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Abstract. We propose and rigorously analyze a finite element method for the approximation
of stationary Fokker–Planck–Kolmogorov (FPK) equations subject to periodic boundary conditions
in two settings: one with weakly differentiable coefficients, and one with merely essentially bounded
measurable coefficients under a Cordes-type condition. These problems arise as governing equations
for the invariant measure in the homogenization of nondivergence-form equations with large drifts.
In particular, the Cordes setting guarantees the existence and uniqueness of a square-integrable in-
variant measure. We then suggest and rigorously analyze an approximation scheme for the effective
diffusion matrix in both settings, based on the finite element scheme for stationary FPK problems de-
veloped in the first part. Finally, we demonstrate the performance of the methods through numerical
experiments.
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1. Introduction. In the first part of this paper, we consider the numerical ap-
proximation of the stationary Fokker–Planck–Kolmogorov-type problem

−D2 : (Au) +∇ · (bu) := −
n∑

i,j=1

∂2ij(aiju) +

n∑
k=1

∂k(bku) = ∇ · F in Y,

u is Y -periodic,

(1.1)

where Y := (0, 1)n ⊂ Rn denotes the unit cell, F ∈ L2
per(Y ;Rn), and

A = (aij)1≤i,j≤n ∈ L∞
per(Y ;Rn×n

sym ), b = (bk)1≤k≤n ∈ L∞
per(Y ;Rn),(1.2)

where A is assumed to be uniformly elliptic, i.e.,

∃λ,Λ > 0 : λIn ≤ A ≤ ΛIn a.e. in Rn.(1.3)

In addition, we make one of the following two assumptions:
• Setting A (W 1,p setting): We write (A, b) ∈ A if (1.2), (1.3) hold and

A ∈W 1,p
per(Y ;Rn×n

sym ) for some p ∈ (n,∞) ∩ [2,∞).(1.4)

• Setting B (Cordes-type setting): We write (A, b) ∈ B if (1.2), (1.3) hold and

∃ δ ∈
(

1

1 + 4π2
, 1

]
:

|A|2 + |b|2

(tr(A))2
≤ 1

n− 1 + δ
a.e. in Rn.(1.5)
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Here, we used the notation |A|2 := A : A and |b|2 := b · b. We call the condition (1.5)
a Cordes-type condition as it is inspired by the classical Cordes condition

∃ δ ∈ (0, 1] :
|A|2

(tr(A))2
≤ 1

n− 1 + δ
a.e.(1.6)

used in the study of nondivergence-form equations −A : D2v = f , and the Cordes-
type condition

∃ (δ, ℓ) ∈ (0, 1]× (0,∞) :
|A|2 + 1

2ℓ |b|
2 + 1

ℓ2 c
2

(tr(A) + 1
ℓ c)

2
≤ 1

n+ δ
a.e.(1.7)

used in the study of nondivergence-form equations −A : D2v − b · ∇v + cv = f ; see
[14, 45, 46, 49]. It is worth noting that (1.7) can never be satisfied when c = 0 a.e.

since |M |2
(tr(M))2 ≥ 1

n for anyM ∈ Rn×n. The Cordes-type condition (1.5) can be relaxed

to the classical Cordes condition (1.6) if |b| = 0 a.e.; see Remark 2.7.
Problems of the form (1.1) arise naturally as the governing equation for the in-

variant measure, i.e., the solution to

−D2 : (Ar) +∇ · (br) = 0 in Y, r is Y -periodic,

∫
Y

r = 1,(1.8)

which is used to determine the effective problem in the periodic homogenization of
nondivergence-form equations with large drifts, i.e.,

−A
( ·
ε

)
: D2uε −

1

ε
b
( ·
ε

)
· ∇uε = f in Ω,

uε = g on ∂Ω,
(1.9)

which is the focus of the second part of this paper. In setting A, it is known that
(1.8) has a unique positive Hölder continuous solution and that if the drift satisfies the
centering condition

∫
Y
rb = 0 and f, g,Ω are sufficiently regular, then the sequence

of solutions (uε)ε>0 to (1.9) converges weakly in H1(Ω) as ε→ 0 to the solution u of
the effective problem

−A : D2u = f in Ω,

u = g on ∂Ω,

where the effective diffusion matrix A ∈ Rn×n is the symmetric positive definite
matrix given by

A :=

∫
Y

r[In +Dχ]A[In + (Dχ)T](1.10)

with χ := (χ1, . . . , χn) and χj denoting the solution to

−A : D2χj − b · ∇χj = bj in Y, χj is Y -periodic,

∫
Y

χj = 0(1.11)

for 1 ≤ j ≤ n; see, e.g., [5, 15, 29]. The goal of the second part of this paper is
the efficient and accurate numerical approximation of the effective diffusion matrix A
from (1.10) for both settings A and B.
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In setting A, we approximate the solutions to (1.8) and (1.1) by rewriting the
problems in divergence-form and adapting Schatz’s method, see [44], to the periodic
setting to handle the resulting noncoercive variational form. Regarding the numer-
ical approximation of (1.11), we multiply the equation by the approximation of the
invariant measure r and only then rewrite the problem in divergence-form in order to
overcome the low regularity of solutions to the dual problem to (1.11). Our approx-
imation of the effective diffusion matrix (1.10) relies on a combination of the finite
element schemes for r and χj .

In setting B, we show that (1.8) has a unique nonnegative solution r ∈ L2
per(Y ),

and we suggest and rigorously analyze a finite element method for its approximation
which is based on the observation that r is of the form

r = C
tr(A)

|A|2 + |b|2
(1−∇ · ρ),

where C > 0 is a constant and ρ is the unique solution of a Lax–Milgram-type
problem in H1

per,0(Y ;Rn), i.e., the subspace of H1
per(Y ;Rn) consisting of functions

with mean zero. Further, we suggest and rigorously analyze a finite element method
for the approximation of solutions to (1.1), which is based on the observation that
any solution u ∈ L2

per(Y ) to (1.1) is of the form

u =
tr(A)

|A|2 + |b|2
(−∇ · ρ̃0) + cr,

where c ∈ R is a constant and ρ̃0 is the unique solution of a Lax–Milgram-type problem
in H1

per,0(Y ;Rn). Regarding the problem (1.11), we show that under the centering
condition

∫
Y
rb = 0 there exists a unique solution χj ∈ H2

per(Y ) and we suggest and
analyze a finite element method for its approximation. Our approximation of the
effective diffusion matrix (1.10) relies on a combination of the finite element schemes
for r and χj . We also discuss assumptions under which homogenization occurs in this
setting.

The construction of finite element methods for FPK-type equations has received
considerable attention over the past decades; we refer to [6, 7, 33, 35, 36, 40] for
some of the early developments in the case of smooth coefficients. The distinguishing
feature of our study in Setting A is the rigorous error analysis for the periodic setting.
For the case of merely essentially bounded measurable coefficients, there are very
few publications, including the recent primal-dual weak Galerkin approach from [38,
50]. In our study for Setting B, we choose a different route by imposing a new
Cordes-type condition, performing a suitable renormalization of the problem, and
developing a simple finite element framework inspired by the prior works [18, 45, 47]
on nondivergence-form problems.

Regarding the homogenization of linear elliptic equations in nondivergence-form,
we refer to [13, 22, 25, 32, 47, 48] for recent developments in periodic homogenization,
to [4, 30] for essential transformation procedures, and to [1, 2, 3, 24, 23] for recent
developments in stochastic homogenization.

In recent years, significant progress has been made on the numerical homoge-
nization of equations in nondivergence-form; see, e.g., [13, 17, 47] for linear equa-
tions and [19, 31, 42] for Hamilton–Jacobi–Bellman equations. Concerning the nu-
merical homogenization of divergence-form problems with large drifts, we refer to
[8, 11, 28, 37, 39, 52] and the references therein. To the best of our knowledge, we are
not aware of any previous research on developing finite element methods for approx-
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imating effective diffusion matrices in the context of nondivergence-form equations
with large drift terms.

Finally, we refer to [16, 20, 26, 34, 41] and the references therein for further
contributions to the homogenization of convection-diffusion equations via probabilistic
methods, and to [51] for a stochastic structure-preserving scheme for computing the
effective diffusivity of three-dimensional periodic or chaotic flows.

We briefly explain the organization of the paper. In Section 2, we study the finite
element approximation of stationary FPK equations subject to periodic boundary
conditions, where Setting A is discussed in Section 2.1 and Setting B is discussed in
Section 2.2, respectively. In Section 3, we extend our results to stationary FPK-type
problems of the form (1.1). After that, we study the finite element approximation
of the nondivergence-form problem (1.11) and the numerical approximation of the
effective diffusion matrix (1.10) in Section 4, where Section 4.1 focuses on Setting A
and Section 4.2 focuses on Setting B. Finally, we demonstrate the theoretical results
in numerical experiments provided in Section 5.

2. FEM for Stationary FPK Problems. In this section, we discuss the finite
element approximation of stationary FPK equations subject to periodic boundary
conditions, i.e.,

−D2 : (Au) +∇ · (bu) = 0 in Y, u is Y -periodic,(2.1)

where Y := (0, 1)n denotes the unit cell in Rn, and the coefficients are assumed to be
such that (A, b) ∈ A (W 1,p setting) or (A, b) ∈ B (Cordes-type setting).

Throughout the paper, we use the notation L2
per,0(Y ) := {v ∈ L2

per(Y ) :
∫
Y
v = 0}

and Hk
per,0(Y ) := {v ∈ Hk

per(Y ) :
∫
Y
v = 0} for k ∈ N.

2.1. Setting A. In this section, we study the well-posedness and the finite ele-
ment approximation of solutions to the FPK problem (2.1) for the case (A, b) ∈ A.

2.1.1. Well-posedness. First, we note that when (A, b) ∈ A, we can rewrite
the problem (2.1) in divergence-form thanks to (1.4), i.e.,

−∇ · (A∇u+ (div(A)− b)u) = 0 in Y, u is Y -periodic.

Let us also briefly note that by (1.4) and Sobolev embeddings, we have that A ∈
C0,α(Rn;Rn×n

sym ) for some α > 0. Then, (2.1) has a unique Hölder continuous solution
up to multiplicative constants. More precisely, the following result is known to hold;
see, e.g., [5, 9].

