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Abstract. In this paper we consider the a posteriori and a priori error anal-
ysis of hp–discontinuous Galerkin interior penalty methods for second–order
partial differential equations with nonnegative characteristic form. In partic-
ular, we discuss the question of error estimation for linear target functionals,
such as the outflow flux and the local average of the solution. Based on our
a posteriori error bound we design and implement the corresponding adaptive
algorithm to ensure reliable and efficient control of the error in the prescribed
functional to within a given tolerance. This involves exploiting both local
polynomial-degree variation and local mesh subdivision. The theoretical re-
sults are illustrated by a series of numerical experiments.

1. Introduction

Discontinuous Galerkin finite element methods (DGFEMs, for short) date back
to the early 1970’s; they were simultaneously proposed by Reed & Hill [22] in 1973
for the numerical solution of the neutron transport equation and by Nitsche [18] in
1971 as nonstandard schemes for the approximation of second–order elliptic equa-
tions. Since then extensive work has been devoted to the development and analysis
of these methods for a wide range of applications; for a recent survey and historical
review, we refer to the article by Cockburn et al. [8]. One of the key advantages of
the DGFEM in comparison with standard Galerkin finite element methods based
on continuous piecewise polynomials is their high degree of locality. Indeed, the
computational stencil of the DGFEM remains very compact, even as the degree
of the approximating polynomial is increased. Thereby, high–order adaptive hp–
and spectral element approximations may be handled in a particularly flexible and
simple manner. This class of adaptive finite element methods offers tremendous
gains in computational efficiency in comparison with standard mesh refinement al-
gorithms which only incorporate local h–refinement with a given (fixed) polynomial
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degree. For a recent review of hp–refinement strategies, we refer to [14]; see also
[1, 4, 16, 23, 25] for related work.

In the series of papers [13, 14, 16, 25, 26], we have developed so–called ‘goal–
oriented’ a posteriori error estimation for hp–adaptive DGFEMs applied to first–
order hyperbolic conservation laws; see also [10] and the article of Larson & Barth
[17] in the case of the h–version of the DGFEM. Here, in contrast to traditional a
posteriori error estimation which seeks to bound the error with respect to a given
norm, goal–oriented a posteriori error estimation bounds the error measured in
terms of certain target functionals of real or physical interest. Typical examples
include the mean value of the field over the computational domain Ω, the normal
flux through the outflow boundary of Ω and the evaluation of the solution at a
given point in Ω. For related work, we refer to Becker & Rannacher [7].

The purpose of this paper is to extend our earlier work on first–order hyper-
bolic problems to a general class of second–order partial differential equations with
nonnegative characteristic form. For the discretization of the leading order terms,
we employ a class of interior penalty methods which lead to either a symmetric or
nonsymmetric discretization of the diffusive operator, depending on the choice of a
given parameter within the scheme; in the following we write SIP/NIP to denote
the symmetric/nonsymmetric versions of the interior penalty method, respectively.
While a symmetric discretization of a self–adjoint operator seems quite natural,
the NIP scheme is often preferred, particularly for advection–dominated problems
where the underlying discretization matrix is nonsymmetric anyway, as it is sta-
ble for any choice of a certain discontinuity–penalization parameter Cσ > 0, cf.
[2, 12, 21], for example; see also Theorem 3.1 below. On the other hand, the
SIP scheme is only stable when Cσ > 0 is chosen sufficiently large. In terms of
accuracy, both schemes converge at the optimal rate when the error is measured in
terms of the energy norm, but the lack of adjoint consistency, cf. [2], of the NIP
method leads to suboptimal convergence of the error when measured in terms of
the L2 norm. In this case, the SIP scheme is still optimally convergent, while the
NIP method is suboptimal by a full order; however, numerical experiments indicate
that in practice the L2 norm of the error arising from the NIP scheme converges to
zero at the optimal rate when the polynomial degree p is odd, cf. [12]. Thereby,
in practice the loss of optimality of the NIP scheme when the error is measured in
terms of the L2 norm only arises for even p. In this article, however, we shall show
that the lack of adjoint consistency of the NIP scheme leads to suboptimal rates of
convergence for all p ≥ 2, when the error is measured in terms of a certain (linear)
target functional J(·) of practical interest, such as J : v 7→

∫
Ω v(x)ψ(x) dx , for

example, where ψ is a given weight-function. More precisely, for fixed p we shall
show that the error measured in terms of J(·) behaves like O(h2p) when the SIP
scheme is employed, while for the NIP scheme, we only have the rate of conver-
gence O(hp) as h tends to zero. For related work on a posteriori error estimation
for DGFEMs with interior penalty, see Becker et al. [5, 6] and Rivière & Wheeler
[23], for example.

The paper is structured as follows. In Section 2 we introduce the model prob-
lem and formulate its discontinuous Galerkin finite element approximation. Then,
in Sections 3 and 4 we develop the a posteriori and a priori error analyses of the
error measured in terms of certain linear target functionals of practical interest.
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Our a posteriori error bounds stem from a duality argument and include com-
putable residual terms multiplied by local weights involving the dual solution; cf.
[7, 10, 16, 25]. Guided by our a posteriori error analysis, in Section 5 we design
an hp–adaptive finite element algorithm to guarantee reliable and efficient control
of the error in the computed functional to within a fixed user–defined tolerance.
The performance of the resulting hp–refinement strategy is then studied in Section
6 through a series of numerical experiments. In particular, we demonstrate the
superiority of using hp–adaptive mesh refinement over the traditional h–refinement
method, where the degree of the approximating polynomial is kept fixed at some
low value. Finally, in Section 7 we summarize the work presented in this paper and
draw some conclusions.

2. Model problem and discretization

Let Ω be a bounded open polyhedral domain in Rd, d ≥ 2, and let Γ signify the
union of its (d − 1)–dimensional open faces. We consider the advection–diffusion–
reaction equation

Lu ≡ −∇ · (a∇u) + ∇ · (bu) + cu = f ,(2.1)

where f ∈ L2(Ω) and c ∈ L∞(Ω) are real–valued, b = {bi}di=1 is a vector func-
tion whose entries bi are Lipschitz continuous real–valued functions on Ω̄, and
a = {aij}di,j=1 is a symmetric matrix whose entries aij are bounded, piecewise

continuous real–valued functions defined on Ω̄, with

ζTa(x)ζ ≥ 0 ∀ζ ∈ R
d , a.e. x ∈ Ω̄ .(2.2)

Under this hypothesis, (2.1) is termed a partial differential equation with nonnega-
tive characteristic form. By n(x) = {ni(x)}di=1 we denote the unit outward normal
vector to Γ at x ∈ Γ. On introducing the so called Fichera function b ·n (cf. [20]),
we define

Γ0 =
{
x ∈ Γ : n(x)Ta(x)n(x) > 0

}
,

Γ− = {x ∈ Γ\Γ0 : b(x) · n(x) < 0} , Γ+ = {x ∈ Γ\Γ0 : b(x) · n(x) ≥ 0} .
The sets Γ− and Γ+ will be referred to as the inflow and outflow boundary, respec-
tively. Evidently, Γ = Γ0∪Γ−∪Γ+. If Γ0 is nonempty, we shall further divide it into
disjoint subsets ΓD and ΓN whose union is Γ0, with ΓD nonempty and relatively
open in Γ. We supplement (2.1) with the boundary conditions

u = gD on ΓD ∪ Γ− , n · (a∇u) = gN on ΓN ,(2.3)

and adopt the (physically reasonable) hypothesis that b · n ≥ 0 on ΓN, whenever
ΓN is nonempty. Additionally, we assume that the following (standard) positivity
hypothesis holds: there exists a constant vector ξ ∈ Rd such that

c(x) +
1

2
∇ · b(x) + b(x) · ξ > 0 a.e. x ∈ Ω .(2.4)

For simplicity of presentation, we assume throughout that (2.4) is satisfied with
ξ ≡ 0; we then define the positive function c0 by

(c0(x))
2 = c(x) +

1

2
∇ · b(x) a.e. x ∈ Ω .(2.5)

For the well-posedness theory of the boundary value problem (2.1), (2.3), in the
case of homogeneous boundary conditions, we refer to [12] (see also [15]).
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2.1. Meshes, finite element spaces and traces. We consider shape–regular
meshes Th = {κ} that partition the domain Ω into open element domains κ, with
possible hanging nodes. For the sake of simplicity, we shall suppose that the mesh
is 1-irregular in the sense that there is at most one hanging node per element-face
which we assume to be the barycenter of the face. We denote by h the piecewise
constant mesh function with h(x) ≡ hκ = diam(κ) when x is in element κ. We
assume that each κ ∈ Th is a smooth bijective image of a fixed reference element κ̂,
that is, κ = Fκ(κ̂) for all κ ∈ Th, where κ̂ is either the open unit simplex

