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Abstract

T. Borrvall and J. Petersson [Topology optimization of fluids in Stokes flow,
International Journal for Numerical Methods in Fluids 41 (1) (2003) 77–107]
developed the first model for topology optimization of fluids in Stokes flow.
They proved the existence of minimizers in the infinite-dimensional setting and
showed that a suitably chosen finite element method will converge in a weak(-
*) sense to an unspecified solution. In this work, we prove novel regularity
results and extend their numerical analysis. In particular, given an isolated
local minimizer to the infinite-dimensional problem, we show that there exists
a sequence of finite element solutions, satisfying necessary first-order optimality
conditions, that strongly converges to it. We also provide the first numerical
investigation into convergence rates.
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method, nonconvex variational problem, multiple solutions

1. Introduction

Topology optimization has become an effective technique in structural and
additive manufacturing and has found multiple uses in medicine, architecture,
and engineering [1, 2, 3]. The objective is to find the optimal distribution
of a fluid or solid within a given domain that minimizes a problem-specific
cost functional [4, 5]. In this paper we consider a model for topology op-
timization for fluids proposed by Borrvall and Petersson [6]. Their seminal
work has become the foundation for a number of developments in recent years
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Their goal was to minimize the power
dissipation of a fluid that satisfies both the Stokes equations and a volume
constraint restricting the proportion of the domain that the fluid can occupy.
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In their paper, they derived generalized Stokes equations, which incorporate the
classical velocity and pressure terms but also introduce a variable, ρ, that repre-
sents the material distribution of the fluid over the given domain. The presence
of fluid is indicated by a value of one in the material distribution whereas absence
of fluid is represented by a value of zero. It would be ideal for ρ : Ω→ {0, 1}, in
order to remove any ambiguity in the solutions, however, in general, this is a nu-
merically intractable objective. In the Borrvall–Petersson model ρ : Ω→ [0, 1],
but the model is regularized with an inverse permeability term, α, which favors
solutions where ρ is close to zero or one. From the generalized Stokes equations,
Borrvall and Petersson formulated an infinite-dimensional nonconvex optimiza-
tion problem with inequality, PDE and box constraints. There have been studies
on the numerics of a Ginzburg–Landau regularization of the objective functional
that can be shown to recover solutions with sharp transitions in the material
distribution [19, 20]. Notably, Garcke et al. [21] derived a posteriori error es-
timators designed to resolve the interfaces in the material distribution for the
Navier–Stokes extension to the Borrvall–Petersson problem. As far as we are
aware, there exist only a couple of results dealing with weak(-*) convergence of
discretized solutions, as the mesh size tends to zero, to solutions of the Borrvall–
Petersson problem on the whole domain [6, 22]. Moreover, there have been no
results concerning strong convergence nor the convergence to all the isolated
minimizers of the problem.

In the original paper [6], it is shown that a minimizing velocity and material
distribution to the optimization problem exist [6, Th. 3.1]; however, the mini-
mizer is not necessarily unique [6, Sec. 4.5]. It is also shown that there exist finite
element solutions that converge to a minimizer of the problem [6, Th. 3.2]. The
proven convergence is weak in the approximation of the velocity and weak-* in
the material distribution, with no results for the pressure. In addition, Borrvall
and Petersson show that the approximation of material distribution strongly
converges to a solution in Ls(Ωb), s ∈ [1,∞), where Ωb is any measurable sub-
set of Ω in which the material distribution that solves the infinite-dimensional
problem is equal to zero or one a.e. [6, Sec. 3.3]. Weak-* convergence permits
large oscillations in the material distribution, called checkerboarding, which
could occur in areas where the material distribution is not zero or one under
the current results. However, in practice, checkerboarding is not observed in
these regions. Since there can be multiple solutions, the nature of the con-
vergence is ambiguous. In particular, it is not clear if there are sequences of
finite element solutions converging to every solution of the infinite-dimensional
problem.

Our goal is to extend and refine the analysis of Borrvall and Petersson. We
show that, given an isolated minimizer to the infinite-dimensional problem, there
exists a sequence of finite element solutions, satisfying the necessary first-order
optimality conditions, that strongly converges. In particular, we strengthen the
convergence from weak convergence in H1(Ω)d to strong covergence in H1(Ω)d

for the velocity, and from weak-* convergence in L∞(Ω) to strong convergence
in Ls(Ω), s ∈ [1,∞) for the material distribution. Moreover, in the case of a ho-
mogeneous Dirichlet boundary condition, we show that the material distribution
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is weakly differentiable inside any compact subset of the support of the velocity;
more specifically ρ ∈ H1(Uθ), for any θ > 0, where Uθ is any measurable subset
of Ω in which |u|2 ≥ θ > 0 a.e. in Uθ. This analysis confirms that checker-
boarding cannot occur under mild assumptions on the model. Hence, isolated
minimizers of the problem can be well approximated using the finite element
method. We conclude with a numerical investigation into the convergence of
the finite element solutions.

By first considering the optimization problem, we derive necessary first-order
optimality conditions in Section 2. By construction, the generalized Stokes
equations are satisfied but we also show that the material distribution satis-
fies a variational inequality. In Section 3, we show that under moderate as-
sumptions, the material distribution is weakly differentiable in the case of a
homogeneous Dirichlet boundary condition for the velocity. We tackle the is-
sue of multiple local minima in Section 4, by considering closed balls around
isolated local minimizers. In that section, we also prove that for each isolated
minimizer there exists a sequence of finite element solutions to the discretized
first-order optimality conditions, which strongly converges to the solution of
the infinite-dimensional problem. In Section 5, we computationally investigate
the convergence of sequences of finite element approximations to the respective
solutions of the infinite-dimensional problem.

2. Existence and necessary first-order optimality conditions

The topology optimization problem of Borrvall and Petersson [6] is as follows:
find the velocity, u, and the material distribution, ρ, that solve the minimization
problem

min
(v,η)∈H1

g,div(Ω)d×Cγ
J(v, η), (BP)

where,

J(v, η) :=
1

2

∫
Ω

(
α(η)|v|2 + ν|∇v|2 − 2f · v

)
dx,

H1
g(Ω)d := {v ∈ H1(Ω)d : v|∂Ω = g on ∂Ω},

H1
g,div(Ω)d := {v ∈ H1

g (Ω)d : div(v) = 0 a.e. in Ω},

Cγ :=

{
η ∈ L∞(Ω) : 0 ≤ η ≤ 1 a.e.,

∫
Ω

η dx ≤ γ|Ω|
}
,

where Ω ⊂ Rd is a Lipschitz domain with dimension d ∈ {2, 3}, f ∈ L2(Ω)d, ν
is the (constant) viscosity, and γ ∈ (0, 1) is the volume fraction. Here, α is the
inverse permeability, modeling the influence of the material distribution on the
flow. For values of ρ close to one, α(ρ) is small permitting fluid flow; for small
values of ρ, α(ρ) is very large, restricting fluid flow. The function α is assumed
to have the following properties:
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(A1) α : [0, 1]→ [α, α] with 0 ≤ α and α <∞;

(A2) α is convex and monotonically decreasing;

(A3) α(0) = α and α(1) = α,

generating an operator also denoted α : Cγ → L∞(Ω; [α, α]). Typically, in the
literature α takes the form [6]

α(ρ) = ᾱ

(
1− ρ(q + 1)

ρ+ q

)
, (2.1)

where q > 0 is a penalty parameter, so that limq→∞ α(ρ) = ᾱ(1 − ρ). Fur-
thermore, |∂Ω is to be understood in the boundary trace sense [23, Ch. 5.5],
g ∈ H1/2(∂Ω)d, g = 0 on Γ ⊂ ∂Ω, with Hd−1(Γ) > 0, i.e. Γ has nonzero
(d − 1)-dimensional Hausdorff measure. Hence, the Poincaré inequality holds
with constant cp such that ‖v‖L2(Ω) ≤ cp‖∇v‖L2(Ω) for all v ∈ H1(Ω)d with
v|Γ = 0.

Remark 1. The integral in (BP) is well defined. Indeed, since α is assumed to
be convex it is Borel measurable; also since ρ ∈ Cγ is Lebesgue measurable, the
composition α(ρ) : Ω→ [α, α] is Lebesgue measurable.

The next theorem is due to Borrvall and Petersson [6, Th. 3.1].

Theorem 1. Suppose that Ω ⊂ Rd is a Lipschitz domain, d ∈ {2, 3}, and α
satisfies properties (A1)–(A3). Suppose in addition that α ∈ C1([0, 1]; [α, ᾱ]).
Then, there exists a pair (u, ρ) ∈ H1

g,div(Ω)d × Cγ that locally minimizes J , as
defined in (BP).

