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Abstract. In the classical theory of fluid mechanics a linear relationship between the shear stress5
and the symmetric velocity gradient tensor is often assumed. Even when a nonlinear relationship is6
assumed, it is typically formulated in terms of an explicit relation. Implicit constitutive models pro-7
vide a theoretical framework that generalises this, allowing for general implicit constitutive relations.8
Since it is generally not possible to solve explicitly for the shear stress in the constitutive relation, a9
natural approach is to include the shear stress as a fundamental unknown in the formulation of the10
problem. In this work we present a mixed formulation with this feature, discuss its solvability and11
approximation using mixed finite element methods, and explore the convergence of the numerical12
approximations to a weak solution of the model.13
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1. Implicitly constituted models. In the classical theory of continuum me-16
chanics the balance laws of momentum, mass, and energy do not determine completely17
the behaviour of a system. Additional information that captures the specific prop-18
erties of the material to be studied is needed; this is what is commonly known as a19
constitutive relation. The constitutive law usually expresses the stress tensor in terms20
of other kinematical quantities (e.g. the symmetric velocity gradient) and, even if it21
is nonlinear, it is typically formulated by means of an explicit relationship. It has22
been known for some time that in many cases explicit constitutive relations are not23
adequate when modeling materials with viscoelastic or inelastic responses (see e.g.24
[51, 52]), which has led to the introduction of many ad-hoc models that try to fit25
the experimental data. Implicitly constituted models, introduced in [51], provide a26
theoretical framework that not only serves to justify these ad-hoc models, but also27
generalises them. The physical justification of these types of models, including a study28
of their thermodynamical consistency, is available and will not be discussed here; the29
interested reader is referred to [53, 52, 54].30

If a fluid occupies part of a space represented by a simply-connected open set31
Ω ⊂ Rd, where d ∈ {2, 3}, then the evolution of the system during a given time32
interval [0, T ), for T > 0, is determined by the usual equations of balance of mass,33
momentum, angular momentum and energy, which in Eulerian coordinates take the34
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form:35

∂ρ

∂t
+ div(ρu) = 0,36

∂(ρu)

∂t
+ div(ρu⊗ u) = divT + ρf ,(1.1)37

T = TT,38

∂(ρe)

∂t
+ div(ρeu) = div(Tu− q).39

40

Here:41
• u : [0, T )× Ω→ Rd is the velocity field;42
• ρ : [0, T )× Ω→ R is the density;43
• T : (0, T )× Ω→ Rd×d is the Cauchy stress;44
• e : [0, T )× Ω→ R is the internal energy;45
• q : (0, T )× Ω→ Rd is the heat flux.46

The constitutive law relates the Cauchy stress (or some other appropriate measure47
of the stress) and the heat flux to other kinematical variables such as the shear strain,48
temperature, etc. In the following we will assume that the material is incompressible,49
homogeneous and undergoes an isothermal process. This implies that the energy50
equation decouples from the system and that the Cauchy stress can be split in two51
components:52

(1.2) T = −pI + S,53

where I is the identity matrix, p : (0, T )×Ω→ R is the pressure (mean normal stress),54
and S : (0, T )× Ω→ Rd×dsym is the shear stress (hereafter referred only as “stress”). In55
this work we will consider constitutive relations of the form56

(1.3) G(·,S,D(u)) = 0,57

where G : Q× Rd×dsym × Rd×dsym → Rd×dsym and D(u) := 1
2 (∇u+ (∇u)T) is the symmetric58

velocity gradient; here Q is used to denote the parabolic cylinder (0, T ) × Ω. The59
precise assumptions on this implicit function will be stated in the next section.60

For a rigorous mathematical analysis of models of implicitly constituted fluids the61
reader is referred to [13, 14]. Existence of weak solutions for problems of this type62
was obtained in [13] and [14] for the steady and unsteady cases, respectively. Some63
extensions include [15, 46, 50], where additional physical responses are incorporated64
into the system.65

As for the numerical analysis of these systems, very few results have been pub-66
lished so far. In [21] the convergence of a finite element discretisation to a weak67
solution of the problem was proved for the steady case, and the corresponding a-68
posteriori analysis was carried out in [43]. More recently, this approach was extended69
to the time-dependent case in [61]. Also, several finite element discretisations were70
compared computationally in [41] for problems with Bingham and stress-power-law-71
like rheology.72

Numerical methods for the incompressible Navier–Stokes equations are usually73
based on a velocity-pressure formulation, and extensive studies have been carried out74
over the years in relation to this (see e.g. [33, 10]). Such a formulation is possible,75
because in the case of a Newtonian fluid the explicit constitutive relation S = 2µD(u)76
allows one to eliminate the deviatoric stress S from the momentum equation. In77
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3-FIELD FEM FOR UNSTEADY IMPLICITLY CONSTITUTED FLUIDS 3

contrast, formulations that treat the stress as a fundamental unknown have also been78
introduced to study problems in elasticity and incompressible flows [1, 4, 27, 28, 2, 26,79
29, 30, 39, 40]; the key advantages of these formulations are that they are naturally80
applicable to nonlinear constitutive models where it is not possible to eliminate the81
stress, and that they allow the direct computation of the stress without resorting to82
numerical differentiation. In this work we will consider the mathematical analysis of a83
mixed formulation that treats the stress as an unknown, and illustrate its performance84
by means of numerical simulations.85

The results here could be considered an extension of the works [21, 61, 41]. One86
of the advantages of the approach presented here with respect to [21, 61] is that it87
can handle the constitutive relation in a more natural way, since the stress plays a88
more prominent role in the weak formulation considered. In addition, in [21, 61] no89
numerical simulations were presented. On the other hand, while extensive numerical90
computations with 3-field and 4-field formulations were performed in [41], no conver-91
gence analysis of the methods considered was discussed. The work presented here fills92
this gap.93

2. Preliminaries.94

2.1. Function spaces. Throughout this work we will assume that Ω ⊂ Rd,95
with d ∈ {2, 3}, is a bounded Lipschitz polygonal domain (unless otherwise stated),96
and use standard notation for Lebesgue, Sobolev and Bochner–Sobolev spaces (e.g.97
(W k,r(Ω), ‖ · ‖Wk,r(Ω)) and (Lq(0, T ;Wn,r(Ω)), ‖ · ‖Lq(0,T ;Wn,r(Ω)))). We will define98

W k,r
0 (Ω) for r ∈ [1,∞) as the closure of the space of smooth functions with compact99

support C∞0 (Ω) with respect to the norm ‖ · ‖Wk,r(Ω) and we will denote the dual100

space of W 1,r
0 (Ω) by W−1,r′(Ω). Here r′ is used to denote the Hölder conjugate of r,101

i.e. the number defined by the relation 1/r + 1/r′ = 1. The duality pairing will be102
written in the usual way using brackets 〈·, ·〉. The space of traces on the boundary of103
functions in W 1,r(Ω) will be denoted by W 1/r′,r(∂Ω).104

IfX is a Banach space, Cw([0, T ];X) will be used to denote the space of continuous105
functions in time with respect to the weak topology of X. For r ∈ [1,∞) we also define106
the following useful subspaces:107

Lr0(Ω) :=

{
q ∈ Lr(Ω) :

∫
Ω

q = 0

}
,108

L2
div(Ω)d := {v ∈ C∞0 (Ω)d : divv = 0}‖·‖L2(Ω) ,109

W 1,r
0,div(Ω)d := {v ∈ C∞0 (Ω)d : divv = 0}‖·‖W1,r(Ω) ,110

Lrtr(Q)d×d := {τ ∈ Lr(Q)d×d : tr(τ ) = 0},111

Lrsym(Q)d×d := {τ ∈ Lr(Q)d×d : τT = τ}.112113

In the definition of the space Lrtr(Q)d×d above, tr(τ ) denotes the usual matrix114
trace of the d×d matrix function τ . In the various estimates the letter c will denote a115
generic positive constant whose exact value could change from line to line, whenever116
the explicit dependence on the parameters is not important.117

2.2. Interpolation inequalities. The following embeddings will be useful when118
deriving various estimates. Assume that the Banach spaces (W1,W2,W3) form an119
interpolation triple in the sense that120

‖v‖W2
≤ c‖v‖λW1

‖v‖1−λW3
, for some λ ∈ (0, 1),121
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and W1 ↪→W2 ↪→W3. Then (cf. [56]) Lr(0, T ;W1)∩L∞(0, T ;W3) ↪→ Lr/λ(0, T ;W2),122
for r ∈ [1,∞) and123

(2.1) ‖v‖Lr/λ(0,T ;W2) ≤ c‖v‖1−λL∞(0,T ;W3)‖v‖λLr(0,T ;W1).124

An example of an interpolation triple that can be combined with this result is given125
by the Gagliardo–Nirenberg inequality, which states that for given p, r ∈ [1,∞), there126
is a constant cp,r > 0 such that [20]:127

(2.2) ‖v‖Ls(Ω) ≤ cp,r‖∇v‖λLr(Ω)‖v‖1−λLp(Ω) ∀ v ∈W 1,r
0 (Ω) ∩ Lp(Ω),128

provided that s ∈ [1,∞) and λ ∈ (0, 1) satisfy129

λ =

1
p − 1

s
1
d − 1

r + 1
p

.130

A particularly useful example can be obtained if we assume that r> 2d
d+2 and take131

p = 2 and λ = d
d+2 :132

(2.3)
‖v‖

L
r(d+2)
d (Q)

≤ c‖∇v‖λLr(Q)‖v‖1−λL∞(0,T ;L2(Ω)) ∀ v ∈ Lr(0, T ;W 1,r
0 (Ω))∩L∞(0, T ;L2(Ω)).133

2.3. Compactness and continuity in time. In this work we will use Simon’s134
compactness lemma (see [60]) instead of the usual Aubin–Lions lemma to extract135
convergent subsequences when taking the discretisation limit in the time–dependent136
problem. Assume that X and H are Banach spaces such that the compact embedding137
X ↪→↪→ H holds. Simon’s lemma states that if U ⊂ Lp(0, T ;H), for some p ∈ [1,∞),138
and it satisfies:139

• U is bounded in L1
loc(0, T ;X);140

•
∫ T−ε

0
‖v(t+ ε, ·)− v(t, ·)‖pH → 0, as ε→ 0, uniformly for v ∈ U ;141

then U is relatively compact in Lp(0, T ;H).142
Let X and V be reflexive Banach spaces such that X ↪→ V densely and let V ∗ be143

the dual space of V . The following continuity properties (see [56]) will be important144
when identifying the initial condition:145

v ∈ L1(0, T ;V ∗), ∂tv ∈ L1(0, T ;V ∗) =⇒ v ∈ C([0, T ];V ∗),(2.4)146

v ∈ L∞(0, T ;X) ∩ Cw([0, T ];V ) =⇒ v ∈ Cw([0, T ];X).(2.5)147148

2.4. Implicit constitutive relation and its approximation. In the mathe-149
matical analysis of these systems it is more convenient to work not with the function150
G, but with its graph A, which is introduced in the usual way:151

