), as

δk → 0+. The fact that ψ̂n?,L ≥ 0 follows from the first term on the left-hand side in (4.24) and the bound

(4.22a). Hence, we have that βLδk(ψ̂n?,L,δk) → βL(ψ̂n?,L) strongly in L2
M (Ω × D), as δk → 0+. Therefore, we

can pass to the limit δk → 0+ in (4.17) for ϕ̂ ∈ C∞(Ω;C∞0 (D)) to obtain (4.15) for ϕ̂ ∈ C∞(Ω;C∞0 (D)).

The desired result (4.15) for all ϕ̂ ∈ X̂ then follows from the density result (2.5). Finally, to conclude that

ψ̂n?,L ∈ X̂ ∩ Ẑ2, we need to show the integral constraint, ρ(M ψ̂n?,L)(x∼) ∈ [0, 1] for a.e. x∼ ∈ Ω, on recalling
(4.10) and (1.10b). This follows from a maximum principle, see p. 1234 in [6] for details. 2

Next, we note the following result.

Lemma 4.2 Under the assumptions of Lemma 4.1 the solution {ψ̂n?,L}Nn=0 to (FP∆t
L ) is such that

σ
≈

(M ψ̂n?,L), σ
≈

(M βL(ψ̂n?,L)) ∈ H
≈

1(Ω), ρ(M ψ̂n?,L) ∈ H1(Ω),

for n = 0, . . . , N , and satisfy

∫
Ω

σ
≈

(M ψ̂n?,L)− σ
≈

(M ψ̂n−1
?,L )

∆t
: ζ
≈

dx
∼

+

∫
Ω

[
ε∇
∼
x σ
≈

(M ψ̂n?,L) : ∇
∼
x ζ
≈

− σ
≈

(M ψ̂n?,L) : (u
∼

n
? · ∇
∼
x) ζ
≈

]
dx
∼

−
∫

Ω

[
(∇
≈
x u
∼

n
? )σ
≈

(M βL(ψ̂n?,L)) + σ
≈

(M βL(ψ̂n?,L)) (∇
≈
x u
∼

n
? )T
]

: ζ
≈

dx
∼

+
1

2λ

∫
Ω

[
σ
≈

(M ψ̂n?,L)− ρ(M ψ̂n?,L) I
≈

]
: ζ
≈

dx
∼

= 0 ∀ζ
≈

∈ H
≈

1(Ω), (4.25a)∫
Ω

ρ(M ψ̂n?,L)− ρ(M ψ̂n−1
?,L )

∆t
η dx
∼

+

∫
Ω

[
ε∇
∼
x ρ(M ψ̂n?,L) · ∇

∼
x η − ρ(M ψ̂n?,L) (u

∼

n
? · ∇
∼
x) η

]
dx
∼

= 0 ∀η ∈ H1(Ω). (4.25b)
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Proof On noting (2.4), (2.3) and (1.8), we have that ϕ̂ = η ∈ X̂, for any η ∈ C∞(Ω), and ϕ̂ ∈ q
∼
q
∼

T : ζ
≈
∈ X̂,

for any ζ
≈
∈ C
≈
∞(Ω). The first choice of ϕ̂ in (4.14) immediately yields (4.25b) for any η ∈ C∞(Ω).

The second choice of ϕ̂ in (4.14) yields, on noting (1.10a) and (1.14), that, for n = 1, . . . , N ,

∫
Ω

σ≈(M ψ̂n?,L)− σ
≈

(M ψ̂n−1
?,L )

∆t
: ζ
≈

+ ε∇
∼
x σ
≈

(M ψ̂n?,L) :: ∇
∼
x ζ
≈

− σ
≈

(M ψ̂n?,L) : (u
∼

n
? · ∇
∼
x) ζ
≈

dx
∼

−
∫

Ω

[
(∇
≈
x u
∼

n
? )σ
≈

(M βL(ψ̂n?,L)) + σ
≈

(M βL(ψ̂n?,L)) (∇
≈
x u
∼

n
? )T
]

: ζ
≈

dx
∼

= − 1

4λ

∫
Ω×D

M

(
∇
∼
qψ̂

n
?,L · ∇

∼
q(q
∼
q
∼

T)

)
: ζ
≈

dq
∼

dx
∼

∀ζ
≈

∈ C
≈

∞(Ω). (4.26)

Noting (2.5), we can approximate ψ̂n?,L, for fixed L, ∆t and n, by a sequence {ψ̂n,m?,L }m≥1 such that

ψ̂n,m?,L ∈ C
∞(Ω;C∞0 (D)) and ψ̂n,m?,L → ψ̂n?,L strongly in X̂ as m→∞. (4.27)

Then we have for any ζ
≈
∈ C
≈
∞(Ω) that∫

Ω×D
M

(
∇
∼
qψ̂

n
?,L · ∇

∼
q(q
∼
q
∼

T)

)
: ζ
≈

dq
∼

dx
∼

= −
∫

Ω×D
ψ̂n,m?,L

[
∇
∼
q ·
(
M ∇
∼
q(q
∼
q
∼

T)

)]
: ζ
≈

dq
∼

dx
∼

+

∫
Ω×D

M ∇
∼
q(ψ̂

n
?,L − ψ̂

n,m
?,L ) · ∇

∼
q(q
∼
q
∼

T) : ζ
≈

dq
∼

dx
∼

=: T1 + T2. (4.28)

It follows from (1.14), (1.7) and (1.10a,b) that

T1 = 2

∫
Ω

[
σ
≈

(M ψ̂n,m?,L )− ρ(M ψ̂n,m?,L ) I
≈

]
: ζ
≈

dx
∼

= 2

∫
Ω

[
σ
≈

(M ψ̂n?,L)− ρ(M ψ̂n?,L) I
≈

]
: ζ
≈

dx
∼

+ 2

∫
Ω

[
σ
≈

(M (ψ̂n,m?,L − ψ̂
n
?,L))− ρ(M (ψ̂n,m?,L − ψ̂

n
?,L)) I

≈

]
: ζ
≈

dx
∼

=: T3 + T4. (4.29)

Next we note that (1.10a,b), (2.3) and (1.8) yield

|T2|+ |T4| ≤ C ‖ζ
≈

‖L∞(Ω) ‖ψ̂n?,L − ψ̂
n,m
?,L ‖H1

M (Ω×D). (4.30)

Hence, it follows from (4.26)–(4.30) that (4.25a) holds for any ζ
≈
∈ C
≈
∞(Ω).

Finally, similarly to (2.7a), we have, for ϕ̂ ∈ L2
M (Ω×D), that

‖σ
≈

(M ϕ̂)‖L2(Ω) + ‖σ
≈

(M βL(ϕ̂))‖L2(Ω) + ‖ρ(M ϕ̂)‖L2(Ω) ≤ C ‖ϕ̂‖L2
M (Ω×D), (4.31a)

and, in addition, we have, for ∇∼ xϕ̂ ∈ L2
M (Ω×D), that

‖∇
∼
xσ
≈

(M ϕ̂)‖L2(Ω) + ‖∇
∼
xσ
≈

(M βL(ϕ̂))‖L2(Ω) + ‖∇
∼
xρ(M ϕ̂)‖L2(Ω) ≤ C ‖∇

∼
xϕ̂‖L2

M (Ω×D). (4.31b)

Hence ψ̂n?,L ∈ X̂, recall (4.12a) for n = 0, yields that σ
≈

(M ψ̂n?,L), σ
≈

(M βL(ψ̂n?,L)) ∈ H
≈

1(Ω), ρ(M ψ̂n?,L) ∈ H1(Ω),

for n = 0, . . . , N . Combining these, the fact that u∼
n
? ∈ W∼ 1,∞(Ω), n = 1, . . . , N , and that C∞(Ω) is dense in

H1(Ω) yield that (4.25a,b) hold. 2
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4.2 Uniform bounds on the solution of (FP∆t
L )

We note the following result.

Lemma 4.3 Let the assumptions of Lemma 4.1 hold. Then, we have, for any r ∈ R≥0, that∫
Ω×D

M |q
∼
|r ψ̂n?,L dq

∼
dx
∼
≤ C, n = 0, . . . , N. (4.32)

Proof We first prove (4.32) for any r ≥ 2. Similarly to the proof of Lemma 4.2, we can choose, on noting
(1.8), ϕ̂ = |q

∼
|r, for any r ≥ 2, in (4.14). This yields, on noting (1.14), that, for n = 1, . . . , N ,

∫
Ω×D

M |q
∼
|r
[
ψ̂n?,L − ψ̂

n−1
?,L

∆t

]
dq
∼

dx
∼

= r

∫
Ω×D

M |q
∼
|r−2

[
[(∇
≈
x u
∼

n
? ) q
∼
]βL(ψ̂n?,L)− 1

4λ
∇
∼
qψ̂

n
?,L

]
· q
∼

dq
∼

dx
∼
. (4.33)

We then approximate ψ̂n?,L, for fixed L, ∆t and n, by a sequence {ψ̂n,m?,L }m≥1 satisfying (4.27). Hence∫
Ω×D

M |q
∼
|r−2∇

∼
qψ̂

n
?,L · q

∼
dq
∼

dx
∼

= −
∫

Ω×D
ψ̂n,m?,L ∇∼ q · (M |q

∼
|r−2 q

∼
) dq
∼

dx
∼

+

∫
Ω×D

M |q
∼
|r−2∇

∼
q(ψ̂

n
?,L − ψ̂

n,m
?,L ) · q

∼
dq
∼

dx
∼

=: T1 + T2. (4.34)

It follows from (1.7) and (1.6) that

T1 =

∫
Ω×D

M

[
|q
∼
|r − (d+ r − 2) |q

∼
|r−2

]
ψ̂n,m?,L dq

∼
dx
∼

=

∫
Ω×D

M

[
|q
∼
|r − (d+ r − 2) |q

∼
|r−2

]
ψ̂n?,L dq

∼
dx
∼

+

∫
Ω×D

M

[
|q
∼
|r − (d+ r − 2) |q

∼
|r−2

]
(ψ̂n,m?,L − ψ̂

n
?,L) dq

∼
dx
∼

=: T3 + T4. (4.35)

