STABLE LIFTINGS OF POLYNOMIAL TRACES ON TETRAHEDRA *

CHARLES PARKER' AND ENDRE SULIt

Abstract. On the reference tetrahedron K, we construct, for each k € N, a right inverse for
the trace operator u — (u,dnu,... ,8ﬁu)|aK. The operator is stable as a mapping from the trace
space of WP (K) to W*P(K) for all p € (1,00) and s € (k + 1/p,00). Moreover, if the data is the
trace of a polynomial of degree N € Ny, then the resulting lifting is a polynomial of degree N. One
consequence of the analysis is a novel characterization for the range of the trace operator.
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1. Introduction. The numerical analysis of high-order finite element and spec-
tral element methods heavily rely on the existence of stable polynomial liftings —
bounded operators mapping suitable piecewise polynomials on the boundary of the
element to polynomials defined over the entire element. A number of operators have
been constructed on the reference triangle and square, beginning with the pioneering
work of Babuska et al. [14, 15]. Their lifting maps H? (8 E) boundedly into H*(E),
where F is either a suitable reference triangle or square, with the additional property
that if the datum is continuous and its restriction to each edge is a polynomial of
degree N > 0, then the lifting is a polynomial of degree N. Other constructions
for continuous piecewise polynomials on OF are stable from a discrete trace space to
L2(E) [4], from L2(JE) to Hz (E) [3], from Wlf%’p((?E) to WhP(E) for 1 < p < oo
[45], and from W‘s—%’p(ﬁE) to WSP(E) for s > 1 and 1 < p < oo [48]. Liftings for
other types of traces are also available; e.g. lifting the normal trace of H(div; F) [3],
lifting the trace and normal derivative simultaneously into H?(E) [2], and lifting an
arbitrary number of normal derivatives simultaneously into W*?(E) [48].

Many of the above results have been extended to three space dimensions. Munoz-
Sola [46] generalized the construction of Babuska et al. [14, 15] to the tetrahedron,
while Belgacem [16] gave a different construction for the cube using orthogonal poly-
nomials. Commuting lifting operators for the spaces appearing in the de Rham
complex on tetrahedra [30, 31, 32] and hexahedra [27] have also been constructed.
These operators, among others, have been used extensively in a priori error analy-
sis [7, 15, 36, 39, 45, 46], a posteriori error analysis [22, 25, 26, 37], the analysis of
preconditioners [4, 5, 8, 9, 11, 14, 49], the analysis of sprectral element methods,
particularly in weighted Sobolev spaces [18, 19, 20, 21], and in the stability analysis
of mixed finite element methods [6, 13, 28, 29, 33, 43]. Nevertheless, two types of
operators are notably missing from the currently available results in three dimen-
sions: (i) lifting operators stable in LP-based Sobolev spaces, crucial in the analysis of
high-order finite element methods for nonlinear problems; and (ii) lifting operators for
the simultaneous lifting of the trace and normal derivative (and higher-order normal
derivatives) which appear in the analysis of fourth-order (and higher-order) problems
and in the analysis of mixed finite element methods for problems in electromagnetism
and incompressible flow.
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We address both of the above problems; namely, for each k& € Ny, we construct a
right inverse for the trace operator u + (u, O, ..., 0%u)|sx on the reference tetra-
hedron K that is stable from the trace of W*P(K) to W*P(K) for all p € (1, 00)
and s € (k+ 1/p,00). Additionally, if the data is the trace of a polynomial of degree
N € Ny, then the resulting lifting is a polynomial of degree N. A precise state-
ment appears at the end of section 2, which also contains a characterization for the
trace space that appears to be novel and some potential applications of the results.
These results generalize our construction on the reference triangle [48] to the reference
tetrahedron and to Sobolev spaces with minimal regularity.

The remainder of the manuscript is organized as follows. In section 3, we detail an
explicit construction of the lifting operator in a sequence of four steps, each consisting
of an intermediate single-face lifting operator. The remainder of the manuscript is
devoted to the analysis of the intermediate single-face operators: sections 4 and 5
characterize the continuity of a related operator defined on all of R3, while section 6
concludes with the proofs of the continuity properties of the intermediate operators.

2. The traces of W*?(K) functions and statement of main result. We
begin by reviewing the regularity properties of the traces of a function u defined on
a tetrahedron. Here, we will work in the setting of Sobolev spaces defined on an
open Lipschitz domain O C R?. Let s = m 4 ¢ be a nonnegative real number with
m € Ny and o € [0,1). We denote by W*P(O), p € [1,00), the standard fractional
Sobolev(-Slobodeckij) space [1] equipped with norm defined by

Y lalem ID*0E ifo >0,
lv ||p,p,o—2||po+{ 1= PO :

otherwise,

where the integer-valued seminorms and fractional seminorms are given by

P
: D%(x)[Pde and |v // — )l dx dy,
tho= 2 [ 1D%@) o= [ I way

lee|=n.

with the usual modification for p = co. When s = 0, the Sobolev space Wo?(0)
coincides with the standard Lebesque space LP(O), and we denote the norm by [|-||,,0
We also require fractional Sobolev spaces defined on domain boundaries. Given a C*:1,
k € Ny, (d — 1)-dimensional manifold T" C 90, the surface gradient Dr is well-defined
a.e. on I', and we define W#P(T'), 0 < s < k + 1, analogously (see e.g. [47, §2.5.2])
with the norm

il yri= 3 [ 1DReG@pdns 3 ff

|B8]<m |8]=m 7 TXT

DEuv(x) — D P
| |m ro(y)| dz dy,

‘a’p+d71

where the sums are over multi-indices 5 € N~ !. The seminorms | - |, are defined
similarly.

2.1. Elementary trace results. When the domain is the reference tetrahe-
dron K := {(z,y,2) € R® : 0 < x,y,2,7 +y + 2z < 1} depicted in Figure la, the
space WTP(OK), 0 < r < 1, may be equipped with an equivalent norm that is more
amenable to the analysis of traces. Let I'; and I';, 1 < i < j < 4, be two faces of K
and let v;; = v;; denote the shared edge with vertices @ and b. Then, the vertices of
I'; are denoted by a, b, and c;, while the vertices of I'; are denoted by a, b, and ¢;.
Since I'; and I'; are both triangles, there exist unique affine mappings F;; : T — I';
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as = €9
71 03
a3 =0 Y2 a; =e;

(b)

Fig. 1. Reference (a) tetrahedron and (b) triangle, where e; are the standard unit
vectors. Note that the label for I'y = {(z,y,2) € K : « +y+ 2z = 1} is omitted in (a).

and Fj; : T — T'; from the reference triangle T':= {(z,y) € R?: 0 < z,y,z +y < 1},
labeled as in Figure 1b, satisfying

(2.1a) F;(0,0)=a, F;(1,00=b, and F;(0,1)=¢;,
(2.1b> sz‘<0a 0) =a, iji(l, 0) = b, and Fji(O, 1): Cj,

and we define the following norm:

4 h(fis fy) ifrp=1,
WAL on o= D> MAlIE,p, + 4 1<i<i<a
i=1 0 otherwise,

where f; denotes the restriction of f to I'; and Ifj( f,g) is defined by the rule

dx
i) '

(2.2) T7(f.g) = /T f o Fyj(e) — g o F(a)]”

Thanks to Corollary B.2, [|-[l,.., 55 is an equivalent norm on W"?(0K); i.e.

7,p,0

(2.3) 1fllrpox ~rp Flllpore ¥ € WHP(OK),

and we shall use the two norms interchangeably with the common notation || - |, p.0x-
Here, and in what follows, we use the standard notation a <. b to indicate a < Cb
where C is a constant depending only on ¢, and a ~. b if a <. b and b <, a.

Now let u € W*P(K), 1 <p <oo,s=m+ o > 1/p with m € Ny and o € [0,1)
(so that the trace operator is well-defined), be a function defined on the reference
tetrahedron. The presence of edges and corners on the boundary of K limits the
regularity of the trace of u. Nevertheless, we can iteratively apply the standard
W#P(K) trace theorem (e.g. [41, Theorem 3.1] or [42, p. 208 Theorem 1]): W*P(K)
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embeds continuously into WS_%”’(QK) for 1/p < s < 1+ 1/p. In particular, for
k € Ny, the kth-order derivative tensor given by

(D*w)iyis. iy, = Oy Osy Oy 1

xik

satisfies D*u € W*=FP(K) ¢ W*oP(K), 0 < k < m — 1, and D™u € W7P(K);
thus, the traces satisfy

DFulox € W5 P(9K) for 0<k<s—1,
D™ lu|gk € WH”*%”’(@K) ifm>1and op <1,
D™u|ai € W"*%’p(aK) if op > 1.

Additionally, the trace of W™+22(R3), m > 1, on the plane R? x {0} belongs to
Wm2(R?) (see e.g. [1, Chapter 7] or [42, p. 20 Theorem 4]), and so standard ar-
guments show that the trace of W’”"’%’Q(K) on the face I';, 1 < i < 4, belongs to
W™2(T;). Thanks to the norm-equivalence (2.3), we arrive at the following condi-
tions:

(2.4)
. 1
ZHDkuHQFi <oo for0<k<s—-,
i=1 p
. 1
zjl ”Dm71u”11)+07%,p,n < 00 if m > 1 and either op < 1 or (o,p) = (2,2) ,
=
4
m, ||P .
; I|D u||0_%7p7ri < oo if op > 1,
Z 77 (D™u, D™ u) < o0 if op=2.
1<i<j<4

Remark 2.1. The case op = 1 for p # 2, which is not included in conditions (2.4),
is beyond the scope of this paper since the trace of a WP (R3), m € N, function
on the plane R? x {0} belongs to a Besov space, which cannot be identified with an
integer-order Sobolev space [42, p. 20 Theorem 4].

When s > 2/p, we obtain additional conditions since the trace of a W*P(K)
function on the edge 7;;, 1 < i < j < 4 is well-defined. This can be seen from
standard arguments owing to the fact that the trace of WP (R?) on the line R x {0}2
is well-defined. In particular, the traces of the k-th derivative tensor, 0 < k < s—2/p,
onI'; and I';, 1 <4 < j <4, must agree on the shared edge ;;:

2
(2.5) D*ulp,(z) = D*ulr, () for a.e. x €y and all 0 <k < s — s

where (2.5) is to be interpreted in the trace sense.

2.2. Trace operators. We now turn to the consequences of (2.4) and (2.5) for
various trace operators.



STABLE LIFTINGS OF POLYNOMIAL TRACES ON TETRAHEDRA 5

2.2.1. Zeroth-order operator. First consider the Oth-order “boundary-derivative” |}
operator DY on I';, 1 < i < 4, defined formally by the rule

(2.6) D)=/ onTs
Then, (2.4) and (2.5) show that for u € W*P(K), (s,q) € Ag, where
(2.7)
Ay = {(s,p)€R2:1<p<oo, (s—k)p>1, ands—;¢Zifp7é2}, k € No,

the trace f = ulgk satisfies the following conditions:
1L W wP regularity on each face:

(2.8) D0(f) e W B P(Ty), 1<i<d
2. Compatible traces along edges: For 1 <1 < j < 4, there holds

(2.9a) D7(f) Yig ;D?(f) iy =0 if sp > 2,
(2.9b) IP(DY(f), DI(f) <o ifsp=2.

If (s — n)p = 2 for some n € N, then we obtain an additional condition since the
n-th derivative tensor satisfies Ilpj(D"u, D"u) < oo for 1 <4 < j < 4. To describe this
condition we define the following notation for a d-dimensional tensor S and vector
veR:

v®Y.8§:=8 and v® .S .= Siyig-iqViyVig Vi 1<j<d.

In particular, for 1 <14 < j < 4, denoting by t;; a unit vector tangent to ;;, we can
differentiate DY(u) and @?(u) in the direction t;; to obtain the following identity.

oty K

9" D9 (u)
oty

r, and = t%" - D"ulr,;.

Consequently, the trace f = u|px also satisfies the following property:
3. Compatible tangential derivatives: For 1 <i < j < 4 and n € N, there holds

000 (u) 0"D)(u)
oty ’ ot}

(2.10) by

ij ><oo if (s —n)p=2.

2.2.2. First-order operator. For (s,p) € A;, we turn to the regularity of the
trace of the gradient of u € W*P(K). To this end, on each face I';, 1 < i < 4, let
{71, Ti2} be orthonormal vectors tangent to I'; and let n; denote the outward unit
normal vector on I';. We define the 1st-order “boundary-derivative” operator D} on
I';, 1 <1i <4, by the rule

2
0
(2.11) Di(f,9) = Z %Ti’j + g on I';,
j=1 2,

so that D} (u, dyu) = Dulr,. Again applying (2.4) and (2.5), we obtain analogues of
(2.8) and (2.9) stated below in (2.13) and (2.14) with k£ = 0. However, if (s —2)p > 2,
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then the second derivative tensor has matching traces on edges (i.e. (2.5) holds with
k = 2). In particular, for 1 <i < j <4, we define the vectors

(212) bij = tij X n; and bji = tij X nj,
where we recall that t;; is a unit vector tangent to 7;;, so that on ;;, there holds

b_'_(?@g(uﬁnu) :b__-[“)Du: 0%u :b___aDu:b__.3©j1-(u,3nu)
7 abij 7 8b,'j 6bij8bji ' 6bji *J 8bji

in the sense of traces. As a consequence, the operator D} satisfies the additional con-
dition (2.15) below with n = 0 thanks to (2.4) and (2.5). Finally, we can differentiate
in the direction tangent to each edge to obtain the analogue of (2.10) stated in (2.14b)
and (2.15b) below. To summarize, the traces f = ulgx and g = Onulgk satisfy the
following for all (s p) € Ar:

1. W75 P regularity on each face:
(2.13) Dl (f,g) e WITBP(Ty), 1<i<A.

2. Compatible traces along edges: For 1 < i < j <4 and n € Ny, there holds
(2.14a) 0 (£, D), —D5(f,9)|, =0 if (s—1)p>2,

ngpl oD,
(2.14b) IZ <3 %lif’ g)’ ajt(nf g)) < 00 if (s—n—1)p=2.
ij ij

3. Compatible traces of higher derivatives along edges: For 1 < i < j < 4 and
n € Ng, there holds

(2.15a)
0 (f.9) iha|
bji . T” o bij abji 0 f (S - 2)p > 2
" Vij
(2.15b)
DS, g) " D1(f,9)
(b, L 2i\L9) T~ if (s —n — 2)p = 2.
g ( otnoby; Y otroby; <oo if(s—n—2)p

Remark 2.2. For smooth enough functions, conditions (2.14a) and (2.15a) may
be interpreted as the application of the vertex compatibility conditions for traces on
the triangle (see e.g. [48, egs. (2.11a) and (2.12a)]) at every point on the edge 7;;.

2.2.3. mth-order operator. We now turn to the general case of the trace of
the m-th derivative tensor of a function v € W#P(K), where m > 2 and (s,p) € A,
Given a collection of functions F = (f°, f1,..., f™) defined on K, we define the
m-th order “boundary-derivative” operator ©;" on I';, 1 <14 < 4, by the rule

aa1+azfas
oT ala Z (b - ¢(m) on Fi7
aGNO Z 1 l 2 PEM; (o)
|al=m

(2.16)  DM(F) :=

where the set 9;(«) consists of the following mappings.

ml(a) = {¢ : {1a23 ceey |a|} — {7'1‘71,7'1'_’2,111'} s.t. |¢71(Ti7j)| = @y, ] = 172}7
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where we recall that {7; 1, T; 2} are orthonormal vectors tangent to I';. For notational
convenience, we set

DUF) =D (f° f1 . ), 0<i<m

Then, one may readily verify that D7 (u, Opu,...,0mu) = D™u on I';. Let f! = dLu
on OK. As before, we obtain W* "~ 5? regularity of D(F) (2.17) below on each
face thanks to (2.4) and the edge compatibility conditions (2.18) below with I = 0
from (2.5).