Remark 2. Although a solution exists, it is not necessarily unique, as observed
in the numerical examples in Section 5, since the optimization problem is non-
convex. The nonconvexity is caused by the term α(ρ)|u|2 in (BP). A rough
argument examines the second partial Fréchet derivative of J with respect to u
and ρ (assuming that it exists), i.e., for suitable variations v, η,

〈J ′′u,ρ(u, ρ),v, η〉 =

∫
Ω

α′(ρ)η(u · v) dx. (2.2)

Note that (A2) implies that α′(ρ) < 0 a.e. and the box constraints enforce ρ ≥ 0
a.e. Thus, given a pair (u, ρ), such that u ≥ 0 a.e., u, ρ are nonzero functions,
and nonzero variations (v, η), such that v ≥ 0 a.e. and η > 0 a.e., we see
that 〈J ′′u,ρ(u, ρ),v, η〉 < 0. Moreover, if 2〈J ′′u,ρ(u, ρ),v, η〉+ 〈J ′′u,u(u, ρ),v,v〉+
〈J ′′ρ,ρ(u, ρ), η, η〉 < 0, then the optimization problem is not convex.

Proposition 1. Suppose α also satisfies

(A4) α is twice continuously differentiable.

Then J : H1(Ω)d × Ls(Ω) → R is partially Fréchet differentiable with respect
to u and partially Fréchet differentiable with respect to ρ, where 1 < s ≤ ∞
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in two dimensions and 3/2 ≤ s ≤ ∞ in three dimensions. Moreover, for all
v ∈ H1

0 (Ω)d and η ∈ Cγ we have that

〈J ′u(u, ρ),v〉 =

∫
Ω

α(ρ)u · v + ν∇u : ∇v − f · v dx, (2.3)

〈J ′ρ(u, ρ), η − ρ〉 =
1

2

∫
Ω

α′(ρ)|u|2(η − ρ) dx, (2.4)

where J ′u(u, ρ) denotes the Fréchet deriviative of J with respect to u and J ′ρ(u, ρ)
denotes the Fréchet deriviative of J with respect to ρ.

Proof. Proposition 1 follows from the definition of Fréchet differentiability, the
mean value inequality, the dominated convergence theorem, and the Sobolev
embedding theorem [24, Prop. 2.3].

Remark 3. It can be checked that if α is (n+1)-times continuously differentiable
then J is n-times Fréchet differentiable with respect to u and ρ.

The following proposition is the main result of this section. We show that
if (u, ρ) is a minimizer of the optimization problem (BP), then the minimizer
also satisfies first-order optimality conditions consisting of two equations and a
variational inequality.

Proposition 2. Suppose that Ω ⊂ Rd is a Lipschitz domain, with d ∈ {2, 3},
and α satisfies properties (A1)–(A4). Consider a local or global minimizer
(u, ρ) ∈ U × Cγ of (BP). Then, there exists a unique Lagrange multiplier
p ∈ L2

0(Ω) such that the following necessary first-order optimality conditions
hold:

aρ(u,v) + b(v, p) = lf (v) for all v ∈ H1
0 (Ω)d, (FOC1)

b(u, q) = 0 for all q ∈ L2
0(Ω), (FOC2)

cu(ρ, η − ρ) ≥ 0 for all η ∈ Cγ , (FOC3)

where

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0

}
,

and

aρ(u,v) :=

∫
Ω

[α(ρ)u · v + ν∇u : ∇v] dx, lf (v) :=

∫
Ω

f · v dx,

b(v, q) := −
∫

Ω

q div(v) dx, cu(ρ, η) :=
1

2

∫
Ω

α′(ρ)η|u|2 dx.

Proof. We will first show that (FOC1)–(FOC2) are satisfied by generalizing
arguments, used for the Stokes system with a homogeneous Dirichlet boundary
condition, found in [25]. For ease of notation we define Xg := H1

g(Ω)d, X0 :=
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H1
0 (Ω)d, Vg := H1

g,div(Ω)d, V0 := H1
0,div(Ω)d and M := L2

0(Ω). The respective
dual spaces of X0, V0 and M are denoted with ∗. We also define the associated
operators, A ∈ L(Xg, X

∗
0 ), B ∈ L(Xg,M) and B0 ∈ L(X0,M) by

〈Au,v〉 := aρ(u,v), 〈Bw, q〉 := b(w, q), and 〈B0v, q〉 := b(v, q). (2.5)

We note that ker(B0) = V0. From Theorem 1, we know that there exists a pair
(u, ρ) ∈ Vg×Cγ that is a local minimizer for (BP). For any given v ∈ V0, we see
that u+ tv ∈ Vg, t ∈ R. If (u, ρ) ∈ Vg ×Cγ is a minimizer, then, by definition,
there exists an r > 0 such that, for any (w, η) ∈ Vg × Cγ , (w, η) 6= (u, ρ) that
satisfies

‖u−w‖H1(Ω) + ‖ρ− η‖L∞(Ω) < r (2.6)

we have that J(u, ρ) ≤ J(w, η). Hence, for any given v ∈ V0, if 0 < t <
r/‖v‖H1(Ω), the following inequality holds

1

t
(J(u+ tv, ρ)− J(u, ρ)) ≥ 0. (2.7)

By Proposition 1, J is Fréchet differentiable, and therefore also Gateaux differ-
entiable, with respect to u. Hence as t→ 0+, we see that

〈J ′u(u, ρ),v〉 ≥ 0 for all v ∈ V0. (2.8)

By considering the same reasoning with t < 0, we deduce that

〈J ′u(u, ρ),v〉 = 0 for all v ∈ V0. (2.9)

From Proposition 1, we know that J ′u(u, ρ) = Au− f and hence Au− f ∈ V ◦0
where

V ◦0 := (ker(B0))◦ = {h ∈ X∗0 : 〈h,v〉 = 0 for all v ∈ V0}. (2.10)

We know that the operator B0 satisfies the following equivalent version of the
inf-sup condition [26, Ch. 1, Sec. 4.1, Lem. 4.1]:

there exists a β > 0 such that, for all q ∈M, ‖B∗0q‖X∗0 ≥ β‖q‖M , (2.11)

where B∗0 is the dual operator of B0, defined by 〈v, B∗0q〉 = 〈B0v, q〉. This
implies that B∗0 is injective (and therefore bijective) from M into ImB∗0 . Fur-
thermore, it also implies that (B∗0)−1 is continuous. Consider f ∈ ImB∗0 ; then,
there exists a q ∈M such that f = B∗0q and

‖(B∗0)−1f‖M ≤
1

β
‖f‖X∗0 . (2.12)

Therefore, ImB∗0 is closed.
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Since ImB∗0 is closed, by Banach’s closed range theorem, we know that
ImB∗0 = (ker(B0))◦ = V ◦0 . Hence since, Au−f ∈ V ◦0 , there exists a p ∈M such
that

Au+B∗0p = f . (2.13)

Since B∗0 is injective, p is also unique. Since u ∈ Vg, we have that Bu = 0.
Hence (FOC1) and (FOC2) hold.

We will now show that (FOC3) holds. We note that Cγ is a convex subset
of a linear space. For any given ζ, η ∈ Cγ and t ∈ [0, 1], we therefore have that
ζ + t(η − ζ) ∈ Cγ . Since (u, ρ) is a local minimizer, it follows that for each
η ∈ Cγ , if 0 < t < r/‖η − ρ‖L∞(Ω), with r as in (2.6), then

1

t
(J(u, ρ+ t(η − ρ))− J(u, ρ)) ≥ 0. (2.14)

From Proposition 1, we know that J is Fréchet differentiable, and therefore also
Gateaux differentiable, with respect to ρ. Hence, by taking the limit as t → 0,
we see that

cu(ρ, η − ρ) = 〈J ′ρ(u, ρ), η − ρ〉 ≥ 0 for all η ∈ Cγ . (2.15)

Therefore (FOC3) holds.

The following lemma will be used in the proof of the next proposition.

Lemma 2. Consider a nontrivial function η ∈ Cγ and the measurable non-
empty set E ⊂⊂ supp(η), where ⊂⊂ denotes that the containment is compact
and supp denotes the support of a function, i.e. η > 0 a.e. in E. Then, there
exists an ε′ > 0 such that, for all ε ∈ (0, ε′], there exists a set Eε ⊆ E, |Eε| > 0
where η > ε a.e. in Eε.