Next we note from (2.3) and (1.8) that

|T2|+ |T4| ≤ C ‖ψ̂n?,L − ψ̂
n,m
?,L ‖H1

M (Ω×D). (4.36)

Hence, on setting, for any z ∈ R≥0,

Anz =

∫
Ω×D

M |q
∼
|z ψ̂n?,L dq

∼
dx
∼
, n = 0, . . . , N, (4.37)

combining (4.33)–(4.36) and noting (4.27), ψ̂n?,L ≥ 0 and (1.10b) yields, for n = 1, . . . , N and any δ ∈ R>0,
that [

1 +
∆t r

4λ

]
Anr

≤ An−1
r + ∆t r

[∫
Ω×D

M |q
∼
|r βL(ψ̂n?,L) |∇

≈
x u
∼

n
? |dq

∼
dx
∼

+
d+ r − 2

4λ
Anr−2

]
≤ An−1

r + ∆t r

[∫
Ω×D

M |q
∼
|r βL(ψ̂n?,L) |∇

≈
x u
∼

n
? |dq

∼
dx
∼

]
+ ∆t r

d+ r − 2

4λ

[
δ Anr + δ

2−r
2 ρ(M ψ̂n?,L)

]
. (4.38)
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Choosing δ = 1
2(d+r−2) in (4.38), and summing for n = 1, . . . ,m, yields, on noting ψ̂n?,L ∈ Ẑ2, (1.8) and (4.5),

that, for m = 1, . . . , N

Amr +
r

8λ

m∑
n=1

∆t Anr

≤ A0
r + C

(
∆t L |∇

≈
x u
∼

m
? |L1(Ω) +

m−1∑
n=1

∆t |∇
≈
x u
∼

n
? |L∞(Ω)A

n
r + tm

)
. (4.39)

Therefore, applying a discrete Grönwall inequality to (4.39) yields, on noting (4.13) and (4.8b), the desired
result (4.32) for r ≥ 2. The result (4.32) for r ∈ (0, 2) follows immediately from (4.32) for r = 2 and r = 0,

the latter holding as ψ̂n?,L ∈ Ẑ2, n = 0, . . . , N . 2

We now introduce the following definitions, in line with (4.7):

ψ̂?,L(·, t) :=
t− tn−1

∆t
ψ̂n?,L(·) +

tn − t
∆t

ψ̂n−1
?,L (·), t ∈ [tn−1, tn], n = 1, . . . , N, (4.40a)

ψ̂∆t,+
?,L (·, t) := ψ̂n?,L(·), ψ̂∆t,−

?,L (·, t) := ψ̂n−1
?,L (·), t ∈ (tn−1, tn], n = 1, . . . , N. (4.40b)

We shall adopt ψ̂
∆t(,±)
?,L as a collective symbol for ψ̂∆t

?,L, ψ̂∆t,±
?,L . We note that

ψ̂∆t
?,L − ψ̂

∆t,±
?,L = (t− t±n )

∂ψ̂∆t
?,L

∂t
, t ∈ (tn−1, tn), n = 1, . . . , N, (4.41)

where t+n := tn and t−n := tn−1.
Using the above notation, (4.14) summed for n = 1, . . . , N can be restated in the following form.

(FP∆t
L ): ψ̂∆t,+

?,L (t) ∈ X̂ ∩ Ẑ2 satisfy

∫ T

0

∫
Ω×D

M
∂ψ̂∆t

?,L

∂t
ϕ̂dq

∼
dx
∼

dt+

∫ T

0

∫
Ω×D

M
[
ε∇
∼
xψ̂

∆t,+
?,L − u

∼

∆t,+
? ψ̂∆t,+

?,L

]
· ∇
∼
xϕ̂ dq

∼
dx
∼

dt

+

∫ T

0

∫
Ω×D

M

[
1

4λ
∇
∼
qψ̂

∆t,+
?,L − [ (∇

≈
x u
∼

∆t,+
? ) q

∼
]βL(ψ̂∆t,+

?,L )

]
· ∇
∼
qϕ̂ dq

∼
dx
∼

dt = 0

∀ϕ̂ ∈ L1(0, T ; X̂) (4.42)

and the initial condition ψ̂∆t
?,L(·, ·, 0) = ψ̂0(·, ·) ∈ Ẑ2. We emphasize that (4.42) is an equivalent restatement

(FP∆t
L ) for which existence of a solution has been established under assumptions (4.3) and (4.4) on the data

(cf. Lemma 4.1).
Similarly, we rewrite (4.25a,b), n = 1, . . . , N , using the notation (4.7) and (4.40a,b) to obtain:

(S∆t
L ): σ

≈
(M ψ̂∆t,+

?,L )(t), σ
≈

(M βL(ψ̂∆t,+
?,L ))(t), ρ(M ψ̂∆t,+

?,L )(t) ∈ H
≈

1(Ω) satisfy

∫ T

0

∫
Ω

∂σ≈(M ψ̂∆t
?,L)

∂t
: ζ
≈

+ ε∇
∼
x σ
≈

(M ψ̂∆t,+
?,L ) :: ∇

∼
x ζ
≈

− σ
≈

(M ψ̂∆t,+
?,L ) : (u

∼

∆t,+
? · ∇

∼
x) ζ
≈

dx
∼

dt

−
∫ T

0

∫
Ω

[
(∇
≈
x u
∼

∆t,+
? )σ

≈
(M βL(ψ̂∆t,+

?,L )) + σ
≈

(M βL(ψ̂∆t,+
?,L )) (∇

≈
x u
∼

∆t,+
? )T

]
: ζ
≈

dx
∼

dt

− 1

2λ

∫ T

0

∫
Ω

[
ρ(M ψ̂∆t,+

?,L ) I
≈
− σ
≈

(M ψ̂∆t,+
?,L )

]
: ζ
≈

dx
∼

dt = 0 ∀ζ
≈

∈ L2(0, T ;H
≈

1(Ω)), (4.43a)

∫ T

0

∫
Ω

[
∂ρ(M ψ̂∆t

?,L)

∂t
η + ε∇

∼
x ρ(M ψ̂∆t,+

?,L ) · ∇
∼
xη − ρ(M ψ̂∆t,+

?,L ) (u
∼

∆t,+
? · ∇

∼
x) η

]
dx
∼

dt = 0

∀η ∈ L2(0, T ;H1(Ω)) (4.43b)
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and the initial conditions σ
≈

(M ψ̂∆t
?,L(·, ·, 0)) = σ

≈
(M ψ̂0(·, ·)), ρ(M ψ̂∆t

?,L(·, ·, 0)) = ρ(M ψ̂0(·, ·)).
On noting (4.40a,b), (1.10b), (4.32) and that ψ̂n?,L ∈ Ẑ2, n = 0, . . . , N , we have, for all r ∈ [0,∞), that

ψ̂
∆t(,±)
?,L ≥ 0 a.e. on Ω×D × [0, T ], ‖ |q

∼
|r ψ̂∆t(,±)

?,L ‖L1
M (Ω×D) ≤ C (4.44a)

and

[ρ(M ψ̂
∆t(,±)
?,L )](x∼, t) =

∫
D

M(q
∼
) ψ̂

∆t(,±)
?,L (x∼, q∼, t) dq

∼
≤ 1 for a.e. (x∼, t) ∈ Ω× [0, T ]. (4.44b)

Moreover, we have the following result.

Lemma 4.4 Under the assumptions of Lemma 4.1 we have that

ess.supt∈[0,T ]

∫
Ω×D

M F(ψ̂
∆t(,±)
?,L (t)) dq

∼
dx
∼

+
1

∆t L

∫ T

0

∫
Ω×D

M (ψ̂∆t,+
?,L − ψ̂∆t,−

?,L )2 dq
∼

dx
∼

dt

+

∫ T

0

∫
Ω×D

M

[
|∇
∼
x

√
ψ̂

∆t(,±)
?,L |2 + |∇

∼
q

√
ψ̂

∆t(,±
?,L |2

]
dq
∼

dx
∼

dt ≤ C. (4.45)

In addition, we have that∣∣∣∣∣
∫ T

0

∫
Ω×D

M
∂ψ̂∆t

?,L

∂t
ϕ̂ dq

∼
dx
∼

dt

∣∣∣∣∣ ≤ C ‖ϕ̂‖L2(0,T ;W 1,∞(Ω×D)) ∀ϕ̂ ∈ L2(0, T ;W 1,∞(Ω×D)). (4.46)

Proof Similarly to (4.21), we introduce the following convex regularization FL ∈ C2,1(R) of F defined, for
any L > 1, by

FL(s) :=

{
F(s) ≡ s (log s− 1) + 1 for s ∈ [0, L],
s2−L2

2L + s (logL− 1) + 1 for s ≥ L.
(4.47)

We have the following analogues of (4.22a,b) for all s ∈ R>0:

FL(s) ≥ F(s), ([FL]′′)(s) = (βL(s))−1 ≥ L−1 and ([FL]′′)(s) ≥ s−1. (4.48)

For any α ∈ R>0, choosing ϕ̂ = χ[0,tn] [FL]′(ψ̂∆t,+
?,L + α), n = 1, . . . , N , in (4.45), noting (4.48), (4.7) and that

(ψ̂∆t,+
?,L + α)∇∼ x[FL]′(ψ̂∆t,+

?,L + α) = ∇∼ xGL(ψ̂∆t,+
?,L + α), where [GL]′(s) = s/β(s) for s > 0, yields, similarly to