(2.6) (D,S) ∈ A(·)⇐⇒ G(·,S,D) = 0.152

We will assume that A is a maximal monotone r-graph for some r > 1, which means153
that the following properties hold for almost every z ∈ Q:154

(A1) [A includes the origin] (0,0) ∈ A(z).155
(A2) [A is a monotone graph] For every (D1,S1), (D2,S2) ∈ A(z),156

(S1 − S2) : (D1 −D2) ≥ 0.157
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(A3) [A is maximal monotone] If (D,S) ∈ Rd×dsym × Rd×dsym is such that158

(Ŝ− S) : (D̂−D) ≥ 0 for all (D̂, Ŝ) ∈ A(z),159

then (D,S) ∈ A(z).160
(A4) [A is an r-graph] There is a non-negative function m ∈ L1(Q) and a constant161

c > 0 such that162

S : D ≥ −m+ c(|D|r + |S|r′) for all (D,S) ∈ A(z).163

(A5) [Measurability ] The set-valued map z 7→ A(z) is L(Q)–(B(Rd×dsym ⊗ Rd×dsym))164
measurable; here L(Q) denotes the family of Lebesgue measurable subsets of165
Q and B(Rd×dsym) is the family of Borel subsets of Rd×dsym .166

(A6) [Compatibility ] For any (D,S) ∈ A(z) we have that167

tr(D) = 0⇐⇒ tr(S) = 0.168

Assumption (A6) was not included in the original works [13, 14, 21], but it is needed169
for consistency with the physical property that S is traceless if and only if the velocity170
field is divergence-free (see the discussion in [62]). A very important consequence of171
Assumption (A5) (see [62]) is the existence of a measurable function (usually called172
a selection) D : Q× Rd×dsym → Rd×dsym such that (D(z,σ),σ) ∈ A(z) for all σ ∈ Rd×dsym.173

In the existence results it will be useful to approximate the selection using smooth174
functions. To that end, let us define the mollification:175

(2.7) Dk(·,σ) :=

∫
Rd×dsym

D(·,σ − τ )ρk(τ ) dτ ,176

where ρk(τ ) = kd
2

ρ(kτ ), k ∈ N, and ρ ∈ C∞0 (Rd×dsym) is a mollification kernel. It is177
possible to check (see e.g. [62]) that this mollification satisfies analogous monotonicity178
and coercivity properties to those of the selection D, i.e. we have that179

• For every τ1, τ2 ∈ Rd×dsym and for almost every z ∈ Q the monotonicity condi-180
tion181

(2.8) (Dk(z, τ1)−Dk(z, τ2)) : (τ1 − τ2) ≥ 0182

holds.183
• There is a constant C∗ > 0 and a nonnegative function g ∈ L1(Q) such that184

for all k ∈ N, for every τ ∈ Rd×d, and for almost every z ∈ Q we have185

(2.9) τ : Dk(z, τ ) ≥ −g(z) + C∗(|τ |r
′
+ |Dk(z, τ )|r).186

• For any sequence {Sk}k∈N bounded in Lr
′
(Q)d×d, we have for arbitrary B ∈187

Rd×dsym and φ ∈ C∞0 (Q) with φ ≥ 0:188

(2.10) lim inf
k→∞

∫
Q

(Dk(·,Sk)−D(·,B)) : (Sk −B)φ(·) ≥ 0.189

It is important to remark that (2.8), (2.9) and (2.10) are the essential properties; the190
explicit form (2.7) of the approximation to the selection is not very important. There191
are other ways to achieve the same result; for instance piecewise affine interpolation or192
a generalised Yosida approximation could also be used (see [61, 62]). The following is193
a localized version of Minty’s lemma that will aid in the identification of the implicit194
constitutive relation (for a proof see [12]).195
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Lemma 2.1. Let A be a maximal monotone r-graph satisfying (A1)–(A4) for some196
r > 1. Suppose that {Dn}n∈N and {Sn}n∈N are sequences of functions defined on a197
measurable set Q̂ ⊂ Q, such that:198

(Dn(·),Sn(·)) ∈ A(·) a.e. in Q̂,199

Dn ⇀D, weakly in Lr(Q̂)d×d,200

Sn ⇀ S, weakly in Lr
′
(Q̂)d×d,201

lim sup
n→∞

∫
Q̂

Sn : Dn ≤
∫
Q̂

S : D.202
203

Then,204

(D(·),S(·)) ∈ A(·) a.e. in Q̂.205

The goal of this work is to prove convergence of a three-field finite element approxi-206
mation of the following system:207

(2.11)

∂tu− div(S − u⊗ u) +∇p = f in (0, T )× Ω,

divu = 0 in (0, T )× Ω,

(D(u),S) ∈ A(·) a.e. in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u(0, ·) = u0(·) in Ω,

208

where A(·) satisfies (A1)–(A6). The next section introduces the notation and tools209
that will be useful in the analysis of the discrete problem.210

2.5. Finite element approximation. In this section, the notation and as-211
sumptions regarding the finite element approximation will be presented. Essentially212
the same arguments would work for any method based on a Galerkin approxima-213
tion, but here we will focus only on finite element methods. Consider a family of214
triangulations {Tn}n∈N of Ω satisfying the following assumptions:215

• (Affine equivalence). Given n ∈ N and an element K ∈ Tn, there is an affine216
invertible mapping FK : K → K̂, where K̂ is the closed standard reference217
simplex in Rd.218

• (Shape-regularity). There is a constant cτ , independent of n, such that

hK ≤ cτρK for every K ∈ Tn, n ∈ N,

where hK := diam(K) and ρK is the diameter of the largest inscribed ball.219
• The mesh size hn := maxK∈Tn hK tends to zero as n→∞.220

Define the conforming finite element spaces associated with the triangulation Tn:221

V n :=
{
v ∈W 1,∞

0 (Ω)d : v|K ◦ F−1
K ∈ P̂V, K ∈ Tn, v|∂Ω = 0

}
,222

Mn :=
{
q ∈ L∞(Ω) : q|K ◦ F−1

K ∈ P̂M, K ∈ Tn
}
,223

Σn :=
{
σ ∈ L∞(Ω)d×d : σ|K ◦ F−1

K ∈ P̂S, K ∈ Tn
}
,224

225

where P̂V ⊂ W 1,∞(K̂)d, P̂M ⊂ L∞(K̂) and P̂S ⊂ L∞(K̂)d×d are finite-dimensional226
polynomial subspaces on the reference simplex K̂. Each of these spaces will be as-227
sumed to have a finite and locally supported basis. As in the continuous case, it will228

This manuscript is for review purposes only.



3-FIELD FEM FOR UNSTEADY IMPLICITLY CONSTITUTED FLUIDS 7

be useful to introduce the following finite-dimensional subspaces for r > 1:229

Mn
0 := Mn ∩ Lr′0 (Ω), Σntr := Σn ∩ Lrtr(Ω)d×d, Σnsym := Σn ∩ Lrsym(Ω)d×d,230

V ndiv :=

{
v ∈ V n :

∫
Ω

q divv = 0, ∀ q ∈Mn

}
,231

Σndiv(f) :=

{
σ ∈ Σnsym :

∫
Ω

σ : D(v) = 〈f ,v〉, ∀v ∈ V ndiv

}
.232

233
234

Assumption 2.2 (Approximability). For every s ∈ [1,∞) we have that235

inf
v∈V n

‖v − v‖W 1,s(Ω) → 0 as n→∞ ∀v ∈W 1,s
0 (Ω)d,236

inf
q∈Mn

‖q − q‖Ls(Ω) → 0 as n→∞ ∀ q ∈ Ls(Ω),237

inf
σ∈Σn

‖σ − σ‖Ls(Ω) → 0 as n→∞ ∀σ ∈ Ls(Ω)d×d.238
239

Assumption 2.3 (Projector Πn
Σ). For each n ∈ N there is a linear projector240

Πn
Σ : L1

sym(Ω)d×d → Σnsym such that:241

• (Preservation of divergence). For every σ ∈ L1(Ω)d×d we have242 ∫
Ω

σ : D(v) =

∫
Ω

Πn
Σ(σ) : D(v) ∀v ∈ V ndiv.243

• (Ls–stability). For every s ∈ (1,∞) there is a constant c > 0, independent of n,244
such that:245

‖Πn
Σσ‖Ls(Ω) ≤ c‖σ‖Ls(Ω) ∀σ ∈ Lssym(Ω)d×d.246

Assumption 2.4 (Projector Πn
V ). For each n ∈ N there is a linear projector247

Πn
V : W 1,1

0 (Ω)d → V n such that the following properties hold:248

• (Preservation of divergence). For every v ∈W 1,1
0 (Ω)d we have249 ∫

Ω

q divv =

∫
Ω

q div(Πn
V v) ∀ q ∈Mn.250

• (W 1,s–stability). For every s ∈ (1,∞) there is a constant c > 0, independent of251
n, such that:252

‖Πn
V v‖W 1,s(Ω) ≤ c‖v‖W 1,s(Ω) ∀v ∈W 1,s

0 (Ω)d.253

Assumption 2.5 (Projector Πn
M ). For each n ∈ N there is a linear projector254

Πn
M : L1(Ω)→Mn such that for all s ∈ (1,∞) there is a constant c > 0, independent255

of n, such that:256

‖Πn
Mq‖Ls(Ω) ≤ c‖q‖Ls(Ω) ∀ q ∈ Ls(Ω).257

It is not difficult to show that the approximability and stability properties imply that258
for s ∈ [1,∞) we have:259

‖σ −Πn
Σσ‖Ls(Ω) → 0 as n→∞ ∀σ ∈ Lssym(Ω)d×d,260

‖v −Πn
V v‖W 1,s(Ω) → 0 as n→∞ ∀v ∈W 1,s(Ω)d,(2.12)261

‖q −Πn
Mq‖Ls(Ω) → 0 as n→∞ ∀ q ∈ Ls(Ω).262263

264
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Remark 2.6. A very important consequence of the previous assumptions is the265
existence, for every s ∈ (1,∞), of two positive constants βs, γs > 0, independent of n,266
such that the following discrete inf-sup conditions hold:267

inf
q∈Mn

0

sup
v∈V n

∫
Ω
q divv

‖v‖W 1,s(Ω)‖q‖Ls′ (Ω)