As was the case with the first-order operator, there are additional edge compat-
ibility conditions. In particular, if (s — m —{)p > 0 for some 1 <! < m, then (2.5)
shows that the (m + I)th derivative tensor has matching traces on edges. Some com-
ponents of the (m + [)th derivative tensor can be expressed in terms of ©)*(F). In
particular, on the edge v;;, 1 < ¢ < j < 4, there holds

IOP(F) _ o1 9'D"u

b®!. —b®
7 1 7 l
o Oby 7 obl

S bt e

9 D™y o'D™(F)
— b . (B . pmtl,) = pbel. —_p®. T
1) ( Je U) 1) abéz 1] ab_l”

in the sense of traces, where we used symmetry of the derivative tensor D™ . We can
also differentiate in the direction tangent to each edge to obtain similar conditions.
Consequently, D7 (F') satisfies (2.18) below. In summary, for m € Ny, the traces
F = (u,Onu, . ..,00u) satisfy the following for all (s,p) € A,,:

1L WM wP regularity on each face:

(2.17) DM(F) e W™ P(Ty), 1<i<d,

where D9, D}, and D!, [ > 2, are defined in (2.6), (2.11), and (2.16).
2. Compatible traces along edges: For 1 <i < j<4and 0<[<mandn € Ny,
there holds

(2.184)
O'D™(F) oD (F)
l ) l :
bﬁﬁTij — SGJTL =0 if (s—m—1)p>2,
Yij Yij
(2.18b)

zP

ij

Lot TDI(F) | o DY (E)
o atpobl T ot obl

><oo if(s—m—Il—n)p=2.

Remark 2.3. As was the case in Remark 2.2, condition (2.18a) is simply the appli-
cation of the vertex compatibility conditions for traces on the triangle [48; eq. (7.2)]
at every point on the edge v;;, provided that u is smooth enough.

2.3. The trace theorem on a tetrahedron. Motivated by the conditions
derived in the previous section, we define trace spaces as follows. Given a set of
indices S C {1,2,3,4} with |S| > 1, let I's := U;esT;. We define the trace space on
part of the boundary Tr;”(T's) for k € Ny and (s, p) € Ay as follows.

TP (Ts) i= {F = (f° f',..., f*) € L?(Ts)*™! : For 0 <m <k,
F satisfies (2.17) for i € S and
(2.18) for i,7 € S with i < j, 0 <1 <m and n € Ny},
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equipped with the norm

IO £ P e g 1= ZZH]"”H& m—LpT,

m=0ieS
p (p@t. ODLE) per ORI e o gy,
Iij (bji oty obl, ’bij ot7,obl, if (s—k—l-np=2,

i,jes (0 otherwise.

Note that the sum in the definition contains only finitely many nonzero terms, and
hence is well defined. When S = {1,2,3,4}, we set Try?(0K) := Tr;”(I's) and
[ - mer o == | - [msr rg- The following trace theorem is a consequence of the
discussion in the previous section.

THEOREM 2.4. Let S C {1,2,3,4}, k € Ny, and (s,p) € Ay, be given. Then, for
every u € W*P(K), the traces satisfy (u,Onu,...,0ku)|rs € Try?(I's) and

(2.19) 1(ut, B, -, Ogu) I mvsr ps Sisyp Iluells

2.4. The trace of polynomials. Given N € Ny, let Py (K) denote the set of all
polynomials of total degree at most N, while P_p; := {0} for M > 0. If u € Py (K),
then v € W*P(K) for all s > 0 and p > 1. Consequently, for each k¥ € Ny and
S C{1,2,3,4}, the traces F = (u, Onu,...,0u)|r; € Try?(Ls) for all (s,p) € Ay. In
particular, s may be taken to be arbitrarily large in (2.18a). Thus, the traces satisfy

0, K

(2.20&) flm S PN—m(Fi)a 0<m<k, ieS,
(2.20Db) DI(F) yis :QT(F) Yig 0<m<k i,je€S8, i<y,
JOK(F) FOK(F)
®l i _ Lol J . -
(2.20c) bji.Tﬁj _bij.Téi ) 0<I<k, i,j€S8, i<].
Vi Vij

Note that we have not included the integral condition (2.18b) in the list (2.20)
above. The following lemma shows that if a tuple of functions defined on 0K satisfy
(2.20), then (2.18b) is automatically satisfied.

LEMMA 2.5. Let S C {1,2,3,4} and k € Ny. If F : T's — RF*L satisfies (2.20),
then F € Tr)P(Ts) for all (s,p) € Ag.

Proof. Let (s,p) € A, 0 <1 <m <k, be given. Thanks to (2.20b) and (2.20c),
the difference

m lym
M b@,l.wop,,

H;; :==b%. oF;; —
J Jt 1 3 1] l Jv
bl bl

onT,i,je€S,

vanishes on the edge ~y, of the reference triangle T' and H;; has entries Py _p—i(T).
Thus, H;; = x2G;;, where G;; has entries in Py_.,—1—1(T"). Consequently, for all
n € Ng, there holds

v b@l . 5‘l+n@;n(F) b@} al-i-n@m /| da:
WA\ atobl, Y atnabl @2

/ 7. Gy (@)Pat " daz,
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which is finite since G;; has polynomial entries. The inclusion F € Tr;*(I's) now
follows from (2.20). d

2.5. Statement of the main result. The aim of the current work is to con-
struct a right inverse Ly of the operator u + (u, Oy, ..., 0%u)|sx for each k € Ny
that is bounded from Tr}”(0K) into W*P(K) for all (s,p) € Ay and preserves poly-
nomials in the following sense: if F' = (f°, f!,..., f¥) is the trace of some degree N
polynomial, then L£;(F) is a polynomial of degree N. In particular, the main result
is as follows.

THEOREM 2.6. Let k € Ng. There exists a linear operator

Ly: |J TpPOK) - LY(K)
(s,p)EAK

satisfying the following properties: for all (s,p) € Ay and F = (f°,f,...,f*) €
T (OK), Lu(F) € WP (K),

OLi(Fllox = f',  0<I<k, and [[Le(F)llspic Sk IFllmes ok
Moreover, if F is a piecewise polynomial of degree N € Ny satisfying (2.20) with
S ={1,2,3,4}, then Li(F) € Py(K).

The construction of the lifting operator £; in Theorem 2.6 is the focus of the next
section, and the proof of Theorem 2.6 appears in subsection 3.5. An immediate
consequence is the following characterization of the range of the trace operator.

COROLLARY 2.7. For each k € Ny, the operator u + (u,Onu,...,08u)|sx is
surjective from W*P(K) onto TrP (OK) for all (s,p) € Ag.

2.6. Potential applications. Theorem 2.6 has many potential applications,
particularly in the analysis of high-order finite element methods. For brevity, we
discuss three applications. Firstly, the extension operator may be used analogously
to the constructions in [7, 15, 45] to establish optimal (with respect to mesh size
and polynomial degree) a priori error estimates for W*P-conforming finite element
spaces for all p € (1,00) and s > 1/p. Secondly, the lifting operator will be cru-
cial to obtain bounds explicit in polynomial degree for preconditioners for high-order
finite element discretizations of fourth-order (and higher-order) elliptic problems sim-
ilar to H'-stable extensions for second-order problems in 2D and 3D [14, 49] and
H?-stable extensions for fourth-order problems in 2D [8]. Finally, in a similar vein to
[6, 10, 13, 29, 43], the extension operator may be helpful in constructing a polynomial-
preserving right inverse of the curl operator that preserves some trace properties (e.g.
vanishing tangential trace, vanishing trace, etc.) and in proving discrete Friedrichs
inequalities. These results have applications to the stability, convergence theory, and
preconditioning of high-order discretizations of mixed and parameter-dependent prob-
lems (see also e.g. [11, 28, 33]).

3. Construction of the lifting operator. The construction of the lifting op-
erator Ly, k € Ny, proceeds face-by-face using similar techniques to [46, 48]. The
main idea is to perform a sequence of liftings and corrections using a fundamental
convolution operator (see e.g. [12, eq. (4.2)], [14], [18], [19, p. 56, eq. (2.1)], [47,
§2.5.5]) and subsequent modifications to it. Given a nonnegative integer k € Ny, a
smooth compactly supported function b € C°(T), and a function f : T — R, we
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define the operator 5,[61] formally by the rule

(=2)*

(3.1) &1 (N(w.2) =7

/Tb(y)f(varzy)dy V(z,z2) € K,

and we use the notation 5,[61] [b] when we want to make the dependence on b explicit.
Note that for (, z_) € Kandy € T, there holds x+zy € T, and so (3.1) is well-defined
for e.g. f € C°°(T). For functions f : 'y — R we define

(3.2) N =eM(foa1),  where Jy(x):=(x,0) VaxeT.
3.1. Lifting from one face. The first result concerns the interpolation and

continuity properties of E,E].

LEMMA 3.1. Let b € C*(T), k € Ny, and (s,p) € Ax. Then, for all f €
Ws_k_%’p(l“l), there holds

(3.3) oM (P, = S (/ b(x) d:r:) £, 0<m<k,
T

and

(34) IE ) lopic St 1Fllscioe s pr -

Moreover, if f € Pn(T'1), N € Ny, then 5,[61](]") € Pyix(K).
The proof appears in subsection 6.1. We now construct a lifting operator from I'y.

LEMMA 3.2. Letb e C®(T) with [, b(x)de =1 and k € Ng. We formally define
the following operators for F = (fO, f1,..., fF) € LP(T)**1:

(3.50) (k) = &1(f°),
(3.5b) ChE) =) =0y L,y (P)le). 1<m <k
Then, for all (s,p) € Ax and F € TrP(T'1), EE] (F) is well-defined and there holds
(3.6)
Ll (Ble, =17, 0<m<k, and LI P)lspic Sosp |Fllngor,.

Moreover, if f™ € Pn—m(['1), 0 < m <k, for some N € Ny, then LE] (F) € Pn(K).

Proof. We proceed by induction on k. The case k = 0 follows immediately from
Lemma 3.1. Now assume that the lemma is true for some k € Ny and let (s,p) € Agi1
and F € TrZ’fl(I‘l) be as in the statement of the lemma. Then, we may apply the

lemma to F' = (f°, f',..., f¥) € Try?(T'1) to conclude that for 0 < m < k and

L (B, = ™, 0<m <k, and LN (F)lsprc Sosp | Fllmen -

~

Thanks to the trace theorem (Theorem 2.4), there holds fk+1 — 8ﬁ+1£L1](F)|F1 €
W*=F=1=%(T) with

0
LA = O L) smpma-1 ey Soks 1 Fllmezs, ros

and so (3.6) follows from Lemma 3.1. Additionally, if F' satisfies f™ € Py, (T'1),
0 <m < k+1, for some N € Ny, then F satisfies the same condition, where the
upper bound of m is restricted to k. Consequently, EE](F) € Py(K) and so fF+1 —
8ﬁ+1££€1](ﬁ)|r1 € Pn—k—1(T1). Thus, EEJ]FI(F) € Py (K) thanks to Lemma 3.1. O
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3.2. Lifting from two faces. We now seek a lifting operator from I'y that has
zero trace on I'y. The operator will be a generalization of the form introduced in [46].
We first define an operator that lifts traces from I'y and has zero trace on I's, and
then define the lifting operator from I's in terms of this operator. To this end, denote
by w; the barycentric coordinates of T defined as follows.

(3.7 wi(x) =x;, 1<i<2, and ws(x):=1—21—29 VeeT.

Given nonnegative integers k,r € Ny, a smooth compactly supported function b €
C°(T), and a function f: T — R, we define the operator ME]T formally by the rule

MU ()@, 2) o= 25wy f) (=, 2)

(3.8) . (=2)F / MW@+ 2Y) 4 ) e K.
T

=z
2 R (z2 + zy2)"

Note that when r = 0, we have ME]O = 5,[:]. For functions f : I'; — R, we again
abuse notation and set MLl]r(f) = /\/l;cl]r (foTJy).

The presence of the weight w, " in the operator Mg]r means that derivatives of

f:T1 — R up to order r have to vanish on edge ;12 in an appropriate sense. To this
end, let s = m+ o0 with m € Ng and ¢ € [0,1) and 1 < p < co. Given a face I';,
1 <7 <4, and € a subset of the edges of I';, we define the following subspaces of
W#P(T';) with vanishing traces on the edges in €&:

, 1
(3.9) WgP(Ty) = {f € W*P(;) : DEf], =0 forall 0 < [§] < s — , and y € €
and @Hf”s,p,T < OO} )

where the norm on Wg”(I';) is given by

T {|| dist(-, U, e y) "D fIDp, if op=1and € £0),
s,p,1';

el /]

opr, = 1]

0 otherwise,
and we recall that Dr is the surface gradient operator. When & consists of only one
edge v, we set W3 P(L';) := W (I';) and _ || f| = ¢llfllsp,r,- One can readily

verify that the spaces Wg”(I';) are Banach spaces and that the following relations
hold:

(3.10) Wer(Ty) = (Y Wer@;) and ol fllypr, =op D M lopr, -
yEE yEE

s,p,I'; °

Given a subset of edges € of the reference triangle T, we define the spaces Wg?(T')
analogously.

The first result states the continuity properties of MLI]T
LEMMA 3.3. Let b e C°(T), k,r € No, and (s,p) € Ax. Then, for all

fe Wk er(r)n W;rll;n{kkig’r}’p(ljl), there holds
(3.11a) M (F)lr, = Okm (/Tb(ac) d:c) f, 0<m<k,

. 1
(3.11b) aglngL(f)m =0, 0 <j < min {r,s - p} ,
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and

] 1
712||f||57k77%}p,1—‘1 ifs<k+r+ .,

3.12 MU D lls i Sorters
( ) || k,r( )H p,K b,k,r,s,p Hf”kaf%,p}Fl ZfS > ]{7+T+ %

Moreover, if f € Pn(T1), N € Ny, satisfies D-f|y,, = 0 for 0 <1 < r — 1, then
M (F) € P sr(K).

The proof of Lemma 3.3 appears in subsection 6.3. By mapping the other faces
of K to I'y and mapping K onto itself in an appropriate fashion, we may define
operators corresponding to these faces. In particular, we define the following operator
corresponding to I's:

M (), 2) = MPL(f 0 T2) 0 R, 2)  V(x,2) € K,

where Jz2(x) := (21,0,22) and Ria(x, 2) 1= (21, 2, 22) for all (x,2) € K.
Thanks to the chain rule and the smoothness of the mappings Jo and iz, the
continuity and interpolation properties of ME’]T follow immediately from Lemma 3.3.