κ̂S = {x̂ = (x̂1, . . . , x̂d) ∈ R
d : 0 < x1 + · · · + xd < 1, xi > 0, i = 1, . . . , d}

or the open hypercube κ̂C = (−1, 1)d in Rd. On κ̂ we define spaces of polynomials
of degree p ≥ 1 as follows:

Qp = span {x̂α : 0 ≤ αi ≤ p, 1 ≤ i ≤ d} , Pp = span {x̂α : 0 ≤ |α| ≤ p} .
To each κ ∈ Th we assign an integer pκ ≥ 1; collecting the pκ and Fκ in the vectors
p = {pκ : κ ∈ Th} and F = {Fκ : κ ∈ Th}, respectively, we introduce the finite
element space

Sp(Ω, Th,F) = {u ∈ L2(Ω) : u|κ ◦ Fκ ∈ Qpκ
if F−1

κ (κ) = κ̂C

and u|κ ◦ Fκ ∈ Ppκ
if F−1

κ (κ) = κ̂S; κ ∈ Th} .
Associated with Th, we introduce the broken Sobolev space of composite order

s defined by

Hs(Ω, Th) = {u ∈ L2(Ω) : u|κ ∈ Hsκ(κ) ∀κ ∈ Th} ,
equipped with the broken Sobolev norm and corresponding seminorm, respectively,

(2.6) ‖u‖s,Th
=
( ∑

κ∈Th

‖u‖2
Hsκ(κ)

)1/2

, |u|s,Th
=
( ∑

κ∈Th

|u|2Hsκ (κ)

)1/2

.

When sκ = s for all κ ∈ Th, we write Hs(Ω, Th), ‖u‖s,Th
and |u|s,Th

. For u ∈
H1(Ω, Th) we define the broken gradient ∇Th

u of u by (∇Th
u)|κ = ∇(u|κ), κ ∈ Th.

An interior face of Th is defined as the (non-empty) (d−1)–dimensional interior
of ∂κi ∩ ∂κj, where κi and κj are two adjacent elements of Th, not necessarily
matching. A boundary face of Th is defined as the (non-empty) (d−1)–dimensional
interior of ∂κ∩Γ, where κ is a boundary element of Th. We denote by Γint the union
of all interior faces of Th. Given a face e ⊂ Γint, shared by the two elements κi and
κj, where the indices i and j satisfy i > j, we write ne to denote the (numbering–
dependent) unit normal vector which points from κi to κj ; on boundary faces, we
put ne = n. Further, for v ∈ H1(Ω, Th) we define the jump of v across e and the
mean value of v on e, respectively, by

[v] = v|∂κi∩e − v|∂κj∩e and 〈v〉 =
1

2

(
v|∂κi∩e + v|∂κj∩e

)
.(2.7)

On a boundary face e ⊂ ∂κ, we set [v] = v|∂κ∩e and 〈v〉 = v|∂κ∩e. Finally, given a
function v ∈ H1(Ω, Th) and an element κ ∈ Th, we denote by v+

κ (respectively, v−κ )
the interior (respectively, exterior) trace of v defined on ∂κ (respectively, ∂κ\Γ).
Since below it will always be clear from the context which element κ in the subdivi-
sion Th the quantities v+

κ and v−κ correspond to, for the sake of notational simplicity
we shall suppress the letter κ in the subscript and write, respectively, v+ and v−

instead.
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2.2. The hp–discontinuous Galerkin method. Given that κ is an element
in the subdivision Th, we denote by ∂κ the union of (d− 1)–dimensional open faces
of κ. Let x ∈ ∂κ and suppose that nκ(x) denotes the unit outward normal vector
to ∂κ at x. With these conventions, we define the inflow and outflow parts of ∂κ,
respectively, by

∂−κ = {x ∈ ∂κ : b(x) · nκ(x) < 0} , ∂+κ = {x ∈ ∂κ : b(x) · nκ(x) ≥ 0} .
For simplicity of presentation, we suppose that the entries of the matrix a are
constant on each element κ in Th; i.e.,

a ∈
[
S0(Ω, Th,F)

]d×d
sym .(2.8)

We note that, with minor changes only, our results can easily be extended to the

case of
√
a ∈ [Sq(Ω, Th,F)]

d×d
sym, where the composite polynomial degree vector q

has nonnegative entries. In the following, we write ā = |√a |22, where | · |2 denotes
the matrix norm subordinate to the l2–vector norm on Rd and āκ = ā|κ; by āκ̃ we
denote the arithmetic mean of the values āκ′ over those elements κ′ (including κ
itself) that share a (d− 1)–dimensional face with κ.

The hp–DGFEM approximation of (2.1), (2.3) is defined as follows: find uDG

in Sp(Ω, Th,F) such that

BDG(uDG, v) = ℓDG(v)(2.9)

for all v ∈ Sp(Ω, Th,F). Here, the bilinear form BDG(·, ·) is defined by

BDG(w, v) = Ba(w, v) +Bb(w, v) + θBe(v, w) −Be(w, v) +Bσ(w, v) ,

where

Ba(w, v) =
∑

κ∈Th

∫

κ

a∇w · ∇v dx ,

Bb(w, v) =
∑

κ∈Th

{
−
∫

κ

(wb · ∇v − cwv) dx

+

∫

∂+κ

(b · nκ)w+v+ ds+

∫

∂−κ\Γ

(b · nκ)w−v+ ds

}
,

Be(w, v) =

∫

Γint∪ΓD

〈(a∇w) · ne〉[v] ds ,

Bσ(w, v) =

∫

Γint∪ΓD

σ[w][v] ds ,

and the linear functional ℓDG(·) is given by

ℓDG(v) =
∑

κ∈Th

(∫

κ

fv dx−
∫

∂−κ∩(ΓD∪Γ−)

(b · nκ) gD v+ ds

+

∫

∂κ∩ΓD

θ gD((a∇v+) · nκ) ds+

∫

∂κ∩ΓN

gNv
+ ds+

∫

∂κ∩ΓD

σgDv
+ ds

)
.

Here, σ is called the discontinuity–penalization parameter, and is defined by

σ|e = Cσ
〈āp2〉
〈h〉 for e ⊂ Γint ∪ ΓD ,(2.10)
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where Cσ is a positive constant, cf. [12]. We shall adopt the convention that
edges e ⊂ Γint ∪ ΓD with σ|e = 0 are omitted from the integrals appearing in the
definition of Bσ(w, v) and ℓDG(v), although we shall not highlight this explicitly
in our notation; the same convention is adopted in the case of integrals where the
integrand contains the factor 1/σ. Thus, in particular, the definition of the DG-
norm, cf. (3.1) below, is meaningful even if σ|e happens to be equal to zero on
certain edges e ⊂ Γint ∪ ΓD, given that such edges are understood to be excluded
from the region of integration.

Selecting the parameter θ = 1 gives rise to the so–called Nonsymmetric Interior
Penalty (NIP) method, while setting θ = −1 yields the Symmetric Interior Penalty
(SIP) scheme.

Remark 2.1. We remark that the formulation of the interior penalty DGFEM
defined in (2.9) is referred to as the primal formulation of the scheme, cf. [2]. In
order to see where the inter-element terms appearing in BDG(·, ·) and ℓDG(·) arise
from, it is helpful to consider the equivalent auxiliary, or flux (cf. [2]) formulation.
To this end, we first rewrite the advection–diffusion–reaction equation (2.1) as the
following first–order system of partial differential equations:

Φ − a∇u = 0 in Ω ,(2.11)

−∇ · Φ + ∇ · (bu) + cu = f in Ω .(2.12)

Taking the L2(κ), κ ∈ Th, inner product of (2.11) and (2.12) with smooth test
functions τ and v, respectively, and integrating by parts gives

∫

κ

Φ · τ dx+

∫

κ

∇ · (aτ)u dx −
∫

∂κ

(aτ) · nκu ds = 0 ,

∫

κ

Φ · ∇v dx−
∫

∂κ\ΓN

Φ · nκv ds−
∫

∂κ∩ΓN

gNv ds−
∫

κ

ub · ∇v dx

+

∫

∂κ

b · nκuv ds+

∫

κ

cuv dx =

∫

κ

fv dx .