(4.24), that∫
Ω×D

M FL(ψ̂∆t,+
?,L (tn) + α) dq

∼
dx
∼

+
1

2∆t L

∫ tn

0

∫
Ω×D

M (ψ̂∆t,+
?,L − ψ̂∆t,−

?,L )2 dq
∼

dx
∼

dt

+

∫ tn

0

∫
Ω×D

M

ε |∇∼ xψ̂
∆t,+
?,L |2

ψ̂∆t,+
?,L + α

+
1

4λ
(FL)′′(ψ̂∆t,+

?,L + α) |∇
∼
qψ̂

∆t,+
?,L |

2

 dq
∼

dx
∼

dt

≤
∫

Ω×D
M FL(ψ̂0 + α) dq

∼
dx
∼

+

∫ tn

0

∫
Ω×D

M [ (∇
≈
x u
∼

∆t,+
? ) q

∼
]

βL(ψ̂∆t,+
?,L )

βL(ψ̂∆t,+
?,L + α)

· ∇
∼
qψ̂

∆t,+
?,L dq

∼
dx
∼

dt =: T1 + T2. (4.49)

As u∼
∆t,+
? ∈ L∞(0, T ;V∼ ), it follows from (2.8) that

T2 =

∫ tn

0

∫
Ω×D

M q
∼
q
∼

T ψ̂∆t,+
?,L : ∇

≈
x u
∼

∆t,+
? dq

∼
dx
∼

dt

−
∫ tn

0

∫
Ω×D

M [ (∇
≈
x u
∼

∆t,+
? ) q

∼
]

[
1−

βL(ψ̂∆t,+
?,L )

βL(ψ̂∆t,+
?,L + α)

]
· ∇
∼
qψ̂

∆t,+
?,L dq

∼
dx
∼

dt. (4.50)
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As, for all s ∈ R≥0,

0 ≤
(

1− βL(s)

βL(s+ α)

)
1√

(FL)′′(s+ α)
=
βL(s+ α)− βL(s)√

βL(s+ α)
≤ βL(s+ α)− βL(s)√

α
≤
√
α,

we have, on noting (4.44a), (4.8a,b) and (1.8) that

|T2| ≤
∫ tn

0

‖u
∼

∆t,+
? ‖W 1,∞(Ω)

(∫
Ω×D

M |q
∼
|2 ψ̂∆t,+

?,L dq
∼

dx
∼

)
dt

+
√
α

∫ tn

0

∫
Ω

|∇
≈
x u
∼

∆t,+
? |

(∫
D

M |q
∼
|
√

(FL)′′(ψ̂∆t,+
?,L + α) |∇

∼
qψ̂

∆t,+
?,L | dq

∼

)
dx
∼

dt

≤ 1

8λ

(∫ tn

0

∫
Ω×D

M(FL)′′(ψ̂∆t,+
?,L + α) |∇

∼
qψ̂

∆t,+
?,L |

2 dq
∼

dx
∼

dt

)
+ C (1 + α). (4.51)

Combining (4.49) and (4.51) yields, on noting (4.48), that, for n = 1, . . . , N and any α ∈ R>0,∫
Ω×D

M FL(ψ̂∆t,+
?,L (tn) + α) dq

∼
dx
∼

+
1

2∆t L

∫ tn

0

∫
Ω×D

M (ψ̂∆t,+
?,L − ψ̂∆t,−

?,L )2 dq
∼

dx
∼

dt

+

∫ tn

0

∫
Ω×D

M

ε |∇∼ xψ̂
∆t,+
?,L |2

ψ̂∆t,+
?,L + α

+
1

8λ

|∇
∼
qψ̂

∆t,+
?,L |2

ψ̂∆t,+
?,L + α

 dq
∼

dx
∼

dt

≤
∫

Ω×D
M FL(ψ̂0 + α) dq

∼
dx
∼

+ C (1 + α). (4.52)

Passing to the limit α → 0+ in (4.52), noting that FL(ψ̂0) = FL(βL(ψ̂0)) = F(βL(ψ̂0)) ≤ F(ψ̂0), as L > 1,

(4.48), (4.11a) and (4.3) yield the desired result (4.45) with ψ̂
∆t(,±)
?,L in the first and third terms replaced by

ψ̂∆t,+
?,L . It follows from (4.12a) and (4.3) that (4.45) holds with ψ̂

∆t(,±)
?,L in the first and third terms replaced

by ψ̂∆t,−
?,L . It is then a simple matter to derive the desired result (4.45) on recalling (4.40a,b), the convexity of

F and that |∇∼ x

√
ψ̂∆t
?,L|2 ≤ 2(|∇∼ x

√
ψ̂∆t,+
?,L |2 + |∇∼ x

√
ψ̂∆t,−
?,L |2), see p. 44 in [5] for details of the latter result.

Finally, to obtain the bound (4.46) from (4.42), we have, on noting (4.45), (4.44a,b) and (4.8a), that∣∣∣∣∣
∫ T

0

∫
Ω×D

M ∇
∼
xψ̂

∆t,+
?,L · ∇

∼
xϕ̂ dq

∼
dx
∼

dt

∣∣∣∣∣
≤ 2 ‖ψ̂∆t,+

?,L ‖
1
2

L∞(0,T ;L1
M (Ω×D))

‖∇
∼
x

√
ψ̂∆t,+
?,L ‖L2(0,T ;L2

M (Ω×D)) ‖∇
∼
xϕ̂‖L2(0,T ;L∞(Ω×D))

≤ C ‖∇
∼
xϕ̂‖L2(0,T ;L∞(Ω×D)) (4.53a)

and ∣∣∣∣∣
∫ T

0

∫
Ω×D

M [ (∇
≈
x u
∼

∆t,+
? ) q

∼
]βL(ψ̂∆t,+

?,L ) · ∇
∼
qϕ̂ dq

∼
dx
∼

dt

∣∣∣∣∣
≤ ‖

∫
D

M |q
∼
|βL(ψ̂∆t,+

?,L ) dq
∼
‖L∞(0,T ;L2(Ω)) ‖∇

≈
x u
∼

∆t,+
? ‖L2(0,T ;L2(Ω)) ‖∇

∼
qϕ̂‖L2(0,T ;L∞(Ω×D))

≤ C ‖
∫
D

M ψ̂∆t,+
?,L dq

∼
‖L∞(0,T ;L∞(Ω)) ‖|q

∼
|2 ψ̂∆t,+

?,L ‖L∞(0,T ;L1
M (Ω×D)) ‖∇

∼
qϕ̂‖L2(0,T ;L∞(Ω×D))

≤ C ‖∇
∼
qϕ̂‖L2(0,T ;L∞(Ω×D)). (4.53b)

The remaining two terms in (4.42) are bounded similarly. 2

Lemma 4.5 Let the assumptions of Lemma 4.1 hold. In addition, if 4L2 ∆t ≤ 1 then we have that

ess.supt∈[0,T ]‖σ
≈

(M ψ̂∆,+
?,L )(t)‖2L2(Ω) +

∫ T

0

‖∇
∼
x σ
≈

(M ψ̂∆t,+
?,L )‖2L2(Ω) dt ≤ C, (4.54a)
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ess.supt∈[0,T ]‖ρ(M ψ̂∆,+
?,L )(t)‖2L2(Ω) +

∫ T

0

‖∇
∼
x ρ(M ψ̂∆t,+

?,L )‖2L2(Ω) dt ≤ C. (4.54b)

Proof Choosing ζ
≈

= χ[0,tn] σ≈(M ψ̂∆t,+
?,L ), n = 1, . . . , N , in (4.25a) yields, on noting (2.7a), (4.12a), (4.3),

(4.8a,b), (4.44a,b), (4.5) and (1.8) that

1

2
‖σ
≈

(M ψ̂?,L)(tn)‖2L2(Ω) +
1

2

∫ tn

0

‖σ
≈

(M ψ̂∆t,+
?,L )− σ

≈
(M ψ̂∆t,−

?,L )‖2L2(Ω) dt

+

∫ tn

0

[
1

2λ
‖σ
≈

(M ψ̂∆t,+
?,L )‖2L2(Ω) + ε ‖∇

∼
x σ
≈

(M ψ̂∆t,+
?,L )‖2L2(Ω)

]
dt

=
1

2
‖σ
≈

(M ψ̂0)‖2L2(Ω) +
1

2λ

∫ tn

0

∫
Ω

ρ(M ψ̂∆t,+
?,L ) I

≈
: σ
≈

(Mψ̂∆t,+
?,L ) dx

∼
dt

+

∫ tn

0

∫
Ω

[
(∇
≈
x u
∼

∆t,+
? )σ

≈
(M βL(ψ̂∆t,+

?,L )) + σ
≈

(M βL(ψ̂∆t,+
?,L )) (∇

≈
x u
∼

∆t,+
? )T

]
: σ
≈

(M ψ̂∆t,+
?,L ) dx

∼
dt

≤ C + C ∆t L ‖∇
≈
x u
∼

∆t,+
? (tn)‖L2(Ω) ‖σ

≈
(M ψ̂∆t,+

?,L )(tn)‖L2(Ω)

+ 2

∫ tn−1

0

‖∇
≈
x u
∼

∆t,+
? ‖L∞(Ω) ‖σ

≈
(M ψ̂∆t,+

?,L )‖2L2(Ω) dt

≤ C + ∆t L2 ‖σ
≈

(M ψ̂∆t,+
?,L )(tn)‖2L2(Ω) + 2

∫ tn−1

0

‖∇
≈
x u
∼

∆t,+
? ‖L∞(Ω) ‖σ

≈
(M ψ̂∆t,+

?,L )‖2L2(Ω) dt. (4.55)

Therefore, applying a discrete Grönwall inequality to (4.55) yields, on noting (2.7a), (4.12a), (4.3) and (4.8b)
that the bounds in (4.54a) hold.

Similarly to the above, choosing η = χ[0,tn] ρ(M ψ̂∆t,+
?,L ), n = 1, . . . , N , in (4.25b) yields the bounds (4.54b).