Proof. For a contradiction, suppose that there exists no such ε′ such that Eε′

exists. This implies that

for all n ≥ 0, |E\Ên| = 0, (2.16)

where Ên := {0 ≤ η ≤ 1/n a.e. in E}. We see that ∅ = E\Ê1 ⊆ E\Ê2 ⊆ · · · ⊆
E\Ên ⊆ · · · , i.e. E\Ên is nondecreasing. Note that the limit of a nondecreasing
sequence of sets (An) can be defined as limn→∞An := ∪n≥1An. By (2.16) we
note that

lim
n→∞

|E\Ên| = 0. (2.17)

Moreover,

∪∞n=1E\Ên = lim
n→∞

E\{0 ≤ η ≤ 1/n a.e. in E}

= E\{η = 0 a.e. in E} = E\∅ = E.
(2.18)
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Now we see that

0 < |E| = | ∪∞n=1 E\Ên| = | lim
n→∞

E\Ên| = lim
n→∞

|E\Ên| = 0, (2.19)

where the first equality follows from (2.18), the second equality follows from the
definition of the limit of a nondecreasing sequence of sets, the third equality
follows from the continuity of the Lebesgue measure, and the fourth equality
follows from (2.17). (2.19) is a contradiction and, therefore, such an ε′ > 0 must
exist. By choosing Eε = Eε′ for all 0 < ε ≤ ε′, we conclude that the statement
holds for all ε ∈ (0, ε′].

In the result that follows, we are required to distinguish between different
types of global and local minimizers.

Definition 1 (Strict minimizer). Let Z be a Banach space and suppose that
z0 ∈ Z is a local or global minimizer of the functional J : Z → R. We say that
z0 is a strict minimizer if there exists an open neighborhood E ⊂ Z of z0 such
that J(z0) < J(z) for all z 6= z0, z ∈ E.

Definition 2 (Isolated minimizer). Let Z be a Banach space and suppose that
z0 ∈ Z is a local or global minimizer of the functional J : Z → R. We say that
z0 is isolated if there exists an open neighborhood E ⊂ Z of z0 such that there
are no other minimizers contained in E.

Remark 4. If z is an isolated minimizer, then it is also a strict minimizer.

The following proposition is a property of strict minimizers that will be
useful for the numerical analysis of the finite element method.

Proposition 3. Suppose that Ω ⊂ Rd is a Lipschitz domain, d ∈ {2, 3}, and
α satisfies properties (A1)–(A4). Further assume that the minimizer (u, ρ) ∈
H1

g,div(Ω)d × Cγ of (BP) is a strict minimizer. Then, supp(ρ) ⊆ U , where
U := supp(u).

Proof. By definition of a strict minimizer, there exists an r > 0 such that, for
all (w, η) ∈ H1

g,div(Ω)d × Cγ , (w, η) 6= (u, ρ) that satisfies

‖u−w‖H1(Ω) + ‖ρ− η‖L∞(Ω) < r,

we have that J(u, ρ) < J(w, η). For a contradiction, suppose that there exists
a set E ⊂ Ω, E∩U = ∅, of positive measure, where ρ > 0 a.e. in E. By Lemma
2, there exists an ε ∈ (0, r) such that there exists a set Eε ⊆ E, |Eε| > 0 where
ρ > ε a.e. in Eε. Define ρ̃ as

ρ̃ :=

{
ρ a.e. in Ω\Eε,
ρ− ε a.e. in Eε.

(2.20)

As ρ ∈ Cγ , also ρ̃ ∈ Cγ . We note that ‖ρ − ρ̃‖L∞(Ω) = ‖ε‖L∞(Eε) < r and,
therefore, (u, ρ̃) lies inside the minimizing neighborhood of the (u, ρ). However,
J(u, ρ̃) = J(u, ρ) as ρ and ρ̃ only differ on the set Eε, but u = 0 a.e. in
Eε ⊆ E by assumption. This contradicts the assertion that (u, ρ) is a strict
minimizer.
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3. Regularity of ρ

In this section we show that ρ ∈ Cγ possesses higher regularity in the case of
a homogeneous Dirichlet boundary condition on u and if α satisfies a stronger
(but not restrictive) convexity assumption.

Theorem 3 (Regularity of ρ). Suppose that the domain Ω ⊂ Rd is bounded,
the boundary is Lipschitz, and that the data g = 0 on ∂Ω. Consider a local
or global minimizer, (u, ρ) ∈ H1

0,div(Ω)d × Cγ , of (BP) such that u is not the

zero function and there exists a closed subset Ūθ ⊂ Ω with non-empty interior
on which |u|2 is bounded below by a positive constant, θ > 0. Suppose that
(A1)–(A4) hold and that α ∈ C2([0, 1]) is strongly convex, i.e.,

(A5) There exists a constant α′′min > 0 such that α′′(y) ≥ α′′min > 0 for all
y ∈ [0, 1].

Consider the (non-empty) open interior Uθ ⊂ Ūθ. Then, ∇ρ exists in Uθ and
ρ ∈ Cγ ∩H1(Uθ).

Remark 5. The assumption (A5) excludes the case where α is linear. This is
consistent with previous theory, as Borrvall and Petersson [6] showed that if α
is linear, then there exists a minimizer (u, ρ) where ρ is a 0-1 solution (a linear
combination of Heaviside functions) and thus ρ /∈ H1(Ω) due to the jumps.
However, the assumptions (A1)–(A5) do include (2.1), where the lower bound
in (A5) is α′′min = 2ᾱq/(q+1)2. We see that this lower bound degrades to zero as
q →∞. As previously noted, the limit q →∞ coincides with α(ρ)→ ᾱ(1− ρ),
which is a linear function.

Proof of Theorem 3. Let ∂xk denote the partial derivative with respect to xk.
If we can bound the L2-norm of the difference quotients of ρ, in all coordinate
directions in Uθ, above by constants independent of h, then, by taking the weak
limit, we deduce that ∂xkρ exists as an element of L2(Uθ) for 1 ≤ k ≤ d.

The variational inequality on ρ states that

1

2

∫
Ω

α′(ρ)|u|2(η − ρ) dx ≥ 0. (3.1)

We define U ⊂ Ω as U := supp(u) and fix an open, bounded and connected
domain Ω̂ such that Ω̂ = Ω if U ⊂⊂ Ω and Ω ⊂⊂ Ω̂ otherwise. In the case
where U is not a compact subset of Ω, we extend u and ρ by zero to the whole
of Rd. Since the trace of u is zero on the boundary, the extension of u by zero
lives in H1(Ω̂)d. Let 0 < |h| < (1/2)dist(U, ∂Ω̂) and choose k ∈ {1, . . . , d}. We
define ρh as

ρh(x) =

{
ρ(x+ hek) for x ∈ Ω− hek,
0 for x ∈ Rd\(Ω− hek).
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Analogously, we define uh as

uh(x) =

{
u(x+ hek) for x ∈ Ω− hek,
0 for x ∈ Rd\(Ω− hek).

We define the difference quotient, Dh
k , in the k-th coordinate direction, as

Dh
kρ(x) =

ρ(x+ hek)− ρ(x)

h
, h ∈ R\{0}, x ∈ Ω̂.

Let η = (ρh + ρ−h)/2. We note that η ∈ Cγ , since

0 ≤ 1

2
ρh ≤ 1

2
a.e. in Ω, and 0 ≤ 1

2
ρ−h ≤ 1

2
a.e. in Ω,

which implies that 0 ≤ η ≤ 1 a.e. in Ω and∫
Ω

η dx =
1

2

∫
Ω

ρh + ρ−h dx

=
1

2

∫
Ω−hek∩Ω

ρ dx+
1

2

∫
Ω+hek∩Ω

ρ dx ≤
∫

Ω

ρ dx ≤ γ|Ω|.

If we multiply (3.1) through by 4 and divide by h2 we see that

1

h2

∫
Ω

α′(ρ)|u|2(ρh + ρ−h − 2ρ) dx ≥ 0. (3.2)

We note that,

D−hk (Dh
kρ) =

ρ−ρ−h
h − ρh−ρ

h

−h =
ρh + ρ−h − 2ρ

h2
.

Hence, because u is zero outside of Ω, (3.2) is equivalent to∫
Ω̂

α′(ρ)|u|2(D−hk (Dh
kρ)) dx ≥ 0. (3.3)

In order to obtain a first-order difference quotient, we will perform the finite
difference analogue of integration by parts to shift the D−hk operator from Dh

kρ
to α′(ρ)|u|2. We note that, by definition, the left-hand side of (3.3) is equal to

− 1

h

∫
Ω̂

(α′(ρ)|u|2)(x)
(
(Dh

kρ)(x− hek)− (Dh
kρ)(x)

)
dx, (3.4)

which by a change of variables is equal to

− 1

h

(∫
Ω̂−hek

(α′(ρ)|u|2)(x+ hek)(Dh
kρ)(x)dx−

∫
Ω̂

(α′(ρ)|u|2)(x)(Dh
kρ)(x)dx

)
.
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We note that U ⊂⊂ Ω̂ and |h| < (1/2)dist(U, ∂Ω̂), which implies that U ⊂⊂
Ω̂− hek. Therefore,∫

Ω̂−hek
(α′(ρ)|u|2)(x+ hek)(Dh

kρ)(x)dx

=

∫
U−hek

(α′(ρ)|u|2)(x+ hek)(Dh
kρ)(x)dx

=

∫
Ω̂

(α′(ρ)|u|2)(x+ hek)(Dh
kρ)(x)dx.