Proposition 2.1 (Analysis of (2.1) in setting A). Let (A, b) ∈ A. Then, there
exists a unique solution r ∈ H1

per(Y ) to the problem

−D2 : (Ar) +∇ · (br) = 0 in Y, r is Y -periodic,

∫
Y

r = 1,(2.2)

and any solution u ∈ H1
per(Y ) to (2.1) is a constant multiple of r. Further, r ∈

W 1,p
per(Y ) with p > n as in (1.4), there holds infRn r > 0, and for g ∈ L2

per(Y ) the
problem

−A : D2v − b · ∇v = g in Y, v is Y -periodic,

∫
Y

v = 0(2.3)

admits a (unique) solution v ∈ H1
per,0(Y ) if and only if

∫
Y
gr = 0.
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Note that if (A, b) ∈ A, what we mean by a solution v ∈ H1
per,0(Y ) to (2.3) is

an element v in H1
per,0(Y ) that satisfies the natural weak formulation of the problem

obtained by rewriting (2.3) in divergence-form. We further note that if (A, b) admit
higher Sobolev regularity, then higher regularity of the solution r to (2.2) can be
obtained by rewriting (2.2) in divergence-form and applying elliptic regularity theory;
see e.g., [21]. However, we cannot expect r to be more regular than A. Indeed, when
n = 1 and |b| = 0 a.e., we have that r is a constant multiple of A−1.

2.1.2. Finite element approximation of (2.2). We now discuss the finite
element approximation of (2.2). The ideas are inspired by the earlier work [13].

We begin by noting that

r̂ := r − 1 ∈ H1
per,0(Y )(2.4)

is the unique solution in H1
per,0(Y ) to the divergence-form problem

−∇ · (A∇r̂ + (div(A)− b)r̂) = ∇ · (div(A)− b) in Y, r̂ is Y -periodic,

∫
Y

r̂ = 0.

More precisely, r̂ is the unique element in H1
per,0(Y ) satisfying

a(r̂, v) =

∫
Y

(b− div(A)) · ∇v ∀v ∈ H1
per,0(Y ),(2.5)

where a(·, ·) : H1
per,0(Y )×H1

per,0(Y ) → R is given by

a(v1, v2) :=

∫
Y

A∇v1 · ∇v2 +
∫
Y

v1(div(A)− b) · ∇v2(2.6)

for v1, v2 ∈ H1
per,0(Y ). Clearly, a defines a bounded bilinear form on H1

per,0(Y ), i.e.,

|a(v1, v2)| ≤ C1∥v1∥H1(Y )∥v2∥H1(Y ) ∀v1, v2 ∈ H1
per,0(Y )(2.7)

for some constant C1 > 0, but the bilinear form a is not coercive, making the finite
element approximation of (2.5) nonstandard.

However, since div(A) − b ∈ Lp
per(Y ;Rn) with p ∈ (n,∞) ∩ [2,∞), it is easy to

show using the assumed uniform ellipticity (1.3), together with Hölder, Gagliardo–
Nirenberg and Young inequalities, that the following G̊arding inequality holds:

a(v, v) ≥ λ

2
∥v∥2H1(Y ) − C2∥v∥2L2(Y ) ∀v ∈ H1

per,0(Y )(2.8)

for some constant C2 > 0. This enables us to prove the following result using an
adaptation of Schatz’s method [44].

Theorem 2.2 (Finite element approximation of (2.2)). Let (A, b) ∈ A. Let
r ∈ H1

per(Y ) denote the unique solution to (2.2), and let r̂ ∈ H1
per,0(Y ) be given by

(2.4). Then, there exists a constant C0 > 0 such that for any α ∈ (0, C0) it is true
that if Rh is a finite-dimensional closed linear subspace of H1

per,0(Y ) with the property

inf
vh∈Rh

∥ψ − vh∥H1(Y )

∥ψ∥H2(Y )
≤ α ∀ψ ∈ H2

per,0(Y )\{0},(2.9)
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then there exists a unique r̂h ∈ Rh such that

a(r̂h, vh) =

∫
Y

(b− div(A)) · ∇vh ∀vh ∈ Rh,(2.10)

and setting rh := 1 + r̂h, there holds

∥r − rh∥L2(Y ) + α∥r − rh∥H1(Y ) ≤ Cα inf
vh∈Rh

∥r̂ − vh∥H1(Y )(2.11)

for some constant C > 0 depending only on (A, b) and n.

Proof. Let α ∈ (0, C0), where C0 > 0 will be chosen later (see (2.15)). Let Rh be
a finite-dimensional closed linear subspace of H1

per,0(Y ) satisfying (2.9).

Uniqueness of r̂h: We show that (2.10) can have at most one solution r̂h ∈ Rh.
Before we start, note that in view of Proposition 2.1, there exist constants r0, r1 > 0
such that r0 ≤ r ≤ r1 in Rn, where the existence of r1 follows from the fact that

r ∈ W 1,p(Y ) ↪→ L∞(Y ) as p > n. Now suppose r̂
(1)
h ∈ Rh and r̂

(2)
h ∈ Rh are two

solutions to (2.10), and set zh := r̂
(1)
h − r̂

(2)
h . Noting that zh ∈ Rh ⊂ H1

per,0(Y ) and
a(zh, vh) = 0 for all vh ∈ Rh, we have by (2.8) that

∥zh∥2H1(Y ) ≤
2

λ

(
a(zh, zh) + C2∥zh∥2L2(Y )

)
≤ 2C2

λ
∥zh∥L2(Y )∥zh∥H1(Y ),(2.12)

which implies that ∥zh∥H1(Y ) ≤ 2C2

λ ∥zh∥L2(Y ) (irrespective of whether zh = 0 or not).
Since zh

r ∈ L2
per(Y ) and

∫
Y
zh = 0, we have by Proposition 2.1 that the problem

−A : D2ψ − b · ∇ψ =
zh
r

in Y, ψ is Y -periodic,

∫
Y

ψ = 0(2.13)

has a unique solution ψ ∈ H1
per,0(Y ), i.e., a(v, ψ) =

∫
Y

zh
r v for any v ∈ H1

per,0(Y ).
Note that ψ ∈ H2

per,0(Y ) and ∥ψ∥H2(Y ) ≤ C3∥ zh
r ∥L2(Y ) for some constant C3 > 0; see

[21]. Then, we find that

∥zh∥2L2(Y ) ≤ r1

∫
Y

|zh|2

r
= r1a(zh, ψ) = r1 inf

vh∈Rh

a(zh, ψ − vh)

≤ r1C1α∥zh∥H1(Y )∥ψ∥H2(Y )

≤ r1C1C3

r0
α∥zh∥H1(Y )∥zh∥L2(Y ),

(2.14)

which implies that ∥zh∥L2(Y ) ≤ r1C1C3

r0
α∥zh∥H1(Y ) (irrespective of whether zh = 0

or not), where we have used the bounds on r, the properties of ψ and zh, and (2.7).
Combining this estimate with (2.12), we obtain

∥zh∥H1(Y ) ≤
2C2

λ
∥zh∥L2(Y ) ≤

2r1C1C2C3

λr0
α∥zh∥H1(Y ).

Let C0 > 0 be chosen as

C0 :=
λr0

2r1C1C2C3
.(2.15)

Then, using that α < C0, there holds 2r1C1C2C3

λr0
α < 1 and hence, zh = 0, i.e., there is

at most one solution to (2.10).
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Existence of r̂h: As Rh is finite-dimensional, uniqueness implies existence of a
solution r̂h ∈ Rh to (2.10).

Error bound : It remains to show the error bound (2.11). First, by (2.8), Galerkin
orthogonality, and (2.7), we have that

λ

2
∥r̂ − r̂h∥2H1(Y ) ≤ inf

vh∈Rh

a(r̂ − r̂h, r̂ − vh) + C2∥r̂ − r̂h∥2L2(Y )

≤
(
C1 inf

vh∈Rh

∥r̂ − vh∥H1(Y ) + C2∥r̂ − r̂h∥L2(Y )

)
∥r̂ − r̂h∥H1(Y ).

(2.16)

Next, by considering (2.13) with zh replaced by r̂ − r̂h and arguing as in (2.14) with
zh replaced by r̂ − r̂h, we find that

∥r̂ − r̂h∥L2(Y ) ≤
r1C1C3

r0
α∥r̂ − r̂h∥H1(Y ).(2.17)

Combining (2.16) and (2.17), we obtain(
λ

2
− r1C1C2C3

r0
α

)
∥r̂ − r̂h∥H1(Y ) ≤ C1 inf

vh∈Rh

∥r̂ − vh∥H1(Y ).

Finally, noting that λ
2 −

r1C1C2C3

r0
α > 0 by α < C0 and (2.15), observing that r−rh =

r̂ − r̂h, and in view of (2.17), we conclude that (2.11) holds.

As an example, if Rh in Theorem 2.2 is chosen to be the space of continuous
piecewise affine zero-mean functions on a shape-regular triangulation Th of Y into
triangles with longest edge h > 0 conforming with the requirement of periodicity,
then (2.9) holds with α = O(h).

A natural question to ask is if we can obtain a near-best approximation result
in the W 1,p(Y )-norm. The following theorem answers this question positively under
the additional assumption that div(A) ∈ L∞

per(Y ;Rn), following arguments similar to
[12, 43]. Note that if (A, b) ∈ A and div(A) ∈ L∞

per(Y ;Rn), then r ∈ W 1,p
per(Y ) for all

p <∞ by elliptic regularity theory.

Theorem 2.3 (Lp-estimates for the approximation of (2.2)). Let p ∈ (1,∞) and
set t := p

p−1 . In the situation of Theorem 2.2, if additionally div(A) ∈ L∞
per(Y ;Rn),

Rh ⊂W 1,∞
per,0(Y ), and

inf
vh∈Rh

∥ψ − vh∥W 1,t(Y )

∥ψ∥W 2,t(Y )
≤ α ∀ψ ∈W 2,t

per,0(Y )\{0},

then, for α > 0 sufficiently small, we have the following bound

∥r − rh∥Lp(Y ) + α∥r − rh∥W 1,p(Y ) ≤ Cα inf
vh∈Rh

∥r̂ − vh∥W 1,p(Y )(2.18)

for some constant C > 0 depending only on (A, b) and n.