≥ βs,(2.13)268

inf
v∈V ndiv

sup
τ∈Σnsym

∫
Ω
τ : D(v)

‖τ‖Ls′ (Ω)‖v‖W 1,s(Ω)
≥ γs.(2.14)269

270

Example 2.7. There are several pairs of velocity-pressure spaces known to satisfy271
the stability Assumptions 2.2 and 2.4. They include the conforming Crouzeix–Raviart272
element, the MINI element, the P2–P0 element and the Taylor–Hood element Pk–Pk−1273
for k ≥ d (see [5, 8, 21, 34, 18]). In addition to stability, the Scott–Vogelius element274
also satisfies the property that the discretely divergence-free velocities are pointwise275
divergence-free (the stability can be guaranteed by assuming for example that the276
mesh has been barycentrically refined, see [59]); another example of a velocity-pressure277
pair with this property is given by the Guzmán–Neilan element [37, 36]. To satisfy278
Assumption 2.5, one could use the Clément interpolant [17].279

Sometimes it is easier to prove the inf-sup condition directly. For example, if the280
space of discrete stresses consists of discontinuous Pk polynomials (with k ≥ 1):281

Σn = {σ ∈ L∞(Ω)d×d : σ|K ∈ Pk(K)d×d, for all K ∈ Tn},282

and we have that D(V n) ⊂ Σn (e.g. we could take the Taylor–Hood element Pk+1–Pk283
for the velocity and the pressure), then the inf-sup condition follows from the fact284
that for s ∈ (1,∞) there is a constant c > 0, independent of h, such that for any285
σ ∈ Σn there is τ ∈ Σn such that [58]:286 ∫

Ω

τ : σ = ‖σ‖sLs(Ω) and ‖τ‖Ls′ (Ω) ≤ c‖σ‖s−1
Ls(Ω).287

In case a continuous piecewise polynomial approximation of the stress is preferred,288
one could use the conforming Crouzeix–Raviart element for the discrete velocity and289
pressure and the following space for the stress [57] :290

Σn = {σ ∈ C(Ω)d×d : σ|K ∈ (P1(K)⊕ B)d×d, for all K ∈ Tn},291

where292

B := span {λ2
1λ2λ3, λ1λ

2
2λ3, λ1λ2λ

2
3},293

and {λj}3j=1 are barycentric coordinates on K.294

Remark 2.8. If the discretely divergence-free velocities are in fact exactly diver-295
gence free, i.e. if V ndiv ⊂W 1,r

0,div(Ω)d, and D(V n) ⊂ Σn, then the stress-velocity inf-sup296
condition also holds for the subspace of traceless stresses. Consequently, fewer degrees297
of freedom are needed to compute the stress unknowns.298

2.6. Time discretisation. In this section we will describe the notation that299
will be used when performing the time discretisation of the problem. Let {τm}m∈N300
be a sequence of time steps such that T/τm ∈ N and τm → 0, as m → ∞. For each301
m ∈ N we define the equidistant grid:302

{tmj }T/τmj=0 , tj = tmj := jτm.303
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This can be used to define the parabolic cylinders Qji := (ti, tj) × Ω, where 0 ≤ i ≤304

j ≤ T/τm. Also, given a set of functions {vj}T/τmj=0 belonging to a Banach space X,305
we can define the piecewise constant interpolant v ∈ L∞(0, T ;X) as:306

(2.15) v(t) := vj , t ∈ (tj−1, tj ], j ∈ {1, . . . , T/τm},307

and the piecewise linear interpolant ṽ ∈ C([0, T ];X) as:308

(2.16) ṽ(t) :=
t− tj−1

τm
vj +

tj − t
τm

vj−1, t ∈ [tj−1, tj ], j ∈ {1, . . . , T/τm}.309

For a given function g ∈ Lp(0, T ;X), with p ∈ [1,∞), we define the time averages:310

(2.17) gj(·) :=
1

τm

∫ tj

tj−1

g(t, ·) d t, j ∈ {1, . . . , T/τm}.311

Then the piecewise constant interpolant g defined by (2.15) satisfies [56]:312

(2.18) ‖g‖Lp(0,T ;X) ≤ ‖g‖Lp(0,T ;X),313

and314

(2.19) g → g strongly in Lp(0, T ;X), as m→∞.315

3. Weak formulation. In this section we will present a weak formulation for316
the problem (2.11), where now we assume that f ∈ Lr

′
(0, T ;W−1,r′(Ω)d), u0 ∈317

L2
div(Ω)d and the graph A satisfies the assumptions (A1)–(A6) for some r > 2d

d+2 .318
Similarly to previous works on the analysis of implicitly constituted fluids, a Lipschitz319
truncation technique will be required when proving that the limit of the sequence320
of approximate solutions satisfies the constitutive relation. The theory of Lipschitz321
truncation for time-dependent problems is not as well developed as in the steady case;322
here it will be necessary to work locally and the equation plays a vital role (several323
versions of parabolic Lipschitz truncation have appeared in the literature, see e.g.324
[22, 14, 9, 23]). Since the pressure will not be present in the weak formulation, it will325
be more convenient to use the construction developed in [9] because it preserves the326
solenoidality of the velocity. The following lemma states the main properties of this327
solenoidal Lipschitz truncation.328

Lemma 3.1. ([9, 61]) Let p ∈ (1,∞), σ ∈ (1,min(p, p′)) and let Q0 = I0 × B0 ⊂329
R × R3 be a parabolic cylinder, where I0 is an open interval and B0 is an open ball.330
Denote by αQ0, where α > 0, the α-scaled version of Q0 keeping the barycenter the331
same. Suppose {el}l∈N is a sequence of divergence-free functions that is uniformly332
bounded in L∞(I0;Lσ(B0)d) and converges to zero weakly in Lp(I0;W 1,p(B0)d) and333
strongly in Lσ(Q0)d. Let {Gl

1}l∈N and {Gl
2}l∈N be sequences that converge to zero334

weakly in Lp
′
(Q0)d×d and strongly in Lσ(Q0)d×d, respectively. Define Gl := Gl

1 +Gl
2335

and suppose that, for any l ∈ N, the equation336

(3.1)
∫
Q0

∂te
l ·w =

∫
Q0

Gl : ∇w ∀w ∈ C∞0,div(Q0)d.337

is satisfied. Then there is a number j0 ∈ N, a sequence {λl,j}l,j∈N with 22j ≤ λl,j ≤338

22j+1−1, a sequence of functions {el,j}l,j∈N ⊂ L1(Q0)d, a sequence of open sets Bλl,j ⊂339
Q0, for l, j ∈ N, and a function ζ ∈ C∞0 ( 1

6Q0) with 1 1
8Q0

≤ ζ ≤ 1 1
6Q0

with the340
following properties:341
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1. el,j ∈ Lq( 1
4I0;W 1,q

0,div( 1
6B0)d) for any q ∈ [1,∞) and supp(el,j) ⊂ 1

6Q0, for any342
j ≥ j0 and any l ∈ N;343

2. el,j = ej on 1
8Q0 \ Bλl,j , for any j ≥ j0 and any l ∈ N;344

3. There is a constant c > 0 such that345

lim sup
l→∞

λpl,j |Bλl,j | ≤ c2−j , for any j ≥ j0;346

4. For j ≥ j0 fixed, we have as l→∞:347

el,j → 0, strongly in L∞( 1
4Q0)d,348

∇el,j ⇀ 0, weakly in Lq( 1
4Q0)d×d, ∀ q ∈ [1,∞);349

350351

5. There is a constant c > 0 such that:352

lim sup
l→∞

∣∣∣∣∫
Q0

Gl : ∇el,j
∣∣∣∣ ≤ c2−j , for any j ≥ j0;353

6. There is a constant c > 0 such that for any H ∈ Lp′( 1
6Q0)d×d:354

lim sup
l→∞

∣∣∣∣∫
Q0

(Gl
1 +H) : ∇el,jζ1Bcλl,j

∣∣∣∣ ≤ c2−j/p, for any j ≥ j0.355

3.1. Mixed formulation and time–space discretisation. Before we present356
the weak formulation, let us define357

ř := min

{
r(d+ 2)

2d
, r′
}
.358

The weak formulation for (2.11) then reads as follows.359
Formulation Ǎ. Find functions360

S ∈ Lr′sym(Q)d×d ∩ Lr′tr(Q)d×d,

u ∈ Lr(0, T ;W 1,r
0,div(Ω)d) ∩ L∞(0, T ;L2

div(Ω)d),

∂tu ∈ Lř(0, T ; (W 1,ř′

0,div(Ω)d)∗),

361

such that362

〈∂tu,v〉+

∫
Ω

(S − u⊗ u) : D(v) = 〈f ,v〉 ∀v ∈W 1,ř′

0,div(Ω)d, a.e. t ∈ (0, T ),363

(D(u),S) ∈ A(·), a.e. in (0, T )× Ω,364

ess lim
t→0+

‖u(t, ·)− u0(·)‖L2(Ω) = 0.365
366
367

Remark 3.2. In the formulation above all the test-velocities are divergence-free368
and as a consequence the presure term vanishes. In this section we will carry out369
the analysis for the velocity and stress variables only. It is known that even in the370
Newtonian case (i.e. r = 2) the pressure is only a distribution in time, when working371
with a no-slip boundary condition (see e.g. [31]). An integrable pressure can be372
obtained if Navier’s slip boundary condition is used instead [14], but in this work we373
will confine ourselves to the more common no-slip boundary condition.374
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Remark 3.3. From (2.4) we have that375

u ∈ C([0, T ]; (W 1,ř′

0,div(Ω)d)∗) ↪→ Cw([0, T ]; (W 1,ř′

0,div(Ω)d)∗),376

and since ř ≤ r′ we also know that L2
div(Ω)d ↪→ (W 1,ř′

0,div(Ω)d)∗. Combined with (2.5)377

this yields u ∈ Cw([0, T ];L2
div(Ω)d) and hence the initial condition only makes sense378

a priori in this weaker sense. However, for this problem it will be proved that it also379
holds in the stronger sense described above.380

For a given time step τm and j ∈ {1, . . . , T/τm}, let fj ∈ W−1,r′(Ω)d and381
Dk
j : Ω × Rd×d → Rd×d be the time averages associated with f and Dk, respec-382

tively (recall (2.17)). The time derivative will be discretised using an implicit Euler383
scheme; higher order time stepping techniques might not be more advantageous here384
because higher regularity in time of weak solutions to the problem is not guaranteed385
a priori. The discrete formulation of the problem can now be introduced.386