(3.5)

Therefore, from (3.3)–(3.5) we see that∫
Ω̂

Dh
k (α′(ρ)|u|2)(Dh

kρ) dx ≤ 0. (3.6)

Now we wish to rewrite Dh
k (α′(ρ)|u|2) in a form that we can decouple from Dh

kρ
in order to be able to bound (3.6) above and below. Now,

Dh
k (α′(ρ)|u|2)(x) =

1

h

(
α′(ρ(x+ hek))|u(x+ hek)|2 − α′(ρ(x))|u(x)|2

)
=

1

2h

(
α′(ρ(x+ hek))

(
|u(x+ hek)|2 − |u(x)|2

))
+

1

2h

(
α′(ρ(x))

(
|u(x+ hek)|2 − |u(x)|2

))
+

1

2h

(
|u(x+ hek)|2 (α′(ρ(x+ hek))− α′(ρ(x)))

)
+

1

2h

(
|u(x)|2 (α′(ρ(x+ hek))− α′(ρ(x)))

)
=

1

2

(
α′(ρh) + α′(ρ)

)
Dh
k (|u|2) +

1

2

(
|uh|2 + |u|2

)
Dh
k (α′(ρ)).

Therefore, from (3.6) we see that∫
Ω̂

[
1

2

(
|uh|2 + |u|2

)
Dh
k (α′(ρ))

+
1

2

(
α′(ρh) + α′(ρ)

)
Dh
k |u|2

]
Dh
k (ρ) dx ≤ 0.

(3.7)
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Now,

1

2

(
|uh|2 + |u|2

)
Dh
k (α′(ρ)) +

1

2

(
α′(ρh) + α′(ρ)

)
Dh
k |u|2

=
1

h

∫ 1

0

d

ds

[
α′
(
sρh + (1− s)ρ

) 1

2

(
|uh|2 + |u|2

)
+

1

2

(
α′(ρh) + α′(ρ)

) ∣∣suh + (1− s)u
∣∣2] ds

=
1

h

∫ 1

0

[
α′′
(
sρh + (1− s)ρ

)]
ds︸ ︷︷ ︸

=:A

1

2

(
|uh|2 + |u|2

)
(ρh − ρ)

+
1

2h

(
α′(ρh) + α′(ρ)

) ∫ 1

0

[
2
(
suh + (1− s)u

)]
ds︸ ︷︷ ︸

=:B

· (uh − u).

Hence from (3.7) we find that

1

2

∫
Ω̂

A(|uh|2 + |u|2)|Dh
kρ|2 + (α′(ρh) + α′(ρ))B · (Dh

ku)Dh
kρ dx ≤ 0. (3.8)

Subtracting the second term on the left-hand side in (3.8) from both sides, taking
absolute values on the right-hand side, using the Cauchy–Schwarz inequality and
multiplying by 2, we see that∫

Ω̂

A(|uh|2 + |u|2)|Dh
kρ|2dx ≤

∫
Ω̂

|B||α′(ρh) + α′(ρ)||Dh
ku||Dh

kρ|dx. (3.9)

Furthermore we note that A ≥ α′′min and

B =

∫ 1

0

[
2
(
suh + (1− s)u

)]
ds = 2

[
s2

2
uh +

(
s− s2

2

)
u

]1

0

= uh + u.
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Hence, using Cauchy’s inequality and Young’s inequality, we see that

α′′min

∫
U−hek

|uh|2|Dh
kρ|2dx+ α′′min

∫
U

|u|2|Dh
kρ|2dx

≤
∫

Ω̂

|u+ uh||α′(ρh) + α′(ρ)||Dh
ku||Dh

kρ|dx

≤
∫
U−hek

|uh||α′(ρh) + α′(ρ)||Dh
ku||Dh

kρ|dx

+

∫
U

|u||α′(ρh) + α′(ρ)||Dh
ku||Dh

kρ|dx

≤ ε

2

∫
U−hek

|uh|2|Dh
kρ|2dx+

ε

2

∫
U

|u|2|Dh
kρ|2dx

+
1

2ε

∫
U−hek

|α′(ρh) + α′(ρ)|2|Dh
ku|2dx

+
1

2ε

∫
U

|α′(ρh) + α′(ρ)|2|Dh
ku|2dx.

(3.10)

By fixing ε = α′′min, from (3.10) we see that,

α′′min

2

∫
U

|u|2|Dh
kρ|2dx

≤ α′′min

2

∫
U

|u|2|Dh
kρ|2dx+

α′′min

2

∫
U−hek

|uh|2|Dh
kρ|2dx

≤ 1

α′′min

∫
Ω̂

|α′(ρh) + α′(ρ)|2|Dh
ku|2dx.

(3.11)

Now |α′(ρh) + α′(ρ)|2 is bounded above by 4 supζ∈Cγ |α′(ζ)|2 which is in-

dependent of h. Consider a set Ω̃ ⊂ Rd such that Ω̂ ⊂⊂ Ω̃. We note that
u ∈ H1(Ω̃)d. By applying Theorem 3 in [23, pg. 294], we see that∫

U

|u|2|Dh
kρ|2 dx ≤

C̃(Ω) supζ∈Cγ |α′(ζ)|2
(α′′min)2

‖∇u‖2
L2(Ω̃)

≤
Ĉ(Ω) supζ∈Cγ |α′(ζ)|2

(α′′min)2
‖∇u‖2L2(Ω) ≤ C <∞,

(3.12)

where C̃, Ĉ and C are constants. The bound is independent of h and k. Because,
by hypothesis, there exists a subset Uθ ⊂ Ω such that, |u|2 ≥ θ > 0 a.e. in Uθ,
we see from (3.12) that, because Uθ ⊂ U = supp(u), also

θ

∫
Uθ

|Dh
kρ|2dx ≤

∫
Uθ

|u|2|Dh
kρ|2 dx ≤

∫
U

|u|2|Dh
kρ|2 dx ≤ C. (3.13)

Estimate (3.13) implies that

sup
h
‖Dh

kρ‖L2(Uθ) <∞. (3.14)
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From (3.14) we see that there exists a function ηk ∈ L2(Uθ) and a subsequence
hi → 0 such that,

Dhi
k ρ ⇀ ηk weakly in L2(Uθ).

Finally, we wish to identify ηk with ∂xkρ. First choose any smooth and com-
pactly supported function, φ ∈ C∞c (Uθ). We note that∫

Uθ

ρ ∂xkφ dx ≤ C‖ρ‖L∞(Uθ)‖φ‖W 1,∞(Uθ) <∞.

Since ∂xkφ is compactly supported in Uθ, it follows that∫
Uθ

ρ ∂xkφ dx =

∫
Ω̂

ρ ∂xkφ dx.

Hence∫
Uθ

ρ ∂xkφ dx = lim
hi→0

∫
Ω̂

ρ D−hik φ dx

= − lim
hi→0

∫
Ω̂

(Dhi
k ρ)φ dx = − lim

hi→0

∫
Uθ

(Dhi
k ρ)φ dx = −

∫
Uθ

ηkφ dx.

Hence ηk = ∂xkρ a.e. in Uθ for k = 1, . . . , d. Therefore, from (3.13) we see by
weak lower semicontinuity that∫

Uθ

|∂xkρ|2 dx ≤ C(Ω, sup
ζ∈Cγ

|α′(ζ)|2, α′′min, θ), (3.15)

for some constant C. We conclude that ρ ∈ H1(Uθ) ∩ Cγ , θ > 0.

Remark 6. The assumption that the boundary datum g = 0 on ∂Ω is required
so as to expand the domain of integration from Ω in (3.2) to Ω̂ in (3.3) in
order to perform the finite difference analogue of integration by parts in (3.4).
A homogeneous Dirichlet boundary condition on u is rarely imposed in practice.
However, we observe during numerical experiments that ρ possesses additional
regularity in the case of inhomogeneous Dirichlet boundary conditions, and we
hypothesize that the results can be generalized to that case.