Proof. First, observe that ξ := |r̂ − r̂h|p−1
sign(r̂ − r̂h) ∈ L∞

per(Y ) as r̂, r̂h ∈
L∞
per(Y ). By Proposition 2.1, there exists a unique solution ψ ∈ H1

per,0(Y ) to the
problem

−A : D2ψ − b · ∇ψ = ξ −
∫
Y

ξr in Y, ψ is Y -periodic,

∫
Y

ψ = 0.
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Note that ψ ∈W 2,t
per(Y ) and ∥ψ∥W 2,t(Y ) ≤ C∥ξ−

∫
Y
ξr∥Lt(Y ) for some constant C > 0;

see [21]. Using that
∫
Y
(r̂ − r̂h) = 0, we find that

∥r̂ − r̂h∥pLp(Y ) = a(r̂ − r̂h, ψ) = inf
vh∈Rh

a(r̂ − r̂h, ψ − vh)

≲ ∥r̂ − r̂h∥W 1,p(Y ) inf
vh∈Rh

∥ψ − vh∥W 1,t(Y )

≲ α∥r̂ − r̂h∥W 1,p(Y )

∥∥∥∥ξ − ∫
Y

ξr

∥∥∥∥
Lt(Y )

≲ α∥r̂ − r̂h∥W 1,p(Y )∥ξ∥Lt(Y ),

where the constants absorbed in “≲” only depend on (A, b) and n. Since ∥ξ∥Lt(Y ) =

∥r̂ − r̂h∥p−1
Lp(Y ), we deduce that

∥r − rh∥Lp(Y ) = ∥r̂ − r̂h∥Lp(Y ) ≤ Cα∥r̂ − r̂h∥W 1,p(Y )(2.19)

for some constant C > 0 only depending on (A, b) and n.
Next, let z ∈ H1

per,0(Y ) denote the unique solution to

−∇ · (A∇z) = ∇ · ((div(A)− b)rh) in Y, z is Y -periodic,

∫
Y

z = 0,

and note that z ∈W 1,p
per(Y ). Observe that r̂ solves a similar problem with rh replaced

by r. In particular,

∥r̂ − z∥W 1,p(Y ) ≲ ∥(div(A)− b)(r − rh)∥Lp(Y ) ≲ ∥r − rh∥Lp(Y ) ≲ α∥r̂ − r̂h∥W 1,p(Y ),

where we have used the assumption that div(A) ∈ L∞
per(Y ;Rn) in the second in-

equality. Note that r̂h ∈ Rh is the ã-orthogonal projection of z onto Rh, where
ã(v1, v2) :=

∫
Y
A∇v1 · ∇v2. Hence, by standard finite element theory,

∥z − r̂h∥W 1,p(Y ) ≲ inf
vh∈Rh

∥z − vh∥W 1,p(Y ) ≲ ∥r̂ − z∥W 1,p(Y ) + inf
vh∈Rh

∥r̂ − vh∥W 1,p(Y ).

By combining with the previous estimate, we obtain

∥r̂ − r̂h∥W 1,p(Y ) ≲ α∥r̂ − r̂h∥W 1,p(Y ) + inf
vh∈Rh

∥r̂ − vh∥W 1,p(Y ).

For α > 0 sufficiently small, we can absorb the first term on the right-hand side into
the left-hand side and obtain

∥r − rh∥W 1,p(Y ) = ∥r̂ − r̂h∥W 1,p(Y ) ≤ C inf
vh∈Rh

∥r̂ − vh∥W 1,p(Y )

for some constant C > 0. Because of (2.19), we conclude that (2.18) holds.

Assuming higher Sobolev regularity on r̂, convergence rates with respect to the
discretization parameter can be obtained from (2.18) via standard finite element in-
terpolation error bounds.

2.2. Setting B. In this section, we study well-posedness and the finite element
approximation of solutions to the FPK problem (2.1) for the case (A, b) ∈ B.

In this case, the problem (2.1) cannot be reformulated in divergence-form and we
will seek (so-called very weak) solutions to (2.1) in L2, i.e., u ∈ L2

per(Y ) such that∫
Y

uA : D2φ+

∫
Y

ub · ∇φ = 0 ∀φ ∈ H2
per(Y ).
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Let us introduce the renormalization function

γ :=
tr(A)

|A|2 + |b|2
,(2.20)

and the renormalized coefficients

Ã := γA, b̃ := γb.(2.21)

Noting that tr(A) is the sum of eigenvalues of A, and |A|2 is the sum of squared
eigenvalues of A, we make the following observation.

Remark 2.4 (Properties of γ). If (A, b) ∈ B, then γ ∈ L∞
per(Y ) and

γ0 :=
nλ

nΛ2 + ∥b∥2L∞(Y ;Rn)

≤ γ ≤ Λ

λ2
a.e. in Rn.

In particular, γ is positive almost everywhere.

We then consider the renormalized FPK problem

−D2 : (Ãũ) +∇ · (b̃ũ) = 0 in Y, ũ is Y -periodic,(2.22)

and make the following observation.

Remark 2.5 (Relationship between the original and renormalized FPK problem).
Let L denote the set of solutions in L2

per(Y ) to the FPK problem (2.1). Then,

L = {γũ | ũ ∈ L̃},

where L̃ denotes the set of solutions in L2
per(Y ) to the renormalized FPK problem

(2.22).

Because of Remark 2.5, we will focus our attention on the renormalized FPK
problem (2.22). We will begin by analyzing the well-posedness of (2.22).

2.2.1. Well-posedness. The key consequence of the Cordes-type condition (1.5)
is captured in the following lemma.

Lemma 2.6 (Consequences of condition (1.5)). Let (A, b) ∈ B. Let (Ã, b̃) denote
the pair of renormalized coefficients given by (2.20) and (2.21). Then, the following
assertions hold:

(i) We have the bound ∣∣∣Ã− In

∣∣∣2 + ∣∣∣b̃∣∣∣2 ≤ 1− δ a.e. in Rn.

(ii) There exists a constant κ = κ(δ) ∈ (0, 1] such that∥∥∥Ã : Dw + b̃ · w −∇ · w
∥∥∥
L2(Y )

≤
√
1− κ ∥Dw∥L2(Y ;Rn×n)

for any w ∈ H1
per,0(Y ;Rn).

Proof. Using that Ã = γA and b̃ = γb, we compute∣∣∣Ã− In

∣∣∣2 + ∣∣∣b̃∣∣∣2 = n+ γ2
(
|A|2 + |b|2

)
− 2γ tr(A)

= n− γ tr(A)

= n− (tr(A))2

|A|2 + |b|2
≤ 1− δ,
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where we have used (1.5) in the final step. This completes the proof of (i) and it
remains to show (ii). To this end, let us first note that we have the Poincaré inequality

∥w∥L2(Y ;Rn) ≤
1

2π
∥Dw∥L2(Y ;Rn×n) ∀w ∈ H1

per,0(Y ;Rn),(2.23)

which can be seen by expanding in Fourier series. Using (2.23) and (i), we find that∥∥∥Ã : Dw + b̃ · w −∇ · w
∥∥∥2
L2(Y )

=
∥∥∥(Ã− In) : Dw + b̃ · w

∥∥∥2
L2(Y )

≤
∫
Y

(∣∣∣Ã− In

∣∣∣2 + ∣∣∣b̃∣∣∣2)(|Dw|2 + |w|2
)

≤ (1− δ)
(
∥Dw∥2L2(Y ;Rn×n) + ∥w∥2L2(Y ;Rn)

)
≤ (1− δ)

(
1 +

1

4π2

)
∥Dw∥2L2(Y ;Rn×n)

= (1− κ)∥Dw∥2L2(Y ;Rn×n)

for any w ∈ H1
per,0(Y ;Rn), where κ := (δ − 1

1+4π2 )
1+4π2

4π2 . Note that κ ∈ (0, 1] as
1

1+4π2 < δ ≤ 1.

Remark 2.7. If |b| = 0 a.e., then Lemma 2.6 holds with κ = δ, and we can relax
the range of δ in (1.5) to δ ∈ (0, 1].

Remark 2.8 (Another bound). In the situation of Lemma 2.6 there holds∥∥∥Ã : D2φ+ b̃ · ∇φ−∆φ
∥∥∥
L2(Y )

≤
√
1− κ ∥∆φ∥L2(Y ) ∀φ ∈ H2

per(Y ),

where κ ∈ (0, 1] is the constant from Lemma 2.6(ii). Indeed, this inequality follows
from choosing w = ∇φ ∈ H1

per,0(Y ;Rn) in Lemma 2.6(ii) and using the fact that that
∥D2φ∥L2(Y ) = ∥∆φ∥L2(Y ) for any φ ∈ H2

per(Y ).

Next, let us observe that any ũ ∈ L2
per(Y ) can be written as ũ = c − ∆ψc for some

unique c ∈ R (namely c =
∫
Y
ũ) and unique ψc ∈ H2

per,0(Y ). Inserting this ansatz
into (2.22) leads to the problem of finding c ∈ R and ψc ∈ H2

per,0(Y ) such that

B1(ψc, φ) = c

∫
Y

(
Ã : D2φ+ b̃ · ∇φ

)
∀φ ∈ H2

per,0(Y ),(2.24)

where B1(·, ·) : H2
per,0(Y )×H2

per,0(Y ) → R is the bilinear form defined by

B1(φ1, φ2) :=

∫
Y

∆φ1

(
Ã : D2φ2 + b̃ · ∇φ2

)
.(2.25)

We can show the following result:

Theorem 2.9 (Analysis of (2.1) in setting B). Let (A, b) ∈ B. Let γ denote the
renormalization function and (Ã, b̃) be the pair of renormalized coefficients given by
(2.20), (2.21). Further, let B1 : H2

per,0(Y ) ×H2
per,0(Y ) → R denote the bilinear form

defined in (2.25).
(i) For any c ∈ R there exists a unique solution ψc ∈ H2

per,0(Y ) to (2.24), and
we have that ψc = cψ1.



FEM FOR FPK EQUATIONS AND NUMERICAL HOMOGENIZATION 11

(ii) The function r̃ := 1−∆ψ1 is the unique solution in L2
per(Y ) to the problem

−D2 :
(
Ãr̃
)
+∇ ·

(
b̃r̃
)
= 0 in Y, r̃ is Y -periodic,

∫
Y

r̃ = 1.(2.26)

Further, we have that r̃ ≥ 0 a.e. in Rn.
(iii) The set L of all solutions in L2

per(Y ) to the FPK problem (2.1) is given by
L = {cγr̃ | c ∈ R}.

Proof. (i) We show that the Lax–Milgram theorem applies. Clearly, B1 is a
bounded bilinear form onH2

per,0(Y ) and the right-hand side in (2.24) defines a bounded
linear functional on H2

per,0(Y ). It remains to show that B1 is coercive on H2
per,0(Y ).

By Remark 2.8, we have for any φ ∈ H2
per,0(Y ) that

B1(φ,φ) = ∥∆φ∥2L2(Y ) +

∫
Y

∆φ
(
Ã : D2φ+ b̃ · ∇φ−∆φ

)
≥ (1−

√
1− κ)∥∆φ∥2L2(Y ),

where κ ∈ (0, 1] is the constant from Lemma 2.6. The proof is concluded by observing
that 1−

√
1− κ > 0 and that ∥φ∥H2(Y ) ≤ C∥∆φ∥L2(Y ) for any φ ∈ H2

per,0(Y ), where
C > 0 is a constant. The fact that ψc = cψ1 follows from the linearity of B1 in its
first argument and the uniqueness of ψc.

