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1 Introduction

Numerical solution of PDEs is rich and active
field of modern applied mathematics. The steady
growth of the subject is stimulated by ever-
increasing demands from the natural sciences, en-
gineering and economics to provide accurate and
reliable approximations to mathematical mod-
els involving partial differential equations (PDEs)
whose exact solutions are either too complicated
to determine in closed form or, in many cases,
are not known to exist. While the history of
numerical solution of ordinary differential equa-
tions is firmly rooted in 18th and 19th cen-
tury mathematics, the mathematical foundations
of the field of numerical solution of PDEs are
much more recent: they were first formulated
in the landmark paper Über die partiellen Dif-
ferenzengleichungen der mathematischen Physik
(On the partial difference equations of mathemat-
ical physics) by Richard Courant, Karl Friedrichs,
and Hans Lewy, published in 1928. There is
a vast array of powerful numerical techniques
for specific PDEs: level set and fast-marching
methods for front-tracking and interface prob-
lems; numerical methods for PDEs on, possibly
evolving, manifolds; immersed boundary meth-
ods; mesh-free methods; particle methods; vor-
tex methods; various numerical homogenization
methods and specialized numerical techniques for
multiscale problems; wavelet-based multiresolu-
tion methods; sparse finite difference/finite el-
ement methods, greedy algorithms and tenso-
rial methods for high-dimensional PDEs; domain-
decomposition methods for geometrically com-
plex problems, and numerical methods for PDEs
with stochastic coefficients that feature in a num-
ber of applications, including uncertainty quan-
tification problems. Our brief review cannot do
justice to this huge and rapidly evolving sub-
ject. We shall therefore confine ourselves to the

most standard and well-established techniques for
the numerical solution of PDEs: finite difference
methods, finite element methods, finite volume
methods and spectral methods. Before embark-
ing on our survey, it is appropriate to take a brief
excursion into the theory of PDEs in order to
fix the relevant notational conventions and to de-
scribe some typical model problems.

2 Model partial differential equations

A linear partial differential operator L of order m
with real-valued coefficients aα = aα(x), |α| ≤ m,
on a domain Ω ⊂ Rd, defined by

L :=
∑

|α|≤m

aα(x)∂
α, x ∈ Ω,

is called elliptic if, for every x := (x1, . . . , xd) ∈ Ω
and every nonzero ξ := (ξ1, . . . , ξd) ∈ Rd,

Qm(x, ξ) :=
∑

|α|=m

aα(x)ξ
α ̸= 0.

Here α := (α1, . . . , αd) is a d-component vec-
tor with nonnegative integer entries, called a
multi-index, |α| := α1 + · · · + αd is the length
of the multi-index α, ∂α := ∂α1

x1
. . . ∂αd

xd
, with

∂xj := ∂/∂xj , and ξα := ξα1
1 · · · ξαd

d . In the
case of complex-valued coefficients aα the def-
inition above is modified by demanding that
|Qm(x, ξ)| ̸= 0 for all x ∈ Ω and all nonzero
ξ ∈ Rd. A typical example of a first-order el-
liptic operator with complex coefficients is the
Cauchy–Riemann operator ∂z̄ := 1

2

(
∂x + ı∂y

)
,

where ı :=
√
−1. With this general definition of

ellipticity even-order operators can exhibit some
rather disturbing properties. For example, the
Bitsadze equation ∂xxu + 2ı∂xyu − ∂yyu = 0 ad-
mits infinitely many solutions in the unit disc Ω
in R2 centered at the origin, all of which vanish on
the boundary ∂Ω of Ω. Indeed, with z = x + ıy,
u(x, y) = (1 − |z|2)f(z) is a solution that van-
ishes on ∂Ω for any complex analytic function f .
Thus a stronger requirement, referred to as uni-
form ellipticity, is frequently imposed; for real-
valued coefficients aα, |α| ≤ m, and m = 2k
where k is a positive integer, uniform ellipticity
demands the existence of a constant C > 0 such
that (−1)kQ2k(x, ξ) ≥ C|ξ|2k for all x ∈ Ω and
all nonzero ξ ∈ Rd.
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The archetypal linear second-order uniformly
elliptic PDE is −∆u+ c(x)u = f(x), x ∈ Ω. Here
c and f are real-valued functions defined on Ω
and ∆ :=

∑d
i=1 ∂

2
xi

is the Laplace operator. When
c < 0 the equation is called the Helmholtz equa-
tion. In the special case when c(x) ≡ 0 the equa-
tion is referred to as Poisson’s equation, and when
c(x) ≡ 0 and f(x) ≡ 0 as Laplace’s equation. El-
liptic PDEs arise in a range of mathematical mod-
els in continuum mechanics, physics, chemistry,
biology, economics and finance. For example,
in a two-dimensional flow of an incompressible
fluid with flow-velocity u = (u1, u2, 0) the stream-
function ψ, related to u by u = ∇× (0, 0, ψ), sat-
isfies Laplace’s equation. The potential Φ of a
gravitational field, due to an attracting massive
object of density ρ, satisfies Poisson’s equation
∆Φ = 4πGρ, where G is the universal gravita-
tional constant.

More generally, one can consider fully nonlinear
second-order PDEs:

F (x, u,∇u,D2u) = 0,

where F is a real-valued function defined on the
set Υ := Ω × R × Rd × Rd×d

symm, with a typical
element υ := (x, z, p,R), where x ∈ Ω, z ∈ R,
p ∈ Rd and R ∈ Rd×d

symm, Ω is an open set in Rd,

D2u denotes the Hessian matrix of u, and Rd×d
symm

is the d(d+ 1)/2-dimensional linear space of real
symmetric d× d matrices, d ≥ 2. An equation of
this form is said to be elliptic on Υ if the d × d
matrix whose entries are ∂F/∂Rij , i, j = 1, . . . , d,
is positive definite at each υ ∈ Υ. An important
example, encountered in connection with optimal
transportation problems, is the Monge–Ampère
equation: detD2u = f(x) with x ∈ Ω; for the
equation to be elliptic it is necessary to demand
that the twice continuously differentiable function
u is uniformly convex at each point of Ω, and
for such a solution to exist we must also have f
positive.

Parabolic and hyperbolic PDEs typically arise
in mathematical models where one of the inde-
pendent physical variables is time, t. For exam-
ple,

∂tu+ Lu = f and ∂ttu+ Lu = f,

where L is a uniformly elliptic partial differential
operator of order 2m and u and f are functions

of (t, x1, . . . , xd), are uniformly parabolic and uni-
formly hyperbolic PDEs, respectively. The sim-
plest examples are the (uniformly parabolic) un-
steady heat equation and the (uniformly hyper-
bolic) second-order wave equation, where

Lu := −
d∑

i,j=1

∂xj (aij(t, x)∂xiu) ,

and aij(t, x) = aij(t, x1, . . . , xd), i, j = 1, . . . , d,
are the entries of a d×d matrix, which is positive
definite, uniformly with respect to (t, x1, . . . , xd).
Not all PDEs are of a certain fixed type. For

example, the following PDEs are mixed elliptic-
hyperbolic; they are elliptic for x > 0 and hyper-
bolic for x < 0:

∂xx + sign(x)∂yyu = 0 (Lavrentiev equation),

∂xxu+ x∂yyu = 0 (Tricomi equation),

x∂xx + ∂yyu = 0 (Kel’dish equation).