COROLLARY 3.4. Let b € C*(T), k,r € Ny, and (s,p) € Ai. Then, for all
min{s—k—%,r},p

FeWs Py N W, (T'y), there holds
(3.132) 9T MP (f)lrs = Okm ( / b(x) dw) £, 0<m<k,
T
. 1
(3.13b) M (F)lr, =0, 0 < j < min {r, s — p} ,

and

712||f||s—k7%,p,1“2 ifs<k+r+ %,
Hf”s—k—%,p,l‘g Zf5>k+7’+%

2
(3.14) HMHmhwmem{

Moreover, if f € Py(I's), N € Ny, satisfies Dhfl,,, = 0 for 0 <1 < r —1, then
ME,(f) € Pysu(K).

3.2.1. Regularity of partially vanishing traces. The operator ME]T lifts
traces from I's to K and has zero trace on I'y, which are the properties we desired

to correct the traces of Eg] on I';. However, ME]T acts on functions belonging to

min{s—k—1

W“ki%’p(f‘g) N W, p’r}’p(Fg) rather than just functions in stkfi’p(l“g).

The main result of this section characterizes one scenario in which traces belong to

in{s—k—21,r}, :
the space WSiki%’p(Fg) N W»I;ll;n{s vl ('), and fortunately, we will encounter

exactly this scenario in our construction.

We have the following result which characterizes the regularity of the restriction
of a trace F € Tr;”(I’; UT;) to I'; when F vanishes on I'; and the first I components
of F' vanish on I';.

LEMMA 3.5. Let k € Ny, (s,p) € Ak, 1 <1<k, and 1 <i,j <4 withi # j be
given. Suppose that F = (f°, f1,..., f*) € TrjP(T; UT;) satisfies

(i) F=(0,0,...,0) onTy;

(ii) f7* =0 onT; for0 <m <1[-1.
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mln S— —l
Then, there holds f' € W*==52(;) A Wi =70 2 p oy g
‘ 1
(3.152) ity Skoow WPl ror, i s—1<b+1+-,
‘ 1
(3.15D) ||f]l'||sfl7%,p,F]’ Skosp 1Fllmezr roor, ifs—1>k+1+ >

Proof. Without loss of generality, assume that ¢« < j. We first show that for
o € N2 there holds

3Ia|le_

(316) 0401 A2
Ot ob7?

2
0 0<a|<min{s—l—,k+1},
Vij P
where b;; and bj; are defined in (2.12).
Step 1: 0 < ay <k—1!and |a| < min{s—1—2/p,k+1}. Manipulating definitions
shows that

otrl(F) 9D (F)
3.17 — e —p¥. L7 0<r<k-1I
(3.17) ot oby, Y ot =r=rTh
and so there holds
e e e I+«
O e OUDNE) et ey OMDT(E)
ot Ob5? 7 Ot} Obj? J J ot}
and using that ©:72(F)|r, = 0 by (i) gives
\a|fl gorpltaz (F) gerpltaz (F)
_ &l e J i
(318) Grargpa: © Fin =ny7 by <8tF Ty oM

on T. Equality (3.16) now follows from (2.18a).
Step 2: k—I1+1<ay <kand |o| <min{s—1—2/p,k+1}. The same arguments
as in Step 1 show that
al ¢l al—k+lgyk
31—]%1 ab;?‘i‘z J Ju 81:%—1 8b?isz+l

By construction, there exist constants a; and as such that n; = a;b;; +asbj;, and so

al £l ! al—k+lgyk al+l—rgyr
N I i e
8ta1 8ba2 " 6tf}1 3b|jﬂz\—’€+l ~ Ty 81}%1 8bJD_tZ_2+lfr

for some suitable constants {c,}._o. For 0 <r <1 —1, D}(F) = 0 by (ii), and so

ol fl o OYIDL(F)

a|—k+lgyk
— = b2 - = Clb®l . b@kil . al | Qj (F)
otops U

ots ob5? YT ot opge TR

—k+lyk
_ b®k—a2 b®k—l b®a2—k+l ala\ QJ(F)
= Gbyj "By | Pij S htegpoz—kH |
t,; Obj;
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Applying (i) then gives the following identity on T":

Ialfl
®k—a ®Rk—I1
(319) W F]Z Clb 2. b]z
al|—k+igyk al—
| p&az kL glal—i+ @]. (F) o F.. — p®o2—k+1 o' k—L@f(F) o F::
Y dtgrobgz =kl — It oS ope2 kL Y
ij Ji ij i

Equality (3.16) then follows from (2. 18&)

min{s—I— k:-‘rl}p

Step 3: [l € Ws_l_%’p( r;)n W%J (T'j). For s—2/p ¢ Z, the inclusion
min{s—I— k+1},p

I e WSfl*%’p( ') N Wy, (T;) follows from (3.16), and (3.15a) and
(3.15b) are an nnrnedlate consequence of the definition of the || - [l r,ur, norm.
For s —2/p € Z, and |a| = min{s — Il — 2/p, k + 1}, there holds

P

olel fl
(3.20) / = / /3
r, dist (2, vi5) T

o (%)
7 b
min{s—I{— k:+1},p

and so the inclusion f} e W, (T;) follows from (3.18), (3.19), and
(2.18b), while (3.15a) follows from the definition of the norm. d

P
o () %,

T2

al £l

olol f!

ai s \ L
81:1-]- Bbji"‘

3.2.2. Construction of lifting. In the following lemma, we construct the lifting
operator EE in the same fashion as L’[l] (3.5), replacing the use of &%l with Mﬁ] ft1:

LEMMA 3.6. Let b € C(T) with [.b(x)de =1, k € Ng, and S = {1,2}. For
=(fO f1 ..., ff) e (D UTY)FHL ) we formally define the following operators:

(3:21a) LP(F) = LI(F) + ME L (19 — £(F)I,),

(3:21b) L (F) == L2, ((F)+ M (3 = 0L, (Fle,), 1<m <k,
(3.21c) LP(F) = LL(F).

Then, for all (s,p) € Ax and F € Tr})P(T's), EE](F) is well-defined and there holds

(3.22)

oL F)e, = £, 0<m <k, jeS, and |LZ(F)spx Sosp IFllmer rs-

J J

Moreover, if for some N € Ny, F satisfies (2.20), then EE} (F) € Pn(K).

Proof. Let k € Ny, (s,p) € Ay, and f € Tr}*(S) be given.
Step 1: m = 0. Thanks to Lemma 3.2, the traces G = (¢°,g", ..., ") given by

gt = f = 0L (F)|r

satisfy the hypotheses of Lemma 3.5 with (i,5) = (1,2) and I = 1. Thanks to
Lemma 3.5 and Corollary 3.4, ./\/l([)z],C +1(99), and hence EE]O(F ), is well-defined with

0<I1<k 1<i<2,

el

O—L[”(F) ifs<k+1+1,

IO E i ok L5 (Flsprc + {72 !
Hf2 ( )||S**pF2 1f8>k+1+§
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Applying (3.6) and (3.13a) gives
OLinE)lry = fl. 0<I<k and L7 (F)lr, = f3,

and applying (3.6) and (3.15) gives
1£20(F)|

Moreover, if F satisfies (2.20) and for some N € Ny, then F' € Tr}’*(I's) by Lemma 2.5

and dj} (F) € Py(K) by Lemma 3.2. Thus, the trace G satisfies (2.20) for {i,j} C
{1,2} and G € Try"(Ls) for all (s,p) € Ag. By Lemma 3.5, g9 € WEFL2(Dy)
for all p € (1,00), and so DLg3|,,, = 0 for 0 < I < k. Thanks to Corollary 3.4,

LE(F) € Py(K).
Step 2: Induction on m. Assume that for some m such that 0 < m < k — 1,
Ef]m(F ) is well-defined and satisfies

s K Sbik,s,p HFHTrZ’p,Fs'

(823) OhL, (Pl =fl,  0<i<k, L (Fln,=f, 0<i<m,
and
2
(3.24) 128 ) i Soksp | F s rs-
Additionally assume that if F' satisfies (2.20) for {4,j} C {1,2} and for some N € Ny,
then £} (F) € Py (K).
Thanks to (3.23), the traces G = (¢°, g%, ..., ") given by
ghi= 1l = L (F)

satisfy the hypotheses of Lemma 3.5 with (¢,j) = (1,2) and [ = m + 1. Thanks to

Lemma 3.5 and Corollary 3.4, Mgi]+17k+1(g;n+1), and hence EE]mH(F) is well-defined

with

2 2
L2 P)lspic Soesp 1E2 (F)lspic

yt = o ()|

r, 0<Ii<k 1<i<2,

ifs—m—-1<k+1+1,
—m—1-1pT, 2

+ Y12

L5 = o L, (F) fs—m—1>k+1+L

||s—m—1—%,p,1‘2
Applying (3.23) and (3.13a) gives (3.23) for m + 1, while applying (3.24) and (3.15)
gives (3.24) for m + 1.

Moreover, if F satisfies (2.20) for some N € Ny, then EE]m(F) € Pn(K) by
assumption and so the trace G satisfies (2.20) and G € Tr;*(T's) for all (s,p) € Ay.

By Lemma 3.5, gi"™! € Wffltl’p(Fg) for all p € (1,00), and so D{agg””lhm 0 for
0 <! < k. Thanks to Corollary 3.4, ,Cf’]erl(F) € Pn(K). O

3.3. Lifting from three faces. We continue in the spirit of the previous two
sections and define another lifting operator from I'; with vanishing traces on I's and
I's. Given nonnegative integers k,r € Ny, a smooth compactly supported function

b e C*(T), and a function f : T — R, we define the operator Sl[cl]r formally by the
rule

Sz[gl,]r(f)(a:,z) = (2122) & (wiw2) ™" f) (. 2)

(3:29) = (212 )r(fz>’“ / b(y)f(x + 2y)
YRR r (e + 2 (@ + 2y0))

V(x,z) € K.
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Note that when r = 0, we have S}[€1]0 = 5,[:]. For functions f : I’y — R, we again abuse

the notation and set S,[Cl]r(f) = S,[Cl]r(f oJ1).

We require one additional fam7ily of spaces with vanishing traces. Let s=m + o
withm € Ny and 0 € [0,1) and 1 < p < co. Givenr € N, aface I';, 1 <j <4, and &
a subset of the edges of I';, we define the following subspaces of W (T';):

(8:26)  WE(Ty) = {f € W) N WM g I r < o0}

where the norm on Wg?(T';) is given by

p L e”f”zs),p,T ifs<r,
el fll
o am—r+1D;—1f

S (TP
‘ dist(-, U'yee ) oy |Lr
st g

0 otherwise,

P
ifs>r, op=1,¢&# ),

where t., is a unit-tangent vector on the edge v € €. For r = 0, we set W {(I;) =
W#*P(T;). When € consists of only one element v, we set W52(T';) := Wg?(T;) and
villflspr, = e Ifllspr,- One can again verify that W (') are Banach spaces
and that the following analogue of (3.10) holds:

(327) Wé:ﬁ(]'—‘]) = n W’jjf(rj) and @,THf”S,p,Fj %8711 Z 'y7r||f||s7p71—‘j N
yee€ yee€

The following result shows that the continuity of S,[Cl]r can be characterized with
these spaces.

LEMMA 3.7. Let b € C°(T), k,r € No, (s,p) € Ak, and € = {~12,713}. Then,
okl
forall f € Wéyrk »P(Iy), there holds

(3.28a)
S (F)lry = Okm (/ b(x) d:c) £, 0<m<k,
(3.28b) :
2SI (Hlr, =0, 0<j<min{r,s—;},2<i<3,
and
(3.20) ISEL A ok Sokors el Flois i,

Moreover, if f € Pn(I'1), N € Ny, satisfies D%f\,m = D{qf|ﬂy13 =0for0<I<r-—1,
then SjL(f) € Pru(K).

The proof of Lemma 3.7 appears in subsection 6.4. We define the analogous operator
associated to I's as follows.

S ()@, 2) = SL(foTs) o Rus(,2)  V(w,2) € K,

where J3(x) := (0,29, 21) and Ry3(x, 2) := (2,29, 21) for all (x,z) € K. Thanks to
the chain rule and the smoothness of the mappings J3 and fR;3, the continuity and

(3]

interpolation properties of S} follow immediately from Lemma 3.7.
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COROLLARY 3.8. Let b € C°(T), k,r € Ny, (s,p) € Ai, and € = {y13,723}-
s k1
Then, for all f € W@mk »P(D3), there holds

(3.30a)
oL (Dl =dn ([ o)tz ) 1. 0<m<r
T

, 1
(3.30b) 92SE (f)Ir, =0, 0§j<min{r7s—}, 1<i<?
* P
and
3
(3.31) IS (Dl St ellflamiot pr, -

Moreover, if f € Px(T's), N € Ny, satisfies DL f|y,5 = DEflyp =0 for 0 <1 <r—1,
then SpL(f) € Pru(K).
We also have the following analogue of Lemma 3.5.

LEMMA 3.9. Let k € Ny, (s,p) € A, 1 <1<k, and 1 <4,j < 4 withi # j be
given. Suppose that F = (f°, f1,..., f*) € Tr;P(T; UT;) satisfies

(i) F=(0,0,...,0) onTy;

(ii) fj* =0 onT; for0 <m <1[-1.

s—l—1L,
Then, there holds f} € W,;ijfkfl’p(l"j) and

l
(3'32) fyij’k_t,-lejHs_l_%apd_‘j §k737p ||F||T\rz"p,FiUFj'

Proof. The result follows from applying inequality (3.20) and identity (3.19). 0O

We now construct the lifting operator EE] in the same fashion as EE] (3.21),
replacing the use of Mﬁ] , With SS],C

LEMMA 3.10. Let b € CX(T) with [.b(x)dx =1, k € Ny, and S = {1,2,3}.
For F = (fO f1, ..., fF) € LP(T's)**!, we formally define the following operators:
(3:332) L (F) = LI(F) + Seha (5 — L2 (F)Iry),

(3:33b) LY (F) = L, (F)+ S, (= ol (F)lry),  1<m <k,
(3.33¢c)  LJ(F) =L (F).

Then, for all (s,p) € A and F € Tr;”(T's), there holds

(3.34)
oL F)Ne, = £, 0<m<k jeS, and LI (F)lspr Sorsp [Fllmer rg.

7 ~

Moreover, if F satisfies (2.20) and for some N € Ny, then EE} (F) € Pn(K).