(ii) Clearly, r̃ := 1 − ∆ψ1 ∈ L2
per(Y ) is a solution to (2.26). Conversely, any

solution r̃ ∈ L2
per(Y ) to (2.26) can be written as r̃ = 1 − ∆ψ for some unique ψ ∈

H2
per,0(Y ). Clearly, ψ must satisfy (2.24) with c = 1 and hence, by (i), ψ = ψ1. We

now show that r̃ ≥ 0 a.e. in Rn, using a mollification argument similar to [10]. For
k ∈ N, we set

Ã(k) := (ãij ∗ wk)1≤i,j≤n ∈ C∞
per(Y ;Rn×n

sym ), b̃(k) := (b̃i ∗ wk)1≤i≤n ∈ C∞
per(Y ;Rn),

where wk := knw(k ·) for some w ∈ C∞
c (Rn) with w ≥ 0 in Rn and

∫
Rn w = 1.

Note that Ã(k) is uniformly elliptic. In particular, there exists a positive solution

r̃k ∈ C∞
per(Y ; (0,∞)) to −D2 : (Ã(k)r̃k) + ∇ · (b̃(k)r̃k) = 0 in Y with

∫
Y
r̃k = 1; see,

e.g., [5]. Let ψk ∈ H2
per,0(Y ) be such that ∆ψk = 1− r̃k. We are going to show that

∥∆ψk∥L2(Y ) is uniformly bounded. To this end, first note that

|In − Ã(k)(y)|2 + |b̃(k)(y)|2 =

∣∣∣∣∫
Rn

[In − Ã(y − ·)]wk

∣∣∣∣2 + ∣∣∣∣∫
Rn

b̃(y − ·)wk

∣∣∣∣2
≤
∫
Rn

(
|In − Ã(y − ·)|2 + |b̃(y − ·)|2

)
wk ≤ 1− δ

for any y ∈ Rn by Lemma 2.6(i), and hence, the bound from Remark 2.8 still holds
when (Ã, b̃) is replaced by (Ã(k), b̃(k)). Then, we find that

(1−
√
1− κ)∥∆ψk∥2L2(Y ) ≤

∫
Y

∆ψk

(
Ã(k) : D

2ψk + b̃(k) · ∇ψk

)
=

∫
Y

(
Ã(k) : D

2ψk + b̃(k) · ∇ψk

)
≤ C∥∆ψk∥L2(Y )

for some constant C = C(n, λ,Λ, ∥b∥L∞(Y )) > 0 independent of k, where we have

used that |b̃(k)| ≤ ∥b̃∥L∞(Y ;Rn) and |Ã(k)| ≤
√
nΛ

λ in Rn (as |Ã| = γ|A| ≤
√
nΛ

λ a.e.
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in Rn). In particular, ∥∆ψk∥L2(Y ) is uniformly bounded, and hence, ∥r̃k∥L2(Y ) =
∥1−∆ψk∥L2(Y ) is uniformly bounded.

Therefore, there exists an r̃0 ∈ L2
per(Y ) such that, upon passing to a subsequence

(not indicated), r̃k ⇀ r̃0 weakly in L2(Y ). There holds
∫
Y
r̃0 = 1 and, using that

Ã(k) → Ã in the L2(Y ;Rn×n)-norm and b̃(k) → b̃ in the L2(Y ;Rn)-norm as k → ∞,
we have for any φ ∈ C∞

per(Y ) that∫
Y

r̃0(Ã : D2φ+ b̃ · ∇φ) = lim
k→∞

∫
Y

r̃k(Ã(k) : D
2φ+ b̃(k) · ∇φ) = 0,

i.e., r̃0 ∈ L2
per(Y ) is a solution to (2.26). Since r̃ is the unique solution to (2.26) in

L2
per(Y ), and since r̃k > 0 in Rn, we conclude that r̃ = r̃0 ≥ 0 a.e. in Rn.

(iii) In view of our discussion above Theorem 2.9, and the results (i)–(ii), it is
easy to confirm that the set L̃ of all solutions in L2

per(Y ) to the renormalized FPK
problem (2.22) is given by

L̃ = {c−∆ψc | c ∈ R} = {c(1−∆ψ1) | c ∈ R} = {cr̃ | c ∈ R}.

By Remark 2.5, it follows that L = {γũ | ũ ∈ L̃} = {cγr̃ | c ∈ R}.
We immediately obtain the following consequences:

Corollary 2.10 (Invariant measure in setting B). For any (A, b) ∈ B, there
exists a unique solution r ∈ L2

per(Y ) to

−D2 : (Ar) +∇ · (br) = 0 in Y, r is Y -periodic,

∫
Y

r = 1,(2.27)

and there holds r ≥ 0 a.e. in Rn. Further, we can obtain that

r =
1∫

Y
γr̃
γr̃

with γ defined in (2.20) and r̃ defined in Theorem 2.9(ii).

2.2.2. Finite element approximation of (2.26). Let us recall from Theorem
2.9 that u ∈ L2

per(Y ) is a solution to (2.1), if and only if u = cγr̃ for some c ∈ R.
Hence, once we know the unique solution r̃ ∈ L2

per(Y ) to (2.26), we know all solutions
to (2.1). We now discuss the finite element approximation of r̃, inspired by ideas from
[47].

One could approximate r̃ via an H2
per,0(Y )-conforming finite element method for

the approximation of ψ1 ∈ H2
per,0(Y ) from Theorem 2.9(i). More conveniently, we

can avoid using H2-conforming methods by using the following scheme based on an
H1

per,0(Y ;Rn)-conforming finite element method to approximate an auxiliary function
ρ ∈ H1

per,0(Y ;Rn) satisfying ∇· ρ = ∆ψ1. To this end, we introduce the bilinear form
B2(·, ·) : H1

per,0(Y ;Rn)×H1
per,0(Y ;Rn) → R given by

B2(v, w) :=

∫
Y

(∇ · v)(Ã : Dw + b̃ · w) + 1

2

∫
Y

(Dv − (Dv)T) : (Dw − (Dw)T)

for v, w ∈ H1
per,0(Y ;Rn). Note that B2(∇φ1,∇φ2) = B1(φ1, φ2) for any φ1, φ2 ∈

H2
per,0(Y ). The second integral in the definition of B2 is added to make B2 coercive.
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Lemma 2.11 (Characterization of r̃). Let (A, b) ∈ B, and let (Ã, b̃) be the
pair of renormalized coefficients given by (2.20), (2.21). Let B2 : H1

per,0(Y ;Rn) ×
H1

per,0(Y ;Rn) → R be defined as above. Then, B2 is a bounded and coercive bilinear
form on H1

per,0(Y ;Rn). In particular, there exists a unique ρ ∈ H1
per,0(Y ;Rn) such

that

B2(ρ, w) =

∫
Y

(
Ã : Dw + b̃ · w

)
∀w ∈ H1

per,0(Y ;Rn),(2.28)

and the unique solution r̃ ∈ L2
per(Y ) to (2.26) is given by r̃ = 1−∇ · ρ.

Proof. First, we show that B2 is coercive. Using that for any w ∈ H1
per,0(Y ;Rn),

we have that

∥∇ · w∥2L2(Y ) +
1

2
∥Dw − (Dw)T∥2L2(Y ;Rn×n) = ∥Dw∥2L2(Y ;Rn×n),(2.29)

and using Lemma 2.6(ii), we find that for any w ∈ H1
per,0(Y ;Rn) there holds

B2(w,w) = ∥Dw∥2L2(Y ;Rn×n) +

∫
Y

(∇ · w)
(
Ã : Dw + b̃ · w −∇ · w

)
≥ (1−

√
1− κ)∥Dw∥2L2(Y ;Rn×n),

where κ = κ(δ) ∈ (0, 1] is the constant from Lemma 2.6. By noting that 1−
√
1− κ > 0

and that w 7→ ∥Dw∥L2(Y ;Rn×n) defines a norm on H1
per,0(Y ;Rn), this concludes the

proof of coercivity of B2.
Next, we show boundedness of B2. Using that by (2.20), (2.21) and Remark 2.4,

we can get that∣∣∣Ã∣∣∣2 + ∣∣∣b̃∣∣∣2 = γ2(|A|2 + |b|2) = γ tr(A) ≤ Λ2

λ2
n a.e. in Rn,

and using (2.23) and (2.29), we have for any w1, w2 ∈ H1
per,0(Y ;Rn) that

|B2(w1, w2)| ≤
Λ

λ

√
n ∥∇ · w1∥L2(Y )

√
∥Dw2∥2L2(Y ;Rn×n) + ∥w2∥2L2(Y ;Rn)

+ ∥Dw1∥L2(Y ;Rn×n)∥Dw2∥L2(Y ;Rn×n)

≤

(
1 +

Λ

λ

√
n

√
1 +

1

4π2

)
∥Dw1∥L2(Y ;Rn×n)∥Dw2∥L2(Y ;Rn×n),

which concludes the proof of the boundedness of B2.
Since the right-hand side in (2.28) defines a bounded linear functional on the space

H1
per,0(Y ;Rn), we have by the Lax–Milgram theorem that (2.28) has a unique solution

ρ ∈ H1
per,0(Y ;Rn). Finally, noting that 1 −∇ · ρ ∈ L2

per(Y ), that
∫
Y
(1 −∇ · ρ) = 1,

and that for any φ ∈ H2
per,0(Y ), there holds∫

Y

(1−∇ · ρ)
(
Ã : D2φ+ b̃ · ∇φ

)
=

∫
Y

(
Ã : D2φ+ b̃ · ∇φ

)
−B2(ρ,∇φ) = 0

by (2.28) with w = ∇φ, we conclude that r̃ = 1−∇ · ρ by uniqueness of r̃.

In view of Lemma 2.11, we immediately obtain the following simple method to
approximate r̃.
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Theorem 2.12 (Finite element approximation of (2.26)). Suppose that the
assumptions of Lemma 2.11 hold. Further, let Ph be a closed linear subspace of
H1

per,0(Y ;Rn). Then, there exists a unique ρh ∈ Ph such that

B2(ρh, wh) =

∫
Y

(
Ã : Dwh + b̃ · wh

)
∀wh ∈ Ph,

and setting r̃h := 1−∇ · ρh ∈ L2
per(Y ), there holds

∥r̃ − r̃h∥L2(Y ) ≤ C inf
wh∈Ph

∥D(ρ− wh)∥L2(Y ;Rn×n)(2.30)

for some constant C = C(λ,Λ, δ, n) > 0.

Proof. This follows immediately from the statement and proof of Lemma 2.11
together with a standard Galerkin orthogonality argument. The constant C > 0 in

(2.30) can be taken as C :=
1+(Λ/λ)

√
n
√

(1+4π2)/(4π2)

1−
√
1−κ

, where κ = κ(δ) ∈ (0, 1] is the

constant from Lemma 2.6.