Stochastic analysis is a fertile source of PDEs
of nonnegative characteristic form, such as

∂tu−
d∑

i,j=1

∂xj (aij∂xiu) +
d∑

i=1

bi ∂xiu+ cu = f,

where bi, c and f are real-valued functions of
(t, x1, . . . , xd), and aij = aij(t, x1, . . . , xd), i, j =
1, . . . , d, are the entries of a positive semidefinite
matrix; since the aij are dependent on the tem-
poral variable t, the equation is, potentially, of
changing type. An important special case is when
the aij are all identically equal to zero, result-
ing in the first-order hyperbolic equation, also re-
ferred to as advection (or transport) equation:

∂tu+
d∑

i=1

bi(t, x) ∂xiu+ c(t, x)u = f(t, x).

The nonlinear counterpart of this equation,

∂tu+
d∑

i=1

∂xi [f(t, x, u)] = 0,

plays an important role in compressible fluid dy-
namics, traffic flow models and flow in porous
media. Special cases include the Burgers equa-
tion ∂tu+∂x(

1
2u

2) = 0 and the Buckley–Leverett
equation ∂tu+ ∂x(u

2/(u2 + 1
4 (1− u)2)) = 0.
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PDEs are rarely considered in isolation: ad-
ditional information is typically supplied in the
form of boundary conditions, imposed on the
boundary ∂Ω of the domain Ω ⊂ Rd in which
the PDE is studied, or, in the case of parabolic
and hyperbolic equations, also as initial condi-
tions at t = 0. The PDE in tandem with the
boundary/initial conditions is referred to as a
boundary-value problem/initial-value problem, or
when both boundary and initial data are sup-
plied, as an initial-boundary-value problem.

3 Finite difference methods

We begin by considering finite difference meth-
ods for elliptic boundary-value problems. The
basic idea behind the construction of finite dif-
ference methods is to discretize the closure, Ω,
of the (bounded) domain of definition Ω ⊂ Rd of
the solution (the, so-called, analytical solution)
to the PDE by approximating it with a finite set
of points in Rd, called the mesh points or grid
points, and replacing the partial derivatives of
the analytical solution appearing in the equation
by divided differences (difference quotients) of a
grid-function, i.e. a function that is defined at all
points of the finite difference grid. The process re-
sults in a finite set of equations with a finite num-
ber of unknowns: the values of the grid-function
representing the finite difference approximation
to the analytical solution over the finite difference
grid. We illustrate the construction by consider-
ing a simple second-order uniformly elliptic PDE
subject to a homogeneous Dirichlet boundary con-
dition:

−∆u+ c(x, y)u = f(x, y) in Ω, (1)

u = 0 on ∂Ω, (2)

on the unit square Ω := (0, 1)2; here c and f are
real-valued functions that are defined and contin-
uous on Ω, and c ≥ 0 on Ω. Let us suppose for
simplicity that the grid-points are equally spaced.
Thus we take h := 1/N , where N ≥ 2 is an in-
teger. The corresponding finite difference grid is
then Ωh := {(xi, yj) : i, j = 0, . . . , N}, where
xi := ih and yj := jh, i, j = 0, . . . , N . We also
define Ωh := Ωh ∩ Ω and ∂Ωh := Ωh \ Ωh.

It is helpful to introduce the following notation

for first-order divided differences:

D+
x u(xi, yj) :=

u(xi+1, yj)− u(xi, yj)

h

and

D−
x u(xi, yj) :=

u(xi, yj)− u(xi−1, yj)

h
,

with D+
y u(xi, yj) and D−

y (xi, yj) defined analo-
gously. Then, D2

xu(xi, yj) := D−
x D

+
x u(xi, yj) and

D2
yu(xi, yj) := D−

y D
+
y u(xi, yj) are referred to as

the second-order divided difference of u in the x-
and y-direction, respectively, at (xi, yj) ∈ Ωh.
Assuming that u ∈ C4(Ω) (i.e. that u and all

of its partial derivatives up to and including those
of fourth order are defined and continuous on Ω),
we have that, at any (xi, yj) ∈ Ωh,

D2
xu(xi, yj) =

∂2u

∂x2
(xi, yj) +O(h2) (3)

and

D2
yu(xi, yj) =

∂2u

∂y2
(xi, yj) +O(h2), (4)

as h → 0. Omission of the O(h2) terms in (3)
and (4) above yields that

D2
xu(xi, yj) ≈ ∂2u

∂x2 (xi, yj), D
2
yu(xi, yj) ≈ ∂2u

∂y2 (xi, yj),

where the symbol ≈ signifies approximate equal-
ity in the sense that as h → 0 the expression to
the left of ≈ converges to the expression to the
right of ≈. Hence,

−
(
D2

xu(xi, yj) +D2
yu(xi, yj)

)
+ c(xi, yj)u(xi, yj)

≈ f(xi, yj) for all (xi, yj) ∈ Ωh, (5)

u(xi, yj) = 0 for all (xi, yj) in ∂Ωh. (6)

It is instructive to note the similarity between (1)
and (5), and (2) and (6), respectively. Motivated
by the form of (5) and (6), we seek a grid-function
U , whose value at the grid-point (xi, yj) ∈ Ωh,
denoted by Uij , approximates u(xi, yj), the un-
known exact solution to the boundary-value prob-
lem (1), (2) evaluated at (xi, yj), i, j = 0, . . . , N .
We define U as the solution to the following sys-
tem of linear algebraic equations:

− (D2
xUij +D2

yUij) + c(xi, yj)Uij

= f(xi, yj) for all (xi, yj) ∈ Ωh, (7)

Uij = 0 for all (xi, yj) ∈ ∂Ωh. (8)
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As each equation in (7) involves five values of
the grid-function U (namely, Uij , Ui−1,j , Ui+1,j ,
Ui,j−1, Ui,j+1), the finite difference method (7) is
called the five-point difference scheme. The ma-
trix of the linear system (7), (8) is sparse, sym-
metric and positive definite, and for given func-
tions c and f it can be efficiently solved by iter-
ative techniques from [REF ??]IV.xy, including
[REF ??]II.xy type methods (e.g. the conjugate
gradient method) and multigrid methods. Multi-
grid methods were developed in the 1970s and
1980 and are widely used as the iterative solver of
choice for large systems of linear algebraic equa-
tions that arise from finite difference and finite
element approximations in many industrial ap-
plications. The fundamental idea behind multi-
grid methods is to accelerate the convergence of
standard relaxation methods (such as the Jacobi
iteration or successive over-relaxation (SOR)) by
using a hierarchy of coarser-to-finer grids.

A multigrid method with an intentionally re-
duced convergence tolerance can also be used as
an efficient preconditioner for a Krylov subspace
iteration. The preconditioner P for a nonsingular
matrix A is an approximation of A−1, whose pur-
pose is to ensure that PA is a good approximation
of the identity matrix, and therefore iterative al-
gorithms for the solution of the preconditioned
version, PAx = Pb, of the system of linear alge-
braic equations Ax = b exhibit rapid convergence.

One of the central questions in the numerical
analysis of PDEs is the mathematical study of the
approximation properties of numerical methods.
We shall illustrate this by considering the finite
difference method (7), (8). The grid-function T
defined on Ωh by

Tij :=−
(
D2

xu(xi, yj) +D2
yu(xi, yj)

)
+ c(xi, yj)u(xi, yj)− f(xi, yj) (9)

is called the truncation error of the finite differ-
ence method (7), (8). Assuming that u ∈ C4(Ω),
it follows from (3)–(5) that, at each grid point
(xi, yj) ∈ Ωh, Tij = O(h2) as h → 0. The expo-
nent of h in the statement Tij = O(h2) (which,
in this case, is equal to 2) is called the order of
accuracy (or order of consistency) of the method.