Proof. Let k € Ny, (s,p) € Ay, and f € Tr;”(T's) be given. Let € = {13,723}
Step 1: m = 0. Thanks to Lemma 3.6, the traces G = (¢°,¢', ..., g"*) given by

ghi=fl—0n LA (F)r,,  0<I<k 1<i<3,
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satisfy the hypotheses of Lemma 3.9 with (4, 7) € {(1,3),(2,3)} and I = 1. Thanks to
s 1

(3.27) and Lemma 3.9, ¢§ € W@,ki’f(f‘g). Consequently, Sé?;€+1(gg) is well-defined by

Corollary 3.8, and hence LE’]O(F ) is well-defined with

3 2 2
IERD N st Sk W E i+ |48 = )

s—3.0,0'3 .
Applying (3.22) and (3.30a) gives

OLio(F)le = fl,  0<U<h 1<i<2 L5(F)ly = /3,
and applying (3.10), (3.22), and (3.15) gives

<

3
L F lsp.k oo | Fllnes rs-

Moreover, if F satisfies (2.20) for some N € Ny, then EE] (F) € Pn(K) by Lemma 3.6,
and so the trace G satisfies (2.20) and G € Tr;*(I's) for all (s,p) € Ay thanks to
Lemma 2.5. By (3.27) and Lemma 3.9, ¢ € W£+1’p(F3) for all p € (1,00), and so
DLg8),5 = Dhgdl,s = 0 for 0 <1 < k. Thanks to Corollary 3.8, EE]O(F) € Pn(K).
Step 2: Induction on m. Assume that for some m such that 0 < m < k — 1,
Ef]m(F ) is well-defined and satisfies

(3.35a) L (F)le, = f,  0<I<k 1<i<2,
(3.35D) LS (P, = fl, 0<1<m,

and

(3.36) 1L ()l St I lmesr pg-

Additionally assume that if F' satisfies (2.20) for some N € Ng, then CE’]m(F) €
P (K).
Thanks to (3.35), the traces G = (¢°, g',...,¢") given by
gh=fl -0l (P, 0<i<k 1<i<3,
satisfy the hypotheses of Lemma 3.9 with (i,7) € {(1,3),(2,3)} and | = m + 1.
s—m—1—1,
Thanks to (3.27) and Lemma 3.9, there holds g§*** € We ki1 o "(y). Conse-
quently, Sy[iLrLkﬂ(gng) is well-defined by Corollary 3.8, and hence di]mH(F) is
well-defined with
3 3
IR s (Pl Soesi 150 ()i

frt = gm il ()

G,k-&-l‘ s—m—l—%,p,l"g ’

Applying (3.35) and (3.30a) gives (3.35) for m + 1, while applying (3.27), (3.36), and
(3.32) gives (3.36) for m + 1.

Moreover, if F satisfies (2.20) for some N € Ny, then EL?’)]m(F) € Pn(K) by
assumption and so the trace G satisfies (2.20) and G € Try?(T's) for all (s,p) € Ay
thanks to Lemma 2.5. By (3.10) and Lemma 3.5, g5**! € Wé“’p(Fg) for all p €
(1,00), and so DLgy "], = Dhgy"™|,,, = 0 for 0 < < k. Thanks to Corollary 3.8,
L (F) € Py(K). O
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3.4. Lifting from four faces. To complete the construction of the lifting oper-
ator from the entire boundary, we define one final single face lifting operator from I'y
that vanishes on the remaining faces. Given nonnegative integers k,r € Ng, a smooth
compactly supported function b € C°(T"), and a function f : ' — R, we define the

operator RE]T formally by the rule
R (F) (@, 2)
(3.37) = (x129(1 — 21 — 29 — Z))T(S]E:l]((W1WQW3)7Tf)(m, 2)
—2)k b d
= (z129(1 — 27 — 29 — z))r( ?) / (y)/(w) dy ’ V(x,2) € K.
k! T (wlwgwg)’"(w) w=z+zy

Note that when r = 0, we have RE]T =& ,[cl]. For functions f : 'y — R, we again abuse
notation and set ’RE]T(f) = RECI]T(f 03J1). The weighted spaces W', (I'1) again play
a role in the continuity of RLHT as the following result shows.

LEMMA 3.11. Let b € C*(T), k,r € Ny, (s,p) € Ak, and € = {12,713, 714}
Then, for all f € W;;ki%’p(lﬁ), there holds

(3.38a)
ORI (Dlry = dum ( [ e d:c) 5 0<m<k
(3.38b) ’
aﬁ;RL{L(f)riZO, 0<j<min{r,s—;},2<i<4,
and
(3.39) IR ot Sobro el ot -

Moreover, if f € Pn(T'1), N € Ny, satisfies DLflor, = 0 for 0 <1 < r —1, then
RE,]T(f) € Prn4k(K).
The proof of Lemma 3.11 appears in subsection 6.5. The analogous operator associ-
ated to I'y is given by

R%]T(f)(as, z) = 3_§RE$]T(f 07Jy4) o Rys(x, 2) V(x,z) € K,
where J4(x) := (z1,22,1 — &1 — x2) and Ryy(x,2) = (z1,22,1 — 21 — 29 — 2) for
all (x,z) € K. Thanks to the chain rule and the smoothness of the mappings 7,

and PRiy4, the continuity and interpolation properties of RE:L]T follow immediately from
Lemma 3.11.

COROLLARY 3.12. Letb € C°(T), k,r € Ny, (s,p) € Ak, and € = {14, V24, 734} -
s—k—1L,
Then, for all f € W@7rk »P(Ty), there holds

(3.40a)
R, =6 [ de)az) 1 0<m<
(3.40D) '
AR (Hlr, =0, 0§j<min{r,s—;},1§i§3
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and

4
(3.41) IR (Dl sipie S enll flecims o,

Moreover, if f € Pn(T4), N € Ny, satisfies DLflor, = 0 for 0 <1 < r — 1, then
72El,]r(f) € Pryx(K).

Finally, we construct the lifting operator EE} in the same fashion as ﬁf] (3.33),

(4]
m,k+1"

LEMMA 3.13. Let b € CX(T) with [;b(x)de = 1 and k € Ng. For F =
(fO, fY, ..., fF) € LP(OK)FHL, we formally deﬁne the following operators:

replacing the use of 87[731] 41 With R

(3.42a) LY (F) = £J(F) + RE% (2 = LE(F)Iny),
(3.42b) £} (F) = £ () 4+ REL (o —opall, (P, 1<m <k,
(3.42c) L(F) =L (F).

Then, for all (s,p) € A and F € Tr;”(0K), there holds

(3.43)
L (Fox = f, 0<m <k, and L F)spr Sosp 1Fllnee oxc-

~

Moreover, if F satisfies (2.20) for some N € Ny, then EE](F) € Pn(K).

Proof. Let k € Ny, (s,p) € Ay, and f € TrpP(9K) be given and set € :=

{7145 724,734}
Step 1: m = 0. Thanks to Lemma 3.10, the traces G = (¢°,¢%,..., g*) given by

ghi=fl— 0LV (F)r,,  0<i<k 1<i<4,

satisfies the hypotheses of Lemma 3.9 with (4, ]) € {(1,4),(2,4),(3,4)} and I = 1.

Thanks to (3.27) and Lemma 3.9, ¢J € W@ kif( 4). Consequently, R([f]k_s_l(gg) is

well-defined by Corollary 3.12, and hence Ek,o( ) is well-defined with

4 3 3
IR st S W E e+ [ = £

5—%7P7F4 .
Applying (3.34) and (3.40a) gives
LI, =fl,  0<i<k1<i<3,  LEF)n, = £,

and applying (3.27), (3.34), and (3.32) gives
4
IEELF) s i Stksp | Flmee oxc.

Moreover, if F satisfies (2.20) for some N € Ny, then Ef] (F) € Pn(K) by Lemma 3.6,
and so the trace G satisfies (2.20) and G € Tr;”(9K) for all (s,p) € Ay, thanks to

Lemma 2.5. By (3.27) and Lemma 3.9, ¢J € Wk+1’p(F4) for all p € (1,00), and so
Dhg8lor, = 0 for 0 < I < k. Thanks to Corollary 3.12, £ (F) € Py (k).
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Step 2: Induction on m. Assume that for some 0 < m < k — 1, LE]W(F) is
well-defined and satisfies

(3.44a) oLy (F)le, = fl,  0<i<k 1<i<3,
(3.44D) oLl (F)le,=fl,  0<i<m,
and
4
(3.45) 1L (F)lspie Stsip IFllmee o

Additionally assume that if F' satisfies (2.20) for some N € Ny, then L'Ei]m(F) €
Pn(K).
Thanks to (3.44), the traces G = (¢°, g%, ..., g*) given by

o= oLy (P,  0<i<k 1<i<d4,

satisfies the hypotheses of Lemma 3.9 with (4,5) € {(1,4),(2,4),(3,4)} and | =
s—m—1—Lp

m + 1. Thanks to (3.27) and Lemma 3.9, g7 € Wepr1 77 (Ta). Consequently,

§%]+1£+1(%m+1) is well-defined by Corollary 3.12, and hence LE’]W_H(F) is well-
efined wit

1L () s St 1EEL () s e

| £t — ol ()

¢ k+1 s—m—1-2pT4

Applying (3.44) and (3.40a) gives (3.44) for m + 1, while applying (3.27), (3.45), and
(3.32) gives (3.45) for m + 1.

Moreover, if F satisfies (2.20) for some N € Ny, then Ef)]m(F) € Pn(K) by
assumption and so the trace G satisfies (2.20) and G € Try?(9K) for all (s,p) €
A thanks to Lemma 2.5. By (3.27) and Lemma 3.9, g7"*! € Wé“’p(ﬂl) for all
p € (1,00), and so DhgP*tor, = 0 for 0 < I < k. Thanks to Corollary 3.12,
£y (F) € Pr(K). D

3.5. Proof of Theorem 2.6. Let b € C2°(T') be any smooth function satisfying
Jrb(x)dax = 1. Then, L) := CE:H, where CE] is defined in (3.42) satisfies the desired
properties thanks to Lemma 3.13. 0

4. Whole space operators. In this section, we examine the continuity prop-
erties of the following operators, which are the whole space extensions of the lifting
operators 5,[61] (3.1): Given k € Ny, x € C*(R), and b € C(R?) and a function
f:R2 = R, we define the lifting operator &, by the rule

(4.1) En(f)(x, 2) = x(2)2" /]R2 b(y)f(x + zy) dy Y(zx,z) € R? x R.

We use the notation gk[x,b] when we want to make the dependence on x and b
explicit. The advantage of working with the operator &, is that we shall capitalize
on the abundance of equivalent WP (U)-norms when U is all of R? or the half-space
Ri = R%! x (0,00), d > 1. In particular, we recall the following norm-equivalence
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on WeP(U),0< s <1,1<p< oo, with U =R? or R (see e.g. [44, Theorems 6.38
& 6.61)):

42)  |fl,u= ,p,dZ/ /'fw+iisp (“’”pdmdt Vf e WP (U).

The main result of this section is the following analogue of Lemma 3.1.

THEOREM 4.1. Let x € C°(R) with supp x € (—2,2), b € C>(R?) with suppb C
T, and k € Ny be given. Then, for (s,p) € Ax U (k + 3,2), there holds

- s—k—1
(43) ||gk(f)||s,p,R?jr S.AX,b,k7S,P ||f||sfk7%,p,R2 Vf ew * p’p(RQ)'

The proof of Theorem 4.1 appears in subsection 4.3.

4.1. Continuity of &. We begin by recording the particular case of Theo-
rem 4.1 with k& = 0, which follows from the same arguments as in the proof of [44,
Theorem 9.21].

LEMMA 4.2. Let x € C>(R) withsupp x € (—2,2) and b € C2°(R?) with suppb C
T. Then, for 1 <p < oo and 1/p < s <1, there holds

~ o1
(44) Hgo(f)”&pJRi Sx,b,ﬁ,p Hf”sf%,p,RQ Vf ew p,p(RQ).

When p = 2, the above result is also true for s = 1/2 as the following lemma shows.

LEMMA 4.3. Let x € C2°(R) withsupp x € (—2,2) and b € C2°(R?) with suppb C
T. Then, there holds

(4.5) 1€0()I3 2,8

PREE

Vf € L*(R?).

Proof. By density, it suffices to consider f € C2°(R?). For k € Ny define
(46) o) = [ i)y, (o) e RS
R2
Step 1: H'/?(R3) bound for go. Thanks to (4.2), there holds

o0
08 ass = [ 102 pgo 0 [ oo ) e, de = D+ I
0 R2

We now follow the steps in the proof of [18, Theorem 2.2]. Let * denote the Fourier
transform with respect to the x-variable. Then,

h N/ / €1+ 190(, 2 |2d5d2—/ / €| - [b(€2) f(€)]? dE d=
= [ (i1 Ibe)1B, ) 170 ae.

where we used the following convolution identity for z > 0:

an  aten) = [0 (0 way — inles) = Hef(©),
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Similarly, there holds

I~ /\g Iy, dE = /|b o If©)de.

Thanks to a change of variables, we obtain

€116 e, + &3 s, < sup (1] 18l B, + b0 5, )

= sup [|b(w-)|3

2,R
weSs? +

27;

which is finite since b is a Schwartz function, and so |90|%,2,1Ri So | fll2,g2-
Step 2: H'/?(R%) bound on &(f). For i = 1,2, there holds

[* [ et s el .,
R3 2

(U+tezv T,z
/ /]Rd |2|90 2) — go(@,2)” dedzdt Sy || f]]2re-

t2

where we used (4.2) and step 1. Thanks to the relation

[Eo(f) (@, 2 +1) = Eo(f)(@,2)* < x(z +1)?|go(@, 2 + 1) — go(w, 1)

+ [x(z + 1) — x(2)lgo (=, 2) |,

we obtain

[* ] et el
o Jr2 t?

o0 2
X(z +6) = x(2)
< e, 19013 o + / / . go(@, 2)[? dar dz dt.
0 ]R%r

Now, applying Hardy’s inequality [40, Theorem 327] gives
2

/Ooo |X(z+ti2_ x(2)|? & — /Ooo (1 /:+t X' () dr) dt

2

o /q t
-/ (t/ x’(r+2)d’") dt S X'+ 2l s,
0 0

and so

23

z+t
[ L (o P dodzar S [ NG+, bl 2 ddt

+

2
§||XI||§,R+/ / lgo(z, 2)|? da dz.
o Jr2

Applying Young’s inequality to the convolution form of go, (4.7) then gives

2
] ot =) dzdz < 200l e 1

Inequality (4.5) now follows on collecting results and applying (4.2).
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We shall also need the stability of the lifting of the derivative of a smooth function.
LEMMA 4.4. Let x € C*(R) and b € C(R?). For 1 < p < oo, there holds

[N~}

(4.8) D &GNl e Sxow Ifli-spme VF € COR).

i=1
Proof. Let 1 < p < oo, f € C°(R?), and i € {1,2}. Integrating by parts gives
fo0:f) (@) =x() [ s+ ez dy = [ 10, (@ + ) ay

R2

_ x() / (D)) f (@ + 2y) dy.

z

Since b € C°(R?), there holds [5(9;b)(y) dy; = 0, and so

E0(D:f)(@,2) = x() / o)) LB i) ~ [+ )

z

Applying Hoélder’s inequality, we obtain

flx+2(y —yie:)) — flx+2y) [
BN @A Sy [ 00w e
Integrating over Ri then gives
flx+2(y —yie))) — f(z +2y) |
IE(@PI2 g N/ )| ) e gy aga:
K3
ij:];j"’_(é_&ij)yjz / |yl a b | 'f 1;+ ylze’b) dy di dZ
t=vy;z ) t i _
0l [ HDTEHIEN g5,
’ R3 tp
3
Inequality (4.8) now follows from summing over ¢ and applying (4.2). |

4.2. Continuity of &,. We now show how the continuity of the operator & can
be used to deduce the continuity of & for k € Ny. We begin with a partial result.

LEMMA 4.5. Let x € C°(R) and b € C>(R?) be as in Theorem 4.1 and k € Ny
be given. Then, for 1 < p < oo, there holds

(4.9) 1€k (Nllprs Sxokn 1 fllprz VF € C(R?),
and for 1/p < s <1 or (s,p) = (3,2), there holds
(4.10) 1€ (s pr2 Sxbksp Ifllemt e V€ CF(R?).