2

Remark 4.1 We note that Lemma 4.5 is valid for d = 3, as well as d = 2, as it exploits the L∞(0, T ;V∼ ) ∩
L1(0, T ;W∼

1,∞(Ω)) regularity of u∼?, recall (4.4). If u∼? were only in L2(0, T ;V∼ ), then one has to use the
Gagliardo-Nirenberg inequality, (2.2), in the proof of Lemma 4.5, and this will lead to a restriction to d = 2.
This is the same reason why the existence proof for the Oldroyd-B model, via the convergence of a finite
element approximation, is restricted to d = 2 in [3], see Theorem 7.1 there.

4.3 Passage to the limit L→∞ (∆t→ 0+)

We are now ready to pass to the limit L → ∞, ∆t → 0+ in (FP∆t
L ), (4.42), and (S∆t

L ), (4.43a,b). In view of
the assumption on L and ∆t in Lemma 4.5 we shall choose ∆t ≤ (4L2)−1 as L→∞.

Theorem 4.1 Let the assumptions (4.3) and (4.4) hold on the data, and let ∆t ≤ (4L2)−1 as L→∞. Then,

there exists a subsequence of {ψ̂∆t
?,L}L>1 (not indicated), and a function ψ̂? such that

|q
∼
|r ψ̂? ∈ L∞(0, T ;L1

M (Ω×D)), for any r ∈ [0,∞), (4.56a)

ψ̂? ∈ H1(0, T ;M−1[Hs(Ω×D)]′), for any s > d+ 1, (4.56b)

with

ψ̂? ≥ 0 a.e. on Ω×D × [0, T ] and

∫
D

M(q
∼
) ψ̂?(x∼, q∼, t) dq

∼
≤ 1 for a.e. (x, t) ∈ Ω× [0, T ], (4.57)

and finite relative entropy and Fisher information, with

F(ψ̂?) ∈ L∞(0, T ;L1
M (Ω×D)) and

√
ψ̂? ∈ L2(0, T ;H1

M (Ω×D)); (4.58)

such that, as L→∞ (and thereby ∆t→ 0+),

M
1
2 ∇
∼
x

√
ψ̂

∆t(,±)
?,L →M

1
2 ∇
∼
x

√
ψ̂? weakly in L2(0, T ;L

∼

2(Ω×D)), (4.59a)
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M
1
2 ∇
∼
q

√
ψ̂

∆t(,±)
?,L →M

1
2 ∇
∼
q

√
ψ̂? weakly in L2(0, T ;L

∼

2(Ω×D)), (4.59b)

M
∂ψ̂∆t

?,L

∂t
→M

∂ψ̂?
∂t

weakly in L2(0, T ; [Hs(Ω×D)]′), (4.59c)

|q
∼
|r βL(ψ̂

∆t(,±)
?,L ), |q

∼
|r ψ̂∆t(,±)

?,L → |q
∼
|r ψ̂? strongly in Lp(0, T ;L1

M (Ω×D)), (4.59d)

for any p ∈ [1,∞).

In addition, for s > d+ 1, the function ψ̂? satisfies

−
∫ T

0

∫
Ω×D

M ψ̂?
∂ϕ̂

∂t
dq
∼

dx
∼

dt+

∫ T

0

∫
Ω×D

M
[
ε∇
∼
xψ̂? − u

∼
? ψ̂?

]
· ∇
∼
xϕ̂ dq

∼
dx
∼

dt

+

∫ T

0

∫
Ω×D

M

[
1

4λ
∇
∼
qψ̂? −

[
(∇
≈
x u
∼
?) q
∼

]
ψ̂?

]
· ∇
∼
qϕ̂dq

∼
dx
∼

dt

=

∫
Ω×D

M ψ̂0(x
∼
, q
∼
) ϕ̂(x

∼
, q
∼
, 0) dq

∼
dx
∼
∀ϕ̂ ∈W 1,1(0, T ;Hs(Ω×D)) with ϕ̂(·, ·, T ) = 0. (4.60)

Proof We shall apply Dubinskĭı’s theorem, Theorem 2.1, to the sequence {ψ̂∆t
?,L}L>1. On noting (4.45), we

select A0 = L1
M (Ω×D) and

M =

{
ϕ̂ ∈ A0 : ϕ̂ ≥ 0 with

∫
Ω×D

M

[∣∣∣∇
∼
x

√
ϕ̂
∣∣∣2 +

∣∣∣∇
∼
q

√
ϕ̂
∣∣∣2] dq

∼
dx
∼
<∞

}
, (4.61)

and, for ϕ̂ ∈M, we define

[ϕ̂]M := ‖ϕ̂‖A0
+

∫
Ω×D

M

[∣∣∣∇∼ x

√
ϕ̂
∣∣∣2 +

∣∣∣∇∼ q

√
ϕ̂
∣∣∣2] dq

∼
dx∼.

Note that M is a seminormed subset of the Banach space A0. As H1
M (Ω × D) is compactly embedded in

L2
M (Ω×D), recall (2.6b), one can deduce that the embeddingM ↪→ A0 is compact by applying the argument

on p. 1251 in [6]. On noting (4.46) and as Sobolev embedding yields that Hs(Ω ×D) ↪→ W 1,∞(Ω ×D), for
s > d + 1, we choose A1 := M−1[Hs(Ω × D)]′ := {ϕ̂ : Mϕ̂ ∈ [Hs(Ω × D)]′}, where [Hs(Ω × D)]′ is the
dual of Hs(Ω ×D), equipped with the norm ‖ϕ̂‖A1

:= ‖Mϕ̂‖[Hs(Ω×D)]′ . For such s, it follows from Sobolev
embedding, for any ϕ̂ ∈ A0 = L1

M (Ω×D), that

‖ϕ̂‖A1
= sup
χ∈Hs(Ω×D)

|(Mϕ̂, χ)|
‖χ‖Hs(Ω×D)

≤ sup
χ∈Hs(Ω×D)

‖ϕ̂‖L1
M (Ω×D)‖χ‖L∞(Ω×D)

‖χ‖Hs(Ω×D)
≤ C ‖ϕ̂‖A0

.

Hence, we have that A0 ↪→ A1. Thus, our choices of A0, M and A1 satisfy the conditions of Theorem 2.1.
Applying this theorem with α0 = 1 and α1 = 2, implies that the embedding{

ϕ : [0, T ]→M : [ϕ]L1(0,T ;M) +

∥∥∥∥dϕ

dt

∥∥∥∥
L2(0,T ;A1)

<∞

}
↪→ L1(0, T ;A0) = L1(0, T ;L1

M (Ω×D))

is compact. Using this compact embedding, together with the bounds (4.45) and (4.46), in conjunction
with (4.44a) and Sobolev embedding, we deduce (upon extraction of a subsequence) strong convergence of

{ψ̂∆t
?,L}L>1 in L1(0, T ;L1

M (Ω×D)) to an element ψ̂? ∈ L1(0, T ;L1
M (Ω×D)), as L→∞.

Thanks to the bound on the second term in (4.45), (4.40a,b) and (1.8), we have that

‖ψ̂∆t
?,L − ψ̂

∆t,±
?,L ‖L1(0,T ;L1

M (Ω×D)) ≤
T |Ω|

3

(∫
D

M dq
∼

)∫ T

0

∫
Ω×D

M (ψ̂∆t,+
? − ψ∆t,−

? )2 dq
∼

dx
∼

dt

≤ C ∆t L. (4.62)

On recalling that ∆t ≤ 4L−2, together with (4.62) and the strong convergence of {ψ̂∆t
?,L}L>1 to ψ̂? in

L1(0, T ;L1
M (Ω × D)), we deduce, as L → ∞, strong convergence of {ψ̂∆t,±

?,L }L>1 in L1(0, T ;L1
M (Ω × D))
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to the same element ψ̂? ∈ L1(0, T ;L1
M (Ω ×D)). This completes the proof of (4.59d) for ψ̂

∆t(,±)
? with r = 0

and p = 1.

From the first bound in (4.46) we have that {ψ̂∆t(,±)
?,L }L>1 are bounded in L∞(0, T ;L1

M (Ω × D)). By

Lemma 2.1, the strong convergence of these to ψ̂? in L1(0, T ;L1
M (Ω×D)), shown above, then implies strong

convergence in Lp(0, T ;L1
M (Ω ×D)) to the same limit for all values of p ∈ [1,∞). That completes the proof

of (4.59d) for ψ̂
∆t(,±)
? with r = 0 and any p ∈ [1,∞).