387
Formulation Ǎk,n,m,l. For j ∈ {1, . . . , T/τm}, find functions Sk,n,m,lj ∈ Σnsym388

and uk,n,m,lj ∈ V ndiv such that:389 ∫
Ω

(Dk
j (·,Sk,n,m,lj )−D(uk,n,m,lj )) : τ = 0 ∀ τ ∈ Σnsym,390

1

τm

∫
Ω

(uk,n,m,lj − uk,n,m,lj−1 ) · v +
1

l

∫
Ω

|uk,n,m,lj |2r
′−2uk,n,m,lj · v391

+

∫
Ω

(Sk,n,m,lj : D(v) + B(uk,n,m,lj ,uk,n,m,lj ,v)) = 〈fj ,v〉 ∀v ∈ V ndiv,392

uk,n,m,l0 = Pndivu0.393394

Here Pndiv : L2(Ω)d → V ndiv is simply the L2–projection defined through395

(3.2)
∫

Ω

Pndivv ·w =

∫
Ω

v ·w ∀w ∈ V ndiv.396

The form B is meant to represent the convective term and is defined for functions397
u,v,w ∈ C∞0 (Ω)d as:398

B(u,v,w) :=


−
∫

Ω

u⊗ v : D(w), if V ndiv ⊂W 1,r
0,div(Ω)d,

1

2

∫
Ω

u⊗w : D(v)− u⊗ v : D(w), otherwise.
399

This definition guarantees that B(v,v,v) = 0 for every v for which this expression400
is well defined, regardless of whether v is pointwise divergence-free or not, which is401
very useful when obtaining a priori estimates; it reduces to the usual weak form of402
the convective term whenever the velocities are exactly divergence-free. It is now403
necessary to check that B can be continuously extended to the spaces involving time.404
By standard function space interpolation, we have that for almost every t ∈ (0, T ):405 ∫

Ω

|u(t, ·)⊗ v(t, ·) : D(w(t, ·))| ≤ ‖u(t, ·)‖L2ř(Ω)‖v(t, ·)‖L2ř(Ω)‖D(w(t, ·))‖Lř′ (Ω)406

≤ ‖u(t, ·)‖
L
r(d+2)
d (Ω)

‖v(t, ·)‖
L
r(d+2)
d (Ω)

‖D(w(t, ·))‖Lř′ (Ω)407

≤ c‖u(t, ·)‖W1,r(Ω)‖v(t, ·)‖W1,r(Ω)‖w(t, ·)‖W1,ř′ (Ω).408409
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As in the steady case (cf. [21]), a more restrictive condition is needed in order to410
bound the additional term in B whenever the elements are not exactly divergence-411

free. Namely, if we assume that r ≥ 2(d+1)
d+2 (this is the analogue of the condition412

r ≥ 2d
d+1 in the steady case) then there is a q ∈ (1,∞] such that 1

r + d
r(d+2) + 1

q = 1,413

and therefore414 ∫
Ω

|u(t, ·)⊗w(t, ·) : D(v(t, ·))| ≤ ‖u(t, ·)‖
L
r(d+2)
d (Ω)

‖D(v(t, ·))‖Lr(Ω)‖w(t, ·)‖Lq(Ω)415

≤ c‖u(t, ·)‖W1,r(Ω)‖v(t, ·)‖W1,r(Ω)‖w(t, ·)‖W1,ř′ (Ω).416417

On the other hand, using Hölder’s inequality we can also obtain the estimate418

‖B(u,v,w)‖L1(0,T )≤ ‖u‖L2r′ (Q)‖v‖L2r′ (Q)‖w‖Lr(0,T ;W 1,r(Ω))419

+‖u‖L2r′ (Q)‖w‖L2r′ (Q)‖v‖Lr(0,T ;W 1,r(Ω)),420421

which means that if the L2r′(Q)d norm of u is finite, then the additional restriction422

r ≥ 2(d+1)
d+2 is not needed. Moreover, this would also imply that the velocity is an423

admissible test function, which is useful in the convergence analysis. This motivates424
the introduction of the penalty term in Formulation Ǎk,n,m,l.425

Remark 3.4. While Formulation Ǎk,n,m,l does not contain the pressure, in practice426
the incompressibility condition is enforced through the addition of a Lagrange mul-427
tiplier pk,n,m,lj ∈ Mn

0 , which could be thought of as the pressure in the system (the428
reason for the omission of the pressure in the analysis is explained in Remark 3.2). For429
this reason it is necessary to consider additional assumptions that guarantee inf-sup430
stability of the spaces V n andMn (see Assumptions 2.4 and 2.5). In case the problem431
does have an integrable pressure p, then it is expected that the sequence of discrete432
pressures converges to it in L1(Q).433

Remark 3.5. Assumption (A5) also implies the existence of a selection S : Q ×434
Rd×dsym → Rd×dsym such that (τ ,S(z, τ )) ∈ A(z) for all τ ∈ Rd×dsym, and some models435
can be written more naturally with a selection of this form; the same analysis as436
the one presented in this work can be applied to that situation. In fact, in practice437
it is not necessary to find a selection in order to perform the computations, i.e. in438
the simulations it is possible to work directly with the implicit function G. When439
performing the analysis though, the function G is not appropriate because many440
different expressions could lead to the same constitutive relation, but have different441
mathematical properties.442

Remark 3.6. In this work we did not consider a dual formulation, e.g. based on443
H(div; Ω), because for the unsteady problem we do not have at our disposal results444
that guarantee the integrability of divS.445

In the next theorem, convergence of the sequence of discrete solutions to a weak446
solution of the problem is proved. Since the ideas and arguments contained in the447
proof are similar to the ones presented in the previous sections and follow a similar448
approach to [61], we will not include here all the details of the calculations unless449
there is a significant difference.450

Theorem 3.7. Assume that r > 2d
d+2 , let {Σn, V n,Mn}n∈N be a family of finite451

element spaces satisfying Assumptions 2.2–2.4. Then for k, n,m, l ∈ N there exists a452

sequence {(Sk,n,m,lj ,uk,n,m,lj )}T/τmj=1 of solutions of Formulation Ǎk,n,m,l, and a couple453

(S,u) ∈ Lr
′

sym(Q)d×d ∩ Lr′tr(Q)d×d × Lr(0, T ;W 1,r
0,div(Ω)d) ∩ L∞(0, T ;L2

div(Ω)d) such454
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that the corresponding time interpolants (recall (2.15) and (2.16)) uk,n,m,l, ũk,n,m,l455

and S
k,n,m,l

satisfy (up to a subsequence):456

S
k,n,m,l

⇀ S weakly in Lr
′
(Q)d×d,457

uk,n,m,l ⇀ u weakly in Lr(0, T ;W 1,r
0 (Ω)d),(3.3)458

uk,n,m,l, ũk,n,m,l
∗
⇀ u weakly* in L∞(0, T ;L2(Ω)d),459460

and (S,u) solves Formulation Ǎ, with the limits taken in the order k →∞, (n,m)→461
∞ and l→∞.462

Proof. The idea of the proof is common in the analysis of nonlinear PDE: we463
obtain a priori estimates and use compactness arguments to pass to the limit in464
the equation. In order to prove the existence of solutions of Formulation Ǎk,n,m,l,465

we need to check that given (Sk,n,m,lj−1 ,uk,n,m,lj−1 ), we can find (Sk,n,m,lj ,uk,n,m,lj ), for466

j ∈ {1, . . . , T/τm}. Testing the equation with (Sk,n,m,lj ,uk,n,m,lj ), we see that:467
(3.4)∫

Ω

Dk(·,Sk,n,m,lj ) : Sk,n,m,lj +
1

l
‖uk,n,m,lj ‖2r

′

L2r′ (Ω)
≤ 〈f ,uk,n,m,lj 〉+

1

τm

∫
Ω

uk,n,m,lj−1 · uk,n,m,lj .468

On the other hand, since all norms are equivalent in a finite-dimensional normed linear469
space, there is a constant Cn > 0 such that:470

(3.5) ‖v‖W 1,r(Ω) ≤ Cn‖v‖L2r′ (Ω) ∀v ∈ V ndiv.471

The constant Cn may blow up as n → ∞, but since n is fixed for now this does not472
pose a problem. Now, recalling (2.9) and combining (3.4) and (3.5) with a standard473
corollary of Brouwer’s Fixed Point Theorem (cf. [33]) we obtain the existence of so-474
lutions of Formulation Ǎk,n,m,l. In the first time step (i.e. j = 1), it is essential to use475
the fact that the projection Pndiv is stable:476

(3.6) ‖Pndivu0‖L2(Ω) ≤ ‖u0‖L2(Ω).477

The estimate (3.5) suffices to guarantee the existence of discrete solutions, but in478
order to pass to the limit n → ∞, an estimate that does not degenerate as n → ∞479
is required. This uniform estimate is a consequence of the discrete inf-sup condition480
(2.14):481

(3.7) γr‖uk,n,m,lj ‖W 1,r(Ω) ≤ ‖Dk(·,Sk,n,m,lj+1 )‖Lr(Ω).482

Therefore, the following a priori estimate holds:483

sup
j∈{1,...,T/τm}

‖uk,n,m,lj ‖2L2(Ω) +

T/τm∑
j=1

‖uk,n,m,lj − uk,n,m,lj−1 ‖2L2(Ω)484

+ τm

T/τm∑
j=1

‖Sk,n,m,lj ‖Lr′ (Ω) + τm

T/τm∑
j=1

‖uk,n,m,lj ‖rW1,r(Ω)(3.8)485

+

T/τm∑
j=1

‖Dk(·, ·,Sk,n,m,lj )‖
Lr(Q

j
j−1)

+
τm
l

T/τm∑
j=1

‖uk,n,m,lj ‖2r
′

L2r′ (Ω)
≤ c,486

487

where c is a positive constant that depends on the data; in particular, c is indepen-488
dent of k, n,m and l. Let uk,n,m,l ∈ L∞(0, T ;V ndiv) and ũk,n,m,l ∈ C([0, T ];V ndiv)489
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be the piecewise constant and piecewise linear interpolants defined by the sequence490

{uk,n,m,lj }T/τmj=1 (see (2.15) and (2.16)) and let S
k,n,m,l ∈ L∞(0, T ; Σnsym) be the piece-491

wise constant interpolant defined by the sequence {Sk,n,m,lj }T/τmj=1 . Furthermore, define492
also the piecewise constant interpolants:493

f(t, ·) := fj(·), Dk
(t, ·, ·) := Dk

j (·, ·), t ∈ (tj−1, tj ], j ∈ {1, . . . , T/τm}494

Then the discrete formulation can be rewritten as:495 ∫
Ω

(Dk
(t, ·,Sk,n,m,l)−D(uk,n,m,l)) : τ = 0 ∀ τ ∈ Σnsym,496 ∫

Ω

∂tũ
k,n,m,l · v +

1

l

∫
Ω

|uk,n,m,l|2r
′−2uk,n,m,l · v497

+

∫
Ω

(S
k,n,m,l

: D(v) + B(uk,n,m,l,uk,n,m,l,v)) = 〈f ,v〉 ∀v ∈ V ndiv,498

ũk,n,m,l(0, ·) = Pndivu0(·).499500

The a priori estimate (3.8) can in turn be written as:501

‖uk,n,m,l‖2L∞(0,T ;L2(Ω)) + τm‖∂tũk,n,m,l‖2L2(Q) + ‖Sk,n,m,l‖r
′

Lr
′
(Q)