Proof. Let k € Ny, 1 < p < oo, and f € C°(R?). Since the function y := zFy €
C>(R) with suppX = suppx, we have &[x,b](f) = Eo[X,b](f). Consequently, it
suffices to prove (4.9) and (4.10) in the case k = 0. To this end, we apply Jensen’s
inequality to the identity (4.7) to obtain

oDy <16 [ 1P ([ o720 ()] ae) " a:

=[£Il g2 1117 2 X ()T e
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and (4.9) follows. Inequality (4.10) for 1/p < s < 1 is an immediate consequence of
(4.4), while the case (s,p) = (3,2) follows from Lemma 4.3. d

For more precise results, we shall show the effect of taking partial derivatives of
E,(f) on the index k and on the function f. To this end, we recall an integration-by-
parts formula for tensors. Given two d-dimensional tensors S and T, let .S : T' denote
the usual tensor contraction

S:T:= Siliz“‘idTilizwidv

where we are using Einstein summation notation. Given a d-dimensional tensor S
with d > 0 and k > 0, let D*S denote the k-th derivative tensor of S:
k
(D S)ili2“'id+k = aid+18id+2 T aid+ksili2“'idv
and let div S denote the (d — 1)-dimensional tensor given by

(diV S)il'LZ"'id—l = ajSiliZ"‘id—lj’

while divF S, 0 < k < d, denotes k applications of div to S. With this notation, we
have the following integration by parts formula for symmetric, smooth, compactly
supported tensors S and T of dimension d and 0 < k < d, respectively:

S: DT de = (—1)d—’f/ div?" S : T da.

R2 R2

With this notation in hand, we have the following identity that shows that the deriv-
atives of & (f) are linear combinations of liftings of derivatives of f.

LEMMA 4.6. Let x € C°(R), b € C(R?), and k € Ny be given. For all « € N}
and f € C°(R?), there holds

(4.11)  D%&En(f)(z, 2)

= xi(z)zmxtrilelob [ By (y) - (Dmetel=h 00} ) (2 4 2y) dy

=0 R2
for suitable x; € C°(R) and max{|a|—i—k, 0}-dimensional tensors By, with entries
in C2°(R?).
Proof. Let f € C°(R?) and let gx be defined as in (4.6). For integers m > k,
there holds

k
O g (@, 2) = 3 s 2 /R D)D" )+ zy) g dy
§=0

k
=3 ey [ Gwy®" ) s Dy D)o+ 29)
j=0

k

- /R2 Z(_l)k_jckmj div* 7 (b(y)y® ™) o (D™F f) (@ + 2y) dy
=0

=: g Bim(y) : (D™ f)(x + 2y) dy,
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where cj,,; are suitable constants, y®" is the tensor product of n copies of y, and D,,
denotes the derivative operator with respect to y. For 0 < m < k, there holds

0L gi(,2) =D Crmy2 I / b(y) (D™ f)(z + zy) : y®™ I dy
=0 R?

=Yty [ by ) Dy IS+ ) dy
=0 R
= zk*m/ - Z(—l)m’jckmj div™ ™ (b(y)y®™ ) 3 : f(x + zy) dy
R2 —o

J

—. k-m 5 Bim(y) : f(x + 2y) dy.

Consequently, there holds
O gr(x, z) = pmax{k—m,0} / Bim(y) : (DmaX{m*k’O}f)(a: + zy)dy Vm € Np.
R2

Now let 3 € N2 with |3] > k. Then, there holds

DEgi(,2) = 2 / b(y) (DP f)(x + 2y) dy = / b(y) DI {(DP f)( + =)} dy
R2 R2
= (-1)l7 / (DPb) () (D~ f)(a + 2y) dy =: / Bis(y)(DP P f) (@ + 2y) dy,
R2 R2

where DP := 91952 and § € N2 is any fixed multi-index such that |5| = k and

1 "T2

B—Be NZ. Similar arguments show that for 8 € N2 with |3| < k, there holds

DEgi(w, 2) = (~1)181 413 / (DPb)(y) f(z + =) dy
RQ

=0 [ Bs() S+ 2y dy.
RQ

Collecting results, for any o € N3, there holds

Dagk(w7z) — Zmax{k—|a\,0} Bka(y) : (Dmax{\a|—k,0}f)(w + zy) dy
R2

for suitable max{|a|—k, 0}-dimensional tensors By, with entries in C°(R?). Equality
(4.11) now follows from the product rule. d

4.3. Proof of Theorem 4.1. Let k € Ny, 1 < p < oo, and f € C°(R?). For
a € N3, (4.11) gives

(412) [ID*E(N)lgpry < > 1Emasctkri—tal,03 [Xis bris) (D )l o p 3

0<i<as
BEN?
|8|=max{]a|—k—i,0}

where x; € C2°(R) and by;z € C2°(R?) are suitable functions depending on x and b
respectively and 0 < o < 1.
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Step 1: L? bounds on derivatives. For k+ i — |a| > 0 (so that |5]| = 0), (4.9)
gives

| Emancthri—tad,0y [Xis Okl (DP N)llprs. = 1Ekti—jol i bris] (Hllprs. Sxokn [1Fllp 2

For k + i — |a] < 0 (so that |a| > k and |8| > 1), there exists j € {1,2} such that
B; > 1, and so we apply (4.8) to obtain
1€01xi: brig] (D Fllp.es. = €0y brigl (@D )23 Sxbikem HDﬁ*ejf\h_%,p,w

< ||f‘||a\—k—i—%,p,R2‘
Consequently, for all f € C°(R?), there holds
(413) ||gk(f)||m,p,Ri §X7b,’€,m717 ||me—lc—%7p7]R2’ m e {k +1, k+ 2,.. }

By density, (4.13) holds for all f € Wm—k=1/pP(R?),

Step 2: The case s > k + 1. Inequality (4.3) for real s > k + 1 with (s,p) € A
follows from (4.13) using a standard interpolation argument.

Step 3: The case k+1/p < s < k+1. Fors=k+o, where 1/p <o <1or
(o,p) = (1/2,2), we take |o| = k in (4.12) and apply (4.10) to obtain

‘(’:”k(f)'s,p,]l@+ < Z ||Si[Xi?bki6](f)||a,p,Ri 5X,b7kxp>3 ||f||0'7%,p,]R27

0<i<as

which completes the proof. O

5. Weighted LP continuity of whole-space operators. In the previous sec-
tion in Theorem 4.1, we established that the lifting operators &}, are continuous from
We—k=1/p.P(R2) to W*P(R?) provided that s > k+1/p. We now turn to the stability
of the operator &, with respect to lower-order Sobolev spaces. In particular, we seek
to obtain bounds on ||, (f)|s.p.0, for 0 < s < k+1/p, where O; := (0,00)? D K is the
first octant. It turns out that one suitable space for the lifted function f is a weighted
LP space. Let Q1 = (0,00)? D T denote the first quadrant and let p € L°°(Q;) be a
weight function that satisfying p > 0 almost everywhere. Then, for 1 < p < oo, define

(5.1) LP(Qq; pdx) == {f measurable : /Q |f(x)Pp(x) de < oo} .

The weight that will appear in our estimates are powers of wy (3.7) extended to all of
R? by

(5.2) wi(z) = min{z;,1}  Vx € R%

In particular, the main result of this section is as follows.

THEOREM 5.1. Let x € C2°(R) and b € C°(R?) be as in Theorem 4.1 and k € Ny
be given. For 1 <p < oo and 0 < s < k+ 1/p, there holds

~ %+k—s k—s
(53) N smor Svbos lof  Fllpor  Vf € LP(Qr w0y TP da).

«

The proof proceeds in several steps and appears in subsection 5.3
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5.1. Auxiliary results. We begin by recording a number of technical lemmas.
Throughout the rest of the section we use the notation f,, fdx := |O|~! [, fdzx.

LEMMA 5.2. For 1 <p < oo and 0 < h < oo, there holds
%) xz+h p %)
(5.4) / f fly)dy| do < hp_1/ |f(z)P dz Vf measurable.
0 T 0
Proof. The result follows on applying Holder’s inequality and changing the order
of integration:
de < hP~2 / / y)|P dy

/Ow,ll/ff()dy
AL

LEMMA 5.3. Let 1 <p<oo,0<s<1,and0<a<oo. Then, there holds
(5.5)
|f( ) ( )| < (1—s)p| ¢/ P 1,p
o I qrdy <. o [fi ()P de Ve W ((0,a)).
0,a 0,a

|z —y|t*ep

Proof. The proof follows the same arguments as those used in the proof of [44
Theorem 1.28], which considers the case a = oo. The full details are given below.
By symmetry, there holds

/<0xa>zwdmdy_2/ / a:—y)lifdxdy
:2/0 /y (x—y)lm)/yfl(t)dtp

Performing a change of variable and applying Hardy’s inequality [44, Theorem 1.3],

we obtain
Yy ~ p
T Por=t—y [o7Y 1 z dr
/ ! T
/y ft)dt] dz < /0 =TTop (/ ITf (y+7)|7_> dz

/a 1
Y (x_y)1+5p
L [“VIf'(y+ )P
— dz
/0 v

dz dy.

I1+(s 1)p

ity 1 [* |f @)
= e da
/ (@ — gy

If@) = Fl”
/(o,a)z |o:— |1+SP da dy < 1+(s Dp dx dy
/ |/ (2 \”/ )1+(s oy dy de

= (1_8)p/0 =5 f1()|P d,

which completes the proof. 0

Thus,
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LEMMA 5.4. Let 1 < p < 0o and 0 < s < 1/p. For all f € LP(Q1;w; P dx),
there holds

T1+z xTo+2z
(56) / / / / Z2+sp (y)|P dy2 dys dz dx <5p||w1 ng,Ql'

Proof. Applying (5.4) and using that 0 < z < 2 gives

00 To+z x1+2 00 x1+2
[ ([ rwran) anaes, [7 7 el an ase
0 T2 1 0 1

Moreover, there holds

z1+2z
/ // Z1+Sp flyr,x2)|P dyr dz day
Xy
2

142 1
= / / |f(y1, z2)|P TTrew dz dy; dzq
0 T Y1—T1

xr1+2
Sep / / (y1 — 1) " °P| f(y1, z2)|P dys day

(L[ L) s an

Sep / min{y1, 2}' 7P| f (y1, 22) [P dy.
0

The result now follows on integrating over 0 < xo < 0. 0

LEMMA 5.5. Let x € C°(R) and b € C>(R?) be as in Theorem 4.1 and 1 < p <
0o. Let k € Ny and f € LP(Qq;wi™ da). For 0 <t < 2, there holds

(5.7) / / lgk(x, 2)|P de dz kap/ min{xl,t}1+kp\f(w)|p dz,
Q1 Q1

where gy is defined in (4.6)

Proof. Let k € Ny, 1 <p < oo, and f € Lp(Ql;w%Jrkp dx) be given. Let z € (0,¢).
Then, for z € Q; and y € (0,1)?, there holds z < min{z; + 2y1,t}/y1, and so

g (. 2)] < /( minas 2, 0 0wl @ <) dy
0,1

u= m+zy T2tz T1+2z i
Sb.k ][ ][ min{uy, t}7|f(w)| du; dus.

Integrating over x2 € (0,00) and applying (5.4) to the function

x1+2

flug;@y,2) = ][ ¥ f(w)] dusy, where @ (u) := min{uy, t}"

1

and using that 0 < z <t < 2 gives

o o0 T2tz P
[Taearans [T (£ fumndn) dn
0 0 T2
b1 oo r1+2 y P
<2 [(@F f)(ur, z2)| dus dxs.
0 1
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Hardy’s inequality [40, Theorem 327] then shows that, for 0 < x5 < oo, there holds

t 142 p v=g142 x4t P
/ (7[ (wlff)(uth)'dul) dz = / (][ |w1f u17w2)|du1> dv
0 T
' x1+t
S [ @D )P o
and so

t [ee] x1+t
/ / |9k (z, 2) [P dog d2 <bkp/ / w (v, 22)|P dv dxs.
o Jo

Integrating over z; and changing the order of integration gives

// lgr(z, 2)|[P dx dz bkp/ /Wrt ((@F F)(v, ) |P dv da
/ (// / /) V) (v, 22)[P day dv day

Sl/ 510, 22) 2| £ (0, 22) P do i,
Q1

which completes the proof. ]

5.2. Continuity of - In this section, we prove Theorem 5.1 in the case k = 0.
We will utilize the following equivalent norm on W#?(0,).

LEMMA 5.6. For allp € (1,00), s € (0,1), and f € W*P(Oy), there holds

(x + te;) — f(x)|P
(5.8) wmmsmm@+z// o) @I gt

Proof. Let f € WSP(O;). Thanks to [44, Theorem 6.38], there holds

(x + te;) — f(x)|P
|f|5p(91 Nsp Z/ /(9 t1+9p dwdt,

and (5.8) now follows on noting that

( +te;) — f(x)]?
Z/ [, P a5, 151 o, :

We now estimate each term in (5.8). The first result deals with terms involving
translations in the first two coordinate directions.

LEMMA 5.7. Let x € C°(R) and b € C=(R?) be as in Theorem 4.1. For1 <p <
00, 0 < s<1/p, and 1 < i <2, there holds

/1 / Eo(f) (@ + tei, z) — E(f) (=, 2)|P
(@ft

prEw Az dzdt Sypep lof i

for all f € C°(Qy).
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Proof. Let 1 <p < o0,0<s<1/p, and f € CX(Q;) be given. Let go(+,-) be as
in (4.6) with k£ = 0 and let g(=, z,t) := go(x + te;, z) — go(x, 2).
Step 1. Let 1 <i < 2. We will show that

19(z, 2, )" 1/p—s
(5.10) / / / iTe dwdzdt Spsp llwi /p= fIP o,

We begin by decomposing the above integral into two terms:

:czt
[ ], Bt g
|ngt .
(///Q ///Q) 0@ 2P gz dt = 4, + B.

Part (a): A;. Let 0 <t < 1. Then, f(-+te;) — f(+) € LP(Q1,w; da) and

glx, 2,t) = o b(y) [f(x + 2y + te;) — f(x + 2y)] dy.
1
Integrating (5.7) over 0 < t < 1 then gives

1 N )
A gw/ /mm{xht}lf(wﬂel)l @
Q1 /0

t1+sp

For ¢ = 1, there holds

00 1 B 1 e}
/ / £ |f (@ + ter)| dt day / / P (@ o)l A dt
0 0
(L)

<ep / min{Zy, 1} 5P| (&1, 20)|P dZ1.
0

On the other hand, note that for any 0 < u < co and f(x) = f(x + uey), there holds

/ /mm{xht}t (52| f (@) [P dt day

(// o /) e "”dtdwﬁ//t““pxnf( )PP dt de,

1
e / min{zy, 1| f(@)|? da; + / (@7 — Vs | fle)P das
0 0
< / min{ar, 1P| (21, 22 + w) P d.
0

1 s
The bound A; Spsyp Wi fl} o, now follows on performing a change of variables
and collecting results.
Part (b): B;. Using identity (4.7), we obtain

g(@, z,t) = 272 /Rz [b (y_xz_te> b (y ; w)] f(y)dy
==/ (o) (W) f(y) drdy.
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Writing 2=2|9;b| = (272]0;b|)*~/P(2~2|0;b|)"/? and applying Holder’s inequality gives

P
|zcztp<(// 2|8b< )d dr)
— ab|( ") 1P ayar
Pt
<o +// o) (L2 )|f< P dy dr.
Integrating over x gives
T= m—&-ret tP 1
g t)|Pd 0;b
[ tatezopaa”™ 2 0 ] o (2
<aaf [ o) (25 )| ()P dy di
r1+2 zz+z
b zp+2/ / / y)|P dys dy; de.
Integrating over z and ¢, we obtain
1 t(l s)p—1 T1+2 r2+z
B; Sb,p/o / o /1/3: / y)|P dyo dy; dz dz dt
2 t(1=s)p—1 T1+2 w2+z
:/ / TR /Ql/ / y)|P dya dy; de dtdz
r1+z pxetz
aia o [ L[ s aanaa

l—S
Applying (5.6), we obtain B; Sp,sp [lwf  fll} o, which completes the proof of (5.10).
Step 2. Since supp x C B(0,2), there holds

[ [ B i) @ gy
Oy

t1+8p

" .
/ / / |g :tvlfsp>| dedzdt Sypsp min{zy, 1} 77 f(z) da,

Q1

-1

) y)|P dydzdr

which completes the proof. ]
The next result deals with the term involving a translation in the z-direction.