It can be shown that there exists a positive con-

stant c0, independent of h, U and f , such that(
h2

N∑
i=1

N−1∑
j=1

|D−
x Uij |2 + h2

N−1∑
i=1

N∑
j=1

|D−
y Uij |2

+ h2
N−1∑
i=1

N−1∑
j=1

|Uij |2
) 1

2

≤ c0

(
h2

N−1∑
i=1

N−1∑
j=1

|f(xi, yj)|2
) 1

2

. (10)

Such an inequality, expressing the fact that the
numerical solution U ∈ Sh,0, is bounded by the
data (in this case f ∈ Sh), uniformly with re-
spect to the grid size h, where Sh,0 denotes the
linear space of all grid-functions defined on Ωh

that vanish on ∂Ωh and Sh is the linear space of
all grid functions defined on Ωh, is called a stabil-
ity inequality. The smallest real number c0 > 0
for which (10) holds is called the stability con-
stant of the method. It follows in particular from
(10) that if fij = 0 for all i, j = 1, . . . , N − 1,
then Uij = 0 for all i, j = 0, . . . , N . Therefore
the matrix of the system of linear equations (7),
(8) is nonsingular, which then implies the exis-
tence of a unique solution U to (7), (8) for any
h = 1/N , N ≥ 2. Consider the difference oper-
ator Lh : U ∈ Sh,0 7→ f = LhU ∈ Sh defined
by (7), (8). The left-hand side of (10) is some-
times denoted by ∥U∥1,h and the right-hand side
by ∥f∥0,h; hence, the stability inequality (10) can
be rewritten as

∥U∥1,h ≤ c0∥f∥0,h

with f = LhU , and stability can then be seen to
be demanding the existence of the inverse to the
linear finite difference operator Lh : Sh,0 → Sh,
and its boundedness, uniformly with respect to
the discretization parameter h. The mapping
U ∈ Sh,0 7→ ∥U∥1,h ∈ R is a norm on Sh,0, called
the discrete (Sobolev) H1(Ω) norm, and the map-
ping f ∈ Sh 7→ ∥f∥0,h ∈ R is a norm on Sh, called
the discrete L2(Ω) norm. It should be noted that
the stability properties of finite difference meth-
ods depend on the choice of norm for the data
and for the associated solution.
In order to quantify the closeness of the ap-

proximate solution U to the analytical solution
u at the grid-points, we define the global error e
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of the method (7), (8) by eij := u(xi, yj) − Uij .
Clearly, the grid-function e = u− U satisfies (7),
(8) if f(xi, yj) on the right-hand side of (7) is re-
placed by Tij . Hence, by the stability inequality,
∥u − U∥1,h = ∥e∥1,h ≤ c0∥T∥0,h. Under the as-
sumption that u ∈ C4(Ω) we thus deduce that
∥u − U∥1,h ≤ c1h

2, where c1 is a positive con-
stant, independent of h. The exponent of h on
the right-hand side (which is 2 is this case) is re-
ferred to as the order of convergence of the finite
difference method and is equal to the order of
accuracy. Indeed, the fundamental idea that sta-
bility and consistency together imply convergence
is a recurring theme in the analysis of numerical
methods for differential equations.

The five-point difference scheme can be gener-
alized in various ways. For example, instead of
using the same grid-size h in both co-ordinate di-
rections, one could have used a grid-size ∆x =
1/M in the x-direction and a possibly different
grid-size ∆y = 1/N in the y-direction, where
M,N ≥ 2 are integers. One can also consider
boundary-value problems on more complicated
polygonal domains Ω in R2 such that each edge of
Ω is parallel with one of the co-ordinate axes: for
example, the L-shaped domain (−1, 1)2 \ [0, 1]2.
The construction above can be extended to do-
mains with curved boundaries in any number of
dimensions; at grid-points that are on (or next to)
the boundary, divided differences with unequally
spaced grid-points are then used.

In the case of nonlinear elliptic boundary-value
problems, such as the Monge–Ampère equation
on a bounded open set Ω ⊂ Rd, subject to
the nonhomogeneous Dirichlet boundary condi-
tion u = g on ∂Ω, a finite difference approxi-
mation is easily constructed by replacing at each
grid-point (xi, yj) ∈ Ω the value u(xi, yj) of the
analytical solution u (and its partial derivatives)
in the PDE with the numerical solution Uij (and
its divided differences), and imposing the numer-
ical boundary condition Uij = g(xi, yj) for all
(xi, yj) ∈ ∂Ωh. Unfortunately, such a simple-
minded method does not explicitly demand the
convexity of U in any sense, and this can lead to
instabilities. In fact, there is no reason why the
sequence of finite difference solutions should con-
verge to the (convex) analytical solution of the
Monge–Ampère equation as h → 0. Even in two

space dimensions the resulting method may have
multiple solutions, and special iterative solvers
need to be used to select the convex solution.
Enforcing convexity of the finite difference solu-
tion in higher dimensions is much more difficult.
A recent successful development in this field has
been the construction of so-called wide-angle fi-
nite difference methods, which are monotone, and
the convergence theory of Barles and Souganidis
therefore ensures convergence of the sequence of
numerical solutions, as h → 0, to the unique vis-
cosity solution of the Monge–Ampère equation.

We close this section on finite difference meth-
ods with a brief discussion about their applica-
tion to time-dependent problems. A key result is
the Lax equivalence theorem, which states that,
for a finite difference method that is consistent
with a well-posed initial-value problem for a lin-
ear PDE, stability of the method implies con-
vergence of the sequence of grid-functions de-
fined by the method on the grid to the analyt-
ical solution as the grid-size converges to zero,
and vice versa. Consider the unsteady heat equa-
tion ut − ∆u + u = 0 for t ∈ (0, T ], with T > 0
given, and x in the unit square Ω = (0, 1)2, sub-
ject to the homogeneous Dirichlet boundary con-
dition u = 0 on (0, T ]× ∂Ω and the initial condi-
tion u(0, x) = u0(x), x ∈ Ω, where u0 and f are
given real-valued continuous functions. The com-
putational domain [0, T ]×Ω is discretized by the
grid {tm = m∆t : m = 0, . . . ,M} × Ωh, where
∆t = T/M , M ≥ 1, and h = 1/N , N ≥ 2. We
consider the θ-method

Um+1
ij − Um

ij

∆t
− (D2

xU
m+θ
ij +D2

yU
m+θ
ij ) + Um+θ

ij = 0

for all i, j = 1, . . . , N − 1 and m = 0, . . . ,M − 1,
supplemented with the initial condition U0

ij =
u0(xi, yj), i, j = 0, . . . , N , and the boundary con-

dition Um+1
ij = 0, m = 0, . . . ,M − 1, for all (i, j)

such that (xi, yj) ∈ ∂Ωh. Here θ ∈ [0, 1] and

Um+θ
ij := (1−θ)Um

ij +θU
m+1
ij , with Um

ij and Um+1
ij

representing the approximations to u(tm, xi, yj)
and u(tm+1, xi, yj), respectively. The values θ =
0, 12 , 1 are particularly relevant; the corresponding
finite difference methods are called the forward
(or explicit) Euler method, the Crank–Nicolson
method, and the backward (or implicit) Euler
method, respectively; their truncation errors are