(3.9)502

+ ‖uk,n,m,l‖rLr(0,T ;W1,r(Ω)) + ‖Dk(·, ·,Sk,n,m,l)‖rLr(Q) +
1

l
‖uk,n,m,l‖2r

′

L2r′ (Q)
≤ c.503

504

Using the equivalence of norms in finite-dimensional spaces we also obtain505

‖∂tũk,n,m,l‖L∞(0,T ;L2(Ω)) ≤ c(n)‖∂tũk,n,m,l‖L2(Q),506

and together with the a priori estimate this implies that507

(3.10) ‖ũk,n,m,l‖W 1,∞(0,T ;L2(Ω)) ≤ c(n,m).508

Therefore, up to subsequences, as k →∞ we have:509

uk,n,m,l → un,m,l strongly in L∞(0, T ;L2(Ω)d),510

ũk,n,m,l → ũn,m,l strongly in W 1,∞(0, T ;L2(Ω)d),511

uk,n,m,l → un,m,l strongly in L2r′(Q)d,512

uk,n,m,l → un,m,l strongly in Lr(0, T ;W 1,r
0 (Ω)d),513

S
k,n,m,l → S

n,m,l strongly in Lr
′
(Q)d×d,514

Dk(·, ·,Sk,n,m,l) ⇀Dn,m,l weakly in Lr(Q)d×d,515

Dk
(·, ·,Sk,n,m,l) ⇀D

n,m,l weakly in Lr(Q)d×d,516

Dk
j (·,Sk,n,m,lj ) ⇀Dn,m,l

j weakly in Lr(Ω)d×d, for j ∈ {1, . . . , T/τm}.517518

Since the function Dk
j is simply an average in time, the uniqueness of the weak limit519

implies that520

(3.11) Dn,m,l
j (·) =

1

τm

∫ tj

tj−1

Dn,m,l(t, ·) dt, j ∈ {1, . . . , T/τm},521

and that D
n,m,l

is the piecewise constant interpolant determined by the sequence522

{Dn,m,l
j }T/τmj=1 . Moreover, since the convergence of the velocity and stress sequences523
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is strong, it is straightforward to pass to the limit k →∞ and thus we obtain524 ∫
Ω

(D
n,m,l −D(un,m,l)) : τ = 0 ∀ τ ∈ Σnsym,525 ∫

Ω

∂tũ
n,m,l · v +

1

l

∫
Ω

|un,m,l|2r
′−2 un,m,l · v526

+

∫
Ω

(S
n,m,l

: D(v) + B(un,m,l,un,m,l,v)) = 〈f ,v〉 ∀v ∈ V ndiv.527
528

It is also clear that the initial condition ũn,m,l(0, ·) = Pndivu0(·) holds, since the expres-529
sion on the right-hand side is independent of k. The identification of the constitutive530
relation can be carried out using (2.10) in exactly the same manner as in [61], which531
means that (the strong convergence is again essential):532

(3.12) (Dn,m,l,S
n,m,l

) ∈ A(·), a.e. in (0, T )× Ω.533

The next step is to take the limit in both the time and space discretisations simul-534
taneously. The weak lower semicontinuity of the norms and the estimate (3.9) imply535
that:536

‖un,m,l‖2L∞(0,T ;L2(Ω)) + τm‖∂tũn,m,l‖2L2(Q) + ‖Sn,m,l‖r′
Lr′ (Q)

(3.13)537

+ ‖un,m,l‖rLr(0,T ;W 1,r(Ω)) + ‖Dn,m,l‖rLr(Q) +
1

l
‖un,m,l‖2r′

L2r′ (Q)
≤ c,538

539

and540

(3.14) ‖ũn,m,l‖2L∞(0,T ;L2(Ω)) = ‖un,m,l‖2L∞(0,T ;L2(Ω)) ≤ c,541

where c is a constant, independent of n,m and l. Consequently, there exist (not542
relabelled) subsequences such that, as n,m→∞:543

un,m,l
∗
⇀ ul weakly* in L∞(0, T ;L2(Ω)d),544

ũn,m,l
∗
⇀ ul weakly* in L∞(0, T ;L2(Ω)d),545

un,m,l ⇀ ul weakly in Lr(0, T ;W 1,r
0 (Ω)d),546

S
n,m,l

⇀ Sl weakly in Lr
′
(Q)d×d,547

Dn,m,l ⇀Dl weakly in Lr(Q)d×d,548

D
n,m,l

⇀D
l weakly in Lr(Q)d×d,549

1

l

∫
Q

|un,m,l|2r
′−2un,m,l ⇀

1

l

∫
Q

|ul|2r
′−2un,m,l weakly in L(2r′)′(Q)d.550

551

At this point it is a standard step to use the Aubin–Lions lemma to obtain strong552
convergence of subsequences. However, following [61], we will instead use Simon’s553
compactness lemma; this choice is made to avoid the need for stability estimates of554
Pndiv in Sobolev norms, which would require additional assumptions on the mesh. To555
apply this lemma, it will be more convenient to work with the modified interpolant:556

ûn,m,l(t, ·) :=

 un,m,l1 (·), if t ∈ [0, t1),

ũn,m,l(t, ·), if t ∈ [t1, T ].
557
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Let ε > 0 be such that s+ ε < T and let v ∈ V ndiv. Then, using the definition of ûn,m,l558
we have559 ∫

Ω

(ûn,m,l(s+ ε, x)− ûn,m,l(s+ ε, x)) · v(x) dx560

=

∫ s+ε

max(s,τm)

∫
Ω

∂tû
n,m,l(t, x) · v(x) dx dt561

=

∫ s+ε

max(s,τm)

∫
Ω

∂tũ
n,m,l(t, x) · v(x) dx dt562

=

∫ s+ε

max(s,τm)

(
−1

l

∫
Ω

|un,m,l(t, x)|2r
′−2un,m,l(t, x) · v(x) dx563

−
∫

Ω

(S
n,m,l

(t, x) : D(v(x)) + B(un,m,l(t, x),un,m,l(t, x),v(x))) dx+ 〈f(t),v〉
)

dt564

≤ c(l)

(∫ s+ε

max(s,τm)

‖v‖rW1,r(Ω) dt

)1/r

+

(∫ s+ε

max(s,τm)

‖v‖2r
′

L2r′ (Ω)
dt

)1/2r′
565

≤ c(l)(ε1/r + ε1/2r
′
)
(
‖v‖W1,r(Ω) + ‖v‖L2r′ (Ω)

)
.566

567

Choosing v = ûn,m,l(s+ ε, ·)− ûn,m,l(s, ·) we conclude that568 ∫ T−ε

0

‖ûn,m,l(s+ ε, ·)− ûn,m,l(s, ·)‖2L2(Ω) ds→ 0, as ε→ 0.569

On the other hand, the a priori estimates imply that ûn,m,l is bounded (uniformly in570
n,m ∈ N) in L2(Q)d and L1(0, T ;W 1,r

0 (Ω)d). Moreover, since r > 2d
d+2 , the embedding571

W 1,r(Ω)d ↪→ L2(Ω)d is compact and thus Simon’s compactness lemma guarantees the572
strong convergence:573

(3.15) ûn,m,l → ul strongly in L2(Q)d.574

Since the interpolants converge to the same limit as τm → 0, using standard function575
space interpolation (and recalling (2.3)) we also obtain that, as n,m→∞:576

ũn,m,l → ul strongly in Lp(0, T ;L2(Ω)d),(3.16)577

un,m,l → ul strongly in Lp(0, T ;L2(Ω)d) ∩ Lq(Q),(3.17)578579

for p ∈ [1,∞) and q ∈ [1,max(2r′, q(d+2)
d )).580

Now, using the property (2.12), we can check that ul is actually divergence-free:581

(3.18) 0 =

∫ T

0

∫
Ω

φΠn
Mq divun,m,l →

∫ T

0

∫
Ω

φ q divul ∀ q ∈ Lr
′
(Ω), φ ∈ C∞0 (0, T ).582

Furthermore, (2.12) also yields convergence of the initial condition, as n,m→∞:583

(3.19) ũn,m,l(0, ·) = Pndivu0 → u0 strongly in L2(Ω)d.584

The functions Dl and D
l
can easily be identified using the property (2.19) and the585

definition of the piecewise constant interpolant (3.11). Indeed, for an arbitrary σ ∈586
C∞0 (Q) we have, as n,m→∞:587

(3.20)
∫ T

0

∫
Ω

D
n,m,l

: σ =

∫ T

0

∫
Ω

Dn,m,l : σ →
∫ T

0

∫
Ω

Dl : σ.588
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The uniqueness of the weak limit then implies that Dl = D
l
.589

Combining all these properties and using an analogous computation to (3.18) it590
is possible to prove that the limiting functions are a solution of the following problem:591 ∫ T

0

∫
Ω

(Dl −D(ul)) : τ ϕ = 0 ∀ τ ∈ C∞0,sym(Ω)d×d, ϕ ∈ C∞0 (0, T ),592

−
∫ T

0

∫
Ω

ul · v ∂tϕ−
∫

Ω

u0 · vϕ(0) +

∫ T

0

∫
Ω

(Sl − ul ⊗ ul) : D(v)ϕ593

+
1

l

∫ T

0

∫
Ω

|ul|2r
′−2ul · v ϕ =

∫ T

0

〈f ,v〉ϕ ∀v ∈ C∞0,div(Ω)d, ϕ ∈ C∞0 (−T, T ).594
595

From the equation above and the estimate (2.3) we then see that the distributional596
time derivative belongs to the spaces:597

∂tu
l ∈ Lmin(r′,(2r′)′)(0, T ; (W 1,r

0,div(Ω)d ∩ L2r′(Ω)d)∗),(3.21)598

∂tu
l ∈ Lmin(ř,(2r′)′)(0, T ; (W 1,ř′

0,div(Ω)d)∗).(3.22)599600

It is important to note that (3.22) holds uniformly in l ∈ N, while (3.21) does not.601
Now, observe that602