Summing over all elements κ in the computational mesh Th and introducing appro-
priate numerical flux functions which will be defined below, we deduce the following
auxiliary formulation of the interior penalty DGFEM: find uh ∈ Sp(Ω, Th,F) and

Φh ∈ [Sp(Ω, Th,F)]
d

such that

∑

κ∈Th

{∫

κ

Φh · τ dx+

∫

κ

∇ · (aτ)uh dx

}
−
∫

Γint∪Γ0

[(aτ) · ne] ûh ds = 0 ,(2.13)

∑

κ∈Th

{∫

κ

Φh · ∇v dx−
∫

κ

(uhb · ∇v − cuhv) dx +

∫

∂κ

H(u+
h , u

−
h ,nκ)v

+ ds

}

−
∫

Γint∪ΓD

Φ̂h · ne [v] ds =
∑

κ∈Th

{∫

κ

fv dx+

∫

∂κ∩ΓN

gNv ds

}
(2.14)

for all v ∈ Sp(Ω, Th,F) and τ ∈ [Sp(Ω, Th,F)]
d
. Here, we have employed that

Γ = ΓD ∪ ΓN ∪ (Γ \ Γ0) and the result

(2.15)

d∑

j=1

aij(x)nj = 0 on Γ \ Γ0 , i = 1, . . . , d ,
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cf. [15]. The consistent and conservative (hyperbolic) numerical flux function
H(u+

h , u
−
h ,nκ) is defined by

H(u+
h , u

−
h ,nκ)|∂κ =

{
b · nκ gD when x ∈ ∂−κ ∩ (ΓD ∪ Γ−) ,
b · nκ lims→0+ uh(x− sb) otherwise ,

for κ in Th, cf. Cockburn et al. [8]. For the symmetric interior penalty method,

the consistent (elliptic) numerical flux functions ûh and Φ̂h · ne are defined by

ûh =

{
〈uh〉 e ⊂ Γint ∪ ΓN ,
gD e ⊂ ΓD ,

and

Φ̂h · ne =

{
〈(a∇uh) · ne〉 − σ[uh] e ⊂ Γint ,
(a∇uh|e) · ne − σ(uh|e − gD) e ⊂ ΓD ,

respectively. We note that the latter flux function is consistent for any choice
of σ; however, as we shall see in the next section the stability of the underlying
discretization crucially depends on the magnitude of this discontinuity–penalization
parameter. For the choice of the corresponding numerical flux functions for the
nonsymmetric interior penalty method, together with other schemes proposed in
the literature, we refer to the article [2]. In order to demonstrate the equivalence of
the primal and auxiliary formulations of the interior penalty DGFEM, the auxiliary
variable Φh must be eliminated from (2.13) and (2.14). This is done by selecting
τ = ∇v in (2.13), integrating by parts, and inserting the resulting expression for
the term involving the dot product of Φh and ∇v into (2.14); see [2] for details.

3. Stability analysis

Before embarking on the error analysis of the hp–version discontinuous Galerkin
method (2.9), we first derive some preliminary results. Let us first introduce the
DG–norm ||| · |||DG by

|||w|||2DG =
∑

κ∈Th

(
‖
√
a∇w‖2

L2(κ) + ‖c0w‖2
L2(κ) +

1

2
‖w+‖2

∂−κ∩(ΓD∪Γ−)

+
1

2
‖w+ − w−‖2

∂−κ\Γ
+

1

2
‖w+‖2

∂+κ∩Γ

)

+

∫

Γint∪ΓD

σ[w]2 ds+

∫

Γint∪ΓD

1

σ
〈(a∇w) · ne〉2 ds ,(3.1)

where ‖ · ‖τ , τ ⊂ ∂κ, denotes the (semi)norm associated with the (semi)inner-
product

(v, w)τ =

∫

τ

|b · nκ|vw ds ,

and c0 is as defined in (2.5). We remark that the above definition of ||| · |||DG

represents a slight modification of the norm considered in [12]; in the case b ≡ 0,
(3.1) corresponds to the norm proposed by Baumann et al. [4, 19] and Baker et
al. [3], cf. [21].

With this notation, we now provide the following coercivity result for the bi-
linear form BDG(·, ·) over Sp(Ω, Th,F) × Sp(Ω, Th,F).
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Theorem 3.1. With σ defined as in (2.10), there exists a positive constant C,
which depends only on the dimension d and the shape–regularity of Th, such that

BDG(v, v) ≥ C|||v|||2DG ∀v ∈ Sp(Ω, Th,F),(3.2)

provided that the constant Cσ arising in the definition of the discontinuity penal-
ization parameter σ is chosen so that:

Cσ >

{
0 when θ = 1 ,
C′
σ > 0 when θ = −1 ,

where C′
σ is a sufficiently large positive constant (see Remark 3.2 below).

Proof. This result follows by a simple extension of the stability estimates
derived by Prudhomme et al. [21] in the case when b ≡ 0; see also [12] for the
proof in the case when θ = 1. �

Remark 3.2. Theorem 3.1 indicates that while the NIP scheme is coercive
over Sp(Ω, Th,F) × Sp(Ω, Th,F) for any choice of the constant Cσ > 0 arising in
the definition of the discontinuity–penalization parameter σ, the SIP scheme is only
coercive if Cσ is chosen sufficiently large. More precisely, Cσ should be selected to
be a positive constant which is greater than CtCregCe(1 + Cinv), where Ct is the
constant arising in the multiplicative trace inequality (4.19), Creg stems from the
local regularity assumption āκp

2
κ/hκ ≤ Creg〈āp2〉/〈h〉 for all faces e ⊂ ∂κ and all

κ ∈ Th, Ce = maxκ∈Th
card {e ∈ Γint ∪ ΓD : e ⊂ ∂κ} and Cinv is the constant in

the inverse inequality ‖∇v‖L2(κ) ≤ Cinv(p
2
κ/hκ)‖v‖L2(κ) , where κ ∈ Th and v ∈

Sp(Ω, Th,F), cf. Schwab [24]. Since the mesh Th is assumed to be shape–regular,
Ct, Ce, Creg and Cinv exist and are independent of the discretization parameters.

For the proceeding error analysis, we assume that the solution u to the bound-
ary value problem (2.1), (2.3) is sufficiently smooth: namely, u ∈ H2(Ω, Th) and
the functions u and (a∇u) ·ne are continuous across each face e ⊂ ∂κ\Γ that inter-

sects the subdomain of ellipticity, Ωa = {x ∈ Ω̄ : ζTa(x)ζ > 0 ∀ζ ∈ Rd}. If this
smoothness requirement is violated, the discretization method has to be modified
accordingly, cf. [12]. We note that under these assumptions, the following Galerkin
orthogonality property holds:

BDG(u − uDG, v) = 0 ∀v ∈ Sp(Ω, Th,F) .(3.3)

It will be assumed in the proceeding analysis, as well as in Section 4.2, that
the velocity vector b satisfies the following assumption:

b · ∇Th
v ∈ Sp(Ω, T ,F) ∀v ∈ Sp(Ω, T ,F) .(3.4)

To ensure that (2.1) is then meaningful (i.e., that the characteristic curves of the

differential operator L are correctly defined), we still assume that b ∈
[
W 1

∞(Ω)
]d

.
Let us denote by Πp the orthogonal projector in L2(Ω) onto the finite element

space Sp(Ω, T ,F); i.e., given that u ∈ L2(Ω), we define Πpu by

(u − Πpu, v) = 0 ∀v ∈ Sp(Ω, T ,F) ,

where (·, ·) denotes the L2(Ω) inner product. We remark that this choice of projector
is essential in the following a priori error analysis, in order to ensure that

(u− Πpu,b · ∇Th
v) = 0(3.5)
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for all v in Sp(Ω, T ,F), cf. the proofs of Lemma 3.3 and Theorem 4.4 below.
We remark that if the scheme (2.9) is supplemented by streamline–diffusion sta-
bilization, then a different choice of Πp may be employed which maximizes its
hp–approximation properties, cf. [11, 26], for example. In that case hypothesis
(3.4) is redundant.

We now decompose the global error u− uDG as

u− uDG = (u − Πpu) + (Πpu− uDG) ≡ η + ξ .(3.6)

With these definitions we have the following result.

Lemma 3.3. Assume that (2.4) and (3.4) hold and let β1|κ = ‖c/(c0)2‖L∞(κ);
then the functions ξ and η defined by (3.6) satisfy the following inequality

|||ξ|||2DG ≤ C

(
∑

κ∈Th

(
‖
√
a∇η‖2

L2(κ) + β2
1‖c0η‖2

L2(κ) + ‖η+‖2
∂+κ∩Γ + ‖η−‖2

∂−κ\Γ

)

+

∫

Γint∪ΓD

1

σ
〈(a∇η) · ne〉2 ds+

∫

Γint∪ΓD

σ[η]2 ds

)
,

where C is a positive constant that depends only on the dimension d and the shape–
regularity of Th.

Proof. From the Galerkin orthogonality condition (3.3), we deduce that

BDG(ξ, ξ) = −BDG(η, ξ) ,

where ξ and η are as defined in (3.6). Thereby, employing the coercivity result
stated in Theorem 3.1, gives

|||ξ|||2DG ≤ − 1

C
BDG(η, ξ) .(3.7)

Using the identity (3.5), the right–hand side of (3.7) may be bounded as follows:

BDG(η, ξ) ≤ C|||ξ|||
(
∑

κ∈Th

(
‖
√
a∇η‖2

L2(κ) + β2
1‖c0η‖2

L2(κ) + ‖η+‖2
∂+κ∩Γ

+‖η−‖2
∂−κ\Γ

)
+

∫

Γint∪ΓD

1

σ
〈(a∇η) · ne〉2 ds+

∫

Γint∪ΓD

σ[η]2 ds

)1/2

;(3.8)

see [27] for details (cf. also [12]). On substituting (3.8) into (3.7) we obtain the
desired result. �

In the next section, we consider the a posteriori and a priori error analysis
of the hp–version discontinuous Galerkin finite element method (2.9) in terms of
certain linear target functionals of practical interest.