6

defined by:

Tm+1
ij :=

u(tm+1, xi, yj)− u(tm, xi, yj)

∆t

− (1− θ)(D2
xu(t

m, xi, yj) +D2
yu(t

m, xi, yj))

− θ(D2
xu(t

m+1, xi, yj) +D2
yu(t

m+1, xi, yj))

+ (1− θ)u(tm, xi, yj) + θu(tm+1, xi, yj),

for i, j = 1, . . . , N − 1, m = 0, . . . ,M − 1. As-
suming that u is sufficiently smooth, Taylor se-
ries expansion yields that Tij = O(∆t + h2) for
θ ̸= 1/2 and Tij = O((∆t)2 + h2) for θ = 1/2.
Thus in particular the forward and backward Eu-
ler methods are first-order accurate with respect
to the temporal variable t and second-order ac-
curate with respect to the spatial variables x and
y, whereas the Crank–Nicolson method is second-
order accurate with respect to both the temporal
variable and the spatial variables. The stability
properties of the θ-method are also influenced by
the choice of θ ∈ [0, 1]: we have that

max
1≤m≤M

∥Um∥20,h +∆t

M−1∑
m=0

∥Um+θ∥21,h ≤ ∥U0∥20,h

for θ ∈ [0, 12 ), provided that 2d(1 − 2θ)∆t ≤ h2,
with d = 2 (space dimensions) in our case; and
for θ ∈ [ 12 , 1], irrespective of the choice of ∆t and
h. Thus in particular the forward (explicit) Eu-
ler method is conditionally stable, the condition
being that 2d∆t ≤ h2, with d = 2 here, while
the Crank–Nicolson and backward (implicit) Eu-
ler methods are unconditionally stable.

A finite difference method approximates the
analytical solution by a grid-function that is de-
fined over a finite difference grid contained in the
computational domain. We shall next consider
finite element methods, which involve piecewise
polynomial approximations of the analytical so-
lution, defined over the computational domain.

4 Finite element methods

Finite element methods (FEMs) are a powerful
and general class of techniques for the numerical
solution of PDEs. Their historical roots can be
traced back to a paper by Richard Courant pub-
lished in 1943, which proposed the use of con-
tinuous piecewise affine approximations for the
numerical solution of variational problems. This
represented a significant advance from the prac-
tical point of view over earlier techniques by Ritz

and Galerkin from the early 1900s, which were
based on the use of linear combinations of smooth
functions (e.g. eigenfunctions of the differential
operator under consideration). The importance
of Courant’s contribution was, unfortunately, not
recognized at the time and the idea was forgotten,
until the early 1950s, when it was rediscovered by
engineers. FEMs have been since developed into
an effective and flexible computational tool with
a firm mathematical foundation.

4.1 FEMs for elliptic PDEs

Suppose that Ω ⊂ Rd is a bounded open set
in Rd with a Lipschitz-continuous boundary ∂Ω.
We shall denote by L2(Ω) the space of square-
integrable functions (in the sense of Lebesgue),

equipped with the norm ∥v∥0 :=
(∫

Ω
|v|2 dx

)1/2
.

Let Hm(Ω) denote the Sobolev space consisting
of all functions v ∈ L2(Ω) whose (weak) partial
derivatives ∂αv belong to L2(Ω) for all α such
that |α| ≤ m. Hm(Ω) is equipped with the norm

∥v∥m :=
(∑

|α|≤m ∥∂αv∥20
)1/2

. We denote by

H1
0 (Ω) the set of all functions v ∈ H1(Ω) that

vanish on ∂Ω.
Let a and c be real-valued functions, defined

and continuous on Ω, and suppose that there ex-
ists a positive constant c0 such that a(x) ≥ c0 for
all x ∈ Ω. Assume further that bi, i = 1, . . . , d,
are continuously differentiable real-valued func-
tions defined on Ω, such that c − 1

2∇ · b ≥ c0 on

Ω, where b := (b1, . . . , bd), and let f ∈ L2(Ω).
Consider the boundary-value problem:

−∇ · (a(x)∇u) + b(x) · ∇u+ c(x)u = f(x),

for x ∈ Ω, with u|∂Ω = 0. The construction of the
finite element approximation of this boundary-
value problem commences by considering the fol-
lowing weak formulation of the problem: find
u ∈ H1

0 (Ω) such that

B(u, v) = ℓ(v) ∀v ∈ H1
0 (Ω), (11)

where the bilinear form B(·, ·) is defined by

B(w, v) :=

∫
Ω

[a(x)∇w·∇v+b(x)·∇w v+c(x)wv]dx

and ℓ(v) :=
∫
Ω
fv dx, with w, v ∈ H1

0 (Ω). If u
is sufficiently smooth, for example, u ∈ H2(Ω) ∩
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Figure 1: Finite element triangulation of the com-
putational domain Ω, a polygonal region of R2.
Vertices on ∂Ω are denoted by solids dots, and
vertices internal to Ω by circled solid dots.

H1
0 (Ω), then integration by parts in (11) implies

that u is a strong solution of the boundary-value
problem; i.e. −∇· (a(x)∇u)+ b(x) ·∇u+ c(x)u =
f(x) almost everywhere in Ω, and u|∂Ω = 0. More
generally, in the absence of such an additional
assumption about smoothness, the function u ∈
H1

0 (Ω) satisfying (11) is called a weak solution
of this elliptic boundary-value problem. Under
our assumptions on a, b, c and f , the existence
of a unique weak solution follows from the Lax–
Milgram theorem.

We shall consider the finite element approxi-
mation of (11) in the special case when Ω is a
bounded open polygonal domain in R2. The first
step in the construction of the FEM is to define a
triangulation of Ω. A triangulation of Ω is a tes-
sellation of Ω into a finite number of closed trian-
gles Ti, i = 1, . . . ,M , whose interiors are pairwise
disjoint, and for each i, j ∈ {1, . . . ,M}, i ̸= j, for
which Ti∩Tj is nonempty, Ti∩Tj is either a com-
mon vertex or a common edge of Ti and Tj (see
Fig. 1). The vertices in the triangulation are also
referred to as nodes.

Let hT denote the longest edge of a triangle
T in the triangulation, and let h be the largest
among the hT . Let, further, Sh denote the linear
space of all real-valued continuous functions vh
defined on Ω such that the restriction of vh to any
triangle in the triangulation is an affine function,
and define Sh,0 := Sh∩H1

0 (Ω). The finite element
approximation of the problem (11) is: find uh in
the finite element space Sh,0 such that

B(uh, vh) = ℓ(vh) ∀vh ∈ Sh,0. (12)

Let us denote by xi, i = 1, . . . , L, the set of all
vertices (nodes) in the triangulation (see Fig. 1),

Figure 2: Piecewise linear nodal basis function.
The basis function is identically zero outside a
patch of triangles surrounding the central node,
at which the height of the function is equal to 1.

and let N = N(h) denote the dimension of the
finite element space Sh,0. We shall assume that
the vertices xi, i = 1, . . . , L, are numbered so
that xi, i = 1, . . . , N , are within Ω and the re-
maining L − N vertices are on ∂Ω. Let further
{φj : j = 1, . . . , N} ⊂ Sh,0, denote the so-
called nodal basis for Sh,0, where the basis func-
tions are defined by φj(xi) = δij , i = 1, . . . , L,
j = 1, . . . , N . A typical piecewise linear nodal
basis function is shown in Fig. 2. Thus, there ex-
ists a vector U = (U1, . . . , UN )T ∈ RN such that

uh(x) =
N∑
j=1

Ujφj(x). (13)

Substitution of this expansion into (12) and tak-
ing vh = φk, k = 1, . . . , N , yields the following
system of N linear algebraic equations in the N
unknowns, U1, . . . , UN :

N∑
j=1

B(φj , φk)Uj = ℓ(φk), k = 1, . . . , N. (14)

By recalling the definition of B(·, ·), we see that
the matrix A := ([B(φj , φk)]

N
j,k=1)

T of this sys-
tem of linear equations is sparse, positive definite
(and if b is identically zero then also symmetric).
The unique solution U = (U1, . . . , UN )T ∈ RN

of the linear system, upon substitution into (13),
yields the computed approximation uh to the an-
alytical solution u on the given triangulation of
the computational domain Ω, using numerical al-
gorithms for [REF ??]IV.NLA Sec 6.
As Sh,0 is a (finite-dimensional) linear subspace

of H1
0 (Ω), v = vh is a legitimate choice in (11).