4. Finite element approximation

We will be approximately solving (FOC1)–(FOC3) by approximating the
solutions of the infinite-dimensional problem with finite element functions. Bor-
rvall and Petersson [6, Sec. 3.3] considered a piecewise constant finite element ap-
proximation of the material distribution coupled with an inf-sup stable quadri-
lateral finite element approximation of the velocity and the pressure. They
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showed that such approximations of the velocity and material distribution con-
verge to an unspecified solution (u, ρ) of (BP) in the following sense [6]:

uh ⇀ u weakly in H1(Ω)d,

ρh
∗
⇀ ρ weakly-* in L∞(Ω),

ρh → ρ strongly in Ls(Ωb), s ∈ [1,∞),

where Ωb is any measurable subset of Ω where ρ is equal to zero or one a.e.
There are no proven convergence results for the finite element approximation
of the pressure, p. Since there can be multiple local minimizers, it is unclear
which solution the sequence of finite element solutions is converging to. In this
section, we consider any suitable conforming mixed finite element space such
that the velocity and pressure spaces are inf-sup stable. We prove that, for every
isolated minimizer of (BP), there exist sequences of finite element solutions to
the discretized first-order optimality conditions that strongly converge to the
minimizer as the mesh size tends to zero. More specifically, we show that, for
each isolated minimizer of the infinite-dimensional problem, there exist (possibly
different) sequences of finite element solutions (uh, ρh, ph) that converge to it
strongly in H1(Ω)d×Ls(Ω)×L2(Ω) as h→ 0, where s ∈ [1,∞). We emphasize
that the results hold in the case where the local minima are isolated.

Consider the conforming finite element spaces Xh ⊂ H1(Ω)d, Cγ,h ⊂ Cγ ,
and Mh ⊂ L2

0(Ω). Let X0,h := {vh ∈ Xh : vh|∂Ω = 0}.
In general, it will not be possible to represent the boundary data g exactly

in the velocity finite element space. Hence, for each h, we instead consider
boundary data gh (which can be represented) and assume that

(F1) gh → g strongly in H1/2(∂Ω)d.

We now define the space Xgh,h := {vh ∈ Xh : vh|∂Ω = gh}. We will also assume
that:

(F2) X0,h and Mh satisfy the following inf-sup condition for some cb > 0,
independent of h,

cb ≤ inf
qh∈Mh\{0}

sup
vh∈X0,h\{0}

b(vh, qh)

‖vh‖H1(Ω)‖qh‖L2(Ω)
. (4.1)

(F3) The finite element spaces are dense in their respective function spaces, i.e.,
for any (v, η, q) ∈ H1(Ω)d × Cγ × L2

0(Ω),

lim
h→0

inf
wh∈Xh

‖v −wh‖H1(Ω) = lim
h→0

inf
ζh∈Cγ,h

‖η − ζh‖L2(Ω)

= lim
h→0

inf
rh∈Mh

‖q − rh‖L2(Ω) = 0.

Theorem 4 (Convergence of the finite element method). Let Ω ⊂ Rd be a
polygonal domain in two dimensions or a polyhedral Lipschitz domain in three
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dimensions. Suppose that (A1)–(A5) hold and there exists an isolated local
minimizer (u, ρ) ∈ H1

g,div(Ω)d ×Cγ of (BP). Moreover, assume that, for θ > 0,

Ūθ is the subset of Ω where |u|2 ≥ θ a.e. in Ūθ and suppose that there exists a
θ′ > 0 such that Ūθ is closed and has non-empty interior Uθ for all θ ≤ θ′. Let
p denote the unique Lagrange multiplier associated with (u, ρ) such that (u, ρ, p)
satisfy the first-order optimality conditions (FOC1)–(FOC3).

Consider the conforming finite element spaces Xh ⊂ H1(Ω)d, Cγ,h ⊂ Cγ ,
and Mh ⊂ L2

0(Ω) and suppose that the assumptions (F1)–(F3) hold.
Then, there exists an h̄ > 0 such that, for h̄ ≥ h→ 0, there is a sequence of

solutions (uh, ρh, ph) ∈ Xgh,h×Cγ,h×Mh to the following discretized first-order
optimality conditions

aρh(uh,vh) + b(vh, ph) = lf (vh) for all vh ∈ X0,h, (FOC1h)

b(uh, qh) = 0 for all qh ∈Mh, (FOC2h)

cuh(ρh, ηh − ρh) ≥ 0 for all ηh ∈ Cγ,h, (FOC3h)

such that uh → u strongly in H1(Ω)d, ρh → ρ strongly in Ls(Ω), s ∈ [1,∞),
and ph → p strongly in L2(Ω) as h→ 0.

In Proposition 4, by fixing a ball around an isolated local minimizer, we
show that finite element minimizers of a modified optimization problem converge
weakly in H1(Ω)d ×L2(Ω) to the isolated minimizer of the infinite-dimensional
problem. From this we deduce that there exists a subsequence of finite element
solutions (uh) that converges strongly to the isolated minimizer of the infinite-
dimensional problem in L2(Ω)d. We then strengthen the convergence of ρh to
strong convergence in Ls(Ω), s ∈ [1,∞), in Proposition 5 and strengthen the
convergence of uh to strong convergence in H1(Ω)d in Proposition 6. In Propo-
sition 7, we prove that there exists an h̄ > 0 such that there is a subsequence,
h̄ > h → 0, of strongly converging finite element solutions that also satisfy
discretized first-order optimality conditions. Finally, in Proposition 8, we show
that the Lagrange multiplier, ph ∈ Mh, that satisfies the discretized first-order
optimality conditions, converges strongly in L2(Ω) to the Lagrange multiplier
for the infinite-dimensional problem.

We now fix an isolated minimizer (u, ρ) of (BP). We define the radius of
the basin of attraction as the largest value r such that (u, ρ) is the unique local
minimizer in Br,H1(Ω)×L2(Ω)(u, ρ) ∩ (H1

g,div(Ω)d × Cγ), where

Br,H1(Ω)×L2(Ω)(u, ρ)

:= {v ∈ H1(Ω)d, η ∈ Cγ : ‖u− v‖H1(Ω) + ‖ρ− η‖L2(Ω) ≤ r}.
(4.2)

We also define Br,H1(Ω)(u) and Br,L2(Ω)(ρ) by

Br,H1(Ω)(u) := {v ∈ H1(Ω)d : ‖u− v‖H1(Ω) ≤ r}, (4.3)

Br,L2(Ω)(ρ) := {η ∈ Cγ : ‖ρ− η‖L2(Ω) ≤ r}. (4.4)
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We note that

(H1
g,div(Ω)d ∩Br/2,H1(Ω)(u))× (Cγ ∩Br/2,L2(Ω)(ρ))

⊂ Br,H1(Ω)×L2(Ω)(u, ρ) ∩ (H1
g,div(Ω)d × Cγ)

and hence (u, ρ) is also the unique minimizer in (H1
g,div(Ω)d ∩Br/2,H1(Ω)(u))×

(Cγ ∩Br/2,L2(Ω)(ρ)).
Moreover, we define the spaces Vgh,h and V0,h by

Vgh,h := {vh ∈ Xgh,h : b(vh, qh) = 0 for all qh ∈Mh},
V0,h := {vh ∈ X0,h : b(vh, qh) = 0 for all qh ∈Mh}.

Remark 7. In the context of the material distribution, it might be a more nat-
ural choice to assume that ρ is isolated with respect to the L∞-norm. Assuming
ρ is isolated with respect to the L2-norm is a stronger isolation assumption, as
it cannot be guaranteed that if η ∈ Cγ lives in an isolated neighborhood with
respect to the L2-norm, η ∈ Br,L2(Ω)(ρ), then, there exists an r∗ > 0, such that
η ∈ Br∗,L∞(Ω)(ρ) where Br∗,L∞(Ω)(ρ) is an isolated neighborhood with respect
to the L∞-norm. We make this stronger isolation assumption as simple and
continuous functions are not dense in L∞(Ω), but are dense in L2(Ω). This
has implications in the assumption (F3) and, subsequently, in the remaining
results. However, as far as we are aware, the L2-isolation assumption is valid
for all practical problems found in the literature, in particular it holds for both
examples found in Section 5.

Remark 8. We note that balls centred at ρ ∈ Cγ are equivalent if measured
against any Ls-norm for s ∈ [1,∞). More precisely, for any s, q ∈ [1,∞), if
η ∈ Cγ ∩Br,Lq(Ω)(ρ), there exists an r∗ > 0, depending on s ∈ [1,∞), such that
η ∈ Cγ ∩ Br∗,Ls(Ω)(ρ). Hence, the assumption that the material distribution is
isolated with respect to L2-norm is not a stronger assumption than being isolated
with respect to the Ls-norm provided s ∈ [1,∞).

In Propositions 4–7 and Corollary 1, we fix an isolated minimizer (u, ρ) of
(BP) and suppose that the conditions of Theorem 4 hold.