LEMMA 5.8. Let y € C°(R) and b € C°(R?) be as in Theorem 4.1. For1 <p <
o0 and 0 < s < 1/p, there holds

say [ [ D@ D@ g e S,

t1+sp

for all f € C*(Qy).

Proof. Let 1 < p < 00,0 < s < 1/p, and f € C*(Q;) be given. Let go(:,-) be
defined as in (4.6).
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Step 1. We will first show that

lgo(, z +t) — go(x, z)|P
(5.12) / / / pyEm | dedzdt Spsp le f||p 0,

Applying (5.5) gives

2 2

t p

(5.13) / / 190 (2 Z—l—tlﬂpgo(w,z)\ dzdt §/ 21=9P|9, go (x, 2)|P dz.
0

Applying identity (4.7), we obtain

o) = [ o0 (Y22 ) by
— [ Az () o (V) - - o) ) e

For y € (21,21 + 2) X (22, T2 + 2), there holds

—3b( - ) +274Db (Z“:) (y— )

where we used that b and Db are uniformly bounded. Since suppb C (0,1)2, we obtain

2 To+z a:1+z
/ (1- S)P|a go(z, 2)|dz < / Z2+sp / / (y)| dy1 dy= dz.
0 0

Inequality (5.12) now follows on integrating (5.13) over & € Q; and applying (5.6).
Step 2. For 0 <t < 2and x € Q;, we add and subtract x(z + t)go(z,t) to obtain

< Z_3

~b )

[Eo(f) (@, 2 +1) = Eo(F)(@, 2)P Sp X (= + O |go(x, 2 + 1) — go(, 1)
+Ix(z + 1) = x(2)lgo(; 2)[".

For the first term, we use that supp x € (—2,2) and apply (5.12) to obtain

1 _ P
/ / |X(z+t)\p|gO(w’Z+t?+spgo(m’t)| da dz dt
01

lgo(, 2z +t) — go(w, t)|P .
pr/ / /Q e dedzdt <y p b “FIE o,

For the second term, we again use that suppx € (—2,2) as well as the assumption
0<s<1/p:

x(z+1) = x(z)|
/ /01 t1+sp |go(33,z)|p dxdzdt

1 z+t p
’
= —_— x (r)dr
/0 /0 /Ql t1+sp /z ( )

lgo(x, 2)|P de dzdt
1,2
Sx,p/ // tA=P=L g0 (, 2)|P dae dz dt
0o Jo Jo,

2
ss,p/ / |90(w72)|p dx dz.
0 /O

Inequality (5.11) now follows from (5.7). d
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We now obtain Theorem 5.1 in the case k = 0.

LEMMA 5.9. Let x € C°(R) and b € C°(R?) be as in Theorem 4.1. For1 <p <
oo and 0 < s < 1/p, there holds

~ 1_g s
(5.14) 1€0 () lsp,01 Sxbessip 1907 fllpor  Vf € LP(Q1,wi P da).

_ Proof. The case s = 0 follows on taking ¢t = 2 in (5.7) and using the fact that
1€0()llp.0r Sxp 19llp,01x(0,2), Where g is defined in (4.6). The case 0 < s < 1/p
follows from the norm equivalence (5.8), the bounds (5.9) and (5.11), and the density
of C°(0y) in LP(Oy,w; P da). |

5.3. Proof of Theorem 5.1. Let kK € Ny, 1 < p < o0.
Step 1: s = 0. Taking t = 2 in (5.7) and using the fact that ||Ex(f)|p.00 Sy
|9k |Ip, 01 x (0,2), Where gy is defined in (4.6), we obtain (5.3) in the case s = 0.
Step 2: s € {1,2,...,k}. Let f € C*(Q1). Applying (4.11) with |a| < k, we
obtain

(5.15) IDE(Nllopor < D I€ktiztailxis bri (Hllop,0n

0<i<as

where y; € C°(R) and by; € C°(R?) are suitable functions depending on y and b
respectively and 0 < o < 1. Applying (5.3) with s = 0 then gives

= lik—s
1€6(F)ls,p,01 Sxobokysp 07 flip.ois

where we used that &+ — |a| > k —m for 0 < i < a3. By density, (5.3) holds for
s€{0,1,...,k}.

Step 3: 0 < s < k.  This case follows from interpolating Step 2 (see e.g. [23,
Theorem 14.2.3] and [17, Theorem 5.4.1]).

Step 4: k < s < k+ 1/p. Let 0 = s — k so that 0 < o < 1/p. Setting
Xika(2) = 2Fti=loly, € 0°°¢(Q)) so that supp Yixa € (—2,2) and applying (5.14)
and (5.15) then gives

ID*E ()]

o 1,
op,01 = Z €0[Xikas bk (F)llop.01 Sxbiksop lwf  fllp,0:-
0<i<as

Inequality (5.3) now follows. 0

6. Continuity of fundamental operators. In this section, we prove the con-
tinuity and interpolation properties of the four fundamental operators 5,[61] defined
in (3.1), ML{]T defined in (3.8), S,[cl]r defined in (3.25), and RECI]T defined in (3.37).
We begin with the properties of E,[gl], which rely on the results of section 4. Then,

in subsection 6.2, we show that the four fundamental operators are continuous from
weighted L? spaces (5.1) to W*P(K) for small s, which will be useful for the analysis

of ME’]T, SE’}T, and ’RECI]T This section concludes with the proofs of Lemmas 3.3, 3.7,
and 3.11.

6.1. Proof of Lemma 3.1. Step 1: Continuity (3.4). Let b denote the
extension by zero of b to R? and let y € C>°(R) with x =1 on (—1,1) and supp x €

(—=2,2). Let f € Ws_k_%’p(T) be given and let f denote a bounded extension f to
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R? satisfying ||f||s,p,R2 Ss.p I flls,p.1; see e.g. [34]. Thanks to the identity

(="
!

(6.1) E(f) = ENDGBI()  on K,

where E}, is defined in (4.1), inequality (3.4) immediately follows from (4.3) and the
smoothness of the mapping J; defined in (3.2).

Step 2: Trace property (3.3). Direct computation shows that (3.3) holds.
Step 3: Polynomial preservation. If f € Py(T'1), N € Ny, then direct inspection

reveals that 5,&1](]") € Pnyx(K). O

6.2. Weighted continuity. We begin with the continuity of S,Ll].

LEMMA 6.1. Let b € C*(T), k € Ng, 1 < p < o0, and 0 < s < k+1/p or
(s,p) = (k+ %,2). Then, for all t1,ta,t3 € [0,00) such that t; +ta+t3 =k—s+1/p,
there holds
62)  NET Dl Shsp Wbl fllpr  VF € LP(T; (it whwg P de),

~

where w; are defined in (3.7).

Proof. Let t =k — s+ 1/p.

Step 1: t; = t3 = 0. Let b denote the extension by zero of b to R? and let
X € CP(R) with x =1 on (—1,1) and supp x € (—2,2). Let f € C°(T) be given and
let f denote the extension by zero of f to R2. Thanks to the identity (6.1), (6.2) with
to = t3 = 0 follows from (5.3), where we recall that w; is extended to R? by (5.2),
and a standard density argument. The case (s,p) = (k + 1,2) follows from a similar
argument using (4.3).

Step 2: t; =t3 = 0. We define transformations §; : T'— 7 and &, : K —» K
as follows:

(6.3) F1(x) == (x2,21) and &q(x,2) := (z2,21,2) (z,2) € K.
Then, a change of variable shows that 5,[61] (f)o®, = El[;] [boF1](f oF1), and so

HEL (P lspic = IERC) © Bills e Koot WL (F 0 FD) o = Wb Fllprs

where we applied Step 1 in the middle inequality.

Step 3: t3 = 0. Applying Steps 1 and 2 and interpolating between LP (T wipdw)
and LP(T;widz) (see e.g. [17, Theorem 5.4.1]) then gives (6.2).

Step 4: t; = t3 = 0. We define transformations §s : T'— T and &5 : K — K as
follows:

(6.4)
Fo(x) := (22,1 —x1 —2x2) and By(x,z) = (1 — 21 — 22 — 2,21, 2) (z,2) € K.

A change of variables then gives 5,[;] (f)o®By = 5,[:] [boF2](f oF2), and so

IEM (P lemie STUELS) 0 Ballep i Sotp 1k (f 0 F2)llpur = [k f

where we applied Step 1 in the middle inequality.

Step 5: General case. Applying Steps 3 and 4 and interpolating between
LP(T; (w'wh?)Pdx) with 71,75 € Ry with 7 +ry = t and LP(T;widx) (see e.g.
[17, Theorem 5.4.1]) gives (6.2). d

p, T
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We now turn to the continuity of ME:],
LEMMA 6.2. Let b € C*(T), k,r € Ng, 1 <p < oo, and 0 < s < k+1/p or

(s,p) = (k+ %,2). Then, for all t1,ta,t3 € [0,00) such that t; +ta+t3 =k—s+1/p,
there holds

st Stk w0t wws fllpr Vf € LP(T; (wywywg?)? da),

6.5)  [IML(f)

where w; are defined in (3.7).

Proof. Let 0 <'s < k+1/p or (s,p) = (k+ 3,2). We proceed by induction on
r. The case r = 0 follows from (6.2), so assume that (6.5) holds for some r € Np.
Direction computation gives

)k . 2

ACO Ll P25

=} k! (xo + zyo) 1

= (k+ DML [wob] (w3 (=, 2),
which leads to the following identity
(6.6) ME () = B+ DM wabl(wi ') + ML)

Consequently, there holds

M (Dl < (ke + DIME [w2b) (w3 N lspre + IMEL ()]

s,p, K-
Applying (6.5) with 7 = t1, 70 = to + 1 and 73 = 3 gives

1 — _
M [w2b] @5 ) lspic Sotorsp 607 w327 05 fllpir = [|lwi w2 wl fllpr,

and so ||ME€17]T+1(f)||s7p7K Sokrsp lwi whwk £, 7, which completes the proof. O

It will be convenient to define a three-parameter version of S][Cll_ as follows:

(6.7) Slglznq(f)(:c,z) = x'{xgé'l[:] (w) w5 " f)(, 2)

)Ty

for k,7,q € Ng. This three-parameter version satisfies the same continuity properties
as &Y and MY
k k,r-

LEMMA 6.3. Let b € C(T), k,r,q € Ng, l <p < o0, and 0 < s < k+1/p or
(s,p) = (k+ %,2). Then, for all t1,ta,t3 € [0,00) such that t| +ts+t3 =k—s+1/p,
there holds

(6.8) IS (D lls ke Soikumas W20 fllpr  Vf € LP(T; (Wi whwl? ) da),

where w; are defined in (3.7).

Proof. Let 0 <s<k+1/por (s,p) = (k+ %, 2). We proceed by induction on g.
The case ¢ = 0 follows from (6.5), so assume that (6.8) holds for some ¢ € Ny. Direct
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computation gives
S pr (N, 2) = SEL (N, 2)
—2)* T+ 2z T
-

(1 + 2y1)9(x2 + 22)" \ 21 + 21 a

(=2)**! / f(z+ 2y)
q,.r b
1Ty k! Tyl (y> (xl + Zyl)Q+1($2 + ZyQ)T

= (k+ 1S, [wibl (@i (=, 2),

which leads to the following identity

(6.9) St () = (k+ DS | onbl(witf) + P ().

Consequently, there holds

ISP ot (D lspie < (k+ DISEL L o [wiBl @7 Alls e + IMIE (Pl .-

Applying (6.8) with 7y =t1 + 1, 70 = t2 and 73 = 3 gives

1KY o J1Bl @1 P)llspic St 107 105205 fllpr = |t 2wl fllpr,

and so ||Sl[€1,l,q+1(f)||s,p,K bk, walw?w?ﬂ p,T- a

6.3. Proof of Lemma 3.3. Step 1: Continuity (3.12). We first show that
(3.12) holds with I'y replaced by T" and 712 replaced by 2, where we recall that the
edges of T are labeled as in Figure 1b: For all k,r € Ny, (s,p) € A, U{(k + 1,2)},

s—k—21.,p min{s—k—1,r},p
and f € W v P(T) N Wi, (T'), there holds

1fll2. if (s,p) = (k + 3,2),
(6.10) HML{],,(JC)”s,p,K Sl%k‘,T,S,p 72||f||5*k*%,p,T if k+ % <s<k4+r+ %’
||f‘|57k7%,p’T if s > k—|—r+%

We proceed by induction on r. The case r = 0 follows from (3.4) and (6.2), so

assume that (6.10) holds for some r € Ny and all k € Ny and (s,p) € Ag. Let k € Ny,

min{s—k—2Lr
(5.0) € Ay U{(k+ L,2)}, and f € W™= 52(T) n Wi ™72 (1) e given,

Thanks to (6.6), there holds

s,p, K+

ML (Dllspre < (ke + DIMLL wsb) (@i Pllspurc + IMEL)]

Part (a): k+1/p < s < k+1+41/p. Thanks to Theorem A.3, there holds
wylf e L’”(T;wékisﬂ)p+1 da) and (A.7) and (A.9) give

k—s+1+1  _ k—s+2
[ "wy 1f”p,T = [lwy " fllpr Skosp »yQHst—k—%,T'

Consequently, we apply (6.5) to obtain

1 _ k—s+ 1
IMichs bl " Dllswie Soersn o 7 Flor Sk sallf iz pir-
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Part (b): k+1+1/p<s<k+r+1+1/p. Theorem A.3 shows that wy'f €
S—R— 7l7 .
w717 P(T) and (6.10) and (A.8) then give

1
ML bl @3 Dllsp s Sobnsn sl Fll s Sk ol fllacios o

Part (c): s > k+r+1+1/p. Thanks to Theorem A.3, there holds wy'f €
Ws_k_l_%’p(T) N W2, (T), and so we apply (6.10) and (A.7) to obtain

1 — _
ML 0283 Pllspuic Sors 195" Flleior-1 iz Sk 1Flsoim 1

Inequality (6.10) for r + 1 now follows from the triangle inequality. The smoothness

of the mapping J; defined in (3.2) then gives (3.12).

Step 2: Trace properties (3.11a) and (3.11b). Direct computation shows that

(3.11a) and (3.11b) hold.