Strong convergence in Lp(0, T ;L1
M (Ω×D)) for p ≥ 1, implies convergence almost everywhere on Ω×D×

[0, T ] of a subsequence. Hence it follows from (4.44a) that ψ̂? ≥ 0 a.e. on Ω ×D × [0, T ]. Applying Fubini’s
theorem, one can deduce from the above and (4.44b) that∫

D

M(q
∼
) ψ̂?(x∼, q∼, t) dq

∼
≤ 1 for a.e. (x, t) ∈ Ω× [0, T ]. (4.63)

Since F is nonnegative, one can deduce from Fatou’s lemma and (4.45) that, for a.e. t ∈ [0, T ],∫
Ω×D

M(q
∼
)F(ψ̂?(x

∼
, q
∼
, t)) dq

∼
dx
∼
≤ lim infL→∞

∫
Ω×D

M(q
∼
)F(ψ̂

∆t(,±)
?,L (x

∼
, q
∼
, t)) dq

∼
dx
∼
≤ C. (4.64)

As the expression on the left-hand side of (4.64) is nonnegative, we deduce the first result in (4.58). Similarly,
one can deduce from (4.44a) that, for any r ∈ [0,∞) and a.e. t ∈ [0, T ],∫

Ω×D
M(q

∼
) |q
∼
|r ψ̂?(x

∼
, q
∼
, t) dq

∼
dx
∼
≤ lim infL→∞

∫
Ω×D

M(q
∼
) |q
∼
|r ψ̂∆t,+

?,L (x
∼
, q
∼
, t) dq

∼
dx
∼
≤ C. (4.65)

Hence (4.56a) holds.
Since |√c1−

√
c2 | ≤

√
|c1 − c2| for any c1, c2 ∈ R≥0, we have, for any r ∈ [0,∞) and p ∈ [2,∞), on noting

(4.65) that

‖ |q
∼
|r (ψ̂? − ψ̂∆t(,±)

?,L )‖Lp(0,T ;L1
M (Ω×D))

≤

∥∥∥∥∥ |q∼|2r
(√

ψ̂? +

√
ψ̂

∆t(,±)
?,L

)2
∥∥∥∥∥

1
2

L∞(0,T ;L1
M (Ω×D))

∥∥∥∥∥
(√

ψ̂? −
√
ψ̂

∆t(,±)
?,L

)2
∥∥∥∥∥

1
2

L
p
2 (0,T ;L1

M (Ω×D))

≤ 2
1
2 ‖ |q

∼
|2r (ψ̂? + ψ̂

∆t(,±)
?,L ) ‖

1
2

L∞(0,T ;L1
M (Ω×D))

‖ψ̂? − ψ̂∆t(,±)
?,L ‖

1
2

L
p
2 (0,T ;L1

M (Ω×D))

≤ C ‖ψ̂? − ψ̂∆t(,±)
?,L ‖

1
2

L
p
2 (0,T ;L1

M (Ω×D))
. (4.66)

Hence, for any p ∈ [2,∞), the desired result (4.59d) for ψ̂
∆t(,±)
? with any r ∈ (0,∞) follows from (4.59d) for

ψ̂
∆t(,±)
? with r = 0; thus, by Hölder’s inequality, it is also true for p ∈ [1, 2). Therefore, we have completed

the proof of (4.59d) for ψ̂
∆t(,±)
? . The proof of (4.59d) for βL(ψ̂

∆t(,±)
? ) follows, on noting (4.5), that, for any

r ∈ [0,∞) and p ∈ [1,∞),

‖ |q
∼
|r (ψ̂? − βL(ψ̂

∆t(,±)
?,L ))‖Lp(0,T ;L1

M (Ω×D))

≤ ‖ |q
∼
|r (ψ̂? − βL(ψ̂?))‖Lp(0,T ;L1

M (Ω×D)) + ‖ |q
∼
|r (βL(ψ̂?)− βL(ψ̂

∆t(,±)
?,L ))‖Lp(0,T ;L1

M (Ω×D))

≤ ‖ |q
∼
|r (ψ̂? − βL(ψ̂?))‖Lp(0,T ;L1

M (Ω×D)) + ‖ |q
∼
|r (ψ̂? − ψ̂∆t(,±)

?,L )‖Lp(0,T ;L1
M (Ω×D)). (4.67)

The first term converges to zero using Lebesgue’s dominated convergence and the convergence of βL(ψ̂?) to

ψ̂? a.e. on Ω×D × (0, T ) as L→∞. Hence, (4.59d) for βL(ψ̂
∆t(,±)
? ) follows from (4.59d) for ψ̂

∆t(,±)
? .

It follows from |√c1 −
√
c2 | ≤

√
|c1 − c2| for any c1, c2 ∈ R≥0 and (4.59d) with r = 0 that

M
1
2

√
ψ̂

∆t(,±)
?,L →M

1
2

√
ψ̂? strongly in Lp(0, T ;L2(Ω×D)), (4.68)
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as L → ∞. The weak convergence results (4.59a–c) are then easily deduced, see p. 1268 in [6] for details. In
addition, (4.56b) and the second result in (4.58) hold.

We now pass to the limit L→∞ (and ∆t→ 0+) in (FP∆t
L ), (4.42). We shall take at first ϕ̂ ∈ E := {ϕ̂ ∈

C1([0, T ];C∞(Ω;C∞0 (D))) : ϕ̂(·, ·, T ) = 0}. Integration by parts with respect to t on the first term in (4.42)
gives ∫ T

0

∫
Ω×D

M
∂ψ̂∆t

?,L

∂t
ϕ̂ dq

∼
dx
∼

dt =−
∫ T

0

∫
Ω×D

M ψ̂∆t
?,L

∂ϕ̂

∂t
dq
∼

dx
∼

dt

−
∫

Ω×D
M(q

∼
) ψ̂0(x

∼
, q
∼
) ϕ̂(x

∼
, q
∼
, 0) dq

∼
dx
∼

∀ϕ̂ ∈ E . (4.69)

Using (4.59d) and (4.12b), we immediately have that, as L → ∞ (and ∆t → 0+), the first term on the
right-hand side of (4.69) converges to the first term on the left-hand side of (4.60) and the second term on

the right-hand side of (4.69) converges to −
∫

Ω×D ψ̂0(x∼, q∼) ϕ̂(x∼, q∼, 0) dq
∼

dx∼, resulting in the first term on the

right-hand side of (4.60). On rewriting ∇∼ xψ̂
∆t,+
?,L = 2

√
ψ̂∆t,+
?,L ∇∼ x

√
ψ̂∆t,+
?,L , and similarly ∇∼ qψ̂

∆t,+
?,L , it is a simple

matter to pass to the limit L→∞ (and ∆t→ 0+) in the remaining terms of (4.42) using (4.56a), (4.59a,b,d),
(4.68) and (4.8a,b) to obtain (4.60) for all ϕ̂ ∈ E .

Finally, we note that for any s ≥ 0, C∞(Ω;C∞0 (D)) is dense in L2(Ω;Hs(D))∩Hs(Ω;L2(D)) = Hs(Ω×D),
and so E is a dense linear subspace of the linear space of functions W 1,1(0, T ;Hs(Ω×D)) vanishing at t = T .
It follows from this, (4.56a,b), (4.58) and (4.4) that (4.60) holds for all ϕ̂ ∈ W 1,1(0, T ;Hs(Ω × D)), for any
s > d+ 1, vanishing at t = T . 2

Lemma 4.6 Let the assumptions of Theorem 4.1 hold. Then we have, on possibly extracting a further subse-
quence of {ψ̂∆t

?,L}L>1, that, as L→∞ (and thereby ∆t→ 0+),

σ
≈

(M βL(ψ̂∆t,+
?,L )), σ

≈
(M ψ̂∆t,+

?,L )→ σ
≈

(M ψ̂?) strongly in Lp(0, T ;L
≈

1(Ω)), (4.70a)

σ
≈

(M ψ̂∆t,+
?,L )→ σ

≈
(M ψ̂?) weak* in L∞(0, T ;L

≈

2(Ω)), (4.70b)

σ
≈

(M ψ̂∆t,+
? )→ σ

≈
(M ψ̂?) weakly in L2(0, T ;H

≈

1(Ω)); (4.70c)

and

ρ(M ψ̂∆t,+
?,L )→ ρ(M ψ̂?) strongly in Lp(0, T ;L1(Ω)), (4.71a)

ρ(M ψ̂∆t,+
?,L )→ ρ(M ψ̂?) weak* in L∞(0, T ;L2(Ω)), (4.71b)

ρ(M ψ̂∆t,+
?,L )→ ρ(M ψ̂?) weakly in L2(0, T ;H1(Ω)), (4.71c)

for any p ∈ [1,∞). In addition, it follows that

σ
≈

(M ψ̂?) ∈ L∞(0, T ;L
≈

2(Ω)) ∩ L2(0, T ;H
≈

1(Ω))

and ρ(M ψ̂?) ∈ L∞(0, T ;L
≈

2(Ω)) ∩ L2(0, T ;H
≈

1(Ω)) (4.72)

satisfy

−
∫ T

0

∫
Ω

σ
≈

(M ψ̂?) :

∂ξ
≈

∂t
dx
∼

dt

+

∫ T

0

∫
Ω

[[
(u
∼
? · ∇
∼
x)σ
≈

(M ψ̂?)
]

: ξ
≈

+ ε∇
∼
xσ
≈

(M ψ̂?) :: ∇
∼
xξ
≈

]
dx
∼

dt

+

∫ T

0

∫
Ω

[
1

2λ

(
σ
≈

(M ψ̂?)− ρ(M ψ̂?) I
≈

)
−
(

(∇
≈
x u
∼
?)σ
≈

(M ψ̂?) + σ
≈

(M ψ̂?) (∇
≈
x u
∼
?)

T
)]

: ξ
≈

dx
∼

dt

=

∫
Ω

[σ
≈

(M ψ̂0)](x
∼

) : ξ
≈

(x
∼
, 0) dx

∼
∀ξ
≈

∈W 1,1(0, T ;H
≈

1(Ω)) with ξ
≈

(·, T ) = 0
≈
, (4.73a)
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−
∫ T

0

∫
Ω

ρ(M ψ̂?)
∂η

∂t
dx
∼

dt+

∫ T

0

∫
Ω

[[
(u
∼
? · ∇
∼
x)ρ(M ψ̂?)

]
η + ε∇

∼
xρ(M ψ̂?) · ∇

∼
xη
]

dx
∼

dt

=

∫
Ω

[ρ(M ψ̂0)](x
∼

) η(x
∼
, 0) dx

∼
∀η ∈W 1,1(0, T ;H1(Ω)) with η(·, T ) = 0. (4.73b)

Proof The desired result (4.70a) follows immediately from (1.10a) and (4.59d) as

‖σ
≈

(M ϕ̂)‖Lp(0,T ;L1(Ω)) ≤ ‖ |q
∼
|2 ϕ̂‖Lp(0,T ;L1

M (Ω×D)) ∀ϕ̂ s.t. |q
∼
|2 ϕ̂ ∈ Lp(0, T ;L1

M (Ω×D)). (4.74)

The desired result (4.71a) follows immediately from (4.59d) as

‖ρ(M ϕ̂)‖Lp(0,T ;L1(Ω)) ≤ ‖ϕ̂‖Lp(0,T ;L1
M (Ω×D)) ∀ϕ̂ ∈ Lp(0, T ;L1

M (Ω×D)). (4.75)

The desired results (4.70b,c) and (4.71b,c) follow immediately from (4.54a,b), (4.70a) and (4.71a). Hence,
(4.72) holds.