Assuming higher Sobolev regularity on ρ, convergence rates with respect to the
discretization parameter can be obtained from (2.30) via standard finite element in-
terpolation error bounds.

3. Remarks on Nonhomogeneous Stationary FPK-type Problems. In
this section, we briefly discuss the finite element approximation of nonhomogeneous
stationary FPK-type problems subject to periodic boundary conditions, as the ideas
from the previous section can be straightforwardly extended to this problem class.
For F ∈ L2

per(Y ;Rn), let us consider the problem

−D2 : (Au) +∇ · (bu) = ∇ · F in Y, u is Y -periodic,(3.1)

where Y := (0, 1)n denotes the unit cell in Rn, and (A, b) ∈ A or (A, b) ∈ B.

3.1. Setting A. First, we note that when (A, b) ∈ A, we can rewrite the problem
(3.1) in divergence-form thanks to (1.4), i.e.,

−∇ · (A∇u+ (div(A)− b)u) = ∇ · F in Y, u is Y -periodic.

Regarding the uniqueness of solutions, we know from Proposition 2.1 that if a solution
u ∈ H1

per(Y ) to (3.1) exists, then it is unique up to the addition of constant multiples
of r, where r denotes the unique solution to (2.2). Regarding the existence of solutions
to (3.1), the following result is known in Setting A; see, e.g., [21].

Proposition 3.1 (Well-posedness of (3.1) in setting A). Let (A, b) ∈ A and
F ∈ L2

per(Y ;Rn). Then, there exists a solution u ∈ H1
per(Y ) to (3.1), and u is unique

up to the addition of a constant multiple of the unique solution r to (2.2).

To have a unique solution, let us now restrict our attention to the unique solution
u0 ∈ H1

per(Y ) to the following problem

−∇ · (A∇u0 + (div(A)− b)u0) = ∇ · F in Y, u0 is Y -periodic,

∫
Y

u0 = 0,(3.2)

whose existence and uniqueness follows from Proposition 3.1. Then, arguing as in
Section 2.1.2, we obtain the following approximation result, the proof of which is
omitted.
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Theorem 3.2 (Finite element approximation of (3.2)). Let (A, b) ∈ A and F ∈
L2
per(Y ;Rn). Let u0 ∈ H1

per,0(Y ) denote the unique solution to (3.2), and let a :
H1

per,0(Y ) × H1
per,0(Y ) → R denote the bilinear form from (2.6). Then, there exists

a constant C0 > 0 such that for any α ∈ (0, C0) it is true that if Rh is a finite-
dimensional closed linear subspace of H1

per,0(Y ) with the property

inf
vh∈Rh

∥ψ − vh∥H1(Y )

∥ψ∥H2(Y )
≤ α ∀ψ ∈ H2

per,0(Y )\{0},

then there exists a unique uh ∈ Rh such that a(uh, vh) = −
∫
Y
F ·∇vh for all vh ∈ Rh,

and there holds

∥u0 − uh∥L2(Y ) + α∥u0 − uh∥H1(Y ) ≤ Cα inf
vh∈Rh

∥u0 − vh∥H1(Y )

for some constant C > 0 depending only on (A, b) and n.

If desired, Lp approximation estimates can be derived similarly to Theorem 2.3
under suitable regularity assumptions on F .

3.2. Setting B. When (A, b) ∈ B, we consider the renormalized problem

−D2 : (Ãũ) +∇ · (b̃ũ) = ∇ · F in Y, ũ is Y -periodic,(3.3)

where the pair of renormalized coefficients (Ã, b̃) is given by (2.20), (2.21). Similarly
to Remark 2.5, it is clear that u ∈ L2

per(Y ) is a solution to the original problem (3.1)
if and only if there is a solution ũ ∈ L2

per(Y ) to (3.3) such that u = γũ, where γ is
defined in (2.20). Hence, from now on we focus on the renormalized problem (3.3).

Regarding uniqueness of solutions, we know from Theorem 2.9 that if a solution
ũ ∈ L2

per(Y ) to (3.3) exists, then it is unique up to the addition of a constant multiple
of r̃, where r̃ ∈ L2

per(Y ) denotes the unique solution to (2.26). In order to have at
most one solution, we therefore focus our attention on the more restricted problem

−D2 : (Ãũ0) +∇ · (b̃ũ0) = ∇ · F in Y, ũ0 is Y -periodic,

∫
Y

ũ0 = 0,(3.4)

which indeed has a unique solution, as summarized in the following theorem.

Theorem 3.3 (Well-posedness of (3.3)). Let (A, b) ∈ B and F ∈ L2
per(Y ;Rn).

Let (Ã, b̃) be the pair of renormalized coefficients given by (2.20), (2.21), and let
r̃ ∈ L2

per(Y ) denote the unique solution to (2.26). Further, let B2 : H1
per,0(Y ;Rn) ×

H1
per,0(Y ;Rn) → R denote the bilinear form from Lemma 2.11. Then, the following

assertions hold.
(i) There exists a unique ρ̃0 ∈ H1

per,0(Y ;Rn) such that B2(ρ̃0, w) = −
∫
Y
F · w

for all w ∈ H1
per,0(Y ;Rn).

(ii) The function ũ0 := −∇ · ρ̃0 is the unique solution in L2
per(Y ) to (3.4).

(iii) A function ũ ∈ L2
per(Y ) is a solution to (3.3) if and only if ũ = ũ0 + cr̃ for

some constant c ∈ R.
We omit the proof as the results follow immediately from the previous discussion

and the coercivity of B2 on H1
per,0(Y ;Rn). Then, arguing as in Section 2.2.2, we

obtain the following approximation result, the proof of which is omitted.

Theorem 3.4 (Finite element approximation of (3.4)). Suppose that the assump-
tions of Theorem 3.3 hold. Further, let Ph be a closed linear subspace of H1

per,0(Y ;Rn).
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Then, there exists a unique ρ̃h ∈ Ph such that B2(ρ̃h, wh) = −
∫
Y
F · wh for all

wh ∈ Ph, and setting ũh := −∇ · ρ̃h ∈ L2
per(Y ), there holds

∥ũ0 − ũh∥L2(Y ) ≤ C inf
wh∈Ph

∥D(ρ̃0 − wh)∥L2(Y ;Rn×n)(3.5)

for some constant C = C(λ,Λ, δ, n) > 0.

Assuming higher Sobolev regularity on ρ̃0, convergence rates with respect to the
discretization parameter can be obtained from (3.5) via standard finite element inter-
polation error bounds.

4. Numerical Approximation of Effective Diffusion Matrices.

4.1. Setting A. First, let us discuss the case (A, b) ∈ A. We denote the invariant
measure by r, i.e., the unique solution to the periodic FPK problem (2.2) given by
Proposition 2.1. As usual, we write Y := (0, 1)n, and we introduce the notations
⟨φ⟩ :=

∫
Y
φr and φε := φ( ·

ε ) for any Y -periodic function φ and ε > 0.

4.1.1. The homogenization result. When (A, b) ∈ A, it is known (see, e.g.,
[30]) that if the drift b satisfies the centering condition

⟨b⟩ = 0,(4.1)

then for any bounded domain Ω ⊂ Rn with ∂Ω ∈ C1,1, f ∈ L2(Ω), and g ∈ H2(Ω),
the sequence of solutions (uε)ε>0 ∈ H2(Ω) to

−Aε : D2uε − ε−1 bε · ∇uε = f in Ω,

uε = g on ∂Ω,
(4.2)

converges weakly in H1(Ω) as ε→ 0 to the solution u of the homogenized problem

−A : D2u = f in Ω,

u = g on ∂Ω,
(4.3)

where the effective diffusion matrix A ∈ Rn×n is the symmetric positive definite
matrix given by

A :=
〈
[In +Dχ]A[In + (Dχ)T]

〉
, χ = (χ1, . . . , χn),(4.4)

with χj ∈ H1
per(Y ), 1 ≤ j ≤ n, denoting the solution to

−A : D2χj − b · ∇χj = bj in Y, χj is Y -periodic,

∫
Y

χj = 0,(4.5)

whose existence and uniqueness are guaranteed by Proposition 2.1.
We make it our goal to approximate the effective diffusion matrix A, a quantity

that only depends on (A, b) and is, in particular, independent of Ω, f, g.

4.1.2. Approximation of the effective diffusion matrix. First, we recall
that for (A, b) ∈ A, we have that r ∈ W 1,p

per(Y ) with p ∈ (n,∞) ∩ [2,∞) as in (1.4).
In particular, r is Hölder continuous. We also recall from Section 2 that we have
constructed a finite element method for the approximation of r in the H1(Y )-norm
(see Theorem 2.2) and in theW 1,p(Y )-norm (assuming additionally that div(A) ∈ L∞;



FEM FOR FPK EQUATIONS AND NUMERICAL HOMOGENIZATION 17

see Theorem 2.3). In particular, by Sobolev embedding, we can produce a sequence
of approximations (rh)h>0 with ∥r − rh∥L∞(Y ) → 0.

In view of the definition (4.4) of the effective diffusion matrix, it is thus sufficient
for us to approximate the solution χj to (4.5) in the H1(Y )-norm. The key difficulty
is that for the dual problem

−D2 : (Aϕ) +∇ · (bϕ) = z in Y, ϕ is Y -periodic,

∫
Y

ϕ = 0

with z ∈ L2
per,0(Y ), we generally cannot expect that ϕ ∈ H2

per(Y ) and hence, a duality
argument similar to the one in the proof of Theorem 2.2 does not work. E.g., when

n = 1, b = 0, and z(y) = sin(2πy), then ϕ(y) = sin(2πy)+c
4π2A(y) for some c ∈ R. This simple

example shows that lack of regularity of A limits the regularity of ϕ.
To overcome this difficulty, we note that the solution χj to (4.5) belongs to

H2
per(Y ), and thus we can multiply the equation (4.5) by the positive Hölder con-

tinuous function r from Proposition 2.1 without changing the set of solutions:

−rA : D2χj − rb · ∇χj = rbj in Y, χj is Y -periodic,

∫
Y

χj = 0.

Since (A, b) ∈ A, introducing β := rb − div(rA) ∈ Lp
per(Y ;Rn), p ∈ (n,∞) ∩ [2,∞),

we can rewrite the equation in divergence-form as

−∇ · (rA∇χj)− β · ∇χj = rbj in Y, χj is Y -periodic,

∫
Y

χj = 0.(4.6)

Now, for z ∈ L2
per,0(Y ), we can rewrite the dual problem

−D2 : (rAψ) +∇ · (rbψ) = z in Y, ψ is Y -periodic,

∫
Y

ψ = 0,(4.7)

using that ∇ · β = 0 weakly in Y by definition of r (see Proposition 2.1), as

−∇ · (rA∇ψ) + β · ∇ψ = z in Y, ψ is Y -periodic,

∫
Y

ψ = 0.(4.8)

Since β ∈ Lp
per(Y ;Rn) with p ∈ (n,∞) ∩ [2,∞), we have that ψ ∈ H2

per(Y ) and
∥ψ∥H2(Y ) ≤ C∥z∥L2(Y ) for some constant C > 0.