W 1,r
0,div(Ω)d ∩ L2r′(Ω)d ↪→ L2

div(Ω)d ↪→ (L2
div(Ω)d)∗ ↪→ (W 1,r

0,div(Ω)d ∩ L2r′(Ω)d)∗.603

Combining this with (2.4), (2.5), and the fact that ul ∈ L∞(0, T ;L2
div(Ω)d) guarantees604

that ul ∈ Cw([0, T ], L2
div(Ω)d). Let v ∈ C∞0,div(Ω)d and ϕ ∈ C∞(−T, T ) be such that605

ϕ(0) = 1; then the following equality holds:606

(3.23)
∫ T

0

∫
Ω

∂t(u
lϕ) · v = −

∫
Ω

ul(0, ·) · v ϕ(0).607

On the other hand, using the equation we also have that:608

(3.24)
∫ T

0

∫
Ω

∂t(u
lϕ) · v =

∫ T

0

∫
Ω

∂tu
l · v ϕ+

∫ T

0

∫
Ω

ul · v ∂tϕ = −
∫

Ω

u0 · v ϕ(0).609

Comparing (3.23) and (3.24) we conclude that ul(0, ·) = u0(·). This proves that the610
initial condition is attained in the weak sense expected a priori from the embeddings;611
however, in this case the stronger condition612

(3.25) ess lim
t→0+

‖ul(t, ·)− u0(·)‖L2(Ω) = 0613

holds. To see this, note that (3.16) guarantees that, up to a subsequence, ũn,m,l(t, ·)→614
ũl(t, ·) in L2(Ω)d for almost every t ∈ [0, T ], and therefore615

‖ul(t, ·)− u0(·)‖2L2(Ω) = lim sup
n,m→∞

‖ũn,m,l(t, ·)− ũn,m,l(0, ·)‖2L2(Ω)616

= lim sup
n,m→∞

(
‖ũn,m,l(t, ·)‖2L2(Ω) − ‖ũ

n,m,l(0, ·)‖2L2(Ω)617

+2

∫
Ω

(ũn,m,l(0, ·)− ũn,m,l(t, ·)) · ũn,m,l(0, ·)
)

618

≤ lim sup
n,m→∞

(∫ t

0

〈f ,un,m,l〉+ 2

∫
Ω

(ũn,m,l(0, ·)− ũn,m,l(t, ·)) · ũn,m,l(0, ·)
)

619

≤
∫ t

0

〈f ,ul〉+ 2

∫
Ω

(ul(0, ·)− ul(t, ·)) · ul(0, ·),620
621
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for almost every t ∈ [0, T ]. Observe also that the monotonicity of the constitutive622
relation was used to obtain the next to last inequality. Taking the limit t→ 0+ then623
yields (3.25).624

The identification of the constitutive relation, i.e. proving that (Dl,Sl) ∈ A(·)625
almost everywhere, can be carried out with the help of Lemma 2.1. In order to apply626
the lemma, the only thing that remains to be proved, since we already know that627

(Dn,m,l,S
n,m,l

) ∈ A(·) almost everywhere, is that:628

(3.26) lim sup
n,m→∞

∫ t

0

∫
Ω

S
n,m,l

: Dn,m,l ≤
∫ t

0

∫
Ω

Sl : Dl,629

for almost every t ∈ [0, T ]; then taking t → T we obtain the result in the whole630
domain Q. The proof of this fact is essentially the same as in [61] and we will not631
reproduce it here. Moreover, the following energy identity holds:632

(3.27)
1

2
‖ul(t, ·)‖2L2(Ω) +

∫ t

0

∫
Ω

Sl : D(ul) +
1

l

∫ t

0

‖ul‖2r
′

L2r′ (Ω)
=

∫ t

0

〈f ,ul〉+ ‖u0‖2L2(Ω),633

In time-dependent problems obtaining an energy identity of this kind is not always634
possible; in this case the energy equality (3.27) can be proved, since the velocity is an635
admissible test function in space thanks to the fact that its L2r′ norm is under control636
(some mollification is needed to overcome the low integrability in time, see [62, 44]).637

Now, (3.13) and the weak and weak* lower semicontinuity of the norms imply638
that639

(3.28) ‖ul‖2L∞(0,T ;L2(Ω))+‖Sl‖r
′

Lr
′
(Q)

+‖ul‖rLr(0,T ;W1,r(Ω))+‖Dl‖rLr(Q)+
1

l
‖ul‖2r

′

L2r′ (Q)
≤ c,640

where c is a constant independent of l. From this we see that, up to subsequences, as641
l→∞:642

ul
∗
⇀ u weakly* in L∞(0, T ;L2(Ω)d),643

ul ⇀ u weakly in Lr(0, T ;W 1,r
0 (Ω)d),644

Sl ⇀ S weakly in Lr
′
(Q)d×d,(3.29)645

Dl ⇀D weakly in Lr(Q)d×d,646

1

l

∫
Q

|ul|2r′−2ul → 0 strongly in L1(Q)d.647
648

Furthermore, since ř ≤ r′ and r > 2d
d+2 , the embedding W 1,ř′

0,div(Ω)d ↪→ L2
div(Ω)d is649

compact and hence by the Aubin–Lions lemma (taking into account (3.22)) we have650
the strong convergence:651

(3.30) ul → u strongly in Lr(0, T ;L2
div(Ω)d).652

With the convergence properties (3.29) and (3.30) it is then possible to pass to the653
limit and prove that the limiting functions satisfy:654 ∫

Ω

(D −D(u)) : τ = 0 ∀ τ ∈ C∞0,sym(Ω)d×d, a.e. t ∈ (0, T ),655

〈∂tu,v〉+

∫
Ω

(S − u⊗ u) : D(v) = 〈f ,v〉 ∀v ∈ C∞0,div(Ω)d, a.e. t ∈ (0, T ).656
657
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The same argument used to obtain (3.25) can be used here to prove that the initial658
condition is attained in the strong sense:659

(3.31) ess lim
t→0+

‖u(t, ·)− u0(·)‖L2(Ω) = 0.660

Moreover, since the penalty term vanishes in the limit l → ∞, we can improve the661
integrability in time:662

(3.32) ∂tu
l ∈ Lř(0, T ; (W 1,ř′

0,div(Ω)d)∗).663

To show that (D,S) ∈ A(·), Lemma 2.1 will once again be employed. The main664
difficulty at this stage, just like in the previous works [21, 61], is that the velocity is665
no longer an admissible test function (and therefore we do not have an energy equality666
similar to (3.27)). The idea is now to work with Lipschitz truncations of the error667
el := ul − u; it should be noted however that in the present case we need to verify a668
number of additional hypotheses before Lemma 3.1 can be applied.669

Note that equation (3.1) in Lemma 3.1 is written in divergence form. We then670
need to make a preliminary step and write the penalty term in this form (see [61]).671
Let B0 ⊂⊂ Ω be an arbitrary ball compactly contained in Ω and let q ∈ [1, (2r′)′).672
Then from the standard theory of elliptic operators we know that for almost every673
t ∈ [0, T ] there is a unique gl3(t, ·) ∈W 2,q(B0)d ∩W 1,q

0 (B0) such that:674 ∫
B0

∇gl3(t, ·) : ∇v =
1

l

∫
B0

|ul(t, ·)|2r′−2ul(t, ·) · v ∀v ∈ C∞0,div(Ω)d,675

‖gl3(t, ·)‖W 2,q(B0) ≤ c
∥∥∥∥1

l
|ul(t, ·)|2r′−2ul(t, ·)

∥∥∥∥
Lq(B0)

.676
677

This means in particular (by (3.29) and standard function space interpolation) that678
for a fixed time interval I0 ⊂⊂ (0, T ) we have:679

(3.33) gl3 → 0 strongly in Lq(I0;W 1,q(B0)d), ∀ q ∈ [1, (2r′)′).680

Defining Q0 := I0 ×B0 and681

Gl
1 := Sl − S,682

Gl
2 := ul ⊗ ul − u⊗ u−∇gl3,683684

we readily see that the error el satisfies the equation685

(3.34)
∫
Q0

∂te
l ·w =

∫
Q0

(Gl
1 +Gl

2) : ∇w ∀w ∈ C∞0,div(Q0)d.686

Additionally, as a consequence of (3.29), (3.33) and (3.30) we also have that for any687
q ∈ [1,min(ř, (2r′)′), the sequence ul is bounded in L∞(I0;W 1,q(Q0)d) and that:688

Gl
1 ⇀ 0 weakly in Lr

′
(Q0)d×d,689

Gl
2 → 0 strongly in Lq(Q0)d×d,690

ul → u strongly in Lq(Q0)d.691692

Consequently, the assumptions of Lemma 3.1 are satisfied. It now suffices to prove693
for an arbitrary θ ∈ (0, 1) that694

(3.35) lim sup
l→∞

∫
1
8Q0

[(D(ul)−D(·,S)) : (Sl − S)]θ ≤ 0,695
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Once this has been shown, Chacon’s biting lemma and Vitali’s convergence theorem696
will imply, together with Lemma 2.1, that (D,S) ∈ A(·) almost everywhere in 1

8Q0697
(see the details e.g. in [14]). From here then the result follows by observing that Q698
can be covered by a union of such cylinders (e.g. by using a Whitney covering).699

In order to prove (3.35), first let Bλl,j ⊂ Ω be the family of open sets and let700

{el,j}l,j∈N be the sequence of Lipschitz truncations described in Lemma 3.1. If we701
define702

(3.36) H l(·) := (D(ul)−D(·,S)) : (Sl − S) ∈ L1(Q),703

then we have by Hölder’s inequality that704

∫
1
8Q0

|H l|θ ≤ |Q|1−θ
(∫

1
8Q0\Bλl,j

H l

)θ
+ |Bλl,j |1−θ

(∫
1
8Q0

H l

)θ
.705

The second term on the right-hand side can be dealt with easily, since H l is bounded706
uniformly in L1(Q) thanks to the a priori estimate (3.28), and the properties described707
in Lemma 3.1 imply that708

(3.37) lim sup
l→∞

|Bλl,j |1−θ ≤ lim sup
l→∞

|λrl,jBλl,j |1−θ ≤ c2−j(1−θ), for j ≥ j0,709

where c is a positive constant. For the first term, observe that710 ∫
1
8Q0\Bλl,j

H l =

∫
1
8Q0

H l ζ 1Bcλl,j
711

=

∫
1
8Q0

D(el) : (Sl − S) ζ 1Bcλl,j
+

∫
1
8Q0\Bλl,j

(D(u)−D(·,S)) : (Sl − S)712

≤
∣∣∣∣∣
∫

1
8Q0

D(el,j) : Gl
1 ζ 1Bcλl,j

∣∣∣∣∣+

∣∣∣∣∣
∫

1
8Q0

(D(u)−D(·,S)) : (Sl − S)