We now pass to the limit L → ∞ (and ∆t → 0+) in (S∆t
L ), (4.43a,b). We shall take at first ξ

≈
∈

C1([0, T ];C
≈
∞(Ω)) with ξ

≈
(·, ·, T ) = 0

≈
and η ∈ C1([0, T ];C∞(Ω)) with η(·, ·, T ) = 0. Integration by parts

with respect to t on the first term in (4.43a) gives, for all ξ
≈
∈ C1([0, T ];C

≈
∞(Ω)) with ξ

≈
(·, ·, T ) = 0

≈
,

∫ T

0

∫
Ω

∂σ
≈

(M ψ̂∆t
?,L)

∂t
: ξ
≈

dx
∼

dt =−
∫ T

0

∫
Ω

σ
≈

(M ψ̂∆t
?,L)

∂ξ
≈

∂t
dx
∼

dt−
∫

Ω

[σ
≈

(M ψ̂0)](x
∼

) ξ
≈

(x
∼
, 0) dx

∼
. (4.76)

Using (4.70b), (2.7a) and (4.12b), we immediately have that, as L→∞ (and ∆t→ 0+), the first term on the
right-hand side of (4.69) converges to the first term on the left-hand side of (4.73a) and the second term on
the right-hand side of (4.76) converges to

−
∫

Ω×D
[σ
≈

(Mψ̂0)](x∼) : ξ
≈
(x∼, 0) dx∼,

resulting in the first term on the right-hand side of (4.73a). It is a simple matter to pass to the limit L→∞
(and ∆t → 0+) in the remaining terms of (4.43a) using (4.70a–c), (4.71b) and (4.8a,b) to obtain (4.73a) for
all ξ

≈
∈ C1([0, T ];C

≈
∞(Ω)) such that ξ

≈
(·, T ) = 0

≈
. Similarly to the above, we can pass to the limit L→∞ (and

∆t → 0+) in (4.43b) using (4.71a–c) and (4.8a,b) to obtain (4.73b) for all η ∈ C1([0, T ];C∞(Ω)) such that
η(·, T ) = 0.

Finally, we note that C1([0, T ];C∞(Ω)) is a dense linear subspace of the linear space W 1,1(0, T ;H1(Ω)).
It follows from this, (4.72) and (4.4) that (4.73a) holds for all ξ

≈
∈ W 1,1(0, T ;H

≈
1(Ω)) vanishing at t = T and

(4.73b) holds for all η ∈W 1,1(0, T ;H1(Ω)) vanishing at t = T . 2

Remark 4.2 As we assume that [ρ(M ψ̂0)](x∼) =
∫
D
M(q

∼
) ψ̂0(x∼, q∼) dq

∼
= 1 for a.e. x∼ ∈ Ω, recall (4.3), it

follows that ρ(M ψ̂?) ≡ 1 is the unique solution to the linear problem (4.73b). Similarly, ρ(M ψ̂n?,L) ≡ 1,
n = 0, . . . , N is the unique solution of (4.25b).

5 The Hookean dumbbell model

Putting together the results in the previous two sections we have the following result.

Theorem 5.1 Let d = 2 and ∂Ω ∈ C2,µ, for µ ∈ (0, 1). Let

u
∼

0 ∈ V
∼

and f
∼
∈ L2(0, T ;L

∼

2(Ω)) ∩ Lr(0, T ;L
∼

s(Ω)), (5.1)

for r ∈ (1, 4
3 ] and s ∈ (2, 4). Let ψ̂0 satisfy (4.3) with σ

≈0 := σ
≈

(M ψ̂0) ∈ W 1,2
n (Ω). It follows that there exist

u∼OB and σ
≈OB = σ

≈
T
OB satisfying (3.12a,b) and solving the Oldroyd-B system (3.2a,b).
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In addition, there exists ψ̂OB satisfying

|q
∼
|r ψ̂OB ∈ L∞(0, T ;L1

M (Ω×D)), for any r ∈ [0,∞), (5.2a)

with

ψ̂OB ≥ 0 a.e. on Ω×D × [0, T ] and

∫
D

M(q
∼
) ψ̂OB(x∼, q∼, t) dq

∼
= 1 for a.e. (x, t) ∈ Ω× [0, T ], (5.2b)

F(ψ̂OB) ∈ L∞(0, T ;L1
M (Ω×D)) and

√
ψ̂OB ∈ L2(0, T ;H1

M (Ω×D)); (5.2c)

and solving, for s > d+ 1,

−
∫ T

0

∫
Ω×D

M ψ̂OB
∂ϕ̂

∂t
dq
∼

dx
∼

dt+

∫ T

0

∫
Ω×D

M
[
ε∇
∼
xψ̂OB − u

∼
OB ψ̂OB

]
· ∇
∼
xϕ̂ dq

∼
dx
∼

dt

+

∫ T

0

∫
Ω×D

M

[
1

4λ
∇
∼
qψ̂OB −

[
(∇
≈
x u
∼

OB) q
∼

]
ψ̂OB

]
· ∇
∼
qϕ̂dq

∼
dx
∼

dt

=

∫
Ω×D

M ψ̂0(x
∼
, q
∼
) ϕ̂(x

∼
, q
∼
, 0) dq

∼
dx
∼
∀ϕ̂ ∈W 1,1(0, T ;Hs(Ω×D)) with ϕ̂(·, ·, T ) = 0. (5.3)

Moreover, we have that σ
≈OB = σ

≈
(M ψ̂OB). Hence, (u∼OB, ψ̂OB) solve the Hookean dumbbell model, (3.2a)

and (5.3); and (u∼OB, σ≈OB = σ
≈

(M ψ̂OB)) solve the Oldroyd-B model, (3.2a,b).

Proof Theorem 3.2 immediately yields the existence of u∼OB and σ
≈OB = σ

≈
T
OB satisfying (3.12a,b) and solving

the Oldroyd-B system (3.2a,b). By applying Theorem 4.1 with u∼? = u∼OB yields the existence of ψ̂OB sat-

isfying (5.2a–c) and solving (5.3). Finally, by applying Lemma 4.6 with u∼? = u∼OB yields that σ
≈

(M ψ̂OB) ∈
L∞(0, T ;L

≈
2(Ω)) ∩ L2(0, T ;H

≈
1(Ω)) satisfies

−
∫ T

0

∫
Ω

σ
≈

(M ψ̂OB) :

∂ξ
≈

∂t
dx
∼

dt

+

∫ T

0

∫
Ω

[[
(u
∼

OB · ∇
∼
x)σ
≈

(M ψ̂OB)
]

: ξ
≈

+ ε∇
∼
xσ
≈

(M ψ̂OB) :: ∇
∼
xξ
≈

]
dx
∼

dt

+

∫ T

0

∫
Ω

[
1

2λ

(
σ
≈

(M ψ̂OB)− I
≈

)
−
(

(∇
≈
x u
∼

OB)σ
≈

(M ψ̂OB) + σ
≈

(M ψ̂OB) (∇
≈
x u
∼

OB)T
)]

: ξ
≈

dx
∼

dt

=

∫
Ω

[σ
≈

(M ψ̂0)](x
∼

) : ξ
≈

(x
∼
, 0) dx

∼
∀ξ
≈

∈W 1,1(0, T ;H
≈

1(Ω)) with ξ
≈

(·, T ) = 0
≈
, (5.4)

where we have noted from Remark 4.2 that ρ(M ψ̂OB) ≡ 1. Comparing (5.4) and (3.2b), and recalling the

uniqueness result of Theorem 3.2 yields that σ
≈OB = σ

≈
(M ψ̂OB).

Hence, (u∼OB, ψ̂OB) solve the Hookean dumbbell model, (3.2a) and (5.3); and (u∼OB, σ≈OB = σ
≈

(M ψ̂OB)) solve
the Oldroyd-B model, (3.2a,b). 2

6 Concluding remarks: subsolutions and stress-defect measure

We close the paper with a discussion aimed at explaining why an alternative, apparently more direct, approach
to proving the existence of large-data global weak solutions to problem (P), along the lines of our paper [7],
fails in the case of the Hookean model, and why we had to resort in this paper to a different line of reasoning
than in [7]. We shall describe this direct approach for both d = 2 and d = 3 space dimensions, and will also
indicate the improvements that can be achieved in the case of d = 2. As will be explained below, however,
these improvements are still insufficient to complete the proof of existence of global weak solutions to the
model with that approach, even in the case of d = 2. On the other hand, for both d = 2 and d = 3, this direct
approach still establishes the existence of global weak subsolutions, in a sense to be made precise below.
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A direct existence proof for problem (P) would follow the approach in [7] based on a discrete-in-time
regularization of (P), similar to (FP∆t

L ), (4.42):

(P∆t
L ): Find (u∼

∆t,+
L (t), ψ̂∆t,+

L (t)) ∈ V∼ × (X̂ ∩ Ẑ2) s.t.