4. A posteriori and a priori error analysis

Very often in problems of practical importance the quantity of interest is an
output or target functional J(·) of the solution. Relevant examples include the lift
and drag coefficients for a body immersed into a viscous fluid, the local mean value
of the field, or its flux through the outflow boundary of the computational domain.
The aim of this section is to develop the a posteriori and a priori error analysis for
general linear target functionals J(·) of the solution; for related work, we refer to
[7, 10, 16, 17, 25], for example.
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4.1. Type I a posteriori error analysis. In this section we consider the
derivation of so-called Type I (cf. [16]) or weighted a posteriori error bounds.
Following the argument presented in [16, 25] we begin our analysis by considering
the following dual or adjoint problem: find z ∈ H2(Ω, Th) such that

(4.1) BDG(w, z) = J(w) ∀w ∈ H2(Ω, Th).
Let us assume that (4.1) possesses a unique solution. Clearly, the validity of this
assumption depends on the choice of the linear functional under consideration. We
shall return to this issue at the end of this section; see also the discussion presented
in [16].

For a given linear functional J(·) the proceeding a posteriori error bound will
be expressed in terms of the finite element residual Rint defined on κ ∈ Th by

Rint|κ = (f − LuDG)|κ ,
which measures the extent to which uDG fails to satisfy the differential equation on
the union of the elements κ in the mesh Th; thus we refer to Rint as the internal
residual. Also, since uDG only satisfies the boundary conditions approximately, the
differences gD −uDG and gN − (a∇uDG) ·n are not necessarily zero on ΓD ∪Γ− and
ΓN, respectively; thus we define the boundary residuals RD and RN by

RD|∂κ∩(ΓD∪Γ−) = (gD − u+
DG)|∂κ∩(ΓD∪Γ−) ,

RN|∂κ∩ΓN
= (gN − (a∇u+

DG) · n)|∂κ∩ΓN
,

respectively.
With this notation, after application of the divergence theorem, the Galerkin

orthogonality condition (3.3) may be written in the following equivalent form:

BDG(u− uDG, v) = ℓDG(v) −BDG(uDG, v)

=
∑

κ∈Th

( ∫

κ

Rintv dx−
∫

∂−κ∩Γ

(b · nκ)RDv
+ ds

+

∫

∂−κ\Γ

(b · nκ) [uDG]v+ ds+

∫

∂κ∩ΓD

θ RD((a∇v+) · nκ) ds

+

∫

∂κ∩ΓD

σRDv
+ ds+

∫

∂κ∩ΓN

RNv
+ ds

−
∫

∂κ\Γ

{
θ

2
[uDG](a∇v+) · nκ +

1

2
[(a∇uDG) · nκ]v+

}
ds

−
∫

∂κ\Γ

σ[uDG]v+ ds

)

= 0(4.2)

for all v ∈ Sp(Ω, Th,F). Here, we have again employed the result (2.15). The
starting point for the analysis is the following general result.

Theorem 4.1. Let u and uDG denote the solutions of (2.1), (2.3) and (2.9),
respectively, and suppose that the dual solution z is defined by (4.1). Then, the
following error representation formula holds:

J(u) − J(uDG) = EΩ(uDG, h, p, z − zh,p) ≡
∑

κ∈Th

ηκ ,(4.3)
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where

ηκ =

∫

κ

Rint(z − zh,p) dx−
∫

∂−κ∩Γ

(b · nκ)RD(z − zh,p)
+ ds

+

∫

∂−κ\Γ

(b · nκ) [uDG](z − zh,p)
+ ds+

∫

∂κ∩ΓD

θ RD((a∇(z − zh,p)
+) · nκ) ds

+

∫

∂κ∩ΓD

σRD(z − zh,p)
+ ds+

∫

∂κ∩ΓN

RN(z − zh,p)
+ ds

−
∫

∂κ\Γ

{
θ

2
[uDG](a∇(z − zh,p)

+) · nκ +
1

2
[(a∇uDG) · nκ](z − zh,p)

+

}
ds

−
∫

∂κ\Γ

σ[uDG](z − zh,p)
+ ds(4.4)

for all zh,p ∈ Sp(Ω, Th,F).

Proof. On choosing w = u − uDG in (4.1) and recalling the linearity of J(·)
and the Galerkin orthogonality property (4.2), we deduce that

J(u) − J(uDG) = J(u− uDG) = BDG(u− uDG, z)

= BDG(u− uDG, z − zh,p) ,(4.5)

and hence (4.3). �

Thereby, on application of the triangle inequality, we deduce the following Type
I a posteriori error bound.

Corollary 4.2. Under the assumptions of Theorem 4.1, the following Type I
a posteriori error bound holds:

|J(u) − J(uDG)| ≤ E|Ω|(uDG, h, p, z − zh,p) ≡
∑

κ∈Th

|ηκ| ,(4.6)

where ηκ is defined as in (4.4).

As discussed in [10, 25], the local weighting terms involving the difference
between the dual solution z and its projection/interpolant zh,p onto Sp(Ω, Th,F)
appearing in the Type I bound (4.6) provide useful information concerning the
global transport of the error. Thereby, we refrain from eliminating the weighting
terms involving the (unknown) dual solution z and approximate z numerically;
this will be discussed in Section 5. However, before developing the a priori error
analysis, let us first look at the structure of the dual problem defined by (4.1). To
this end, let us suppose that the aim of the computation is to approximate the
(weighted) mean value of the solution u; i.e., J(·) ≡Mψ(·), where

Mψ(w) =

∫

Ω

wψ dx

and ψ ∈ L2(Ω). Performing integration by parts, we find that the dual solution z
must satisfy the following mesh–dependent problem: find z such that

L∗z ≡ −∇ · (a∇z) − b · ∇z + cz = ψ in κ ,(4.7)
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subject to the inter–element conditions

(b · nκ)[z] + (1 + θ)〈(a∇z) · nκ〉 + σ[z] = 0 on ∂+κ\Γ ,(4.8a)

(1 + θ)〈(a∇z) · nκ〉 + σ[z] = 0 on ∂−κ\Γ ,(4.8b)

[z] = 0 on ∂κ ∩ Ωa ,(4.8c)

and boundary conditions

z = 0 on ∂κ ∩ (ΓD ∪ Γ+) ,(4.9a)

(b · nκ)z + (a∇z) · nκ = 0 on ∂κ ∩ ΓN ,(4.9b)

(1 + θ)(a∇z) · nκ = 0 on ∂κ ∩ ΓD(4.9c)

for all κ ∈ Th. In the case when θ = −1, the dependence of the dual solution on the
mesh Th may be removed. Indeed, in this case, using the continuity of the advective
flux and the continuity of z in the domain of ellipticity Ωa, the dual problem (4.7),
(4.8) and (4.9) reduces to finding z such that

L∗z ≡ −∇ · (a∇z) − b · ∇z + cz = ψ in Ω ,(4.10a)

z = 0 on ΓD ∪ Γ+ , (b · n)z + (a∇z) · n = 0 on ΓN .(4.10b)

Thereby, for θ = −1 the corresponding dual problem is well–posed for this choice
of target functional. We remark that since the dual problem formed by transposing
the arguments in the bilinear form BDG(·, ·) involves the formal adjoint of the
partial differential operator L, BDG(·, ·) is referred to as being adjoint consistent,
cf. Arnold et al. [2]. On the other hand, when θ = 1 the bilinear formBDG(·, ·) is no
longer adjoint consistent; in this case the term involving the diffusive flux in (4.8a),
(4.8b) and (4.9c) no longer vanishes, and the boundary conditions enforce that both
z and (a∇z) · n should be equal to zero on ΓD. Furthermore, the inter–element
conditions become inconsistent in the sense that while (4.8c) enforces continuity of
z in Ωa, (4.8b) requires that

(a∇z)|∂κi∩e · nκ = −(a∇z)|∂κj∩e · nκ
for all edges e ⊂ ∂κ, where κi and κj are two neighboring elements with common
edge e. In general both conditions cannot be simultaneously satisfied; indeed, in
Section 6, we provide numerical evidence that indicates that for a fixed h > 0,
the dual solution stemming from the NIP scheme may be discontinuous between
element interfaces. This lack of regularity in the dual solution when θ = 1 will lead
to a degradation in the convergence rate of the error in the computed functional
J(·) as the finite element space Sp(Ω, Th,F) is enriched. In contrast, when the
SIP scheme is employed, the dual problem is simply the adjoint problem, subject
to appropriate boundary conditions, which depend on the particular functional
of interest, cf. above. Thereby, in this case, optimal rates of convergence will be
observed provided the data for the primal and dual problems (2.1), (2.3) and (4.10),
respectively, are sufficiently smooth. These remarks will be made more precise in
the next section where we consider the a priori error analysis of the hp–DGFEM
(2.9)