∣∣∣∣∣713

+

∣∣∣∣∣
∫
Bλl,j

(D(u)−D(·,S)) : (Sl − S)

∣∣∣∣∣,714

715

where ζ ∈ C∞0,div( 1
6Q0) is the function introduced in Lemma 3.1. Taking lim supl→∞716

the assertion follows by taking j → ∞. In particular, we used for the first term717
Lemma 3.1 part 6, with H = 0, for the second term the weak convergence of Sl and718
for the third term the fact that {Sl}l∈N is bounded, together with (3.37). To conclude719
the proof, note that the fact that u is divergence-free and Assumption (A6) imply720
that tr(S) = 0, and so S ∈ Lr′sym(Ω)d×d ∩ Lr′tr(Ω)d×d.721

Remark 3.8. Formulation Ǎk,n,m,l is a four-step approximation in which the in-722
dices k, n,m, l refer to the approximation of the graph by smooth functions, the finite723
element discretisation, the discretisation in time, and the penalty term, respectively.724
The same approach can be used to define a 3-field formulation for the steady prob-725
lem and the unsteady problem without convection and the proof remains valid with726
some simplifications; for instance, for the steady system without convective term,727
only the indices k and n are needed. Furthermore, in those cases the convergence of728
the sequence of discrete pressures can be guaranteed in the corresponding Lebesgue729
spaces.730
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Remark 3.9. The argument used to prove the existence of the discrete solutions731
is more involved here than in the original works [21, 13], because the coercivity with732

respect to ‖uk,n,m,lj ‖W 1,r(Ω) cannot be deduced from Formulation Ǎk,n,m,l by simply733
testing with the solution. An alternative approach could be to include in the equation734
an additional diffusion term of the form:735

1

k

∫
Ω

|D(uk,n,m,lj )|r−2D(uk,n,m,lj ) : D(v),736

which would be completely acceptable if we only cared about the existence of weak737
solutions, but is undesirable from the point of view of the computation of the finite738
element approximations, since it introduces an additional nonlinearity in the discrete739
problem.740

Remark 3.10. In the proof of Theorem 3.7 the limits k → ∞, (n,m) → ∞ and741
l → ∞ were taken successively. In contrast to the steady case considered in [21],742
here it is not known whether we can take the limits at once. The result is likely to743
hold as well, but the proof would require a discrete version of the parabolic Lipschitz744
truncation, which is not available at the moment.745

Remark 3.11. In case the symmetric velocity gradient is a quantity of interest,746
the approach presented here can be easily extended to a four-field formulation with747
unknowns (D,S,u, p). The only additional assumption needed in that case would be748
an inf-sup condition of the form:749

(3.38) inf
σ∈Σndiv(0)

sup
τ∈Σnsym

∫
Ω
σ : τ

‖σ‖Ls′ (Ω)‖τ‖Ls(Ω)
≥ δs,750

where δs > 0 is independent of n.751

4. Numerical experiments. According to the analysis carried out in the previ-752
ous section, the addition of the penalty term is necessary when r ∈ ( 2d

d+2 ,
3d+2
d+2 ]. How-753

ever, in the examples we observed that the method converges regardless of whether754
the penalty term is present or not. This could be an indication that the requirement755
to include this penalty term is only a technical obstruction and that there might be a756
different approach to showing convergence of the numerical method that could avoid757
its inclusion in the numerical method. On the other hand, it could also be the case758
that exact solutions with more severe singularities than the ones considered in our nu-759
merical experiments are needed to demonstrate pathological behaviour. In any case,760
it appears that in most applications the penalty term can be safely omitted and for761
this reason it is not discussed in the numerical examples below.762

4.1. Carreau fluid and orders of convergence. The framework presented763
in this work is so broad that in general it is not possible to guarantee uniqueness of764
solutions; in particular it is not clear how error estimates could be obtained. However,765
as this computational example will show, the discrete formulations presented here766
appear to recover the expected orders of convergence in the cases where these orders767
are known.768

In the first part of this numerical experiment we solved the steady problem with-769
out convection with the Carreau constitutive law (as stated in Remark 3.8, the same770
3-field approximation can be applied in this setting):771

(4.1) S(D) := 2ν
(
ε2 + |D2|

) r−2
2 D,772
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where r ≥ 1 and ε, ν > 0. This is one of the most common non-Newtonian models that773
present a power-law structure (note that for r = 2 we recover the Newtonian model),774
and has the advantage that it is not singular at the origin (i.e. when D = 0), unlike775
the usual power-law constitutive relation. Observe that the constitutive relation is776
smooth, and therefore only the limit n→∞ is needed in the results from the previous777
section. The problem was solved on the unit square Ω = (0, 1)2 with a Dirichlet778
boundary condition for the velocity defined so as to match the value of the exact779
solution, which was chosen as:780

(4.2) u(x) = |x|a−1(x2,−x1)T, p(x) = |x|b,781

where a, b are parameters used to control the smoothness of the solutions. Define the782
auxiliary function F := Rd×d → Rd×dsym as:783

(4.3) F (B) := (ε+ |Bsym|) r−2
2 Bsym,784

where Bsym := 1
2 (B+BT ). In [5, 38] it was proved for systems of the form (4.1) that785

if F (D(u)) ∈W 1,2(Ω)d×d and p ∈W 1,r′(Ω) then the following error estimates hold:786

‖F (D(u))− F (D(un))‖L2(Ω) ≤ chmin{1, r′2 }
n ,787

‖p− pn‖Lr′ (Ω) ≤ ch
min{ 2

r′ ,
r′
2 }

n .788789

In our case, the conditions F (D(u)) ∈ W 1,2(Ω)d×d and p ∈ W 1,r′(Ω) amount to790
requiring that a > 1 and b > 2

r − 1. These parameters were then chosen to be791
a = 1.01 and b = 2

r − 0.99 in order to be close to the regularity threshold. We792
discretised this problem with the Scott–Vogelius element for the velocity and pressure793
and discontinuous piecewise polynomials for the stress variables:794

Σn = {σ ∈ L∞(Ω)d×d : σ|K ∈ Pk(K)d×d, for all K ∈ Tn},795

V n = {w ∈W 1,r(Ω)d : w|∂Ω = u, w|K ∈ Pk+1(K)d for all K ∈ Tn},796

Mn = {q ∈ L∞(Ω) : q|k ∈ Pk(K) for all K ∈ Tn}.797798

The problem was solved using firedrake [55] with ν = 0.5, ε = 10−5 and k = 1 on a799
barycentrically refined mesh (obtained using gmsh [32]) to guarantee inf-sup stability.800
The discretised nonlinear problems were linearised using Newton’s method with the801
L2 line search algorithm of PETSc [3, 11]; the Newton solver was deemed to have802
converged when the Euclidean norm of the residual fell below 1 × 10−8. The linear803
systems were solved with a sparse direct solver from the umfpack library [19]. In the804
implementation, the uniqueness of the pressure was recovered not by using a zero805
mean condition but rather by orthogonalising against the nullspace of constants. The806
experimental orders of convergence in the different norms are shown in Tables 1 and 2807
(note that the tables do not contain the values of the numerical error, but rather the808
order of convergence corresponding to the norm indicated in each column).809

From Tables 1 and 2 it can be seen that the algorithm recovers the expected810
orders of convergence. In the case of the stress we obtain the same order as for the811
pressure, which seems natural from the point of view of the equation. In [38] it is812
claimed that for r < 2 the order of convergence for the velocity should be equal to 1;813
in our numerical simulations the experimental order of convergence seems to approach814
2
r , which is slightly larger than 1. This difference may be due to the fact that in [38]815
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Table 1: Experimental order of convergence for the steady problem without convection
with r = 1.5.

hn ‖F (D(u))‖L2(Ω) ‖u‖W 1,r(Ω) ‖p‖Lr′ (Ω) ‖S‖Lr′ (Ω)

0.5 0.9075 1.0180 0.3647 0.6692
0.25 0.9803 1.2160 0.5396 0.6697
0.125 1.0023 1.2975 0.6565 0.6713
0.0625 1.0062 1.3205 0.6706 0.6716
0.03125 1.0071 1.3319 0.6715 0.6716

Expected 1.0 - 0.667 -

Table 2: Experimental order of convergence for the steady problem without convection
with r = 1.8.

hn ‖F (D(u))‖L2(Ω) ‖u‖W 1,r(Ω) ‖p‖Lr′ (Ω) ‖S‖Lr′ (Ω)

0.5 0.9132 0.9361 0.4955 0.8434
0.25 0.9826 1.0652 0.7271 0.8822
0.125 1.0040 1.1073 0.8671 0.8948
0.0625 1.0078 1.1167 0.8916 0.8966
0.03125 1.0087 1.1197 0.8959 0.8968

Expected 1.0 - 0.889 -

the author works with piecewise linear elements for the velocity while here quadratic816
elements were employed.817

In the second part of the experiment we employed again the Carreau constitutive818
law (4.1), but now considering the full system (2.11). The right-hand side, initial819
condition and boundary condition were chosen so as to match the ones defined by the820
exact solution:821

u(t,x) = t|x|a−1(x2,−x1)T, p(t,x) = t2|x|b.822

In [25], the following error estimate for the approximation of time-dependent systems823
of this form, but without convection, was obtained for r ∈ [ 2d

d+2 ,∞):824

‖u− un,m‖L∞(0,T ;L2(Ω)) + ‖F (D(u))− F (D(un,m))‖L2(Q) ≤ c
(
τm + h

min{1, 2r }
n

)
,825

assuming that u0 ∈W 1,r
0,div(Ω)d and that the following additional regularity properties826

of the solution and the data hold:827

‖∇F (D(u0))‖L2(Ω) + ‖∇S(D(u0))‖L2(Ω) ≤ c,828

‖u‖W 1,2(0,T ;L2(Ω)) + ‖u‖L2(0,T ;W 2,2(Ω)) + ‖F (D(u))‖L2(0,T ;W 1,2(Ω)) ≤ c.829830

The same order of convergence was obtained in [6] for r ∈ ( 3
2 , 2] in 3D for a semi-831

implicit discretisation of the unsteady system with convection assuming that u0 ∈832
W 2,2

0,div(Ω)d, divS(D(u0)) ∈ L2(Ω)d and that the slightly different regularity assump-833
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tions hold:834

‖∂tu‖L∞(0,T ;L2(Ω)) + ‖F (D(u))‖W 1,2(Q) + ‖F (D(u))‖L2((5r−6)/(2−r))(0,T ;W 1,2(Ω)) ≤ c.835