Proposition 4 (Weak convergence of (uh, ρh) in H1(Ω)d × L2(Ω)). Consider
the finite-dimensional optimization problem: find (uh, ρh) that minimizes

min
(vh,ηh)∈(Vgh,h

∩Br/2,H1(Ω)(u))×(Cγ,h∩Br/2,L2(Ω)(ρ))
J(vh, ηh). (BPh)

Then, a minimizer (uh, ρh) of (BPh) exists and there exist subsequences (up to
relabeling) such that

uh ⇀ u weakly in H1(Ω)d, (4.5)

uh → u strongly in L2(Ω)d, (4.6)

ρh
∗
⇀ ρ weakly-* in L∞(Ω), (4.7)

ρh ⇀ ρ weakly in Ls(Ω), s ∈ [1,∞). (4.8)
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Proof. The functional J is continuous and (Vgh,h ∩ Br/2,H1(Ω)(u)) × (Cγ,h ∩
Br/2,L2(Ω)(ρ)) is a finite-dimensional, closed and bounded set. Moreover, for
sufficiently small h it is non-empty. Therefore, it is sequentially compact by the
Heine–Borel theorem. Hence J obtains its infimum in (Vgh,h ∩Br/2,H1(Ω)(u))×
(Cγ,h ∩Br/2,L2(Ω)(ρ)) and therefore, a minimizer (uh, ρh) exists.

By a corollary of Kakutani’s Theorem, if a Banach space is reflexive then
every norm-closed, bounded and convex subset of the Banach space is weakly
compact and thus, by the Eberlein–Šmulian theorem, sequentially weakly com-
pact. It can be checked that H1(Ω)d ∩ Br/2,H1(Ω)(u) and Cγ ∩ Br/2,L2(Ω)(ρ)
are norm-closed, bounded and convex subsets of the reflexive Banach spaces
H1(Ω)d and L2(Ω), respectively. Therefore, H1(Ω)d ∩ Br/2,H1(Ω)(u) is weakly

sequentially compact in H1(Ω)d and Cγ ∩ Br/2,L2(Ω)(ρ) is weakly sequentially
compact in L2(Ω).

Hence we can extract subsequences, (uh) and (ρh) of the sequence generated
by the global minimizers of (BPh) such that

uh ⇀ û ∈ H1(Ω)d ∩Br/2,H1(Ω)(u) weakly in H1(Ω)d, (4.9)

ρh ⇀ ρ̂ ∈ Cγ ∩Br/2,L2(Ω)(ρ) weakly in L2(Ω). (4.10)

By assumption (F3), there exists a sequence of finite element functions ρ̃h ∈
Cγ,h that strongly converges to ρ in L2(Ω). Moreover let ũh ∈ Vgh,h be a finite
element function taken from the sequence of finite element functions that satisfy
ũh → u strongly in H1(Ω)d. Such a sequence is shown to exist in [6, Lemma
3.1].

We now wish to identify the limits û and ρ̂. Consider the following bound:

|J(ũh, ρ̃h)− J(u, ρ)|

≤
∫

Ω

|(α(ρ)− α(ρ̃h))|u|2|+ |α(ρ̃h)(|u|2 − |ũh|2)| dx

+

∫
Ω

ν
∣∣|∇u|2 − |∇ũh|2|∣∣+ 2|f · (u− ũh)| dx

≤ Lα‖u‖2L4(Ω)‖ρ̃h − ρ‖L2(Ω)

+ ᾱ‖ũh − u‖L2(Ω)(‖ũh − u‖L2(Ω) + 2‖u‖L2(Ω))

+ ν‖ũh − u‖H1(Ω)(‖ũh − u‖H1(Ω) + 2‖u‖H1(Ω))

+ 2‖f‖L2(Ω)‖ũh − u‖L2(Ω),

(4.11)

where Lα denotes the Lipschitz constant for α. From (4.11) we see that

J(ũh, ρ̃h)→ J(u, ρ) as h→ 0.

Furthermore, for sufficiently small h > 0 we note that

(ũh, ρ̃h) ∈ (Vgh,h ∩Br/2,H1(Ω)(u))× (Cγ,h ∩Br/2,L2(Ω)(ρ)).

Therefore,

J(uh, ρh) ≤ J(ũh, ρ̃h). (4.12)
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By taking the limit as h→ 0 and utilizing the strong convergence of ũh and ρ̃h
to u and ρ, respectively, we see that

lim
h→0

J(uh, ρh) ≤ J(u, ρ). (4.13)

(F1) implies that

uh|∂Ω = gh → g strongly in H1/2(∂Ω)d. (4.14)

By assumption (F3), for every q ∈ L2
0(Ω), there exists a sequence of q̃h ∈ Mh

such that q̃h → q strongly in L2(Ω). Since uh ⇀ û weakly in H1(Ω)d and
uh ∈ Vgh,h, we see that

b(û, q) = lim
h→0

b(uh, q̃h) + lim
h→0

b(uh, q − q̃h) = 0 for all q ∈ L2
0(Ω). (4.15)

Hence û is pointwise divergence-free and together with (4.14), we deduce that
û ∈ H1

g,div(Ω)d ∩Br/2,H1(Ω)(u). By construction ρ̂ ∈ Cγ ∩Br/2,L2(Ω)(ρ).
With a small modification to the proof found in [6, Th. 3.1], we note that J

is weakly lower semicontinuous on H1(Ω)d × L2(Ω). Therefore,

J(û, ρ̂) ≤ lim inf
h→0

J(uh, ρh). (4.16)

We note that (u, ρ) is the unique minimizer of (U ∩ Br/2,H1(Ω)(u)) × (Cγ ∩
Br/2,L2(Ω)(ρ)), which implies that J(u, ρ) ≤ J(û, ρ̂). Hence, from (4.13) and
(4.16), it follows that

J(û, ρ̂) = J(u, ρ). (4.17)

Since (u, ρ) is the unique minimizer in the spaces we consider, we can identify
the limits û and ρ̂ as u and ρ, respectively, and state that uh ⇀ u weakly in
H1(Ω)d and ρh ⇀ ρ weakly in L2(Ω). By the Rellich–Kondrachov theorem, we
can extract a further subsequence such that uh → u strongly in L2(Ω)d.

We note that by the Banach–Alaoglu theorem, the closed unit ball of the dual
space of a normed vector space, (for example L1(Ω)), is compact in the weak-*

topology. Hence we can also find a subsequence such that ρh
∗
⇀ ρ̂ ∈ Cγ ∩ {η :

‖ρ− η‖L∞(Ω) ≤ r/2} weakly-* in L∞(Ω). By the uniqueness of the weak limit,

we can identify ρ̂ = ρ a.e. in Ω and, thus, we deduce that ρh
∗
⇀ ρ weakly-* in

L∞(Ω), i.e.
∫

Ω
ρhη dx→

∫
Ω
ρη dx for any η ∈ L1(Ω). Since Ls(Ω) ⊂ L1(Ω), for

any s > 1, we note that
∫

Ω
ρhη dx→

∫
Ω
ρη dx for any η ∈ Ls(Ω), s ≥ 1. Hence,

by definition, ρh ⇀ ρ weakly in Ls(Ω) for all s ∈ [1,∞).

Corollary 1 (Strong convergence of ρh in Ls(Ωb) ). Let Ωb be any measurable
subset of Ω of positive measure on which ρ is equal to zero or one a.e. (if such
a set exists). Then, there exists a sequence of finite element minimizers, ρh, of
(BPh) that converge strongly in Ls(Ωb) to the isolated local minimizer of (BP),
where s ∈ [1,∞).
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Proof. We have shown that there exists a sequence of finite element minimizers
(uh, ρh) of (BPh) that converge to the isolated local minimizer (u, ρ). In partic-

ular ρh
∗
⇀ ρ weakly-* in L∞(Ω) and ρh ⇀ ρ weakly in Ls(Ω) for all s ∈ [1,∞).

The result is then deduced by following the proof of Corollary 3.2 in [27].