4.2. A priori error bounds. In this section we derive a priori error bounds
for the SIP and NIP methods introduced in Section 2.2. We shall use the su-
perscripts SIP and NIP to distinguish between the two methods. Thereby, writ-
ing BSIP

DG(·, ·) ≡ BDG(·, ·) when θ = −1 and BNIP
DG (·, ·) ≡ BDG(·, ·) when θ = 1,
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the numerical solutions uSIP
DG and uNIP

DG satisfy the following problems: find uSIP
DG in

Sp(Ω, Th,F) such that

BSIP
DG(uSIP

DG, v) = ℓDG(v) ∀v ∈ Sp(Ω, Th,F) ;

and find uNIP
DG in Sp(Ω, Th,F) such that

BNIP
DG (uNIP

DG , v) = ℓDG(v) ∀v ∈ Sp(Ω, Th,F) ,

respectively. The starting point for the a priori error analysis is the identity (4.5)
in the proof of Theorem 4.1. Again, using the above notation, we recall that

J(u) − J(uSIP
DG) = BSIP

DG(u − uSIP
DG, z

SIP − zh,p)(4.11)

when the SIP scheme is employed, while for the NIP scheme, we have

J(u) − J(uNIP
DG) = BNIP

DG (u− uNIP
DG , z

NIP − zh,p)(4.12)

for all zh,p in Sp(Ω, Th,F). Here, zSIP and zNIP are the analytical solutions to the
following dual problems: find zSIP ∈ H2(Ω, Th) such that

BSIP
DG(w, zSIP) = J(w) ∀w ∈ H2(Ω, Th) ;

and find zNIP ∈ H2(Ω, Th) such that

BNIP
DG (w, zNIP) = J(w) ∀w ∈ H2(Ω, Th) ,(4.13)

respectively.
In the following analysis, it will be helpful to rewrite the representation formula

(4.12) for the error in the computed functional when the NIP scheme is employed
in terms of zSIP rather than the dual solution zNIP stemming from the NIP scheme.
The reason for this is that the error analysis will rely on the regularity of the dual
solution. While the regularity of the dual solution zSIP may be easily determined
since the underlying boundary value problem for the partial differential equation
is the adjoint problem, subject to appropriate data, the Sobolev regularity of the
solution to the mesh–dependent dual problem (4.13) is not well understood. Indeed,
for a fixed h > 0, we expect that zNIP will not even be a continuous function, cf.
the comments at the end of Section 4.1. We first note that

J(u) − J(uNIP
DG ) = BNIP

DG (u− uNIP
DG , z

SIP − zh,p) − 2Be(z
SIP, u− uNIP

DG)

for all zh,p in Sp(Ω, Th,F). Thereby, the error in the computed target functional
J(·), when either scheme is employed, may be written in the following unified way

J(u) − J(uDG) = BDG(u− uDG, z
SIP − zh,p)

−(1 + θ)Be(z
SIP, u− uNIP

DG)(4.14)

for all zh,p in Sp(Ω, Th,F). We remark that the second term on the right–hand
side of equation (4.14) is only present when the NIP scheme is employed, i.e., when
θ = 1. Moreover, we expect this term to be of lower order than the first term
in (4.14) and will, thereby, lead to suboptimal rates of convergence as the finite
element space Sp(Ω, Th,F) is enriched, when the nonsymmetric interior penalty
scheme is employed, cf. Theorem 4.4 below.

Before embarking on the a priori error analysis, we first state the following
result concerning the approximation properties of the orthogonal projector Πp in
L2(Ω) introduced in Section 3; for convenience, here we shall restrict ourselves to
1-irregular, shape–regular meshes consisting of affine equivalent d-parallelepiped
elements.
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Lemma 4.3. Suppose that κ ∈ Th is a d–parallelepiped of diameter hκ and that
u|κ ∈ Hkκ(κ), kκ ≥ 0, for κ ∈ Th. Then, the following approximation results hold

‖u− Πpu‖L2(κ) ≤ C
hsκ
κ

pkκ
κ

‖u‖Hkκ (κ) , ‖u− Πpu‖L2(∂κ) ≤ C
h
sκ−1/2
κ

p
kκ−1/2
κ

‖u‖Hkκ (κ) ,

|u− Πpu|H1(κ) ≤ C
hsκ−1
κ

p
kκ−3/2
κ

‖u‖Hkκ(κ) , |u− Πpu|H1(∂κ) ≤ C
h
sκ−3/2
κ

p
kκ−5/2
κ

‖u‖Hkκ (κ) ,

where 1 ≤ sκ ≤ min(pκ + 1, kκ) and C is a constant independent of u, hκ and pκ,
but dependent on the dimension d and the shape–regularity of Th.

Proof. See [12] for details; see also [9] for sharper results in augmented
Sobolev spaces. �

For the rest of this section, let us now assume that the polynomial degree
vector p, with pκ ≥ 1 for each κ ∈ Th, has bounded local variation; i.e., there
exists a constant ρ ≥ 1 such that, for any pair of elements κ and κ′ which share a
(d− 1)–dimensional face,

ρ−1 ≤ pκ/pκ′ ≤ ρ .(4.15)

With this hypothesis, combining the above approximation result with Lemma 3.3,
we deduce that

|||ξ|||2DG ≤ C
∑

κ∈Th

(
α
h

2(sκ−1)
κ

p
2(kκ−3/2)
κ

+ β2
h2sκ
κ

p2kκ
κ

+ γ
h

2(sκ−1/2)
κ

p
2(kκ−1/2)
κ

)
‖u‖2

Hkκ (κ) ,(4.16)

where α|κ = āκ̃, β2|κ = (β1|κ)2 ‖c0‖2
L∞(κ), (β1|κ = ‖c/(c0)2‖L∞(κ), cf. Lemma 3.3),

γ|κ = ‖b‖L∞(κ) and C is a positive constant that depends only on d, the parameter
ρ in (4.15) and the shape–regularity of Th.

With these approximation results, we now proceed to prove the main result of
this section.

Theorem 4.4. Let Ω ⊂ Rd be a bounded polyhedral domain, Th = {κ} a shape–
regular subdivision of Ω into d–parallelepipeds and p a polynomial degree vector of
bounded local variation. Then, assuming that conditions (2.4), (2.8), and (3.4) on
the data hold, and u|κ ∈ Hkκ(κ), kκ ≥ 2, for κ ∈ Th, zSIP|κ ∈ H lκ(κ), lκ ≥ 2, for
κ ∈ Th, the solution uDG ∈ Sp(Ω, Th,F) of (2.9) obeys the error bound

|J(u) − J(uDG)|2

≤ C
∑

κ∈Th

(
α
h

2(sκ−1)
κ

p
2(kκ−3/2)
κ

+ β3
h2sκ
κ

p2kκ
κ

+ γ
h

2(sκ−1/2)
κ

p
2(kκ−1/2)
κ

)
‖u‖2

Hkκ(κ)

×
(
∑

κ∈Th

(
α
h

2(tκ−1)
κ

p
2(lκ−3/2)
κ

+ β4
h2tκ
κ

p2lκ
κ

+ γ
h

2(tκ−1/2)
κ

p
2(lκ−1)
κ

)
‖zSIP‖2

Hlκ(κ) + (1 + θ) ‖zSIP‖2
2,Th

)

for 1 ≤ sκ ≤ min(pκ + 1, kκ), 1 ≤ tκ ≤ min(pκ + 1, lκ), pκ ≥ 1, κ ∈ Th, where
α|κ = āκ̃, β3|κ = (1 + (β1|κ)2)‖c0‖2

L∞(κ), (β1|κ = ‖c(x)/(c0(x))2‖L∞(κ)), β4|κ =

‖(c + ∇ · b)/c0‖2
L∞(κ), γ|κ = ‖b‖L∞(κ) and C is a constant depending on the

dimension d, the parameter ρ from (4.15) and the shape–regularity of Th.
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Proof. Decomposing the error u − uDG as in (3.6), we note from equation
(4.14) above that the error in the target functional J(·) may be expressed as follows:

J(u) − J(uDG) = BDG(η, zSIP − zh,p) +BDG(ξ, zSIP − zh,p)

−(1 + θ)Be(z
SIP, η) − (1 + θ)Be(z

SIP, ξ)

≡ I + II + III + IV.