By subtracting (12) from (11), with v = vh, we
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deduce that

B(u− uh, vh) = 0 ∀vh ∈ Sh,0, (15)

which is referred to as the Galerkin orthogonality
property of the FEM. Hence, for any vh ∈ Sh,0,

c0∥u− uh∥21 ≤ B(u− uh, u− uh)

= B(u− uh, u− vh)

≤ c1∥u− uh∥1∥u− vh∥1,

where c1 := (M2
a + M2

b + M2
c )

1/2, with Mv :=
maxx∈Ω |v(x)|, v ∈ {a, b, c}. We thus have that

∥u− uh∥1 ≤ c1
c0

min
vh∈Sh,0

∥u− vh∥1. (16)

This result is known as Céa’s lemma, and is an
important tool in the analysis of FEMs. Suppose,
for example, that u ∈ H2(Ω)∩H1

0 (Ω) and denote
by Ih the finite element interpolant of u defined
by

Ihu(x) :=

N∑
j=1

u(xj)φj(x).

It follows from (16) that ∥u−uh∥1 ≤ c1
c0
∥u−Ihu∥1.

Assuming further that the triangulation is shape-
regular in the sense that there exists a posi-
tive constant c∗, independent of h, such that for
each triangle in the triangulation the ratio of the
longest edge to the radius of the circumscribed
circle is bounded below by c∗, arguments from
approximation theory imply the existence of a
positive constant ĉ, independent of h, such that
∥u− Ihu∥1 ≤ ĉh∥u∥2. Hence, the following a pri-
ori error bound holds in the H1 norm:

∥u− uh∥1 ≤ (c1/c0)ĉh∥u∥2.

We deduce from this inequality that, as the trian-
gulation is refined by letting h→ 0, the sequence
of finite element approximations uh computed on
successively refined triangulations converges to
the analytical solution u in the H1 norm. It is
also possible to derive a priori error bounds in
other norms, such as the L2 norm.

The inequality (16) of Céa’s lemma can be
seen to express the fact that the approximation
uh ∈ Sh,0 to the solution u ∈ H1

0 (Ω) of (11)
delivered by the FEM (12) is the near-best ap-
proximation to u from the linear subspace Sh,0 of

H1
0 (Ω). Clearly, c1/c0 ≥ 1. When the constant

c1/c0 ≫ 1, the numerical solution uh supplied by
the FEM is typically a poor approximation to u
in the ∥ · ∥1 norm, unless h is very small; for ex-
ample, if a(x) = c(x) ≡ ε and b(x) = (1, 1)T,
then c1/c0 =

√
2(1 + ε2)1/2/ε ≫ 1 if 0 < ε ≪ 1.

Such nonselfadjoint elliptic boundary-value prob-
lems arise in mathematical models of diffusion-
advection-reaction, where advection dominates
diffusion and reaction in the sense that |b(x)| ≫
a(x) > 0 and |b(x)| ≫ c(x) > 0 for all x ∈ Ω.
The stability and approximation properties of the
classical FEM (12) for such advection-dominated
problems can be improved by modifying, in a con-
sistent manner, the definitions of B(·, ·) and ℓ(·)
through the addition of ‘stabilization terms’, or
by enriching the finite element space with special
basis functions that are designed so as to cap-
ture sharp boundary and interior layers exhibited
by typical solutions of advection-dominated prob-
lems. The resulting FEMs are generally referred
to as stabilized finite element methods. A typical
example is the streamline-diffusion finite element
method, in which the bilinear form of the standard
FEM is supplemented with an additional numer-
ical diffusion term, which acts in the stream-wise
direction only, i.e. in the direction of the vector
b, in which classical FEMs tend to exhibit unde-
sirable numerical oscillations.
If, on the other hand, b is identically zero on

Ω, then B(·, ·) is a symmetric bilinear form, in
the sense that B(w, v) = B(v, w) for all w, v ∈
H1

0 (Ω). The norm ∥ · ∥B defined by ∥v∥B :=
[B(v, v)]1/2 is called the energy norm on H1

0 (Ω)
associated with the elliptic boundary-value prob-
lem (11). In fact, (11) can then be restated as the
following, equivalent, variational problem: find
u ∈ H1

0 (Ω) such that

J(u) ≤ J(v) ∀v ∈ H1
0 (Ω),

where

J(v) :=
1

2
B(v, v)− ℓ(v).

Analogously, the FEM (12) can then be restated
equivalently as follows: find uh ∈ Sh,0 such that
J(uh) ≤ J(vh) for all vh ∈ Sh,0. Furthermore,
Céa’s lemma, in terms of the energy norm, ∥ · ∥B ,
becomes ∥u−uh∥B = minvh∈Sh,0

∥u−vh∥B . Thus,
in the case when the function b is identically zero
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the numerical solution uh ∈ Sh,0 delivered by the
FEM is the best approximation to the analytical
solution u ∈ H1

0 (Ω) in the energy norm ∥ · ∥B .
We illustrate the extension of these ideas to

nonlinear elliptic PDEs through a simple model
problem. For a real number p ∈ (1,∞), let
Lp(Ω) := {v :

∫
Ω
|v|p dx < ∞} and W 1,p(Ω) :=

{v ∈ Lp(Ω) : |∇v| ∈ Lp(Ω)}. Let further
W 1,p

0 (Ω) denote the set of all v ∈ W 1,p(Ω) such
that v|∂Ω = 0. For f ∈ Lq(Ω), where 1/p+1/q =
1, p ∈ (1,∞), consider the problem of finding the
minimizer u ∈W 1,p

0 (Ω) of the functional

J(v) :=
1

p

∫
Ω

|∇v|p dx−
∫
Ω

fv dx, v ∈W 1,p
0 (Ω).

With Sh,0 as above, the finite element approx-
imation of the problem then consists of finding
uh ∈ Sh,0 that minimizes J(vh) over all vh ∈ Sh,0.
The existence and uniqueness of the minimizers
u ∈ W 1,p

0 (Ω) and uh ∈ Sh,0 in the respective
problems is a direct consequence of the convex-
ity of the functional J . Moreover as h → 0, uh
converges to u in the norm of the Sobolev space
W 1,p(Ω).