Proposition 5 (Strong convergence of ρh in Ls(Ω), s ∈ [1,∞)). There exists
a subsequence of minimizers, (ρh), of (BPh) such that

ρh → ρ strongly in Ls(Ω), s ∈ [1,∞). (4.18)

Proof. We note that Cγ,h∩Br/2,L2(Ω)(ρ) is a convex set, and hence for any ηh ∈
Cγ,h∩Br/2,L2(Ω)(ρ), t ∈ [0, 1], we have that ρh+t(ηh−ρh) ∈ Cγ,h∩Br/2,L2(Ω)(ρ).
Since (uh, ρh) is a minimizer of (BPh), by the arguments used in Proposition 2
we deduce that∫

Ω

α′(ρh)|uh|2(ηh − ρh)dx ≥ 0 for all ηh ∈ Cγ,h ∩Br/2,L2(Ω)(ρ). (4.19)

Hence, (FOC3) and (4.19) imply that for all η ∈ Cγ and ηh ∈ Cγ,h∩Br/2,L2(Ω)(ρ)
we have that ∫

Ω

α′(ρ)|u|2ρ dx ≤
∫

Ω

α′(ρ)|u|2η dx, (4.20)∫
Ω

α′(ρh)|uh|2ρh dx ≤
∫

Ω

α′(ρh)|uh|2ηh dx. (4.21)

By subtracting
∫

Ω
α′(ρ)|u|2ρhdx from (4.20) and

∫
Ω
α′(ρh)|uh|2ρdx from (4.21),

we see that ∫
Ω

α′(ρ)|u|2(ρ− ρh) dx ≤
∫

Ω

α′(ρ)|u|2(η − ρh)dx, (4.22)∫
Ω

α′(ρh)|uh|2(ρh − ρ) dx ≤
∫

Ω

α′(ρh)|uh|2(ηh − ρ) dx. (4.23)

Summing (4.22) and (4.23) and rearranging the left-hand side, we see that∫
Ω

(α′(ρ)− α′(ρh))|u|2(ρ− ρh)dx+

∫
Ω

α′(ρh)(|u|2 − |uh|2)(ρ− ρh)dx

≤
∫

Ω

α′(ρ)|u|2(η − ρh)dx+

∫
Ω

α′(ρh)|uh|2(ηh − ρ)dx.

(4.24)

By fixing η = ρh ∈ Cγ and subtracting the second term on the left-hand side of
(4.24) from both sides we deduce that∫

Ω

(α′(ρ)− α′(ρh))|u|2(ρ− ρh)dx

≤
∫

Ω

α′(ρh)|uh|2(ηh − ρ)dx+

∫
Ω

α′(ρh)(|uh|2 − |u|2)(ρ− ρh)dx.

(4.25)

20



By an application of the mean value theorem, we note that there exists a c ∈
(0, 1) such that ∫

Ω

(α′(ρ)− α′(ρh))|u|2(ρ− ρh)dx

=

∫
Ω

α′′(ρh + c(ρ− ρh))|u|2(ρ− ρh)2dx.

(4.26)

By (A5) and the definition of Uθ we bound (4.26) from below:∫
Ω

α′′(ρh + c(ρ− ρh))|u|2(ρ− ρh)2dx

≥
∫
Uθ

α′′(ρh + c(ρ− ρh))|u|2(ρ− ρh)2dx ≥ α′′minθ‖ρ− ρh‖2L2(Uθ).

(4.27)

Now we bound the right-hand side of (4.25) as follows,∫
Ω

α′(ρh)|uh|2(ηh − ρ)dx+

∫
Ω

α′(ρh)(|uh|2 − |u|2)(ρ− ρh)dx

≤ 2α′max(‖u‖2L4(Ω) + ‖u− uh‖2L4(Ω))‖ρ− ηh‖L2(Ω)

+ α′max‖ρ− ρh‖Lq(Ω)‖u+ uh‖Lq′ (Ω)‖u− uh‖L2(Ω),

(4.28)

where 2 < q′ < ∞ in two dimensions, 2 < q′ ≤ 6 in three dimensions, and
q = 2q′/(q′ − 2). We note that

‖u+ uh‖Lq′ (Ω) ≤ ‖u‖Lq′ (Ω) + ‖uh‖Lq′ (Ω)

≤ ‖u‖H1(Ω) + ‖uh‖H1(Ω) ≤ Ĉ <∞,
(4.29)

where the second inequality holds thanks to the Sobolev embedding theorem.
Combining (4.25)–(4.29) we see that

‖ρ− ρh‖2L2(Uθ) ≤ C
(
‖ρ− ηh‖L2(Ω) + ‖ρ− ρh‖Lq(Ω)‖u− uh‖L2(Ω)

)
, (4.30)

where C = C(α′max, α
′′
min, θ, ‖u‖L4(Ω), Ĉ). By assumption (F3), there exists a

sequence of finite element functions ρ̃h ∈ Cγ,h such that ρ̃h → ρ strongly in
L2(Ω). Thanks to the strong convergence, we note that for sufficiently small
h, ρ̃h ∈ Cγ,h ∩ Br/2,L2(Ω)(ρ). Hence we can fix ηh = ρ̃h. By Proposition 4, we

know that uh → u strongly in L2(Ω)d and since ρ ∈ Cγ , ρh ∈ Cγ,h ⊂ Cγ , then
‖ρ − ρh‖Lq(Ω) ≤ |Ω|1/q‖ρ − ρh‖L∞(Ω) ≤ |Ω|1/q. Therefore, the right-hand side
of (4.30) tends to zero as h→ 0. Hence, we deduce that

ρh → ρ strongly in L2(Uθ), θ > 0. (4.31)

Now we note that

‖ρ− ρh‖L2(Ω) = ‖ρ− ρh‖L2(Uθ) + ‖ρ− ρh‖L2(U\Uθ) + ‖ρ− ρh‖L2(Ω\U). (4.32)
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If U\Uθ or Ω\U are empty, we neglect the corresponding term in (4.32) with
no loss of generality. Suppose Ω\U is non-empty. By definition of U , u = 0
a.e. in Ω\U . By Proposition 3, this implies that ρ = 0 a.e. in Ω\U . Therefore,
Corollary 1 implies that

ρh → ρ strongly in L2(Ω\U). (4.33)

Suppose U\Uθ is non-empty. Since, ρ, ρh ∈ Cγ we see that

‖ρ− ρh‖L2(U\Uθ) ≤ |U\Uθ|1/2 → 0 as θ → 0. (4.34)

Therefore, by first taking the limit as h → 0 and then by taking the limit as
θ → 0, (4.31)–(4.34) imply that ρh → ρ strongly in L2(Ω).

Since ‖ρ − ρh‖L1(Ω) ≤ |Ω|1/2‖ρ − ρh‖L2(Ω), we see that ρh → ρ strongly in
L1(Ω). Hence, for any s ∈ [1,∞),∫

Ω

|ρ− ρh|sdx =

∫
Ω

|ρ− ρh|s−1|ρ− ρh|dx ≤ 1s−1‖ρ− ρh‖L1(Ω), (4.35)

which implies that ρh → ρ strongly in Ls(Ω).

Proposition 6 (Strong convergence of uh in H1(Ω)d). There exists a subse-
quence of minimizers, (uh), of (BPh) such that

uh → u strongly in H1(Ω)d. (4.36)

Proof. We note that the set Wh := Vgh,h ∩ Br/2,H1(Ω)(u) is convex. Hence, by
following the same arguments for deriving the variational inequality on ρ as in
Proposition 2, it can be shown that minimizers of (BPh) satisfy the variational
inequality

aρh(uh,wh − uh)− lf (wh − uh) ≥ 0 for all wh ∈Wh. (4.37)

We note that in the next proposition (Proposition 7), we will show that (4.37)
can be strengthened to an equality. However, this result is not currently avail-
able at this point and an equality does not follow from the arguments in Propo-
sition 2. We note though that an inequality is sufficient for the subsequent
arguments. From Proposition 2 we deduce that, for all wh ∈Wh,

aρ(u,wh − uh) + b(wh − uh, p) = lf (wh − uh).

Hence

aρh(uh,uh −wh) ≤ aρ(u,uh −wh) + b(uh −wh, p). (4.38)

By subtracting aρh(wh,uh −wh) from both sides we see that

aρh(uh −wh,uh −wh)

≤ aρ(u,uh −wh)− aρh(wh,uh −wh) + b(uh −wh, p− qh).
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We note that aρh is coercive with constant ca = ν/(c2p + 1), and b is bounded
with constant Cb. Hence,

‖uh −wh‖2H1(Ω) ≤
1

ca
aρh(uh −wh,uh −wh)

≤ 1

ca
(aρ(u,uh −wh)− aρh(wh,uh −wh) + b(uh −wh, p− qh))

=
1

ca

(∫
Ω

α(ρh)(u−wh) · (uh −wh) + (α(ρ)− α(ρh))u · (uh −wh)dx

+

∫
Ω

ν∇(u−wh) : ∇(uh −wh)dx+ b(uh −wh, p− qh)

)
≤ 1

ca
ᾱ‖u−wh‖L2(Ω)‖uh −wh‖L2(Ω)

+
1

ca
‖(α(ρ)− α(ρh))u‖L2(Ω)‖uh −wh‖L2(Ω)

+
ν

ca
|u−wh|H1(Ω)|uh −wh|H1(Ω) +

Cb
ca
‖uh −wh‖H1(Ω)‖p− qh‖L2(Ω).