Let us first deal with term I. To this end, we define zh,p = Πpz
SIP; thereby, employ-

ing the approximation results stated in Lemma 4.3, after a lengthy, but straight-
forward calculation, we deduce that

(I)2 ≤ C
∑

κ∈Th

(
α
h

2(sκ−1)
κ

p
2(kκ−3/2)
κ

+ ‖c0‖2
L∞(κ)

h2sκ
κ

p2kκ
κ

+ γ
h

2(sκ−1/2)
κ

p
2(kκ−1/2)
κ

)
‖u‖2

Hkκ(κ)

×
∑

κ∈Th

(
α
h

2(tκ−1)
κ

p
2(lκ−3/2)
κ

+ β4
h2tκ
κ

p2lκ
κ

+ γ
h

2(tκ−1/2)
κ

p
2(lκ−1)
κ

)
‖zSIP‖2

Hlκ (κ) .(4.17)

Let us now consider Term II. Here, we note that a bound analogous to (3.8) in
the proof of Lemma 3.3 holds with η and ξ replaced by ξ and zSIP − zh,p in (3.8),
respectively. Indeed, after application of Lemma 4.3, in this case we have

(II)
2 ≤ C|||ξ|||2DG

×
∑

κ∈Th

(
α
h

2(tκ−1)
κ

p
2(lκ−3/2)
κ

+ β4
h2tκ
κ

p2lκ
κ

+ γ
h

2(tκ−1/2)
κ

p
2(lκ−1/2)
κ

)
‖zSIP‖2

Hlκ (κ) .(4.18)

Here we note the importance of selecting zh,p to be the orthogonal projection of
zSIP in L2(Ω) onto the finite element space Sp(Ω, Th,F), since the identity (3.5)
was needed in order to derive (4.18).

In order to bound Terms III and IV, we first note that given an edge e ⊂ ∂κ,
for some κ ∈ Th, using the multiplicative trace inequality

‖zSIP‖2
L2(e)

≤ Ct

(
‖zSIP‖L2(κ)‖∇zSIP‖L2(κ) + h−1

κ ‖zSIP‖2
L2(κ)

)
,(4.19)

we deduce that

|zSIP|2H1(e) ≤
C

hκ
‖zSIP‖2

H2(κ) .

Thereby, employing Lemma 4.3, gives

III ≤ C

(
∑

κ∈Th

α
h

2(sκ−1)
κ

p
2(kκ−1/2)
κ

‖u‖2
Hkκ(κ)

)1/2

‖zSIP‖2,Th
,(4.20)

IV ≤ C|||ξ|||DG‖zSIP‖2,Th
.(4.21)

Finally, collecting the bounds on terms I, II, III and IV given in (4.17), (4.18),
(4.20) and (4.21), respectively, and employing (4.16) gives the statement of the
theorem. �

Let us now discuss some special cases of the general error bound derived in
Theorem 4.4. For simplicity, we assume uniform orders pκ = p, sκ = s, tκ = t,
kκ = k, lκ = l, s, t, k and l integers, and hκ = h for all κ in Th. In the diffusion–
dominated case, Theorem 4.4 indicates that the error in the computed functional
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may be bounded as follows

|J(u) − J(uDG)| ≤ C
hs+t−2

pk+l−2
p ‖u‖Hk(Ω)‖zSIP‖Hl(Ω)

+(1 + θ)
hs−1

pk−3/2
‖u‖Hk(Ω)‖zSIP‖H2(Ω) ,(4.22)

where 1 ≤ s ≤ min(p + 1, k) and 1 ≤ t ≤ min(p + 1, l). Thereby, when the SIP
scheme is employed, i.e., when θ = −1, this error bound is optimal with respect to h
and suboptimal in p by a full order. However, when θ = 1, this error bound indicates
that the error in the computed target functional behaves like O(hs−1/ps−3/2) as
h → 0 and p → ∞. Therefore the ‘order–doubling’ of the rate of convergence in
|J(u) − J(uDG)| observed when the SIP scheme is employed is lost when the NIP
method is implemented; this will be numerically verified in Section 6. Finally, we
note that in the strictly hyperbolic case (a ≡ 0), the error bound in Theorem 4.4
becomes

|J(u) − J(uDG)| ≤ C
hs+t−1

pk+l−1
p1/2 ‖u‖Hk(Ω)‖zSIP‖Hl(Ω) .

This bound is optimal in h and suboptimal in p by p1/2; this is analogous to the
bound derived in [16], though the proof presented in [16] was based on a completely
different argument.

5. Adaptive algorithm

For a user-defined tolerance TOL, we now consider the problem of designing an
hp–finite element space Sp(Ω, Th,F) such that

|J(u) − J(uDG)| ≤ TOL ,(5.1)

subject to the constraint that the total number of degrees of freedom in Sp(Ω, Th,F)
is minimized. Following the discussion presented [16], we exploit the a posteriori
error bound (4.6) with z replaced by a discontinuous Galerkin approximation ẑ
computed on the same mesh Th used for the primal solution uDG, but with a higher
degree polynomial, i.e., ẑ ∈ Sp̂(Ω, Th,F) , p̂ = p + pinc; in Section 6, we set
pinc = 1, cf. [10, 14, 25]. Thereby, in practice we enforce the stopping criterion

Ê|Ω| ≡ E|Ω|(uDG, h, p, ẑ − zh,p) ≤ TOL .(5.2)

If (5.2) is not satisfied, then the elements are marked for refinement/derefinement
according to the size of the (approximate) error indicators |η̂κ|; these are defined
analogously to |ηκ| in (4.4) with z replaced by ẑ. In Section 6, we use the fixed
fraction mesh refinement algorithm, with refinement and derefinement fractions set
to 20% and 10%, respectively.

Once an element κ ∈ Th has been flagged for refinement or derefinement, a
decision must be made whether the local mesh size hκ or the local degree pκ of the
approximating polynomial should be adjusted accordingly. The choice to perform
either h–refinement/derefinement or p–refinement/derefinement is based on the lo-
cal smoothness of the primal and dual solutions u and z, respectively; cf. [14, 16].
Let us first consider the case when an element has been flagged for refinement. If u
or z are locally smooth, then p–refinement will be more effective than h–refinement,
since the error will be expected to decay quickly within the current element κ as
pκ is increased. On the other hand, if both u and z have low regularity within the
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element κ, then h–refinement will be performed. To ensure that the desired level
of accuracy is achieved efficiently, in [16] an automatic procedure was developed
for deciding when to h– or p–refine, based on the smoothness–estimation strategy
proposed by Ainsworth & Senior [1]. For a review of various hp–adaptive strategies
as well as a description of a new algorithm based on Sobolev index estimation via
local Legendre expansions, we refer to [14].

If an element has been flagged for derefinement, then the strategy implemented
here is to coarsen the mesh in low–error–regions where either the primal or dual
solutions u and z, respectively, are smooth and decrease the degree of the ap-
proximating polynomial in low–error–regions when both u and z are insufficiently
regular, cf. [16].

6. Numerical experiments

In this section we present a number of experiments to numerically verify the a
priori error bound derived in Section 4.2, as well as to demonstrate the performance
of the hp–adaptive algorithm outlined in Section 5.

6.1. Example 1. In this first example, we investigate the performance of the
symmetric (θ = −1) and nonsymmetric (θ = 1) versions of the interior penalty
method (cf. (2.9)) for the discretization of a second–order uniformly elliptic partial
differential equation. We consider Poisson’s equation on the unit square Ω = (0, 1)2,
where a = I, b ≡ 0, c ≡ 0, and f is selected so that the analytical solution to (2.1)
is given by

u(x, y) =
(1 + x)2

4
sin(2πxy) .

Furthermore, we choose the functional of interest J(·) to represent the (weighted)
mean value of u over Ω, i.e.,

J(u) ≡Mψ(u) =

∫

Ω

uψ dx ;

here, we define the weight function ψ by

ψ = sin2(2πx) sin2(2πy)e−(x+y) .

Thereby, the true value of the functional is given by J(u) = 0.02438990598636878.
In Figure 1 we present a comparison of the error in the functional |J(u) −

J(uDG)| with the mesh size h for p = 1, 2, 3, 4, employing the SIP method with Cσ =
10. Here, we observe that |J(u) − J(uDG)| converges to zero at the (optimal) rate
O(h2p) as the mesh is refined for each fixed p, cf. Theorem 4.4. In contrast, Figure 2
indicates that |J(u)−J(uDG)| behaves like O(hp+1) for odd p and like O(hp) for even
p when the NIP method is employed with Cσ = 10. The sub-optimal convergence
observed in the latter (nonsymmetric) scheme is attributed to the lack of smoothness
in the resulting dual problem, cf. the remarks made at the end of Section 4.1.
As noted in Section 4, the dual problem arising from the symmetric version of
the DGFEM involves the adjoint partial differential operator supplemented with
appropriate data depending on the choice of the target functional of interest. In
our case the dual problem is as follows: find z such that

−∆z = ψ in Ω, z = 0 on ∂Ω.
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Figure 1. Example 1. Convergence of the symmetric interior
penalty DGFEM with h–refinement.
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Figure 2. Example 1. Convergence of the nonsymmetric interior
penalty DGFEM with h–refinement.