∫ T

0

∫
Ω

∂u
∼

∆t
L

∂t
· w
∼

dx
∼

dt+

∫ T

0

∫
Ω

[[
(u
∼

∆t,−
L · ∇

∼
x)u
∼

∆t,+
L

]
· w
∼

+ ν∇
≈
x u
∼

∆t,+
L : ∇

∼
xw
∼

]
dx
∼

dt

=

∫ T

0

[
〈f
∼

∆t,+, w
∼
〉H1

0 (Ω) − k
∫

Ω

σ
≈

(M ψ̂∆t,+
L ) : ∇

∼
xw
∼

dx
∼

]
dt ∀w

∼
∈ L1(0, T ;V

∼
), (6.1a)

∫ T

0

∫
Ω×D

M
∂ψ̂∆t

L

∂t
ϕ̂dq

∼
dx
∼

dt+

∫ T

0

∫
Ω×D

M
[
ε∇
∼
xψ̂

∆t,+
L − u

∼

∆t,−
L ψ̂∆t,+

L

]
· ∇
∼
xϕ̂ dq

∼
dx
∼

dt

+

∫ T

0

∫
Ω×D

M

[
1

4λ
∇
∼
qψ̂

∆t,+
L − [ (∇

≈
x u
∼

∆t,+
L ) q

∼
]βL(ψ̂∆t,+

L )

]
· ∇
∼
qϕ̂ dq

∼
dx
∼

dt = 0

∀ϕ̂ ∈ L1(0, T ; X̂); (6.1b)

subject to the initial conditions u∼
∆t
L (·, 0) = u∼

0 ∈ H∼ and ψ̂∆t
L (·, ·, 0) = βL(ψ̂0(·, ·)) ∈ Ẑ2. Following the line of

reasoning in [7] one can establish, for Ω ⊂ Rd, d = 2 or 3, with ∂Ω ∈ C0,1, the existence of a solution to (P∆t
L )

satisfying the uniform bounds

ess.supt∈[0,T ]‖u
∼

∆t(,±)
L (t)‖2L2(Ω) +

1

∆t

∫ T

0

‖u
∼

∆t,+
L − u

∼

∆t,−
L ‖2L2(Ω) dt+ ν

∫ T

0

‖∇
≈
x u
∼

∆t,+
L ‖2L2(Ω) dt

+ ess.supt∈[0,T ] 2k

∫
Ω×D

MF(ψ̂∆t,±
L (t)) dq

∼
dx
∼

+
k

∆t L

∫ T

0

∫
Ω×D

M(ψ̂∆t,+
L − ψ̂∆t,−

L )2 dq
∼

dx
∼

dt

+ 8k ε

∫ T

0

∫
Ω×D

M |∇
∼
x

√
ψ̂∆t,+
L |2 dq

∼
dx
∼

dt+
k

λ

∫ T

0

∫
Ω×D

M |∇
∼
q

√
ψ̂∆t,+
L |2 dq

∼
dx
∼

dt ≤ C. (6.2)

In addition, one can establish that ψ̂∆t,±
L ≥ 0 a.e. in Ω×D × [0, T ], ρ(ψ̂∆t,±

L ) = 1 a.e. in Ω× [0, T ], and∣∣∣∣∣
∫ T

0

∫
Ω

∂u
∼

∆t
L

∂t
· w
∼

dx
∼

dt

∣∣∣∣∣ ≤ C ‖w∼ ‖L2(0,T ;Vµ) ∀w
∼
∈ L2(0, T ;V

∼
µ), for µ >

d

2
+ 1, (6.3a)∣∣∣∣∣

∫ T

0

∫
Ω×D

M
∂ψ̂∆t

L

∂t
ϕ̂dq

∼
dx
∼

dt

∣∣∣∣∣ ≤ C ‖ϕ̂‖L2(0,T ;W 1,∞(Ω×D) ∀ϕ̂ ∈ L2(0, T ;W 1,∞(Ω×D)), (6.3b)

where V∼ µ is the completion of {w∼ ∈ C∼ ∞0 (Ω) : ∇∼ x ·w∼ = 0 in Ω} in H∼
1
0(Ω)∩W∼ µ,2(Ω). It follows from the fourth

bound in (6.2), (2.10), (1.3) and (1.6) that

ess.supt∈[0,T ]

∫
Ω×D

M (1 + |q
∼
|2) ψ̂∆t,±

L (t) dq
∼

dx
∼
≤ C. (6.4)

Motivated by the form of the denominator of the prefactor of the multiple integral in the fifth term on
the left-hand side of (6.2) we let ∆t = o(L−1) as L → ∞, so as to drive the multiple integral appearing in

that term to 0 in the limit. Then, one can establish the existence of a subsequence of {(u∼∆t
L , ψ̂∆t

L )}L>1 (not

indicated), and a pair of functions (u∼, ψ̂) such that

u
∼
∈ L∞(0, T ;L

∼

2(Ω)) ∩ L2(0, T ;V
∼

) ∩H1(0, T ;V
∼

′
µ), µ >

d

2
+ 1, (6.5)

and

ψ̂ ∈ L1(0, T ;L1
M (Ω×D)) ∩H1(0, T ;M−1[Hs(Ω×D)]′), s > d+ 1, (6.6)
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with ψ̂ ≥ 0 a.e. on Ω×D × [0, T ],
∫
D
M(q

∼
) ψ̂(x∼, q∼, t) dq

∼
= 1 for a.e. (x, t) ∈ Ω× [0, T ],

F(ψ̂) ∈ L∞(0, T ;L1
M (Ω×D)) and

√
ψ̂ ∈ L2(0, T ;H1

M (Ω×D)), (6.7)

whereby (1 + |q
∼
|2) ψ̂ ∈ L∞(0, T ;L1

M (Ω×D)); such that, as L→∞ (and thereby ∆t→ 0+),

u
∼

∆t(,±)
L → u

∼
weak* in L∞(0, T ;L

∼

2(Ω)), (6.8a)

u
∼

∆t(,±)
L → u

∼
weakly in L2(0, T ;V

∼
), (6.8b)

∂u
∼

∆t
L

∂t
→

∂u
∼

∂t
weakly in L2(0, T ;V

∼

′
µ), (6.8c)

u
∼

∆t(,±)
L → u

∼
strongly in L2(0, T ;L

∼

r(Ω)), (6.8d)

where r ∈ [1,∞) if d = 2 and r ∈ [1, 6) if d = 3; and

M
1
2 ∇
∼
x

√
ψ̂∆t,±
L →M

1
2 ∇
∼
x

√
ψ̂ weakly in L2(0, T ;L

∼

2(Ω×D)), (6.9a)

M
1
2 ∇
∼
q

√
ψ̂∆t,±
L →M

1
2 ∇
∼
q

√
ψ̂ weakly in L2(0, T ;L

∼

2(Ω×D)), (6.9b)

M
∂ψ̂∆t

L

∂t
→M

∂ψ̂

∂t
weakly in L2(0, T ; [Hs(Ω×D)]′), (6.9c)

|q
∼
|r βL(ψ̂∆t,±

L ), |q
∼
|r ψ̂∆t,±

L → |q
∼
|r ψ̂ strongly in Lp(0, T ;L1

M (Ω×D)), (6.9d)

for all p ∈ [1,∞) and any r ∈ [0, 2).
The result (6.9d) for r = 0 follows using Dubinskĭı’s theorem, Theorem 2.1, and Lemma 2.1, as in the

proof of Theorem 4.1. The result (6.9d) for r ∈ (0, 2) is proved similarly to (4.66). We have for any α ∈ [1, 2]
and any p ∈ [2,∞) that

‖ |q
∼
|α (ψ̂ − ψ̂∆t,±

L ) ‖Lp(0,T ;L1
M (Ω×D))

≤

(∫ T

0

‖ |q
∼
|2 (

√
ψ̂ +

√
ψ̂∆t,±
L )2 ‖

p
2

L1
M (Ω×D)

‖ |q
∼
|2(α−1) (

√
ψ̂ −

√
ψ̂∆t,±
L )2 ‖

p
2

L1
M (Ω×D)

dt

) 1
p

≤ C ‖ |q
∼
|2(α−1) (ψ̂ − ψ̂∆t,±

L ) ‖
1
2

L
p
2 (0,T ;L1

M (Ω×D))
, (6.10)

where we have noted (6.4) and that (1 + |q
∼
|2) ψ̂ belongs to L∞(0, T ;L1

M (Ω×D)). Therefore, it follows from

(6.10) that, for any α ∈ [1, 2] and any p ∈ [1,∞),

‖ |q
∼
|α (ψ̂ − ψ̂∆t,±

L ) ‖Lp(0,T ;L1
M (Ω×D)) ≤

[
C(T, p) ‖ |q

∼
|2(α−1) (ψ̂ − ψ̂∆t,±

L ) ‖Lp(0,T ;L1
M (Ω×D))

] 1
2

. (6.11)

We deduce from (6.11) that, for any p ∈ [1,∞) and for any m ∈ N,

‖ |q
∼
|2−

1

2m−1 (ψ̂ − ψ̂∆t,±
L ) ‖Lp(0,T ;L1

M (Ω×D)) ≤ C(T, p)
1

2m ‖ψ̂ − ψ̂∆t,±
L ‖

1
2m

Lp(0,T ;L1
M (Ω×D))

. (6.12)

Hence, the desired result (4.59d) follows immediately from (6.12).
Unfortunately, although (1.10a) and (6.4) imply that

‖σ
≈

(M ψ̂∆t,+
L )‖L∞(0,T ;L1(Ω)) ≤ C,
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where C is independent of L and ∆t, and therefore there exists a symmetric positive semidefinite z
≈
∈

L∞(0, T ; [C
≈

(Ω)]′) such that

σ
≈

(M ψ̂∆t,+
L )→ z

≈
weak* in L∞(0, T ; [C

≈
(Ω)]′), (6.13)

it does not follow that z
≈

= σ
≈

(M ψ̂). The reason why we cannot identify z
≈

with σ
≈

(M ψ̂) is because (6.9d)

only holds for r ∈ [0, 2) (but not for r = 2), and the boundedness of the sequence {|q
∼
|2 ψ̂∆t,+

L }L≥1 in

L∞(0, T ;L1
M (Ω × D)), which is the strongest uniform bound that we have on |q

∼
|2 ψ̂∆t,+

L , does not suffice
to deduce that ∫

D

M q
∼
q
∼

T ψ̂∆t,+
L dq

∼
→
∫
D

M q
∼
q
∼

T ψ̂ dq
∼

weak* in L∞(0, T ; [C
≈

(Ω)]′).