Step 3: Polynomial preservation. Suppose that f € Py (T'1), N € Ny, satisfies

DLfly, =0for 0 <1 <7 —1. Then, foJ; = whg for some g € Py_,(T), and so

MEL(f) =1} ,[:] (9) € Pyyr(K) thanks to Lemma 3.1. O
6.4. Proof of Lemma 3.7. Step 1: Continuity (3.29). We first show

that the following analogue of (3.29) holds: Let b € C*(T), k,r € Ny, (s,p) €

s_k_1
A U{(k +1/2,2)}, and € = {41,72}. For all f € Wy ," »”(T), there holds

1fll2,r if (s,p) = (k+ 3,2),
Qer“s—k_%,p,T otherwise.

1
(6.11) IS sk Sooksrosin {

We proceed by induction on . The case r = 0 follows from (3.4) and (6.2). Now let r €
Ny be given, and assume that (6.11) holds for all £ € Ny and (5 p) € A U{(k+1/2,2)}.
1

Let k € No, (s,p) € A, U{(k+1/2,2)}, and f € VVG
applying (6.6) and (6.9) gives

S () = e+ D)SEL 4 ot wr ) + S (F)
2" ((k+ DML bl ) + ML @)
2" [(k+ D) (k + 2)M,  lonwnb)(w; T f)
+ M bl TV )+ ML st Tws ) + ML @1 )],

,,H (T) be given. Then,

where S’ , is defined in (6.7), and so

SE,lﬂ(f) = (h+ 1)k + 25, [wrwsb] (wiws) 1)
+ (k1) (S lwonblwr ) + SEL bl @31 ) ) + SEL ().

Consequently, we obtain

2
612 ISIL (D llspre S ISEL O spre + D NSELL L wib)(w; ) |spoic
. =1

+ 1S5 lwrwab] (@iw2) " ) ls.puic
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Part (a). We first consider the terms ||S,[€1_~]_177_[wib](wi—1 Mspr, 1 <i <2 For

k4+1/p < s <k+1+1/p, Theorem A.3 shows that w; ' f € Ll’(T;(J.)Z(1675+1)p+1 de)
and (A.8) and (A.9) gives

k—s+14+1 _ k—s+1
Jw; "w;  fllpr = Nl " fllpr Skosp e”stfkf%,T = @,T+1||f||sfk*%7T

for 1 <7 < 2. Applying (6.8) then gives
1 — .

(6:13)  ISih wit)@ Dllspsc Sokrsr ersilflogorzs  1Si<2

s—k—1—

Now let s > k+ 1+ 1/p. Corollary A.4 shows that w;lf € Wé’r
(A.11) then gives

1
»P(T) and

G,r|‘w;1f’|s—k—l—%,p,T Skﬁypy’f G,r+1||f||sfk:7%,p,T :

Inequality (6.13) then follows from (6.11).

Part (b). We now turn to the term ||S,[€14]_27T[w1w2b]((wlwg)’lf)HS,p,K. Assume
first that kK + 1/p < s < k+ 1+ 1/p. Theorem A.3 shows that (wjwe) 1f €
LP(T; wfwék_s+1)p+l dzx), and (A.8) and (A.9) give

k—s+1+1 4 _
lwiws "wy lwz 1f||p,T Skys,p @Hf“s—lcf%,T = @ﬂ'«kl”f”sfkf%,T'

Applying (6.8) then gives

6.14)  [Si,, [wiwab] (wiwa) L)

|s,p,K Sb,kﬂ",s,p €,r+1‘|f||sfk7%,T’

Now assume that k+1+1/p < s < k+2+1/p. Thanks to Corollary A.4, wy ' f €

S—k— ,l’ . —s
Wvl,r+11 »P(T), and so Theorem A.3 gives (wiws) L f € LP(T; wik +2)ptl dx). In-

equalities (A.8) and (A.11b) then give

k—s+24+1 _; 4 1
[Jwr Pwi Wy fllpr Skosip e,erz f“s—k—l—%,T Skys.p @,r—&-l”f“s—k—%,T'

Applying (6.8) then gives (6.14).
Now assume that s > k + 2+ 1/p. Two applications of Corollary A.4 show that
sfk727% p

(wiw2) "L f € W “(T) and (3.27) and (A.11b) give

\T

el sy St o ST syl

5k751pir 71,r+1”f||sfk7%,T + "yg,T‘+1||f||ka7%,T
Sk,s,p @,r+1||f||sfk7%,T‘

Applying (6.11) then gives (6.14). Inequality (6.11) for 7 + 1 now follows from the
triangle inequality, (6.13), and (6.14). The smoothness of the mapping J; defined in
(3.2) then gives (3.29).

Step 2: Trace properties (3.28a) and (3.28b). Direct computation shows that
(3.28a) and (3.28b) hold.

Step 3: Polynomial preservation. Suppose that f € Py(I'1), N € Ny, satisfies
DLfly, = Dhflyys = 0 for 0 < I < 7 —1. Then, foJ; = (wiws)"g for some
g € Pn_2-(T), and so S,[;} (f) = (x122)" ][€1] (9) € Pnyr(K) thanks to Lemma 3.1. O

r
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6.5. Proof of Lemma 3.11. Step 1: Continuity (3.39). We first show
that the following analogue of (3.39) holds: For b € C*(T), k,r € Ny, (s,p) € Ay,
and € = {~;, 72,73}, there holds

1 s—k—1.p
615) RGN oni Sokrsp eolflosorpr VI EWe, 77(D).

Part (a): Variants of S,EHT We begin with a brief aside. Let &;; = {~;,v;} for
1 <4 < j < 3. Formally define the following analogue of Sl[cl]r (3.25):

SEEID(F) (@, 2) 1= (21(1 = 21 — 22 — 2))" € (wrws) 7 F)(w, 2)
:Sl[cl,]r[bogﬂ(fo&)062(3372), (x,2) € K,

where Fo and &, are defined in (6.4). Note that for any s > 0 and r € Ny, there
holds f € WgP (T) if and only if f o Fy € W (T). Thanks to Lemma 3.7, for
be Cx(T), k e No, (s,p) € Ay, there holds

1],(13
6.16)  ISEEUY (P sk Stikrsw el

5P
f||57k7%’p’T Vf € W€13 r (T)a

where we used that || f||;.p.7 ~ep || foF2lltpr and Eranr IIf

|t’P’ Ntp 6’12’7‘”]00%2”&10’71'
Analogous arguments show that the operator

SEECD (1)@, 2) = (wa(1 — 21 — w2 — ) EN (waws) 7 f) (x, 2)
=M o )(f o) 06y (z,2) (,2) € K

satisfies the following for b € C°(T), k,r € Ny, (s,p) € Apg:

1],(23
6.17)  ISEECY (P sk Stkrsw epand

1
P
1 Vfewe, TT(T).

Part (b): Key identity for RE]T Thanks to Lemma C.1, there holds

Co Ca Ca,
Rgcl,]r(f) = (T122(1 — 21 — 22 — 2) Z 5[1] ( a11£2 + a12£3 + a23{v3)

«EN3 Wa Wy W3 Wy " W3
a]<k
|a|>2
= Z A" (lj)z (X)) lz (d(w)S (ZJ) nf)+dl(7jlz)sl[€{]l,(ig)(w;,,f))’
1<i<j<3
where A := a1, )‘2 = r, A3 = 1 — 21 — 22 — 2, m(3, j) is the lone element of

{1,2,3}\ {4, 5}, d;,; (i3) and d(]) are suitable constants, and S (12) S[l]

Let b € C°(T), k,r € Ny, (s,p) € Ay, and f € W(’E,r %m(T) be given. For any
n € Ny and real ¢t > 0, the mapping g — w}'g is continuous from Wé’; (T) to Wé’;(T)
Similarly, for any o € N3, the mapping g — A{*A\$2A$%g is continuous from WP (K)
to W#P(K). Consequently, (6.15) follows from the triangle inequality, (3.10), (3.29),
(6.16), and (6.17). The smoothness of the mapping J; (3.2) then gives (3.39).

Step 2: Trace properties (3.38a) and (3.38b). Direct computation shows that
(3.38a) and (3.38b) hold.
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Step 3: Polynomial preservation. Suppose that f € Py([1), N € Ny, satisfies
DLflor = 0 for 0 <1 < r —1. Then, foJ; = (wiwaws)"g for some g € Py_3,(T),
and so Rggl]r(f) = (r122(l— 21 — 22 — z))rg,[cl] (9) € Pnik(K) thanks to Lemma 3.1. O

Appendix A. Properties of spaces with vanishing traces. In this section,
we show that smooth functions with vanishing traces are dense in the space Wg"(T)
(3.9) and that functions in Wg(T) (3.26) satisfy a Hardy inequality.

A.1. A Density result. We begin with a density result for the spaces Wg*(T)
defined in subsection 3.2.

LEMMA A.1. Let € C {v1,7v2,73} and define

CE(T) = ¢ C(T): U vyNsuppo =0
yEE

For1<p< oo and 0 < s < oo, the space CF(T') is dense in W' (T).

Proof. Let € C {y1,72,73} and 1 < p < oo be given.
Step 1: 0 < s < 1/p. The space C*(T) C CX(T) is dense in WP(T) = Wg*(T)
(see e.g. [38, Theorem 1.4.5.2]).
Step 2: s> 1/pand € = {y;}. Let s=m+ o with m € Ny and o € [0,1), and
let f € Wg?(T). For n € N, we construct a partition of unity on 7" as follows. Let
{a;}3_, denote the vertices of T labeled counterclockwise as in Figure 1b and define
the following sets:

1
Uy = {w e T : dist(x,0T) > } ,

2n
i ] 3 - ) ,
u(i_l)(n—l)+j = uj( ) =B (ai+2 + %t“ 47?,) nr, 1<j<n—-11<i<3,
3 _
uSn—3+k =B (ak7 > OT, 1 < k < 37
4dn

where we use the notation B(x,r) to denote the ball of radius r centered at . By
construction, T' C U?ZO U;, and so there exists a partition of unity {¢;, € C*(U;) :
0 <i < 3n} satisfying

3n

Y ¢i=1 and [[D*¢;llcss, SknF,  0<i<3n, Vk €N,

i=0
We denote f; :== ¢;f for 0 <i<3n—3andset V;:=U; NT for 0 <1 < 3n.

Let {0,}2"5® be arbitrary positive constants. The construction proceeds in several

parts.
Part (a). The function fy := ¢ f satisfies

1
D' folow, = 0, 0S1<5—]§,

. . 1 .
| dist(-, 8U0) =7 D™ follptty Sonp 13" [ lpite <00 i op = 1.

~

By [38, Theorem 1.4.5.2], there exists a ¢y € C2°(Up) satisfying

||diSt(.7au0)7UDm(f0 _7/)0)”;7,% if op = ]-7
0 otherwise.

do = [l fo = Yolls.puso + {
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Since f € W*P(T), we apply the same argument to f; := ¢;f on V;, 1 <i<n—1, to
show that there exists a 1; € C°(V;) satisfying

[ dist(-, V) D™ (fi — i)

0 otherwise.

if op =1,

p,Vi

8 > | fi = Yills,pvi + {

Part (b). Forn < i < 3n—2, f € WP(V;), and so there exists a p; € C(V;)
satisfying || f — pills.p.v; < 8in™+2 thanks to [38, Theorem 1.4.5.2]. Then, the function
;1= ¢;p; satisfies

1fi = Yills,pvi Ssop i

m
lmpvs + 1D G D™ (f = pi)llopv, Sop Gis
1=0

where we used [44, Theorem 6.3] to conclude that

ID' ¢ D™ (f = pi)llopvi Sew 1D Gill 051D il 2 v 1D H(f = pi)llpass
+ ||Dl¢i Vi Dm_l(f_pi)”mp’vi
< 6;.

Moreover, when op = 1, we have

lwr " D™ (fi = Yi)llpvi Sp n7 D™ (fi = ©i)llp,vi Ssp O
Part (c). For 3n — 1 <4 < 3n, we will show that
(A1)l Ay, =0 andifop=1, lim w7 D", =0.
Thanks to [44, Theorem 6.3], there holds

m J m
1fills.pv: Ssp Y D IID'es D fllpv + D 1D'

§=0 1=0 1=0

+Z|\Dl¢>z
=

Vi Dmilf”mihvi

Dl+1¢i H

go,vi ‘DmilprJ/[i

f,sm Z an”Dj_lpr,vi + Z (nl+0|‘Dm_lpr,ui + nl||Dm—lf||07p7vi) ]
§=0 1=0

1=0
Similar computations show that for op = 1, there holds
m
o 7 D™ fillpvi Sop Y1 oy 7 D™ flp,v,
j=0
Since V; N1 # ), Poincaré’s inequality gives
D" fllp,vi Srp n_(s_r)|Dmf|U,p,Vi 0<7r<m,

and so || fillspv: Ssp D™ flopy;. Moreover, if op = 1, then D™ f € Wé’p(Vi)
for 1 < j < m, and so [24, Theorem 5.2], [35, Theorem 3.2], and a standard scaling
argument give

[y

n e D™ fllpws <

i ~p 1

Sep n’ |Dmf|a,p,Viv
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and so |w; D™ fillpvi Ss.p D™ flopv:- Equality (A.1) now follows from that fact
that |D™ fl, v, — 0 as n — oo since |V;| = 0 as n — oo.
Part (d). Let € > 0 be given. First, choose n large enough so that

3n 3n o .
> i=3n—1 IV D f Vi if op = 1’
52 2 ||fi||s,p,vl+{22_3n W DR £l

) 0 otherwise.
1=3n—1

Then, for {d;}; 3" 2 chosen sufficiently small, we construct 1); as above so that

3n—2 3n —o .
€S Z Ifi = ills.p; + D ican—1 lwi 7D (fi = i)llpy: op=1,
2~ = ! e, 0 otherwise.

Let 151 denote the extension of 1; by zero to T\ U;, 0 < i < 3n — 2 and set g[;j =0
for 3n —1 < j < 3n. Then, ¥; € CF(T), and the function ¢ = Z?Zo 1); then satisfies
€ CF(T) and

3n
elf = Ullpr <D = Yillspy, +

=0

{Z?”O |l D™ (i = i)llpy,  if op = 1,

0 otherwise,

Ssp €

which shows that C°(T) is dense in Wg*(T).

Step 3: € = {12} or € = {y3}. If € = {72}, the density of C5J(T) in W5P(T)
follows from the fact that f € W3P(T) if and only if f o §y 1 e W3:P(T), where
35 (21, 29) = (1 — 1 —x2,x1) is the inverse of Ty defined in (6.4). The case € = {73}
follows from similar arguments using the mapping §s.

Step 4: |¢] = 2. Now let € = {v;,72}. The density of C&(T) in Wg"(T) may
be shown using a similar construction to the case € = {v;}. In particular, we apply
the construction of Step 1 Part (a) for 0 < ¢ < 2n — 2 and i = 3n, Part (b) for
2n —1<i<3n—3, Part (c¢) for 3n — 2 < i < 3n — 1, and proceed analogously as in
Part (d). The remaining cases for |€| = 2 are proved along similar lines.

Step 5: € = {v1,72,73}. This case is a restatement of [38, Lemma 1.4.5.2]. O

A.2. Hardy inequalities. First, we construct a bounded averaging operator.