Given that ψ is an analytic function in Ω̄, z will also be analytic in any closed
subdomain of Ω̄ which excludes the four corners.

In contrast, Section 4.1 indicates that the NIP method gives rise to a mesh
dependent dual problem whose analytical solution will in general not be continuous.
Indeed, in Figure 3 we plot the profile of the numerical approximation of the dual
solution along y = 0.28, 0 ≤ x ≤ 1, computed using both the symmetric and
nonsymmetric versions of the DGFEM on a uniform 5×5 square mesh with p̂ = 4.
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Figure 3. Example 1. Profile of the dual solution along y = 0.28,
0 ≤ x ≤ 1, computed using both the symmetric and nonsymmetric
version of the interior penalty method on a uniform 5 × 5 square
mesh with p̂ = 4.
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Figure 4. Example 1. Convergence of the symmetric interior
penalty DGFEM with p–refinement.

Here, we clearly see that while the dual solution computed using the symmetric
scheme is essentially continuous, the dual solution arising from the nonsymmetric
scheme is discontinuous between element interfaces. We note that the ‘jumps’ in the
latter dual solution present at inter-element boundaries persist even as the mesh is
enriched. The lack of regularity in z leads to the sub-optimal rates of convergence
observed in Figure 2 when the nonsymmetric version of the DGFEM is employed.

Finally, in Figures 4 and 5, respectively, we investigate the convergence of the
symmetric and nonsymmetric versions of the DGFEM with p–enrichment for fixed
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Figure 5. Example 1. Convergence of the nonsymmetric interior
penalty DGFEM with p–refinement.

h. Since the primal solution u is a (real) analytic function, we expect to observe
an exponential rate of convergence under p-refinement. Indeed, Figures 4 and 5
clearly illustrate this behavior: on a linear–log scale, the convergence plots for each
h become (on average) straight lines as the degree of the approximating polynomial
is increased. This is true for both the SIP and the NIP scheme. We remark that
the convergence lines in Figure 4 are steeper than those in Figure 5, since the dual
solution corresponding to the symmetric IP-DGFEM is also smooth, while z is not
even continuous when the nonsymmetric scheme is employed.

6.2. Example 2. In this second example we investigate the performance of the
hp–adaptive strategy outlined in Section 5 for the (symmetric) version of the interior
penalty method applied to a mixed hyperbolic–elliptic problem with discontinuous
boundary data. We let a = ε(x)I, where

ε =
δ

2
(1 − tanh((r − 1/4)(r + 1/4)/γ)) ,

r2 = (x − 1/2)2 + (y − 1/2)2 and δ ≥ 0 and γ > 0 are constants. Suppose,
furthermore, that b = (2y2 − 4x+ 1, 1 + y), c = −∇ · b and f = 0.

The characteristics associated with the hyperbolic part of the operator enter
the computational domain Ω from three sides of Γ, namely through the vertical
edges placed along x = 0 and x = 1 and the horizontal edge along y = 0; the
characteristics exit Ω through the horizontal edge along y = 1. Thus, on the inflow
part of Γ we prescribe the following boundary condition:

u(x, y) =






1 for x = 0 , 0 < y ≤ 1 ,
sin2(πx) for 0 ≤ x ≤ 1 , y = 0 ,

e−50y4

for x = 1 , 0 < y ≤ 1 .
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Figure 6. Example 2. Profile of ε along y = 0.5, 0 ≤ x ≤ 1.
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Figure 7. Example 2. DGFEM approximation to the primal
problem on a 129×129 mesh with piecewise bilinear elements (p =
1).

This is a variant of the test problem presented in [15]. We note that, with δ > 0
and 0 < γ ≪ 1, the diffusion parameter ε will be approximately equal to δ in
the circular region defined by r < 1/4, where the underlying partial differential
equation is uniformly elliptic. In this example, we set δ = 0.05 and γ = 0.01; a
cross section of ε along 0 ≤ x ≤ 1, y = 1/2 is shown in Figure 6. As r is increased
beyond 1/4, ε rapidly decreases through a layer of width O(γ); for example, when
r > 0.336 we have ε < 10−15, so from the computational point of view ε is zero to
within rounding error; in this region, the partial differential equation undergoes a
change of type becoming, in effect, hyperbolic. Thus we shall refer to the part of
Ω with r > 1/4 + O(γ) as the hyperbolic region, while the set of points in Ω with
r ≤ 1/4 will be called the elliptic region. [Of course, strictly speaking, the partial
differential equation is elliptic in the whole of Ω̄.] Furthermore, Figure 7 depicts the



22 KATHRYN HARRIMAN, PAUL HOUSTON, BILL SENIOR, AND ENDRE SÜLI

Table 1. Example 2: Adaptive algorithm using h–refinement

Nodes Elements DOF |J(u) − J(uDG)| ∑
κ |η̂κ| θ

81 64 256 7.645e-02 6.597e-02 0.86

119 94 376 2.554e-02 6.331e-02 2.48

206 169 676 9.897e-04 5.640e-02 56.99

357 295 1180 1.323e-03 2.180e-02 16.48

638 538 2152 5.743e-04 8.900e-03 15.50

1053 898 3592 4.959e-04 3.936e-03 7.94

1728 1525 6100 1.453e-04 1.678e-03 11.55

2883 2548 10192 9.295e-05 8.622e-04 9.28

4848 4390 17560 6.002e-05 4.232e-04 7.05

8049 7309 29236 3.323e-05 2.234e-04 6.72

13048 11947 47788 1.562e-05 1.192e-04 7.63

numerical approximation to (2.1) using the symmetric Interior Penalty DGFEM on
a uniform 129 × 129 uniform square mesh with p = 1.

Here, we suppose that the aim of the computation is to calculate the value of
the analytical solution u at the point of interest x = (0.43, 0.9), i.e.,

J(u) = u(0.43, 0.9);

cf. Figure 7. The true value of the functional is given by J(u) = 0.704611313375.
We first study the performance of our adaptive strategy with h–refinement

only, and p = 1. In Table 1 we show the number of nodes, elements and degrees of
freedom (DOF) in S1(Ω, Th,F), the true error in the functional |J(u − uDG)|, the
computed a posteriori error bound (4.6) and the corresponding effectivity index θ.
Here, we see that the quality of the computed Type I a posteriori error bound is
extremely good. Indeed, even on relativity coarse meshes, the bound is reliable;
moreover, the effectivity index θ shows that Ê|Ω| overestimates the true error in the

computed functional by a consistent factor as the finite element space S1(Ω, Th,F)
is enriched.

In Figure 8 we show the mesh generated after 9 adaptive mesh refinement steps.
Here, we see that the mesh is largely concentrated in the neighborhood upstream of
the point of interest, together with some almost uniform refinement of the circular
region enclosing the part of the computational domain where the underlying partial
differential equation is elliptic. We remark that some refinement of the mesh in the
region where the discontinuities enter Ω from (0, 0) and (1, 0), as well as the steep
layer entering from the right–hand side boundary has also occurred, though these
features of the analytical solution still remain largely unresolved.

The design of the mesh is closely related to the structure of the underlying dual
solution, since the weighting terms involving the difference between the (approxi-
mated) dual solution ẑSIP and zh,p multiply the computable residual terms involving
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Figure 8. Example 2. h–mesh after 9 refinements, with 8049
nodes, 7309 elements and 29236 degrees of freedom; here, |J(u) −
J(uDG)| = 3.323× 10−5.
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Figure 9. Example 2. Dual solution.

the numerical solution uDG in the definition of the local error indicator |η̂κ|, cf. (4.4)
with zSIP replaced by ẑSIP. From Figure 9, we see that in the hyperbolic region
of the computational domain above the region of ellipticity, the dual solution con-
sists of a single ‘spike’ originating from the point of interest which is transported
upstream along the single characteristic passing through x = (0.43, 0.9). At the
boundary of the circular region where the partial differential equation undergoes a
change of type from ‘hyperbolic’ to elliptic, the spike in the dual solution is ‘diffused
out’. Consequently, the domain of dependence of the point of interest consists of
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Table 2. Example 2: Adaptive algorithm using hp–refinement

Nodes Elements DOF |J(u) − J(uDG)| ∑
κ |η̂κ| θ

81 64 576 1.924e-02 3.330e-02 1.73

99 76 740 1.056e-02 1.085e-02 1.03

162 130 1451 1.006e-02 2.290e-02 2.28

241 193 2483 7.400e-04 2.385e-03 3.22

302 244 3776 3.760e-05 2.754e-04 7.32

323 262 4777 1.270e-05 1.026e-04 8.08

396 325 6916 9.896e-06 2.245e-05 2.27

487 403 9941 1.224e-06 6.466e-06 5.28

577 481 13528 4.656e-07 1.163e-06 2.50

713 601 19855 2.449e-07 2.582e-07 1.05

960 820 31019 1.574e-08 3.202e-08 2.03

1313 1132 47406 6.531e-10 2.154e-09 3.30
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Figure 10. Example 2. Comparison between h– and hp–adaptive
mesh refinement

the single characteristic passing through x = (0.43, 0.9), the circular region where
the underlying partial differential equation is elliptic, together with the part of the
computational domain enclosed by the intersection of the inflow boundary Γ− and
the two extreme characteristics emanating from the circular elliptic region.
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Figure 11. Example 2. h– and hp–meshes after 11 refinements,
with 1313 nodes, 1132 elements and 47406 degrees of freedom; here,
|J(u) − J(uDG)| = 6.531× 10−10.