Problems in electromagnetism and continuum
mechanics are typically modeled by systems
of PDEs involving several dependent variables,
which may need to be approximated from differ-
ent finite element spaces because of the disparate
physical nature of the variables and the different
boundary conditions that they may be required to
satisfy. The resulting finite element methods are
called mixed finite element methods. In order for
a mixed FEM to possess a unique solution and
for the method to be stable, the finite element
spaces from which the approximations to the var-
ious components of the vector of unknowns are
sought cannot be chosen arbitrarily, but need to
satisfy a certain compatibility condition, usually
referred to as the inf-sup condition.

FEMs of the kind described in this section,
where the finite element space containing the ap-
proximate solution is a subset of the function
space in which the weak solution to the prob-
lem is sought, are called conforming finite ele-
ment methods. Otherwise, the FEM is called
nonconforming. Discontinuous Galerkin finite el-
ement methods (DGFEM) are an extreme in-
stance of a nonconforming FEM, in the sense that
pointwise inter-element continuity requirements

Figure 3: An hp-adaptive finite element grid, us-
ing polynomials with degrees 1, . . . , 7 (indicated
by the colour-coding), in a discontinuous Galerkin
finite element approximation of the compressible
Euler equations of gas dynamics (top) and the
colour contours of the approximate density on the
grid (bottom). (By courtesy of Paul Houston).

in the piecewise polynomial approximation are
completely abandoned, and the analytical solu-
tion is approximated by discontinuous piecewise
polynomial functions. DGFEMs have several ad-
vantages over finite difference methods: the con-
cept of higher-order discretization is inherent to
DGFEMs; it is, in addition, particularly conve-
nient from the point of view of adaptivity that
DGFEMs can easily accommodate very general
tessellations of the computational domain, with
local polynomial degrees in the approximation
that may vary from element to element. Indeed,
the notion of adaptivity is a powerful and impor-
tant idea in the field of numerical approximation
of PDEs, which we shall now further elaborate on
in the context of finite element methods.
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4.2 A posteriori error analysis and
adaptivity

Provided that the analytical solution is suffi-
ciently smooth, a priori error bounds guarantee
that, as the grid size h tends to 0, the corre-
sponding sequence of numerical approximations
converges to the exact solution of the boundary-
value problem. In practice one may unfortunately
only afford to compute on a small number of
grids/triangulations, the minimum grid size at-
tainable being limited by the computational re-
sources available. A further practical considera-
tion is that the regularity of the analytical solu-
tion may exhibit large variations over the com-
putational domain, with singularities localized at
particular points (e.g. corners and edges of the
domain) or low-dimensional manifolds in the in-
terior of the domain (e.g. shocks and contact
discontinuities in nonlinear conservation laws, or
steep internal layers in advection-dominated dif-
fusion equations). The error between the un-
known analytical solution and numerical solu-
tions computed on locally refined grids, which
are best suited for such problems, cannot be
accurately quantified by typical a priori error
bounds and asymptotic convergence results that
presuppose uniform refinement of the computa-
tional grid as the grid-size tends to 0. The al-
ternative is to perform a computation on a cho-
sen computational grid/triangulation and use the
computed approximation to the exact solution
to quantify the approximation error a posteri-
ori, and also to identify parts of the compu-
tational domain where the grid-size was inad-
equately chosen, necessitating local, so called,
adaptive, refinement or coarsening of the com-
putational grid/triangulation (h-adaptivity). In
FEMs it is also possible to locally vary the de-
gree of the piecewise polynomial function in the
finite element space (p-adaptivity). Finally, one
may also make adjustments to the computational
grid/triangulation, by moving/relocating the grid
points (r-adaptivity). The adaptive loop for an h-
adaptive FEM has the form:

SOLVE → ESTIMATE → MARK → REFINE.
Thus, a finite element approximation is first com-
puted on a certain fixed, typically coarse, trian-
gulation of the computational domain. Then, in
the second step, an a posteriori error bound is
used to estimate the error in the computed so-
lution: a typical a posteriori error bound for an
elliptic boundary-value problem Lu = f , where
L is a second-order uniformly elliptic operator

and f is a given right-hand side, is of the form
∥u − uh∥1 ≤ C∗||R(uh)||∗, where C∗ is a (com-
putable) constant, || · ||∗ is a certain norm, de-
pending on the problem, and R(uh) = f − Luh
is the (computable) residual, which measures the
extent to which the computed numerical solution
uh fails to satisfy the PDE Lu = f . In the third
step, on the basis of the a posteriori error bound,
selected triangles in the triangulation are marked
as those whose size is inadequate (i.e. too large
or too small, relative to a fixed local tolerance,
which is usually chosen as a suitable fraction of
the prescribed overall tolerance TOL), and finally
the marked triangles are refined or coarsened, as
the case may be. This four-step adaptive loop
is repeated either until a certain termination cri-
terion is reached (e.g. C∗||R(uh)||∗ < TOL) or
until the computational resources are exhausted.
A similar adaptive loop can be used in p-adaptive
FEMs, except that the step REFINE is then inter-
preted as adjustment (i.e. increase or decrease) of
the local polynomial degree, which then, instead
of being a fixed integer over the entire triangula-
tion, may vary from triangle to triangle. It is also
possible to combine different adaptive strategies:
for example, simultaneous h and p adaptivity is
referred to as hp-adaptivity ; thanks to the sim-
ple communication at the boundaries of adjacent
elements in the subdivision of the computational
domain, hp-adaptivity is particularly easy to in-
corporate into DGFEMs; see Fig. 3.

5 Finite volume methods

Finite volume methods have been developed for
the numerical solution of PDEs in divergence
form, such as conservation laws that arise from
continuum mechanics. Consider, for example, the
following system of nonlinear PDEs:

∂u

∂t
+∇ · f(u) = 0, (17)

where u := (u1, . . . , un)
T is an n-component

vector-function of the variables t and x1, . . . , xd;
the vector-function f(u) := (f1(u), . . . , fd(u))

T

is the corresponding flux function. The PDE
(17) is supplemented with the initial condition
u(0, x) = u0(x), x ∈ Rd. Suppose that Rd has
been tessellated into disjoint closed symplices κ
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(intervals if d = 1, triangles if d = 2, and tetrahe-
dra if d = 3), whose union is the whole of Rd and
such that each pair of distinct simplices from the
tessellation is either disjoint, or has only closed
symplices of dimension ≤ d − 1 in common. In
the theory of finite volume methods the symplices
κ are usually referred to as cells (rather than el-
ements). For each particular cell κ in the tessel-
lation of Rd the PDE (17) is integrated over κ,
which gives∫

κ

∂u

∂t
dx+

∫
κ

∇ · f (u) dx = 0. (18)

By defining the volume-average

ūκ(t) :=
1

|κ|

∫
κ

u(t, x) dx, t ≥ 0,

where |κ| is the measure of κ, and applying the
divergence theorem, we deduce that

dūκ
dt

+
1

|κ|

∮
∂κ

f (u) · ν dS = 0,

where ∂κ is the boundary of κ and ν is the unit
outward normal vector to ∂κ. In the present con-
struction the constant volume-average is assigned
to the barycenter of a cell, and the resulting fi-
nite volume method is therefore referred to as a
cell-centre finite volume method. In the theory
of finite volume methods the local region κ over
which the PDE is integrated is called a control
volume. Thus in the case of cell-centre finite vol-
ume methods the control volumes coincide with
the cells in the tessellation. An alternative choice,
resulting in vertex-centred finite volume methods,
is that for each vertex in the computational grid
one considers the patch of cells surrounding the
vertex, and assigns to the vertex a control volume
contained in the patch of elements (e.g., in the
case of d = 2, the polygonal domain defined by
connecting the barycenters of cells that surround
a vertex).