Noting that the underlying variational formulation of (4.6) still obeys a G̊arding
inequality as well as boundedness, a duality argument similar to the one given in the
proof of Theorem 2.2 leads to an error bound for the approximation of χj based on
(4.6) in the case when r is known.

Now, in general, r is not known and we need to incorporate into our numerical
method a finite element method for the approximation of r from Section 2.1.2. We
choose piecewise affine finite elements for simplicity. To this end, consider a shape-
regular triangulation Th of Y into simplices with maximal overall edge-length h > 0
that is consistent with the requirement of periodicity.

Theorem 4.1 (Approximation of χj in setting A). Let (A, b) ∈ A, 1 ≤ j ≤ n,
and suppose that (4.1) holds. Let χj ∈ H1

per,0(Y ) denote the unique solution to (4.5).
Let Rh denote the finite-dimensional subspace of H1

per,0(Y ) consisting of continuous
Y -periodic piecewise affine functions on Th with zero mean over Y . Let (rh)h>0 ⊂
W 1,p

per(Y ) with p ∈ (n,∞) ∩ [2,∞) as in (1.4) be such that eh := ∥r − rh∥W 1,p(Y ) → 0
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as h → 0, where r ∈ H1
per(Y ) denotes the unique solution to (2.2). Then, for h > 0

sufficiently small, there exists a unique χj,h ∈ Rh such that∫
Y

rhA∇χj,h · ∇vh −
∫
Y

vh(rhb− div(rhA)) · ∇χj,h =

∫
Y

rhbjvh ∀vh ∈ Rh.(4.9)

Furthermore, the following error bounds hold:

∥χj − χj,h∥H1(Y ) ≲ h∥χj∥H2(Y ) +
√
eh(1 + ∥χj∥H2(Y )),(4.10)

and

∥χj − χj,h∥L2(Y ) ≲ (h+ eh)∥χj − χj,h∥H1(Y ) + eh(1 + ∥χj∥H1(Y )),(4.11)

where the constant absorbed in “ ≲ ” only depends on (A, b) and n.

Proof. We set βh := rhb− div(rhA) and β := rb− div(rA). We introduce

ah(q, v) :=

∫
Y

rhA∇q · ∇v −
∫
Y

vβh · ∇q, lh(v) :=

∫
Y

rhbjv,

a0(q, v) :=

∫
Y

rA∇q · ∇v −
∫
Y

vβ · ∇q, l0(v) :=

∫
Y

rbjv

for q, v ∈ H1
per,0(Y ). Then, (4.9) reads ah(χj,h, vh) = lh(vh) for all vh ∈ Rh, and

we have from (4.6) that a0(χj , v) = l0(v) for all v ∈ H1
per,0(Y ). Using the assumed

uniform ellipticity of A, positivity of r, and the fact that β ∈ Lp
per(Y ;Rn) with

p ∈ (n,∞) ∩ [2,∞), it is easily seen that we have the G̊arding inequality

a0(v, v) ≥
λ infRn r

2
∥v∥2H1(Y ) − c1∥v∥2L2(Y ) ∀v ∈ H1

per,0(Y )

for some constant c1 > 0. Using that ∥rh − r∥L∞(Y ) + ∥βh − β∥Lp(Y ;Rn) ≲ eh, the

Sobolev embedding H1(Y ) ↪→ L
2p

p−2 (Y ) if p > n ≥ 2, and the Sobolev embedding
H1(Y ) ↪→ L∞(Y ) if n = 1, we also have that

|ah(q, v)− a0(q, v)| ≲ eh∥q∥H1(Y )∥v∥H1(Y ) ∀q, v ∈ H1
per,0(Y ).

Uniqueness of χj,h: Suppose that χ
(1)
j,h, χ

(2)
j,h ∈ Rh are two solutions to (4.9), and

set zh := χ
(1)
j,h−χ

(2)
j,h. Noting that since zh ∈ Rh ⊂ H1

per,0(Y ) there holds ah(zh, vh) = 0
for all vh ∈ Rh, we find that

∥zh∥2H1(Y ) ≲ a0(zh, zh) + ∥zh∥2L2(Y )

≲ ah(zh, zh) + ∥zh∥2L2(Y ) + eh∥zh∥2H1(Y )

≲ ∥zh∥2L2(Y ) + eh∥zh∥2H1(Y ).

In particular, as eh → 0, we have for h > 0 sufficiently small that

∥zh∥H1(Y ) ≲ ∥zh∥L2(Y ).(4.12)

Let ψ ∈ H1
per,0(Y ) denote the unique solution to the dual problem (4.7) with z = zh, or

equivalently, (4.8) with z = zh (existence and uniqueness of ψ follow from Proposition
3.1, noting (rA, rb) ∈ A and zh ∈ L2

per,0(Y )). Then, in view of the discussion following
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(4.7), we have that ψ ∈ H2
per,0(Y ) and ∥ψ∥H2(Y ) ≲ ∥zh∥L2(Y ). Denoting the piecewise

linear quasi-interpolant of ψ by Ihψ, we introduce ψI := Ihψ −
∫
Y
Ihψ = Ihψ +∫

Y
(ψ − Ihψ) ∈ Rh. Then, using that ∥ψ − ψI∥H1(Y ) ≲ h∥ψ∥H2(Y ) ≲ h∥zh∥L2(Y ), we

obtain that (recall that ∇ · β = 0 weakly)

∥zh∥2L2(Y ) = a0(zh, ψ) ≲ ah(zh, ψ) + eh∥zh∥H1(Y )∥ψ∥H1(Y )

≲ ah(zh, ψ − ψI) + eh∥zh∥H1(Y )∥zh∥L2(Y )

≲ a0(zh, ψ − ψI) + eh∥zh∥H1(Y )∥zh∥L2(Y )

≲ ∥zh∥H1(Y )∥ψ − ψI∥H1(Y ) + eh∥zh∥H1(Y )∥zh∥L2(Y )

≲ (h+ eh)∥zh∥H1(Y )∥zh∥L2(Y ).

Combining this with (4.12) yields zh = 0 for h > 0 sufficiently small, i.e., there is at
most one solution to (4.9).

Existence of χj,h: As Rh is finite-dimensional, uniqueness implies existence of a
solution χj,h ∈ Rh to (4.9).

Error bound: Let Ψ ∈ H1
per,0(Y ) denote the unique solution to the dual problem

(4.7) (or equivalently (4.8)) with z := χj−χj,h ∈ H1
per,0(Y ). Note that Ψ ∈ H2

per,0(Y )
and ∥Ψ∥H2(Y ) ≲ ∥z∥L2(Y ). Writing ΨI := IhΨ−

∫
Y
IhΨ ∈ Rh, we obtain

∥z∥2L2(Y ) = a0(z,Ψ)

≲ ah(z,Ψ) + eh∥z∥H1(Y )∥Ψ∥H1(Y )

≲ ah(z,Ψ−ΨI) + [l0 − lh](ΨI) + [ah − a0](χj ,ΨI) + eh∥z∥H1(Y )∥z∥L2(Y )

≲ a0(z,Ψ−ΨI) + [l0 − lh](ΨI) + [ah − a0](χj ,ΨI) + eh∥z∥H1(Y )∥z∥L2(Y )

≲ (h+ eh)∥z∥H1(Y )∥z∥L2(Y ) + [l0 − lh](ΨI) + [ah − a0](χj ,ΨI)

≲ (h+ eh)∥z∥H1(Y )∥z∥L2(Y ) + eh∥z∥L2(Y ) + eh∥χj∥H1(Y )∥z∥L2(Y )

for h > 0 sufficiently small, which implies (4.11). Writing χj,I := Ihχj−
∫
Y
Ihχj ∈ Rh

and ηh := χj,I − χj,h = z − (χj − χj,I) ∈ Rh, we have that

∥z∥2H1(Y ) ≲ a0(z, z) + ∥z∥2L2

≲ a0(z, χj − χj,I) + ∥z∥2L2 + a0(z, ηh)

≲ h∥χj∥H2∥z∥H1 + ∥z∥2L2 + ah(z, ηh) + eh∥ηh∥H1∥z∥H1

≲ h∥χj∥H2∥z∥H1 + ∥z∥2L2 + [l0 − lh](ηh) + [ah − a0](χj , ηh) + eh∥ηh∥H1∥z∥H1

≲ h∥χj∥H2∥z∥H1 + ∥z∥2L2 + eh∥ηh∥H1(1 + ∥χj∥H1 + ∥z∥H1)

≲ h∥χj∥H2∥z∥H1 + ∥z∥2L2 + eh(h∥χj∥H2 + ∥z∥H1)(1 + ∥χj∥H1 + ∥z∥H1)

≲ h∥χj∥H2∥z∥H1 + ∥z∥2L2 + eh(1 + ∥χj∥2H2 + ∥z∥2H1),

where we wrote ∥ · ∥L2 = ∥ · ∥L2(Y ) and ∥ · ∥H1 = ∥ · ∥H1(Y ). Using (4.11), we obtain

∥z∥2H1(Y ) ≲ h2∥χj∥2H2(Y ) + ∥z∥2L2(Y ) + eh(1 + ∥χj∥2H2(Y ))

≲ h2∥χj∥2H2(Y ) + (h+ eh)
2∥z∥2H1(Y ) + eh(1 + ∥χj∥2H2(Y ))

for h > 0 sufficiently small. Absorbing the second term on the right-hand side into
the left-hand side, we conclude that (4.10) holds.

We are now in a situation to state a result concerning the approximation of the
effective diffusion matrix.
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Corollary 4.2 (Approximation of A in setting A). Suppose that the assump-
tions of Theorem 4.1 hold, and let A be given by (4.4). Then, by introducing

Ah :=

∫
Y

rh[In +Dχh]A[In + (Dχh)
T], χh := (χ1,h, . . . , χn,h),

we have for h > 0 sufficiently small that∣∣A−Ah

∣∣ ≲ (h∥χ∥H2(Y ;Rn) +
√
eh
(
1 + ∥χ∥H2(Y ;Rn)

)) (
1 + ∥Dχ∥L2(Y ;Rn×n)

)
,

where the constant absorbed in “ ≲ ” only depends on (A, b) and n.