LEMMA A.2. There exists a linear operator Hiy satisfying the following properties:
(i) H1 maps C(T) boundedly into C(T), and there holds

(A.2)  Hi(f / flu,zo)du —/ fluzy, z2) du Ve e T.
3?1

(it) H1 maps Wg?(T) boundedly into W (T) and for all p € (1,00), s € [0, 00),
r €Ny, and € € {0, {n1},{71,72}}. In particular,

(A3) €7r||H1(f)||s7p7T gs,pﬂ“ €7r||f||s7p7T vf € Wé:i(T)

Proof. Step 1: Continuity on C(T). Let f € C(T) and define H,(f) by (A.2).
Elementary arguments show that Hi(f) € C(T) with ||H1(¢)| e,z < ||¢ill 0,7
Step 2: Extension to Wg7(T) when € = 0. Let f € C®(T) and 1 < p < oc.
For a € NZ, there holds

(Ad) DM (f)(@) = /O o (DO f)(uxl,@)dwﬁ /0 U (D ) (u, 2) du,

1
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and so Hy(f) € C(T). Moreover, Hardy’s inequality [40, Theorem 327] gives

1 17{132
ID°H ()1 < / /
0 0
D p 1 1—x2
S (pl) / / |Daf($1,l‘2)|p d$1 dl’g.
- 0 0

p

1 *1
— / | D f(u, x2)|du| dxy das
0

T

Consequently, we obtain

||H1(f) s,p, T \V,f S COO(T), s € Np.

Since C*°(T) is dense in W*P(T) [38, Theorem 1.4.5.2], H; can be continuously
extended to a linear operator from W*P(T') into W*P(T') for s € Ny. The case for
non-integer s € (0, 00) follows from interpolation.

Step 3: Inequality (A.3) when ¢ = {~;}. The case r = 0 follows from Step 2,
so let r € N. Assume first the s < v and let f € C37(T). Equation (A.4) shows that
H1(f) € C(T). Moreover, for s = m + 1/p, m € No, we apply Hardy’s inequality
[40, Theorem 327] to obtain

1 1—x2 x1 1 p
lwy, * DYHq(f pT_/ / (171/ 1|D"‘f(u,sz:2)du> dxq das
up

(A.5) < (pp) lwy ? D22 1

s,p, T Ssm ||f

A

for all a € No with |a| = m. Thus, _ [[Hi(f)lls,r Ssp 4 [flls, 7 for all f €
C(T). By density (Lemma A.1), Hy maps W3 (T) boundedly into W3:P (T) for
all p € (1,00) and s € [0, 7].

Now let s > r and f € W3PE (T). Step 2 and the arguments above show
that Hi(f) € WP(T) N Wrr(T ), and so ’Hl(f) € Wir(T) if s —1/p ¢ Z with
sy Ssop 71’T||f||s’p’T. Now let s = m + 1/p for some m € N. Then,

f € C(T) and thanks to Step 1 and (A.5), we have

|

Consequently, Hi(f) € W3:P, (T) and (A.3) holds when & = {71 }.

Step 4: Inequality (A.3) when & = {7y1,72}. Again let r € N. Assume first that
s <r. As above, Hi(f) € CX(T) for any f € CF(T) by (A.4), and for s =m + 1/p,
m € Ny, Hardy’s inequality [40, Theorem 327] gives

1 1—x2 1 p
llwy * DYH4 (f pT_/ SEQ/ (3101/ |Daf(u,:c2)du> dzq dzs

p _E o
(A0 < (25) e P05l

_% 8m—r—1Dr—1rHl(f)

1 am—r—1nr—1
~19 Dy
! m—r—1

0xs

Wy

~p
p,T

m—r—1
0x;, o T

for all @ € Ny with |a| = m. Inequality (A.3) now follows from Step 2 and (3.10). By

density, %1 maps W' (T') boundedly into W (K) for all p € (1,00) and s € [0,7].
Now let s > r and f € Wéf(T) Arguing analogously as in Step 3, we have

Half) € Wel(T) it s— L ¢ Z with o, [Ha()l,,r S

Moreover,

s,p, T ~5P &r s,p, T
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(A.6) gives
_% 8m—r—1Dr—1rH1(f) < _% am—r—lDr—lf
Wa ) m—r—1 ~p || W2 p) m—r—1
L1 p,T L1 p,T
Consequently, H1(f) € Wg7(T) and (A.3) holds when & = {71,72}. O

Finally, we state and prove various versions of Hardy’s inequality.

THEOREM A.3. Let 1 < p < o0 and O # € C {vy1,72}. For 0 < s < oo and
i € {1,2} such thaty; € €, the mapping f + w; ' f is bounded (i) W+ 2(T)NWg? (T)
to WP(T), and (ii) W3 P(T) to WgP(T), and there holds

(A7) oy Flls ot Sop 101y Vf e WL (T) n WP (T),
(A8)  ellwifll,pr Sop el@ifllgpr Y €WET(T).

Additionally, for 0 < s <1 andi € {1,2}, the mapping f — w; * f is bounded W3 (T
to LP(T'), and there holds

(A.9) lwi * fllo.r Ssp Ml lspr VF € WEP(T).

Proof. Let 1 < p < oo be given.
Step 1: Inequalities (A.7) and (A.8) when € € {{y1},{11,72}}. Thanks to
the fundamental theorem of calculus, there holds

(A10)  fla)= / YO du= e Ha(0f) Ve €T, Vf € CX(T).

By density (Lemma A.1), (A.10) holds for a.e. € T for all f € Wé’p(T). Lemma A.2
and (A.10) then show that the mapping f ~ w; ' f is bounded (i) from W*+12(T) N
WeP(T) to WP(T), and (ii) from WgT"P(T) to WgP(T) provided that v; € €.
Inequalities (A.7) and (A.8) now follow from (A.3) and (A.10).

Step 2: Inequalities (A.7) and (A.8) when ¢ = {2}. Note that f € WsTL?(T)N
W2LP(T) if and only if g := f o € WHP(T) N WLP(T) and f € Wi (T) if and
only if g € W2 (T), where §, is defined in (6.3). Inequalities (A.7) and (A.8) then
follow from Step 1.

Step 3: Inequality (A.9) with i = 1. Now let 0 < s < 1. For sp = 1, (A.9)
follows immediately from the definition of the norm. In the case sp < 1, the proof of
Theorem 1.4.4.4 in [38] gives

lwi * Fllp.r < [ dist(-,0T) " fllp.r Ssp Mfllspr = I fllspr V€ WIP(T).

Finally, let sp > 1 and let f € W3P(T) be given. We denote by fe W#P(T) any

extension of f to R? satisfying || f|lspr2 Ssp || fllspr (see e.g. [34] or [44, Theorem

8.4]). Thanks to Theorem 6.79, inequality (6.58), and Remark 6.80 of [44], there holds

(w1, m2) — £(0,22)]P z
) daydzr Sop T2 5, s
0 R Ty

Since f|,, = fl, =0, we obtain

lwr® Fllpr = o *(F = FO, Dlpr < i *(F = FO ) lprs x& Ssp [Fls,pzs xrs

and so |wi *fllpr Ss.p | fls,p, 7, which completes the proof of (A.9) for ¢ = 1.
Step 4: Inequality (A.9) with ¢ = 2. This can be reduced to the case i = 1 using
similar arguments as in Step 2 using the mapping §; defined in (6.3). O
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COROLLARY A4, Letl < p< oo, 0<s<o0,1<1<2, andry,ry 6 Ny with
r; > 1. Then, for all f € WstLP(T) N WSFLP(T), there holds w_lf ewsr (T)N

Y1,T1 Y2572
W s:P
’YJ, TJ( ) and

i —1

(A'lla) “/i,mlewi_lst,p,T ,Ss,p,n,rg %,Tz'*lnaif

(Allb) 'Yj’rj|’w;1st,p Ss’p”’"l,T2 'yj,eraist,p,T < 'yj,rj||f||s+1,p,T7

|S7P7T < Vi Ti f”erl,p,T7

where 1 < j <2, §#1.
Proof. Let f € WSTIE (T) N WsHLP(T) be given. By definition, there holds

Y1,r1+1 Y2512
Of e stipm( ) N WP (T) since t,, = [0,1]7. Thanks to identity (A.10), which
was shown in the proof of Theorem A 3 to hold for all f € Wl’p (T), the result for
i =1 follows from Lemma A.2. The case ¢ = 2 can be reduced to the case ¢ = 1 using

similar arguments as in the proof of Theorem A.3 using the mapping §F; (6.3). ]

Appendix B. Equivalent Boundary Norm. We begin with a result that
states necessary and sufficient conditions for a function defined on two faces I'; UT'; C
0K to belong to W*P(I'; UT;).

LEMMA B.1. Let0 < s <1,1<p<o0,andl <i<j<4. Then, f € LP(I';Ul';)
satisfies f € WP(T; UT;) if and only if
(i) i € WHo(Ty) and f; € W(T,);
(ii) if s > 1/p, then fi|,,, = fjly.,; and
(ii) if s = 1/p, then I};(fi, f;) < o0,
where Ij;(+, ) is defined in (2.2). Additionally,

Zi(fis f5) ifsp=1
p . [P ||P YASAEES) ’
||stpF UF S,p Hlf|||s,p,]",3ul"j T ||fZHs,p,Fi + Hf]||s7p7fj + {0 Othe'l"wise.
Proof. Let 0 <s<1,1<p<oo,and 1 << j<4 be given.
Step 1: f e W*P(I;UT';) = (i-iii). Assume first that f € WP(T; UT}).
Condition (i) follows from the definition of the norms, and in particular, || f;[|7 , -, +
Hfj”g,p,rj < Is),p,riurj' If s > 1/p, then the trace theorem shows that f has a
well-defined trace on +;;, and so (ii) holds.
We now show that condition (iii) is satisfied. There holds

z —yl* = ([F;' () = Fj;' (y)] - e1)” + ([F; ' (x) + Fj;' (y)] - e2)?

1] Jt

for all (x,y) € T'; xT'j, where F;; : T — I'; and Fj; : T — I'; are defined in (2.1), and
SO

/ / ey i

~ / / [fi() — )P 1y de
e e, (B ) = B )] en)? + ([ ) + B )] ea)?) 7

J

uF

. p
ng / / |floEj f OF]Z(U)| dvd’U/7

|y —v|51’+2
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where u,. := (u1, —ug). Now let s = 1/p. Applying the triangle inequality in conjunc-
tion with the above inequality, we obtain

szE — fioFi(x
/1/| S éw J<>|dydw<pnﬂgppur

Assume, for the moment, that the following holds.

€2
B.2 Blz)= [ —2 _dy>1 VaxeT
(B2) (@) ‘Akm_yp y

Then, we obtain the following bound for Ifj (fi, fj) defined in (2.2):

IﬁoE ~ fy o Fy(@)?
(i fy) // : %J dydz <, | FI7, ¢

Thus, f satisfies (iii) and we have shown that for all f € W*?(I'; UT;) there holds

(B.3) 1flls.p.0:0r; Zsp N5 p,r,0r, -
*********************** Tt T o = %
z l
|
l
ze | u
| ~
: : u
; * ‘ »
a3:0 : /// ajl:% \\\ 3 a; =€
| // \\\‘
: e o U,
| L7
I -
1,7
Zr@

Fig. 2: Annular regions of integration (red) in the proof of (B.2), where 2 := (21, 22/2)
and @ := (u1,u2/2).

We now turn to the proof of (B.2). First note that B is well-defined on the half
plane R3 = {x € R? : z; > 0} and is a continuous function with B(z) > 0 for € R%,
and so it suffices to show (B.2) for & € T with x5 < 1/4. Let (p,0) € [0,00) x [0, 27)
denote polar coordinates centered at x, and let A, denote the following annulus
centered at @, (pictured in Figure 2):

—cos™! (%) << g} ifxy < %,

<f< %—i—cos*1 (2)} if 1 > %

jus
2
jus
2 3

{y eR?: 322 < p < 21y,
Ag = 2. 3z
{yER D552 < p < 239,

Then, one may readily verify that A, C T, and so

212
2 (2 1 1 (2
B > — 2  _dy = Z —dop = = cos z
(x) _/Am P——E Y = T COS (3)/3;2 pE p=gcos 3)>
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which completes the proof of (B.2).
Step 2: (i-iii) = f e W*P(['; UT;). Now assume that f € LP(I'; UT) satisfies
(i-iii). Thanks to the triangle inequality, there holds

b [ [ B Lo B,

|z —ylsp+2

Nsp// — fjoF”(w)‘pdydw

| —quP”

o [ Mo Be) e Bl g,

where we used that |z, — y| > |& — y|. To bound the second term, we perform a
simple change of variables.

// e |w_y|spi2F (W dy dwws,p//| |f] ((y))||gp+2 dy d=x

Ssp IS p.r,or,

For the first term, there holds

dy dy < dp 2T _gp
iz = P — s e s PR
T | —ylP R2\ Bz, ,z2) |Tr — Y|P v PP sp

for all x € T, and so

// |fio Fij(x) — f; OFﬂ(mﬂpdydmgSW/ |f¢OEj(ﬂf)*£)fj°Fji($)\pdw.
T

Iw —ylort? 2

Thanks to conditions (ii)-(iii), the function g = f; o Fi; — f; o F}; belongs to W2P(T)
and applying (A.8) and the triangle inequality gives

[ et e B e <

|p
s,p,I' UL

and so

0 Fie) — Jy 0 Fy(w)l
[ [ R gt S AW o,

Then, the reverse inequality of (B.3) immediately follows from (B.1), and so f €
W#P(I'; UT';) and the result follows. 0

On noting that f € WP (0K) if and only if f € LP(OK) r,ur; € WoP(I';U
I';) for all 1 <4 < j <4 since

,p,BK_ Z // |fz|m_ |sp+2)| dydz =5, Z |f1%

1<4,j<4 1<i<j<4

,p, ;U0

the following result is an immediate consequence of Lemma B.1.

COROLLARY B.2. Let 0 < s <1 and 1 < p < co. Then, f € LP(OK) satisfies
f e WsP(0K) if and only if

(i) fi € WoP(Ly) for 1 <i<4;
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(ii) if s > 1/p, then fi|,,, = fily,; for all1 <i < j <4; and

(ii) if s = 1/p, then I[;(fi, f;) < oo for all 1 <i < j < 4.
Additionally, (2.3) holds.

Appendix C. Partial fractions decomposition.

LeEMMA C.1. For all B € N3 with |3| > 2, there holds

1 Ca,l Ca,2 Ca,3
c1 =y TSI 7 . inT
. . aq, Qg a1, as Qg Qa3 ’
wflwgzwg“" o W1 W2 Wy W3 W "Ws3
0
a;<pB;
la|>2

where {cq,;} are suitable positive constants.

Proof. We proceed by induction on |3]|. The case |8| = 2 is trivially true. Assume
that (C.1) holds for all 3 € N} with |3| = r > 2. Let 8 € N} with || =r + 1. If
B; = 0 for some j € {1,2,3}, then (C.1) is trivially true, so assume that 5; > 0 for
1 <7 < 3. Then,

1 1 1

B1, B2, PBs " Bi—1 Bo—1 P31
Wy Wy Ws WiWaws  wi TwyT wh

B ( 1 1 1 ) 1
Wiwz  wWiw3  waws wf‘_lwgz_lwgrl
1 1 1

B1, B2, PBz—1 B, B2—1 PB3 B1—1 B2
Wit whwh wWitwh T ws? witT W)

Bs
w3

By assumption, each of the three terms above is of the form (C.1), which completes
the proof. ]
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