Let us now turn our attention to hp–adaptivity; in Table 2 we show the perfor-
mance of the proposed adaptive finite element algorithm employing hp–refinement.
Here, we again see that the quality of the computed Type I a posteriori error
bound (4.6) is extremely good in the sense that it overestimates the true error in
the computed functional by a factor of about 1–8.

In Figure 10 we plot |J(u)−J(uDG)|, using both h– and hp–refinement against
the square–root of the number of degrees of freedom on a linear–log scale. We
see that after the initial transient, the error in the computed functional using hp–
refinement becomes (on average) a straight line, thereby indicating exponential
convergence of J(uDG) to J(u); this occurs since zSIP is a real analytic function
in the regions of the computational domain where u is not smooth and vice versa.
Figure 10 also demonstrates the superiority of the adaptive hp–refinement strategy
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Figure 12. Example 3. DGFEM approximation to the primal
problem on a 257×171 mesh with piecewise bilinear elements (p =
1).

over the standard adaptive h–refinement algorithm. On the final mesh the true
error between J(u) and J(uDG) using hp–refinement is over 4 orders of magnitude
smaller than the corresponding quantity when h–refinement is employed alone.

Figure 11 depicts the primal mesh after 11 adaptive mesh refinement steps.
For clarity, we show the h–mesh alone, as well as the corresponding distribution
of the polynomial degree on this mesh and the percentage of elements with that
degree. We see that some h–refinement of the primal mesh has occurred in the
region of the computational domain upstream of the point of interest, as well as
in the circular region where the underlying partial differential equation changes
type. Once the h–mesh has adequately captured the structure of the primal and
dual solutions, the hp–adaptive algorithm performs p–refinement elsewhere in the
domain of dependence of the point of interest.

6.3. Example 3. In this final example we consider the performance of our
hp–adaptive algorithm for the (symmetric) version of the interior penalty method
applied to a nonlinear problem; the extension of the above Type I a posteriori error
analysis to the case of a nonlinear convection–diffusion problem follows directly
from the theory developed in the articles [10, 14, 17, 25]. Here, we study the
one–dimensional unsteady viscous Burgers’ equation; i.e., writing y to denote time,
we have

uy +

(
u2

2

)

x

− (ε(x)ux)x = 0,(6.1)

where ε(x) = (1+tanh(x−1.75))/200. We consider the partial differential equation
(6.1) on the (space–time) domain Ω = (0, 3)× (0, 2), subject to the initial condition
u(x, 0) = 2/(1+x3) sin2(πx), and boundary conditions u(0, y) = 0 and ux(3, y) = 0
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Table 3. Example 3: Adaptive algorithm using hp–refinement

Nodes Elements DOF |J(u) − J(uDG)| ∑
κ |η̂κ| θ

117 96 864 1.788e-02 1.689e-01 9.44

184 147 1379 2.557e-02 5.080e-02 1.99

249 204 2181 1.562e-03 8.980e-03 5.75

347 285 3394 3.070e-04 2.517e-03 8.20

439 366 5122 9.063e-05 1.012e-03 11.17

500 414 6754 1.929e-05 2.569e-04 13.32

580 483 9828 8.566e-06 3.901e-05 4.55

700 585 13781 3.823e-06 1.916e-05 5.01

897 756 21108 2.765e-06 8.456e-06 3.06

1122 957 28701 4.921e-07 1.168e-06 2.37

1398 1197 40749 8.619e-08 2.521e-07 2.92

2005 1764 65480 2.038e-08 6.142e-08 3.01

0 50 100 150 200 250 300
10

−8

10
−7

10
−6

10
−5

10
−4

10
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10
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10
−1

hp−Refinement
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|J
(u
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−
J
(u

D
G
)|

sqrt(Degrees of freedom)

Figure 13. Example 3. Comparison between h– and hp–adaptive
mesh refinement

for y ∈ [0, 2]. We remark that this is a variant of the inviscid Burgers’ example
considered in [10, 13]. In the inviscid case, the analytical solution to this problem
consists of three smooth ‘hills’ which form shock waves as time increases; these
shocks eventually merge to form a single line of discontinuity in the (x, y)–plane.
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Figure 14. Example 3. h– and hp–meshes after 9 refinements,
with 1122 nodes, 957 elements and 28701 degrees of freedom; here,
|J(u) − J(uDG)| = 4.921× 10−7.

The introduction of the viscosity term, with coefficient ε(x), leads to the devel-
opment of viscous internal layers. In this example, ε(x) increases as x increases;
indeed, on the interval [0, 3], ε attains a minimum value of 2.93×10−4 at x = 0 and
a maximum of 9.24× 10−3 at x = 3. Thereby, the viscous layers become increasing
smeared as x increases, cf. Figure 12.

Here, we again suppose that the aim of the computation is to calculate the
value of the analytical solution u at a given point of interest x∗ in the computational
domain Ω; in this example, we select x∗ = (1.95, 1.35), cf. Figure 12. In this case,
the true value of the functional is given by J(u) = 0.39448860. Table 3 demonstrates
the performance of the hp–adaptive algorithm for the selected target functional of
interest. As for the linear problem presented in Section 6.2, we see that the quality
of the computed Type I a posteriori error bound is extremely good. Indeed, even
on relativity coarse meshes, the bound is reliable; moreover, the effectivity index
θ shows that Ê|Ω| overestimates the true error in the computed functional by a
consistent factor as the finite element space Sp(Ω, Th,F) is enriched.

In Figure 13 we compare the performance of the h– and hp–mesh refinement
algorithms for this problem. Again, we observe exponential convergence of the
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error in the computed functional using hp–refinement; on the linear–log scale, the
convergence line becomes (on average) straight. On the final mesh the true error
between J(u) and J(uDG) using hp–refinement is over 3 orders of magnitude smaller
than the corresponding quantity when h–refinement is employed alone.

Finally, in Figure 14 we show the primal mesh after 9 adaptive hp–mesh refine-
ments. Here, we see that the h–mesh has been refined in the neighborhood of the
point of interest x∗ as well as in the region upstream of the x∗, thereby isolating
the smooth region of u from the two interacting viscous layers; this renders the
subsequent p–refinement in this region much more effective.

7. Concluding remarks

In this paper, we have been concerned with the a priori and a posteriori error
analyses of the hp-version Discontinuous Galerkin Finite Element Method (hp–
DGFEM) for second–order partial differential equations with nonnegative charac-
teristic form. We have been particularly interested in the approximation of linear
output functionals of the analytic solution. It was shown that the symmetric and
nonsymmetric interior penalty versions of the hp–DGFEM exhibit completely dif-
ferent convergence rates: while the approximation obtained from the symmetric
version exhibits an optimal rate of convergence, the approximation which is com-
puted by means of the nonsymmetric version converges at an inferior rate due to
lack of adjoint consistency. We also explored the implementation of the a posteriori
error bounds into an hp-adaptive mesh refinement algorithm to compute approxima-
tions to linear target functionals of practical interest to within a fixed user–defined
tolerance. The performance of the resulting hp–refinement strategy was then stud-
ied through a series of numerical experiments. In particular, we demonstrated the
superiority of using hp–adaptive mesh refinement over the traditional h–refinement
method, where the degree of the approximating polynomial is kept fixed at some
low value.
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[20] O.A. Oleinik and E.V. Radkevič, Second Order Equations with Nonnegative Characteristic

Form. American Mathematical Society, Providence, R.I., 1973.
[21] S. Prudhomme, F. Pascal, J.T. Oden and A. Romkes, Review of a priori error estimation

for discontinuous Galerkin methods. TICAM Report 00–27, Texas Institute for Computational
and Applied Mathematics, 2000.

[22] W.H. Reed and T.R. Hill, Triangular Mesh Methods for the Neutron Transport Equation.
Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.

[23] B. Rivière and M.F. Wheeler, A posteriori error estimates and mesh adaptation strategy

for discontinuous Galerkin methods applied to diffusion problems. TICAM Report 00–10,
Texas Institute for Computational and Applied Mathematics, 2000.

[24] Ch. Schwab, p- and hp-Finite Element Methods. Theory and Applications to Solid and Fluid

Mechanics. Oxford University Press, 1998.
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