Proof. Writing dh := ∥D(χ − χh)∥L2(Y ;Rn×n), we have by the triangle inequality

that
∣∣A−Ah

∣∣ ≤ T1 + T2 + T3, where

T1 :=
∣∣∣〈[In +Dχ]A (D(χ− χh))

T
〉∣∣∣ ≲ dh

(
1 + ∥Dχ∥L2(Y ;Rn×n)

)
,

T2 :=
∣∣〈(D(χ− χh))A

[
In + (Dχh)

T
]〉∣∣ ≲ dh

(
1 + ∥Dχh∥L2(Y ;Rn×n)

)
,

T3 :=

∣∣∣∣∫
Y

(r − rh) [In +Dχh]A
[
In + (Dχh)

T
]∣∣∣∣ ≲ eh

(
1 + ∥Dχh∥L2(Y ;Rn×n)

)2
.

We have used that A ∈ L∞(Y ;Rn×n), r ∈ L∞(Y ), and ∥r−rh∥L∞(Y ) ≲ eh by Sobolev
embedding. By (4.10), we deduce for h > 0 sufficiently small that∣∣A−Ah

∣∣ ≲ (dh + eh(1 + ∥Dχ∥L2(Y ;Rn×n))
) (

1 + ∥Dχ∥L2(Y ;Rn×n)

)
≲
(
h∥χ∥H2(Y ;Rn) +

√
eh
(
1 + ∥χ∥H2(Y ;Rn)

)) (
1 + ∥Dχ∥L2(Y ;Rn×n)

)
,

as required.

4.2. Setting B. We now discuss the case (A, b) ∈ B, and we write (Ã, b̃) to
denote the pair of renormalized coefficients defined by (2.20), (2.21). We denote the
unique solution to the periodic FPK problem (2.26) by r̃ (given by Theorem 2.9).
Recall from Corollary 2.10 that the invariant measure r, i.e., the unique solution to
(2.27) in L2

per(Y ), is given by

r =
1∫

Y
γr̃
γr̃.(4.13)

We assume the centering condition

⟨b⟩ = 0.(4.14)

Let us discuss the well-posedness and finite element approximation of the problem
(4.5) in this setting. Using techniques similar to Section 2.2, we can show the existence
and uniqueness of a solution χj ∈ H2

per,0(Y ) to (4.5), as well as construct a simple
finite element scheme for its approximation.

Theorem 4.3 (Well-posedness and finite element approximation of (4.5)). Let
(A, b) ∈ B. Let (Ã, b̃) denote the pair of renormalized coefficients given by (2.20),
(2.21), and suppose that (4.14) holds. Further, let B1 : H2

per,0(Y )×H2
per,0(Y ) → R de-

note the bilinear form defined in (2.25), and let B2 : H1
per,0(Y ;Rn)×H1

per,0(Y ;Rn) →
R denote the bilinear form from Lemma 2.11. Then, the following assertions hold.

(i) There exists a unique χj ∈ H2
per,0(Y ) such that B1(φ, χj) = −

∫
Y
b̃j∆φ for

all φ ∈ H2
per,0(Y ). Further, χj is the unique solution to (4.5) in H2

per,0(Y ).
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(ii) The function ξj := ∇χj is the unique element ξj ∈ H1
per,0(Y ;Rn) that satisfies

B2(w, ξj) = −
∫
Y
b̃j∇ · w for all w ∈ H1

per,0(Y ;Rn). Further, for any closed
linear subspace Ph of H1

per,0(Y ;Rn), there exists a unique ξj,h ∈ Ph such that

B2(wh, ξj,h) = −
∫
Y
b̃j∇ · wh for all wh ∈ Ph, and we have the bound

∥∇χj − ξj,h∥H1(Y ;Rn) ≤ C inf
wh∈Ph

∥D(∇χj − wh)∥L2(Y ;Rn×n)

for some constant C = C(λ,Λ, δ, n) > 0.

Proof. (i) By the proof of Theorem 2.2, we know that B1 is a coercive bounded
bilinear form on H2

per,0(Y ). Hence, the first part of (i) follows from the Lax–Milgram
theorem. For the second part of (i), it is clear that if χj ∈ H2

per,0(Y ) solves (4.5),

then B1(φ, χj) =
∫
Y
b̃j(−∆φ) for all φ ∈ H2

per,0(Y ). For the converse, suppose

χj ∈ H2
per,0(Y ) satisfies B1(φ, χj) =

∫
Y
b̃j(−∆φ) for all φ ∈ H2

per,0(Y ), and let
Φ ∈ L2

per(Y ). Then, there exists a unique φ ∈ H2
per,0(Y ) such that Φ = cr̃−∆φ with

c :=
∫
Y
Φ. In view of (2.26) and (4.14), it follows that∫

Y

(
−Ã : D2χj − b̃ · ∇χj

)
Φ = B1(φ, χj) =

∫
Y

b̃j(−∆φ) =

∫
Y

b̃jΦ,

where we used that
∫
Y
b̃j r̃ = ⟨bj⟩

∫
Y
γr̃ = 0. Since Φ ∈ L2

per(Y ) was arbitrary and
γ > 0 a.e., we obtain that χj solves (4.5).

(ii) By (i) and the definition of B2, we have that ξj := ∇χj ∈ H1
per,0(Y ;Rn) and

B2(w, ξj) =
∫
Y
b̃j(−∇ · w) for all w ∈ H1

per,0(Y ;Rn). The uniqueness of ξj follows
from coercivity of B2 on H1

per,0(Y ;Rn). The existence and uniqueness of ξj,h ∈ Ph

follows from the Lax–Milgram theorem and the error bound follows from a standard
Galerkin orthogonality argument.

Let us give some comments regarding the homogenization of (4.2) in this weak
regularity setting (A, b) ∈ B, assuming that r̃ ∈ L∞

per(Y ; (0,∞)). Then, A given by
(4.4), is well-defined in view of Theorem 4.3. Scaling equation (4.2) by the invariant
measure r from (4.13) and applying the transformation argument from [4, 30] yields
the problem

−∇ · (Qε∇uε) = f in Ω,

uε = g on ∂Ω,
(4.15)

where Qε := Q( ·
ε ) with Q := rA+Ψ, where Ψ = (ψij)1≤i,j≤n with ψij := ∂iϕj −∂jϕi

and

−∆ϕj = ∇ · (rAej)− rbj in Y, ϕj is Y -periodic,

∫
Y

ϕj = 0.

If ϕj ∈ W 1,∞
per (Y ), then for any sufficiently regular f, g, ∂Ω, we have that Q ∈

L∞
per(Y ;Rn×n) is uniformly elliptic and there exists a unique solution uε ∈ H2(Ω)

to (4.15), which is equivalent to (4.2). As ε→ 0, the solution uε converges weakly in
H1(Ω) to the solution u of the homogenized problem (4.3) with A as in (4.4).

Corollary 4.4 (Approximation of A in setting B). Suppose that the assump-
tions of Theorem 4.3 hold, and let ξh denote a finite element approximation of Dχ
obtained by Theorem 4.3(ii) with ∥Dχ− ξh∥H1(Y ;Rn×n) → 0, where χ = (χ1, . . . , χn).
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Let r̃ be given by Lemma 2.11, and let r̃h denote its finite element approximation ob-
tained by Theorem 2.12 with ∥r̃− r̃h∥L2(Y ) → 0. Suppose that n ≤ 4 and let A be given
by (4.4) with r given by (4.13). Then, for h > 0 sufficiently small, by introducing

Ah :=

∫
Y

rh[In + ξh]A[In + ξTh ], rh :=
1∫

Y
γr̃h

γr̃h,

we have the bound∣∣A−Ah

∣∣ ≲ ∥Dχ− ξh∥H1(Y ;Rn×n)

(
1 + ∥Dχ∥H1(Y ;Rn×n)

)
+ ∥r̃ − r̃h∥L2(Y )

(
1 + ∥Dχ∥H1(Y ;Rn×n)

)2
,

(4.16)

where the constant absorbed in “ ≲ ” only depends on (A, b) and n.

Proof. We begin by noting thatH1(Y ) ↪→ L4(Y ) for n ≤ 4 by Sobolev embedding,
and that ∥r − rh∥L2(Y ) ≲ ∥r̃ − r̃h∥L2(Y ). By the triangle inequality, we have that∣∣A−Ah

∣∣ ≤ T1 + T2 + T3, where

T1 :=
∣∣∣〈(In +Dχ)A (Dχ− ξh)

T
〉∣∣∣ ≲ ∥Dχ− ξh∥H1(Y ;Rn×n)

(
1 + ∥Dχ∥H1(Y ;Rn×n)

)
,

T2 :=
∣∣〈(Dχ− ξh)A

(
In + ξTh

)〉∣∣ ≲ ∥Dχ− ξh∥H1(Y ;Rn×n)

(
1 + ∥ξh∥H1(Y ;Rn×n)

)
,

T3 :=

∣∣∣∣∫
Y

(r − rh) (In + ξh)A
(
In + ξTh

)∣∣∣∣ ≲ ∥r̃ − r̃h∥L2(Y )

(
1 + ∥ξh∥H1(Y ;Rn×n)

)2
,

and it follows that (4.16) holds for h > 0 sufficiently small.

5. Numerical Experiments. First, we provide one numerical experiment for
the setting (A, b) ∈ A (see Section 5.1), and one numerical experiment for the setting
(A, b) ∈ B (see Section 5.2). Then, in Section 5.3, we provide one numerical exper-
iment for (A, b) ∈ A ∩ B in order to compare the numerical schemes from Settings
A and B, and one numerical experiment illustrating the use of higher-order finite
elements. All experiments are performed in dimension n = 2.

5.1. Setting A. We choose A : R2 → R2×2 and b : R2 → R2 to be

A(y) :=

(
1 + arcsin(sin2(πy1))

1
2 sin(2πy1)

1
2 sin(2πy1) 2 + cos2(πy1)

)
,

b(y) := sign(sin(2πy1))

(
1
1

)(5.1)

for y = (y1, y2) ∈ R2, where the choice of A is as in [13]. We note that (A, b) ∈ A
since A ∈W 1,∞

per (Y ;R2×2
sym), b ∈ L∞

per(Y ;R2), and A is uniformly elliptic.
First, we test the finite element scheme from Theorems 2.2 and 2.3 for the ap-

proximation of the invariant measure, i.e., the unique solution r to the FPK problem
(2.2), where we choose Rh to be the space consisting of Y -periodic continuous piece-
wise affine functions with zero mean over Y on a periodic shape-regular triangulation
Th of the unit cell into triangles with vertices (ih, jh), 1 ≤ i, j ≤ N = 1

h ∈ N. All
computations are performed in FreeFem++, and the solver used for the resulting linear
system is UMFPACK; see [27]. By introducing

K : R → R, K(t) :=

∫ t

0

sign(sin(2πx))

1 + arcsin(sin2(πx))
dx,
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(a) ∥r− rh∥X(Y ) for X ∈ {L2, L3, H1,W 1,3}. (b) |χj − χj,h|H1(Y ) and |A−Ah|.