Thus far no approximation has taken place. In
order to construct a practical numerical method,
the integral over ∂κ is rewritten as a sum of inte-
grals over all (d− 1)-dimensional open faces con-
tained in ∂κ, and the integral over each face is ap-
proximated by replacing the normal flux f(u) · ν
over the face, appearing as integrand, by inter-
polation or extrapolation of control volume aver-

ages. This procedure can be seen as a replace-
ment of the exact normal flux over a face of a
control volume with a numerical flux function.
Thus, for example, denoting by eκλ the (d − 1)-
dimensional face of the control volume κ that is
shared with a neighboring control volume λ, we
have that∮

∂κ

f(u) · ν dS ≈
∑

λ : eκλ⊂∂κ

gκλ(ūκ, ūλ),

where the numerical flux function gκλ is required
to possess the following two crucial properties:

• Conservation ensures that fluxes from adja-
cent control volumes sharing a mutual inter-
face exactly cancel when summed. This is
achieved by demanding that the numerical
flux satisfies the identity

gκλ(u, v) = −gλκ(v, u),

for each pair of neighboring control volumes
κ and λ.

• Consistency ensures that, for each face of
each control volume, the numerical flux with
identical state arguments reduces to the true
total flux of that same state passing through
the face, i.e.,

gκλ(u, u) =

∫
eκλ

f(u) · ν dS,

for each pair of neighboring control volumes
κ and λ with common face eκλ := κ ∩ λ.

The resulting spatial discretization of the nonlin-
ear conservation law is then further discretized
with respect to the temporal variable t by time
stepping, in steps of ∆t, starting from the given
initial datum u0, the simplest choice being to use
the explicit Euler method.
The historical roots of this construction date

back to the work of Sergei Godunov in 1959 on the
gas dynamics equations; Godunov used piecewise
constant solution representations in each control
volume with value equal to the average over the
control volume and calculated a single numeri-
cal flux from the local solution of the Riemann
problem posed at the interfaces. Additional res-
olution beyond the first-order accuracy of the
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Godunov scheme can be attained by reconstruc-
tion/recovery from the computed cell-averages
(as in the MUSCL scheme of Van Leer based
on piecewise linear reconstruction, or by piece-
wise quadratic reconstruction as in the piecewise
parabolic method (PPM) of Colella and Wood-
ward), by exactly evolving discontinuous piece-
wise linear states instead of piecewise constant
states, or by completely avoiding the use of Rie-
mann solvers (as in the Nessyahu–Tadmor and
Kurganov–Tadmor central difference methods).

Thanks to their in-built conservation proper-
ties, finite volume methods have been widely and
successfully used for the numerical solution of
both scalar nonlinear conservation laws and sys-
tems of nonlinear conservation laws, including the
compressible Euler equations of gas dynamics.
There is a satisfactory convergence theory of finite
volume methods for scalar multidimensional con-
servation laws; efforts to develop a similar body of
theory for multidimensional systems of nonlinear
conservation laws are however hampered by the
incompleteness of the theory of well-posedness for
such PDE systems.

6 Spectral methods

While finite difference methods provide approxi-
mate solutions to PDEs at the points of the cho-
sen computational grid, and finite element and fi-
nite volume methods supply continuous or discon-
tinuous piecewise polynomial approximations on
tessellations of the computational domain, spec-
tral methods deliver approximate solutions in the
form of polynomials of a certain fixed degree,
which are, by definition, smooth functions over
the entire computational domain. If the solution
to the underlying PDE is a smooth function, a
spectral method will provide a highly accurate
numerical approximation to it.

Spectral approximations are typically sought
as linear combinations of [REF ??]II.xy over
the computational domain. Consider a nonempty
open interval (a, b) of the real line and a nonnega-
tive weight-function w, which is positive on (a, b),
except perhaps at countably many points in (a, b),
and such that∫ b

a

w(x)|x|k dx <∞ ∀k ∈ {0, 1, 2, . . . }.

Let, further, L2
w(a, b) denote the set of all real-

valued functions v defined on (a, b) such that

∥v∥w :=

(∫ b

a

w(x)|v(x)|2dx

)1/2

<∞.

Then, ∥ · ∥w is a norm on L2
w(a, b), induced by

the inner product (u, v)w :=
∫ b

a
w(x)u(x)v(x) dx.

We say that {Pk}∞k=0 is a system of orthogonal
polynomials on (a, b) if Pk is a polynomial of ex-
act degree k and (Pm, Pn)w = 0 when m ̸= n.
For example, if (a, b) = (−1, 1) and w(x) =
(1 − x)α(1 + x)β , with α, β ∈ (−1, 1) fixed, then
the resulting system of orthogonal polynomials
are the Jacobi polynomials, special cases of which
are the Gegenbauer (or ultraspherical) polynomi-
als (α = β ∈ (−1, 1)), Chebyshev polynomials
of the first kind (α = β = −1/2), Chebyshev
polynomials of the second kind (α = β = 1/2)
and Legendre polynomials (α = β = 0). On a
multidimensional domain Ω ⊂ Rd, d ≥ 2, that
is the cartesian product of nonempty open in-
tervals (ak, bk), k = 1, . . . , d, of the real line
and a multivariate weight-function w of the form
w(x) = w1(x1) · · ·wd(xd), where x = (x1, . . . , xd)
and wk is a univariate weight-function of the vari-
able xk ∈ (ak, bk), k = 1, . . . , d, orthogonal poly-
nomials with respect to the inner product (·, ·)w
defined by (u, v)w =

∫
Ω
w(x)u(x)v(x) dx are sim-

ply products of univariate orthogonal polynomi-
als with respect to the weights wk, defined on the
intervals (ak, bk), k = 1, . . . , d, respectively.
Spectral Galerkin methods for PDEs are based

on transforming the PDE problem under consid-
eration into a suitable weak form by multiplica-
tion with a test function, integration of the result-
ing expression over the computational domain Ω,
and integration by parts, if necessary, in order to
incorporate boundary conditions. Similarly as in
the case of finite element methods, an approx-
imate solution uN to the analytical solution u
is sought from a finite-dimensional linear space
SN ⊂ L2

w(Ω), which is now, however, spanned
by the first (N + 1)d elements of a certain sys-
tem of orthogonal polynomials with respect to the
weight-function w, and satisfying the associated
Dirichlet boundary condition (if any); uN is re-
quired to satisfy the same weak formulation as
the analytical solution, except that the test func-
tions are confined to the finite-dimensional linear
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space SN . In order to exploit the orthogonal-
ity properties of the chosen system of orthogonal
polynomials, the weight-function w has to be in-
corporated into the weak formulation of the prob-
lem, which is not always easy, unless of course the
weight-function w already appears as a coefficient
in the differential equation, or if the orthogonal
polynomials in question are the Legendre poly-
nomials (since then w(x) ≡ 1). We describe the
construction for a uniformly elliptic PDE subject
to a homogeneous Neumann boundary condition:

−∆u+ u = f(x) x ∈ Ω := (−1, 1)d,

∂u

∂ν
= 0 on ∂Ω,

where f ∈ L2(Ω) and ν denotes the unit outward
normal vector to ∂Ω (or, more precisely, to the
(d− 1)-dimensional open faces contained in ∂Ω).
Let us consider the finite-dimensional linear space

SN := span{Lα := Lα1 · · ·Lαd
:

0 ≤ αk ≤ N, k = 1, . . . , d},

where Lαk
is the univariate Legendre polyno-

mial of degree αk of the variable xk ∈ (−1, 1),
k = 1, . . . , d. The Legendre–Galerkin spectral ap-
proximation of the boundary value problem is de-
fined as follows: find uN ∈ SN such that

B(uN , vN ) = ℓ(vN ) ∀vN ∈ SN , (19)

where the linear functional ℓ(·) and the bilinear
form B(·, ·) are defined by ℓ(v) :=

∫
Ω
fv dx and

B(w, v) :=
∫
Ω
(∇w · ∇v + wv) dx, respectively,

with w, v ∈ H1(Ω). As B(·, ·) is a symmetric
bilinear form and SN is a finite-dimensional linear
space, the task of determining uN is equivalent to
solving a system of linear algebraic equations with
a symmetric square matrix A ∈ RK×K with K :=
dim(SN ) = (N + 1)d. Since B(V, V ) = ∥V ∥21 > 0
for all V ∈ SN \ {0}, where, as before, ∥ · ∥1
denotes the H1(Ω) norm, the matrix A is positive
definite, and therefore invertible. Thus we deduce
the existence and uniqueness of a solution to (19).
Céa’s lemma (see (16)) for (19) takes the form

∥u− uN∥1 = min
vN∈SN

∥u− vN∥1. (20)

Assuming that u ∈ Hs(Ω), s > 1, results from
approximation theory imply that the right-hand

side of (20) is bounded by a constant multiple of
N1−s∥u∥s, and we thus deduce the error bound

∥u− uN∥1 ≤ CN1−s∥u∥s, s > 1.

Furthermore, if u ∈ C∞(Ω) (i.e. all partial deri-
vatives of u of any order are continuous on Ω),
then ∥u − uN∥1 will converge to zero at a rate
that is faster than any algebraic rate of conver-
gence; such a superalgebraic convergence rate is
usually referred to as spectral convergence and is
the hallmark of spectral methods.
Since uN ∈ SN , there exist Uα ∈ R, with multi-

indices α = (α1, . . . , αd) ∈ {0, . . . , N}d, such that

uN (x) =
∑

α∈{0,...,N}d

UαLα(x).

Substituting this expansion into (19) and taking
vN = Lβ , with β = (β1, . . . , βd) ∈ {0, . . . , N}d,
we obtain the system of linear algebraic equations∑
α∈{0,...,N}d

B(Lα, Lβ)Uα = ℓl(Lβ), β ∈ {0, . . . , N}d

(21)

for the unknowns Uα, α ∈ {0, . . . , N}d, which
is reminiscent of the system of linear equations
(14) encountered in connection with finite ele-
ment methods. There is, however, a fundamen-
tal difference: whereas the matrix of the linear
system (14) was symmetric positive definite and
sparse, the one appearing in (21) is symmetric
positive definite and full. It has to be noted that
because

B(Lα, Lβ) =

∫
Ω

∇Lα · ∇Lβ dx+

∫
Ω

LαLβ dx,

in order for the matrix of the system to be-
come diagonal, instead of Legendre polynomials
one would need to use a system of polynomials
that are orthogonal in the energy inner product
(u, v)B := B(u, v), induced by B.
If the homogeneous Neumann boundary con-

dition considered above is replaced with a 1-
periodic boundary condition in each of the d co-
ordinate directions and the function f appear-
ing on the right-hand side of the PDE −∆u +
u = f(x) on Ω = (0, 1)d is a 1-periodic func-
tion in each co-ordinate direction, then one can
use trigonometric polynomials instead of Legen-
dre polynomials in the expansion of the numerical
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solution. This will then result in what is known
as a Fourier–Galerkin spectral method. Because
trigonometric polynomials are orthogonal in both
the L2(Ω) and the H1(Ω) inner product, the ma-
trix of the resulting system of linear equations will
be diagonal, which greatly simplifies the solution
process. Having said this, the presence of (peri-
odic) nonconstant coefficients in the PDE will still
destroy orthogonality in the associated energy in-
ner product (·, ·)B, and the matrix of the result-
ing system of linear equations will then, again,
become full. Nevertheless, significant savings can
be made in spectral computations through the
use of fast transform methods, such as the fast
Fourier transform (FFT) or the fast Chebyshev
transform, and this has contributed to the popu-
larity of Fourier and Chebyshev spectral methods.

Spectral collocation methods seek a numeri-
cal solution uN from a certain finite-dimensional
space SN , spanned by orthogonal polynomials,
just as spectral Galerkin methods, except that
after expressing uN as a finite linear combina-
tion of orthogonal polynomials and substituting
this linear combination into the differential equa-
tion, rather than requiring that the difference be-
tween the left-hand side and the right-hand side
of the resulting expression is orthogonal to SN ,
one demands instead that this difference vanishes
at certain carefully chosen points, called the col-
location points. Boundary and initial conditions
are enforced analogously. A trivial requirement in
selecting the collocation points is that one ends
up with as many equations as the number of un-
knowns, which is, in turn, equal to the dimension
of the linear space SN .

We illustrate the procedure by considering the
parabolic equation

∂tu− ∂2xxu = 0, (t, x) ∈ (0,∞)× (−1, 1),

subject to the initial condition u(0, x) = u0(x)
with x ∈ [−1, 1] and the homogeneous Dirichlet
boundary conditions u(t,−1) = 0, u(t, 1) = 0,
t ∈ (0,∞). A numerical approximation uN is
sought in the form of the finite linear combination

uN (t, x) =

N∑
k=0

ak(t)Tk(x)

with (t, x) ∈ [0,∞) × [−1, 1], where Tk(x) :=
cos(k arccos(x)), x ∈ [−1, 1], is the Chebyshev

polynomial (of the first kind) of degree k ≥ 0.
Note that there are N + 1 unknowns: the coef-
ficients ak(t), k = 0, 1, . . . , N . We thus require
the same number of equations. The function uN
is substituted into the PDE and it is demanded
that, for t ∈ (0,∞) and k = 1, . . . , N − 1,

∂tuN (t, xk)− ∂2xxuN (t, xk) = 0;

and uN (t,−1) = 0 and uN (t, 1) = 0 for t ∈
(0,∞), supplemented by the initial condition
uN (0, xk) = u0(xk) for k = 0, . . . , N , where
the (N + 1) collocation points are defined by
xk := cos (kπ/N) , k = 0, . . . , N ; these are the
(N + 1) points of extrema of TN on the inter-
val [−1, 1]. By writing uk(t) := uN (t, xk), after
some calculation based on properties of Cheby-
shev polynomials one arrives at the following set
of ordinary differential equations:

duk(t)

dt
=

N−1∑
l=1

(D2
N )klu

l(t), k = 1, . . . , N − 1,

where D2
N is the spectral differentiation matrix

of second order, whose entries (D2
N )kl can be ex-

plicitly calculated. One can then use any stan-
dard numerical method for a system of ordi-
nary differential equations to evolve the values
uk(t) = uN (t, xk) of the approximate solution uN
at the collocations points xk, k = 1, . . . , N − 1,
contained in (−1, 1), from the values of the initial
datum u0 at the same points.

7 Concluding remarks

We have concentrated on four general and widely
applicable families of numerical methods — finite
difference, finite element, finite volume and spec-
tral methods. For additional details the reader
is referred to the books listed under the heading
Further Reading below, and to the rich literature
on numerical methods for PDEs for the construc-
tion and analysis of other important techniques
for specialized PDE problems.
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