The problem was solved until the final time T = 0.1 with the same parameters as836
above; observe that this choice of parameters guarantees that the required regularity837
properties are satisfied. Table 3 shows the experimental order of convergence for838
r = 1.7. The order of convergence for the natural norm ‖F (D(u))‖L2(Q) agrees with

Table 3: Experimental order of convergence for the full problem with r = 1.7.

hn τm ‖F (D(u))‖L2(Q) ‖u‖L∞(0,T ;L2(Ω))

0.5 0.001 0.9226 1.8703
0.25 0.0005 0.9865 1.9564
0.125 0.00025 1.0057 1.9497
0.0625 0.000125 1.0084 1.9440
0.03125 0.0000625 1.0075 1.9451

Expected 1.0 1.0

839
the one expected from the theoretical results, while for the velocity we obtain a higher840
order. This is again likely to be due to the fact that quadratic elements were employed841
for the velocity variable, while the analysis was performed for linear elements.842

4.2. Navier–Stokes/Euler activated fluid. In this section we will consider843
the classical lid–driven cavity problem with the non–standard constitutive relation:844

(4.4)


 D = δs

S
|S| + 1

2νS, if |D| ≥ δs,
S = 0, if |D| < δs,

if (x− 1
2 )2 + (y − 1

2 )2 ≤ ( 3
8 )2,

D = 1
2νS, otherwise ,

845

where ν > 0 is the viscosity and δs ≥ 0. This is an example of an activated fluid that846
in the middle of the domain transitions between a Newtonian fluid (i.e. Navier–Stokes)847
and an inviscid fluid (i.e. Euler) depending on the magnitude of the symmetric velocity848
gradient (for a more thorough discussion of activated fluids see [7]). It is analogous849
to the Bingham constitutive equation for a viscoplastic fluid, but with the roles of850
the stress and symmetric velocity gradient interchanged; the fact that we can swap851
the roles of the stress and the symmetric velocity gradient in constitutive relations852
without any problem is a significant advantage of the framework presented here.853

The problem was solved on the unit square Ω = (0, 1)2 with the rest state as the854
initial condition and with the following boundary conditions:855

∂Ω1 = (0, 1)× {1}, ∂Ω2 := ∂Ω \ ∂Ω1,856

u = 0 on (0, T )× ∂Ω2,857

u = (x2(1− x)216y2, 0)T on (0, T )× ∂Ω1.858859

Although (4.4) has a complicated form, there is a continuous (in D) selection860
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available:861

(4.5) S = S(x, y,D) :=

 2ν
(
|D| − δs1B3/8(1/2)(x, y)

)+
D
|D| , if |D| 6= 0,

0, if |D| = 0.
862

While the selection stated in (4.5) is already continuous in D, Newton’s method863
requires Fréchet-differentiability of S with respect toD and the constitutive law is not864
smooth when |(x− 1

2 , y − 1
2 )| < 3

8 ; therefore some regularisation was required for the865
purpose of applying Newton’s method (an alternative would have been to use a non-866
smooth generalisation such as a semismooth Newton method). For this problem we867
chose a Papanastasiou-like regularisation (cf. [48]); the Papanastasiou regularisation868
has been successfully applied to several problems with Bingham rheology [16, 24, 47].869
The regularised constitutive relation reads:870

(4.6) D =
1

2ν

(
δs(1− exp(−M |S|))

|S| + 1

)
S for (x− 1

2 )2 + (y − 1
2 )2 ≤ ( 3

8 )2,871

where M > 0 is the regularisation parameter (as M →∞ we recover the constitutive872
relation (4.4), see Figure 1); note that this is not related to the regularisation (2.7),873
which has the goal of turning the measurable selection into a continuous function.874
For the velocity and pressure we used Scott–Vogelius elements and discontinuous875
piecewise polynomials were used for the stress (cf. subsection 4.1); the problem was876
implemented in firedrake with k = 1, ν = 1

2 , using the same parameters for the877
linear and nonlinear solvers described in the previous section, and continuation was878
employed to reach the values M = 200 and δs = 2.5; more precisely, the problem was879
initially solved with M = 100 and δs = 0 and that solution was used as the Newton880
guess for the problem with M + 1 and δs + 0.05, repeating the procedure until the881
desired values were reached. The time step was chosen as τm = 5 × 10−6 and the882
algorithm was applied until the L2 norm of the difference of solutions at subsequent883
time steps was less than 1× 10−6.

0.0 0.5 1.0 1.5 2.0 2.5

|D|

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

|S
|

M = ∞
M = 120

M = 50

M = 15

M = 5

Fig. 1: Regularised constitutive relation for different values of M and δs = 2.

884
Note that when the ‘yield strain’ parameter δs vanishes, we recover the usual885

Navier–Stokes system. On the other end, if δs is taken to be very large this could886
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be taken as an approximation of the incompressible Euler system in the center of the887
square; notice how in Figure 2 the fluid picks up more speed in the middle of the888
domain when δs > 0 due to the absence of viscosity. This could be an attractive889
approach to simulating the effects of boundary layers, because it is backed up by a890
rigorous convergence result; near the boundary the fluid could behave in a Newtonian891
way and far away δs could be taken arbitrarily large so as to make the effects of the892
viscosity negligible. This is just one of the possibilities that are yet to be explored893
within this framework of implicitly constituted fluids and mixed formulations and will894
be studied in more depth in future work.

Fig. 2: Streamlines of the steady state for the problem with δs = 2.5 (left) and the
Newtonian problem (right).

895
Figure 3 shows the magnitudes of S and D along the line x = 0.65 for the steady896

state of the non-Newtonian problem; it can be clearly seen that the stress is negligibly897
small for low values of the symmetric velocity gradient in the center of the square and898
it then suddenly becomes proportional to it. This transition is not the sharpest in899
the figure because the regularisation parameter M was not taken sufficiently large,900
but in the limit this would recover the non-smooth relation. In a sense this is similar901
to solving a Navier–Stokes problem with high Reynolds number, so for high values902
of M some stabilisation would be required in order to solve this systems efficiently903
(even more so if the Newtonian fluid outside of the activation region also has a high904
Reynolds number); this will be the subject of future research.905

4.3. Cessation of the Couette flow of a Bingham fluid. The flow between906
two parallel plates induced by the movement at constant speed of one of the plates907
receives the name of (plane) Couette flow. It is one of the few examples of a configu-908
ration that allows us to find an exact solution for the steady Navier–Stokes equations909
and it is well known that this solution has a linear profile. In this numerical ex-910
periment we will take the Couette flow as the initial condition and investigate the911
behaviour of the system when the plates stop moving. Physically it is expected that912
the viscosity and no–slip boundary condition will slow down the flow until it finally913
stops; it can be seen in [49] that in the Newtonian case the flow does reach the rest914
state, albeit in infinite time.915
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Fig. 3: Magnitude of S and D at x = 0.65 for the problem with δs = 2.5.

In this section we will solve system (2.11) with the Bingham constitutive relation:916  S = τy
D
|D| + 2νD, if |S| ≥ τy,
D = 0, if |S| < τy,

917

where ν > 0 is the viscosity and τy ≥ 0 is called the yield stress. This is the most918
common model for a viscoplastic fluid, which is a material that for low stresses (i.e.919
with a magnitude below the yield stress τy) behaves like a solid and like a Newtonian920
fluid otherwise. Interestingly, viscoplastic fluids in the configuration described above921
reach the rest state in a finite time and there are theoretical upper bounds for the922
so called cessation time (see [35, 42]), which makes this a good problem to test the923
numerical algorithm. Just as in the previous section, for this problem there is also a924
continuous selection available:925

(4.7) D = D(S) :=

 1
2ν (|S| − τy)+ S

|S| , if |S| 6= 0,

0, if |S| = 0.
926

For this experiment we again applied the Papanastasiou regularisation to the non-927
smooth constitutive relation, in order to be able to apply Newton’s method. After928
nondimensionalisation this regularised constitutive law takes the form (compare with929
(4.6)):930

(4.8) S(D) =

(
Bn

|D| (1− exp(−M |D|)) + 1

)
D,931

where Bn =
τyL
νU is the Bingham number (here U and L are a characteristic velocity932

and length of the problem, respectively), and M > 0 is the regularisation parameter933
(as M →∞ we recover the non–smooth relation; compare with Figure 1). The prob-934
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lem was solved on the unit square Ω = (0, 1)2 with the following boundary conditions:935

∂Ω1 = {0} × (0, 1) ∪ {1} × (0, 1), ∂Ω2 := (0, 1)× {1} ∪ (0, 1)× {0},936

u = 0 on (0, T )× ∂Ω2,937

uτ = 0 on (0, T )× ∂Ω1,938

−p+ Sn · n = 0, on (0, T )× ∂Ω1,939940

where uτ denotes the component of the velocity tangent to the boundary and n is the941
unit vector normal to the boundary. The initial condition was taken as a standard942
Couette flow:943

u(0,x) = (1− x2, 0)T.944

For the velocity and pressure we used Taylor–Hood elements and discontinuous piece-945
wise polynomials for the stress. This problem was implemented in FEniCS [45] using946
the same parameters for the nonlinear and linear solvers described in the previous947
section, with k = 1 and a timestep τm between 5× 10−7 and 1× 10−6 for the differ-948
ent values of the Bingham number. We quantify the change in the flow through the949
volumetric flow rate (observe that it is constant in x1):950

Q(t) :=

∫ 1

0

(1, 0) · u(t,x) dx2,951

whose evolution in time is shown in Figure 4 for different values of the Bingham952
number. An exponential decay of the flow rate is observed in Figure 4, while for953
positive values of the Bingham number this decay is much faster; these results agree954
with the ones reported in [42, 16]. In [16] the problem was solved by integrating a955
one-dimensional equation for u2; the framework presented here recovers the results956
obtained there but at the same time has the advantage that it can be applied to a957
much broader class of problems and geometries.

0.00 0.05 0.10 0.15 0.20
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Q
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Bn=2.0
Bn=4.0

Fig. 4: Evolution of the volumetric flow rate.

958
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5. Conclusions. In this work we presented a 3-field finite element formulation959
for the numerical approximation of unsteady implicitly constituted incompressible960
fluids and identified the necessary conditions that guarantee the convergence of the961
sequence of numerical approximations to a solution of the continuous problem. Al-962
though the convergence analysis was written in terms of a selection D, the finite963
element formulation presented here can be used in practice with a fully implicit rela-964
tion; this is in contrast to the works [21, 61], where the algorithms relied on finding965
an approximate constitutive law expressing the stress Sk in terms of the symmetric966
velocity gradient Dk, which, while always theoretically possible, is not practical for967
many models. We also presented numerical experiments that showcase the variety of968
models that the framework of implicitly constituted models can incorporate.969
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