Figure 1: Approximation errors for the approximation of the invariant measure r
and the effective diffusion matrix A corresponding to (A, b) ∈ A defined in (5.1).
We observe two curves, corresponding to whether or not there are elements of the
triangulation whose interior intersects the line {y1 = 1

2} along which ∂1r exhibits a
jump. The two curves observed for |χj − χj,h|H1(Y ) are superimposed.

we compare our approximation with the true solution given by

r(y) = C−1
1

eK(y1)

1 + arcsin(sin2(πy1))
, C1 :=

∫ 1

0

eK(t)

1 + arcsin(sin2(πt))
dt(5.2)

for y = (y1, y2) ∈ R2; see [30].
The approximation errors are shown in Figure 1(a). For p ∈ {2, 3}, we observe

convergence of order O(h
1
p ) in the W 1,p(Y )-norm and convergence of order O(h1+

1
p )

in the Lp(Y )-norm, which is consistent with the bounds from Theorems 2.2 and 2.3
since r ∈W 1+s,p(Y ) for any s ∈ [0, 1p ). Further, we observe higher order convergence

of order O(h) in the W 1,p(Y )-norm and of order O(h2) in the Lp(Y )-norm when
there are no elements of Th whose interior intersects the line {y1 = 1

2} along which
∂1r jumps, which is expected since r|Q×(0,1) ∈ H2(Q× (0, 1)) for Q ∈ {(0, 12 ), (

1
2 , 1)}.

SinceK(1) = 0, the centering condition (4.1) is satisfied; see [30]. We now test the
finite element scheme from Theorem 4.1 for the approximation of (4.5). We compare
with the true solution given by

χj(y) = C−1
2

∫ y1

0

e−K(t)dt− y1 + c, C2 :=

∫ 1

0

e−K(t)dt

for y = (y1, y2) ∈ R2 and j ∈ {1, 2}, where c is a constant such that
∫
Y
χj = 0.

Finally, we test the approximation of the effective diffusion matrix from Corollary
4.2. We compare with the true effective diffusion matrix A ∈ R2×2

sym given by (4.4).
The approximation errors are shown in Figure 1(b). For the approximation of χj we
observe convergence of order O(h) in the H1(Y )-seminorm, and for the approximation
of A we observe convergence of order O(h2) in the Frobenius-norm. The results are
consistent with, and better than the behavior expected from the bound in Corollary
4.2.
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5.2. Setting B. We choose A : R2 → R2×2 and b : R2 → R2 to be

A(y) :=

(
2 + sign(cos(πy1)) sin(πy1)

1
2 sin(2πy1)

1
2 sin(2πy1) 2 + cos2(πy1)

)
,

b(y) := ( 14 + 3
4 sign(sin(2πy1)))

(
1
1

)(5.3)

for y = (y1, y2) ∈ R2. Note that (A, b) ∈ B since A ∈ L∞
per(Y ;R2×2

sym), b ∈ L∞
per(Y ;R2),

A is uniformly elliptic, and the Cordes-type condition (1.5) is satisfied with, e.g.,
δ = 1

4 ∈ ( 1
1+4π2 , 1].

First, we test the finite element scheme from Theorem 2.12 in conjunction with
(4.13) for the approximation of the unique solution r to the FPK problem (2.27), where
we choose Ph ⊂ H1

per,0(Y ;R2) to be the space consisting of vector-valued functions
whose components are Y -periodic continuous piecewise affine functions with zero mean
over Y on a periodic shape-regular triangulation Th of the unit cell into triangles with
vertices (ih, jh), 1 ≤ i, j ≤ N = 1

h ∈ N. By introducing

K̃ : R → R, K̃(t) :=

∫ t

0

1
4 + 3

4 sign(sin(2πx))

2 + sign(cos(πx)) sin(πx)
dx,

we compare our approximation with the true solution given by

r(y) = C̃−1
1

eK̃(y1)

2 + sign(cos(πy1)) sin(πy1)
, C̃1 :=

∫ 1

0

eK̃(t)

2 + sign(cos(πt)) sin(πt)
dt(5.4)

for y = (y1, y2) ∈ R2; see [30]. The approximation error in the L2(Y )-norm is shown in
Figure 2(a). We observe convergence of order O(

√
h), and higher order convergence

of order O(h) when there are no elements of Th whose interior intersects the line
{y1 = 1

2} along which r jumps. This indicates that the function ρ from Theorem 2.12
belongs to H1+s(Y ;R2) for any s < 1

2 , which is expected since r ∈ Hs(Y ) for any
s < 1

2 . Note also that r|Q×(0,1) ∈ H1(Q× (0, 1)) for Q ∈ {(0, 12 ), (
1
2 , 1)}.

Since K̃(1) = 0, the centering condition (4.14) is satisfied; see [30]. We now
test the finite element scheme from Theorem 4.3 for the approximation of (4.5). We
compare with the true solution given by

χj(y) = C̃−1
2

∫ y1

0

e−K̃(t)dt− y1 + c̃, C̃2 :=

∫ 1

0

e−K̃(t)dt

for y = (y1, y2) ∈ R2 and j ∈ {1, 2}, where c̃ is a constant such that
∫
Y
χj = 0.

Finally, we test the approximation of the effective diffusion matrix from Corollary
4.4. We compare with the true effective diffusion matrix A ∈ R2×2

sym given by (4.4).
The approximation errors are shown in Figure 2(b). For the approximation of ∇χj

in the H1(Y ;R2)-norm we observe convergence of order O(
√
h), and higher order

convergence of order O(h) when there are no elements of Th whose interior intersects
the line {y1 = 1

2}. For the approximation of A in the Frobenius-norm, we observe
convergence of order O(h), and higher order convergence of order O(h2) when there
are no elements of Th whose interior intersects the line {y1 = 1

2}. The results are
consistent with, and actually better than the expected behavior from the bound in
Corollary 4.4.
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(a) ∥r − rh∥L2(Y ). (b) ∥∇χj − ξj,h∥H1(Y ;R2) and |A−Ah|.

Figure 2: Approximation errors for the approximation of the invariant measure r
and the effective diffusion matrix A corresponding to (A, b) ∈ B defined in (5.3).
We observe two curves, corresponding to whether or not there are elements of the
triangulation whose interior intersects the line {y1 = 1

2} along which r has a jump.

5.3. Further experiments. Finally, we shall perform two further numerical
experiments. The first experiment serves to compare the methods from Setting A and
from Setting B on a particular example (A, b) ∈ A ∩ B, and the second experiment
serves to demonstrate the effect of using higher-order Lagrange finite element spaces.

5.3.1. Comparison of methods from Settings A and B. We note that
for the pair of coefficients (A, b) defined in (5.1), which was used in Section 5.1 to
demonstrate the numerical schemes for SettingA, we actually have that (A, b) ∈ A∩B.
Indeed, the Cordes-type condition (1.5) is satisfied with, e.g., δ = 1

4 ∈ ( 1
1+4π2 , 1].

First, we test the finite element scheme from Theorem 2.12 in conjunction with
(4.13) for the approximation of the invariant measure r, where we choose Ph ⊂
H1

per,0(Y ;R2) to be the space consisting of vector-valued functions whose compo-
nents are Y -periodic continuous piecewise affine functions with zero mean over Y on
a periodic shape-regular triangulation Th of the unit cell into triangles with vertices
(ih, jh), 1 ≤ i, j ≤ N = 1

h ∈ N. We compare to the exact solution given by (5.2).
The approximation error in the L2(Y )-norm is shown in Figure 3(a) and we observe
convergence of order O(h). This indicates that the function ρ from Theorem 2.12
belongs to H2(Y ;R2), which is expected since r ∈ H1(Y ). The observed convergence

rate O(h) is inferior to the rate O(h
3
2 ) obtained in Section 5.1 (see Figure 1(a)).

Next, we test the approximation of the effective diffusion matrix from Corollary
4.4. We compare with the true effective diffusion matrix A ∈ R2×2

sym given by (4.4). The
approximation errors are shown in Figure 3(b). For the approximation of ∇χj in the

L2(Y ;R2)-norm we observe convergence of order O(h
3
2 ), and higher order convergence

of order O(h2) when there are no elements of Th whose interior intersects the line
{y1 = 1

2}, which is superior to the rate O(h) obtained in Section 5.1 (see Figure

1(b)). For the approximation of A in the Frobenius-norm we observe convergence of
order O(h2), which is identical to the rate obtained in Section 5.1 (see Figure 1(b)).
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(a) ∥r − rh∥L2(Y ). (b) ∥∇χj − ξj,h∥L2(Y ;R2) and |A−Ah|.

Figure 3: Approximation errors for the approximation of the invariant measure r and
the effective diffusion matrix A corresponding to (A, b) ∈ A∩B defined in (5.1), using
the method from Setting B. We observe two curves, corresponding to whether or not
there are elements of the triangulation whose interior intersects the line {y1 = 1

2}.
The two curves in Figure (a) are superimposed.

5.3.2. Higher-order finite elements. In this final numerical test, we repeat
the experiment from Section 5.1 for the approximation of the invariant measure (5.2)
in Setting A, and the experiment from Section 5.2 for the approximation of the in-
variant measure (5.4) in Setting B, but now using P2 finite elements in Theorems 2.2
and 2.12 instead of the previously used P1 finite elements.

The error in the H1(Y )-norm for the approximation of the invariant measure
corresponding to (A, b) ∈ A from (5.1) via the method from Theorem 2.2, using P2

finite elements, is given in Figure 4(a). We observe convergence of order O(
√
h),

which is consistent with the bound from Theorem 2.2 since r ∈ H1+s(Y ) for any
s ∈ [0, 12 ). Further, we observe higher order convergence of order O(h2) when there
are no elements of Th whose interior intersects the line {y1 = 1

2} along which ∂1r
jumps, which is expected since r|Q×(0,1) ∈ H3(Q× (0, 1)) for Q ∈ {(0, 12 ), (

1
2 , 1)}.

The error in the L2(Y )-norm for the approximation of the invariant measure cor-
responding to (A, b) ∈ B from (5.3) via the method from Theorem 2.12 in conjuntion
with (4.13), using P2 finite elements, is given in Figure 4(b). We observe conver-
gence of order O(

√
h), and higher order convergence of order O(h2) when there are

no elements of Th whose interior intersects the line {y1 = 1
2} along which r jumps.

This indicates that the function ρ from Theorem 2.12 belongs to H1+s(Y ;R2) for
any s < 1

2 , which is expected since r ∈ Hs(Y ) for any s < 1
2 . Note also that

r|Q×(0,1) ∈ H2(Q× (0, 1)) for Q ∈ {(0, 12 ), (
1
2 , 1)}.
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