If this were true, it would of course automatically follow by the uniqueness of the weak* limit that z
≈

= σ
≈

(M ψ̂),
thus completing the proof of the existence of global weak solutions to the Hookean model in both d = 2 and
d = 3 dimensions.

Nevertheless, motivated by notion of weak solution with a defect measure in the work of Feireisl (cf. in
particular Sec. 4.3.2 in [15], the discussion on p.21 in [16], and [17], as well as pp. 7, 8 in the work of DiPerna
& Lions [12] and Definition 1.3 in the paper of Alexandre & Villani [1]), we will show that this direct approach
implies the existence of a subsolution to the Navier–Stokes–Fokker–Planck system, which is a weak solution
with a defect measure, in a sense to be made precise below, for both d = 2 and d = 3. We begin by noting
that, since ψ̂∆t,+

L ≥ 0 in Ω×D × [0, T ], we have that∫ T

0

∫
Ω

(∫
D

M q
∼
q
∼

T ψ̂∆t,+
L dq

∼

)
: ξ
≈

dx dt ≥
∫ T

0

∫
Ω

(∫
D

χRM q
∼
q
∼

T ψ̂∆t,+
L dq

∼

)
: ξ
≈

dxdt,

where q
∼
7→ χR(q

∼
) is the characteristic function of the ball of radius R in D centred at the origin, and

ξ
≈
∈ L1(0, T ;C

≈
(Ω)) is a symmetric positive semidefinite d × d matrix-valued test function. By fixing R > 0

and passing to the limit L→∞ (with ∆t = o(L−1) as L→∞) using (6.9d) with r = 0, it then follows that∫ T

0

〈z
≈
, ξ
≈
〉C(Ω) dt ≥

∫ T

0

∫
Ω

(∫
D

χRM q
∼
q
∼

T ψ̂ dq
∼

)
: ξ
≈

dx dt,

where 〈·, ·〉C(Ω) denotes the duality pairing between [C
≈

(Ω)]′ and C
≈

(Ω).
In order to pass to the limit R → ∞ in the last inequality, we note that the sequence of real-valued

nonnegative functions {χRM q
∼
q
∼

T ψ̂ : ξ
≈
}R>0, where |q

∼
|2 ψ̂ ∈ L∞(0, T ;L1

M (Ω × D)), is nondecreasing and

converges to M q
∼
q
∼

T ψ̂ : ξ
≈

a.e. on Ω × D × (0, T ) as R → ∞. Hence, by Lebesgue’s monotone convergence

theorem, we can pass to the limit R→∞ in the last inequality, resulting in∫ T

0

〈z
≈
, ξ
≈

〉C(Ω) dt ≥
∫ T

0

∫
Ω

(∫
D

M q
∼
q
∼

T ψ̂ dq
∼

)
: ξ
≈

dxdt

=

∫ T

0

∫
Ω

σ
≈

(M ψ̂) : ξ
≈

dxdt =

∫ T

0

〈σ
≈

(M ψ̂), ξ
≈

〉C(Ω) dt,

for all symmetric positive semidefinite d× d matrix-valued test functions ξ
≈
∈ L1(0, T ;C

≈
(Ω)). In other words,

z
≈
≥ σ
≈

(M ψ̂) in L∞(0, T ; [C
≈

(Ω)]′), with σ
≈

(M ψ̂) ∈ L∞(0, T ;L
≈

1
M (Ω×D)),

where the last inclusion is a direct consequence of the fact that (1 + |q
∼
|2) ψ̂ ∈ L∞(0, T ;L1

M (Ω×D)).

One can now pass to the limit L→∞ (and thereby ∆t→ 0+) in all other terms of (6.1a,b) using (6.8a–d)
and (6.9a–d) similarly to (4.42) as in the proof of Theorem 4.1.

Thus we have shown the existence of (u∼, z≈, ψ̂), such that u∼ and ψ̂ satisfy (6.5)–(6.7), with ψ̂ ≥ 0 a.e. on

Ω×D × [0, T ],
∫
D
M(q

∼
) ψ̂(x∼, q∼, t) dq = 1 for a.e. (x, t) ∈ Ω× [0, T ], and

z
≈
∈ L∞(0, T ; [C

≈
(Ω)]′), z

≈
= z
≈

T ≥ σ
≈

(Mψ̂) ≥ 0
≈
,
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satisfying, for µ > d
2 + 1,

−
∫ T

0

∫
Ω

u
∼
·
∂w
∼

∂t
dx
∼

dt+

∫ T

0

∫
Ω

[[
(u
∼
· ∇
∼
x)u
∼

]
· w
∼

+ ν∇
≈
x u
∼

: ∇
∼
xw
∼

]
dx
∼

dt

=

∫ T

0

[
〈f
∼
, w
∼
〉H1

0 (Ω) − k〈z
≈
,∇
∼
xw
∼
〉C(Ω)

]
dt+

∫
Ω

u
∼

0(x
∼

) · w
∼

(x
∼
, 0) dx

∼

∀w
∼
∈W 1,1(0, T ;V

∼
µ) with w

∼
(·, T ) = 0

∼
; (6.14a)

and, for s > d+ 1,

−
∫ T

0

∫
Ω×D

M ψ̂
∂ϕ̂

∂t
dq
∼

dx
∼

dt+

∫ T

0

∫
Ω×D

M
[
ε∇
∼
xψ̂ − u

∼
ψ̂
]
· ∇
∼
xϕ̂ dq

∼
dx
∼

dt

+

∫ T

0

∫
Ω×D

M

[
1

4λ
∇
∼
qψ̂ −

[
(∇
≈
x u
∼

) q
∼

]
ψ̂

]
· ∇
∼
qϕ̂dq

∼
dx
∼

dt

=

∫
Ω×D

M ψ̂0(x
∼
, q
∼
) ϕ̂(x

∼
, q
∼
, 0) dq

∼
dx
∼
∀ϕ̂ ∈W 1,1(0, T ;Hs(Ω×D)) with ϕ̂(·, ·, T ) = 0. (6.14b)

The triple (u∼, z≈, ψ̂) can be therefore viewed as a large-data global weak subsolution to the Navier–Stokes–
Fokker–Planck system, which becomes a large-data global weak solution if the stress-defect measure

z
≈
− σ
≈

(Mψ̂),

which, as was proved above, is a symmetric positive semidefinite Radon measure, is in fact equal to 0
≈

in

L∞(0, T ; [C
≈

(Ω)]′).
Although with this direct approach one cannot prove the analogue of (4.32), as one only has a uniform

bound on u∼
∆t(,±)
L in L∞(0, T ;L∼

2(Ω)) ∩ L2(0, T ;H∼
1(Ω)) and not in L1(0, T ;W∼

1,∞(Ω)), one can still establish
for 8L2 ∆t ≤ 1, in the case d = 2 at least, the analogue of (4.54a,b); that is,

ess.supt∈[0,T ]‖σ
≈

(M ψ̂∆t,+
L )(t)‖2L2(Ω) +

∫ T

0

‖∇
∼
x σ
≈

(M ψ̂∆t,+
L )‖2L2(Ω) dt ≤ C, (6.15a)

ess.supt∈[0,T ]‖ρ(M ψ̂∆t,+
L )(t)‖2L2(Ω) +

∫ T

0

‖∇
∼
x ρ(M ψ̂∆t,+

L )‖2L2(Ω) dt ≤ C. (6.15b)

As was noted in Remark 4.1, in the analogue of (4.55) one bounds∫ tn−1

0

‖∇
≈
x u
∼

∆t,+
L ‖L2(Ω) ‖ψ̂∆t,+

L ‖2L4(Ω) dt ≤ C
∫ tn−1

0

‖∇
≈
x u
∼

∆t,+
L ‖L2(Ω) ‖ψ̂∆t,+

L ‖L2(Ω) ‖ψ̂∆t,+
L ‖H1(Ω) dt,

where we have used (2.2) as d = 2. In addition, we have that

σ
≈

(M ψ̂∆t,+
L )→ z

≈
weak* in L∞(0, T ;L

≈

2(Ω)). (6.16)

The key difference between (4.59a–d) and (6.9a–d) is (6.9d).

As (6.9d) is not valid for r = 2, unlike (4.59d), we still cannot identify the limit z
≈

in (6.16) with σ
≈

(M ψ̂)
using (4.74). This is the only step that fails in this direct existence proof for (P), and therefore the existence
of a nonzero stress-defect cannot be ruled out even in the case of d = 2 by using this direct approach.

The failure of identifying the limit z
≈

in (6.16) with σ
≈

(M ψ̂) is why for the existence proof in [7], which
covered both d = 2 and d = 3, we required that the mapping s 7→ U(s) had superlinear growth at infinity,
recall (1.4a–c). If U satisfies (1.4a–c), then the analogue of Lemma 2.10, Lemma 4.1 in [7], and the fourth
bound in (6.2) yield that

ess.supt∈[0,T ]

∫
Ω×D

M (1 + |q
∼
|)2ϑ ψ̂∆t,±

L (t) dq
∼

dx
∼
≤ C, (6.17)
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the analogue of (6.4). Setting ω(q
∼
) = M(q

∼
) (1 + |q

∼
|)2ϑ and defining L2

ω(Ω×D) like L2
M (Ω×D), but with M

replaced by ω, one can show that H1
M (Ω×D) ∩ L2

ω(Ω×D) ↪→ L2
ω(Ω×D) is compact if ϑ > 1, see Appendix

F in [7]. One can then establish the strong convergence result (6.9d) for any r ∈ [0, 2ϑ], and hence one can

then identify z
≈

in (6.16) with σ
≈

(M ψ̂), and thus prove the existence of large-data global weak solutions to (P)
with U satisfying (1.4a–c). Finally, we note that if ϑ = 1, e.g. U(s) = s, one can demonstrate that the above
embedding is not compact by considering a counterexample; e.g. see Remark 3.17 in [10].
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