Hence,

‖uh −wh‖H1(Ω) ≤ C
(
‖u−wh‖H1(Ω) + ‖(α(ρ)− α(ρh))u‖L2(Ω) + ‖p− qh‖L2(Ω)

)
,

where C = C(ᾱ, ν, ca, Cb) is a constant. This implies that, for all wh ∈Wh,

‖u− uh‖H1(Ω)

≤ C ′
(
‖u−wh‖H1(Ω) + ‖(α(ρ)− α(ρh))u‖L2(Ω) + ‖p− qh‖L2(Ω)

)
.

(4.39)

where C ′ = C ′(ᾱ, ν, ca, Cb, Lα). For sufficiently small h, we note that ũh ∈ Wh

(where ũh is defined in the proof of Proposition 4) and ũh → u strongly in
H1(Ω)d. Moreover by assumption (F3), there exists a sequence of finite element
functions p̃h ∈ Mh that converges to p strongly in L2(Ω). Suppose wh = ũh
and qh = p̃h. From Proposition 5, we know that there exists a subsequence (not
indicated) such that ρh → ρ strongly in L4(Ω). We now observe that

‖(α(ρ)− α(ρh))u‖L2(Ω) ≤ Lα‖ρ− ρh‖L4(Ω)‖u‖L4(Ω) (4.40)

where Lα is the Lipschitz constant for α. Hence by taking the limit as h → 0,
we deduce that uh → u strongly in H1(Ω)d.

In the following proposition, we show that (up to a subsequence) mini-
mizers of (BPh) also satisfy the first-order optimality conditions that are the
finite-dimensional analogue of the first-order optimality conditions associated
with (BP). This allows us to consider the finite-dimensional optimization prob-
lem over the whole set Vgh,h × Cγ,h, rather than the restricted set (Vgh,h ∩
Br/2,H1(Ω)(u))× (Cγ,h ∩Br/2,L2(Ω)(ρ)).
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Proposition 7 (Discretized first-order optimality conditions). There exists an
h̄ > 0 such that for all h < h̄, there exists a unique Lagrange multiplier ph ∈Mh

such that the functions (uh, ρh) that locally minimize (BPh) satisfy the first-
order optimality conditions (FOC1h)–(FOC3h)

Proof. From Proposition 6, we know that uh → u strongly in H1(Ω)d. Hence by
definition of strong convergence, there exists an h̄ > 0 such that, for all h ≤ h̄,
‖u − uh‖H1(Ω) ≤ r/4. Therefore, for each vh ∈ V0,h, if |t| < r/(4‖vh‖H1(Ω))
then uh + tvh ∈ Vgh,h ∩Br/2,H1(Ω)(u). Now we can follow the reasoning of the
proof of Proposition 2 (adding the subscript h where necessary) to deduce the
existence of a unique ph ∈Mh such that (FOC1h)–(FOC3h) hold.

Proposition 8 (Strong convergence of ph in L2(Ω)). There is a subsequence of
the unique ph ∈Mh defined in Proposition 7 that converges strongly in L2(Ω) to
the p ∈ L2

0(Ω) that solves (FOC1)–(FOC3) for the given isolated local minimizer
(u, ρ).

Proof. The inf-sup condition (F2) for Mh and X0,h implies that, for any qh ∈
Mh,

cb‖qh − ph‖L2(Ω) ≤ sup
wh∈X0,h\{0}

b(wh, qh − ph)

‖wh‖H1(Ω)

= sup
wh∈X0,h\{0}

b(wh, p− ph) + b(wh, qh − p)
‖wh‖H1(Ω)

≤ sup
wh∈X0,h\{0}

|b(wh, p− ph)|+ |b(wh, qh − p)|
‖wh‖H1(Ω)

= sup
wh∈X0,h\{0}

|aρ(u,wh)− aρh(uh,wh)|+ |b(wh, qh − p)|
‖wh‖H1(Ω)

≤ ‖(α(ρ)− α(ρh))u‖L2(Ω) + (ᾱ+ ν) ‖u− uh‖H1(Ω)

+ Cb‖p− qh‖L2(Ω).

Hence,

‖p− ph‖L2(Ω) ≤ C
(
‖(α(ρ)− α(ρh))u‖L2(Ω) + ‖u− uh‖H1(Ω) + ‖p− qh‖L2(Ω)

)
,

where C = C(cb, Cb, ᾱ, Lα, ν). By assumption (F3), there exists a sequence
of finite element functions, p̃h ∈ Mh that satisfies p̃h → p strongly in L2(Ω).
Let qh = p̃h. We have already shown that uh → u strongly in H1(Ω)d in
Proposition 6. Similarly, in the proof of Proposition 6 we also showed that
‖(α(ρ) − α(ρh))u‖L2(Ω) → 0. Hence we conclude that ph → p strongly in
L2(Ω).

Proof of Theorem 4. Fix an isolated minimizer (u, ρ) of (BP) and its unique
associated Lagrange multiplier p. By the results of Propositions 4, 5, 6, and 7,
there exists a mesh size h̄ such that for, h < h̄, there exists a sequence of finite
element solutions (uh, ρh, ph) ∈ Vgh,h×Cγ,h×Mh satisfying (FOC1h)–(FOC3h)
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that converges to (u, ρ, p). By taking a subsequence if necessary (not indicated),
Proposition 5, implies that ρh → ρ strongly in Ls(Ω), s ∈ [1,∞), Proposition 6
implies that uh → u strongly in H1(Ω)d, and Proposition 8 implies that ph → p
strongly in L2(Ω).

5. Numerical results

The main goal of this section is to experimentally verify the existence of
strongly converging sequences that were proven to exist in Section 4. In all
examples the systems are discretized with the finite element method using FEn-
iCS [28]. The computational domains are triangulated with simplices and we
define the mesh size, h, as the maximum diameter of all the simplices in the
triangulation. The solutions are computed using the deflated barrier method
[29]. The deflated barrier method reformulates the discretized first-order op-
timality conditions (FOC1h)–(FOC3h) as a mixed complementarity problem.
The mixed complementarity problem is then solved with a primal-dual active
set strategy [30], a Newton-like solver that incorporates the box constraints on
ρh. Typically, nonlinear convergence is difficult to achieve from a näıve initial
guess. Hence, the functional J in (BP) is augmented with barrier-like terms.
Continuation of the barrier parameter to zero then recovers the solution to the
original first-order optimality conditions. A key feature of the deflated barrier
method, as required in this work, is the ability to systematically discover mul-
tiple solutions of topology optimization problems from the same initial guess.
This is achieved via the deflation technique [31, 32], [29, Sec. 3.2]. Deflation
prevents a Newton-like solver from converging to an already discovered solution
by modifying the discretized first-order optimality conditions with a deflation
operator. Deflation is extremely cheap to implement (effectively at the same
cost as two inner products) and does not affect the conditioning of the linear
systems that are solved during the run of the Newton-like solver. The resulting
linear systems arising in the deflated barrier method are solved by a sparse LU
factorization with MUMPS [33] and PETSc [34].

There are no known solutions for choices of the inverse permeability, α,
used in practice. Hence, errors are measured with respect to a heavily-refined
finite element solution, which is constructed as follows; first the finite element
solutions are computed on a mesh with mesh size h = 0.028, using the deflated
barrier method. Next, the mesh is adaptively refined three times in areas where
the material distribution is between 1/10 and 9/10. Each time the mesh is
refined, the coarse-mesh solution is interpolated onto the finer mesh as an initial
guess and the first-order optimality conditions are re-solved using the deflated
barrier method.

In principle, there can be infinitely many different subsequences of finite
element solutions that strongly converge to the same minimizer of the infinite-
dimensional problem at different convergence rates. Separate subsequences
cause difficulties in the interpretation of the convergence plots as they present
themselves as oscillations in the error. This is observed in practice and appears
to be caused by at least the following two reasons:
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(P1) Multiple finite element solutions can exist on the same mesh that represent
the same solution of the infinite-dimensional problem, e.g. Figure 5;

(P2) A fine mesh can align worse than a coarser mesh with the jumps in the
material distribution that solves the infinite-dimensional problem.

Observation (P1) is not surprising in the context of nonlinear PDEs and non-
convex variational problems. In such cases, an additional selection mechanism
is required in order to favor one particular solution over others coexisting on
the same mesh. Selection mechanisms are problem-dependent. In the case of
nonlinear hyperbolic conservation laws the entropy condition plays this role. In
the present context, one might propose choosing the solution, minimizing the
modified optimization problem (BPh), that attains the smallest objective func-
tional value for J , within the basin of attraction of the isolated local minimizer.
For sufficiently small h, a minimizer satisfying this selection mechanism must
exist. However, it is not necessarily unique and numerically enforcing such a
condition can be difficult. In order to promote convergence to the minimizer
of (BPh) with the smallest value J , we interpolate the heavily-refined finite el-
ement solutions onto coarser meshes as initial guesses for the deflated barrier
method. This strategy was effective in practice. The effects of the second obser-
vation (P2) are harder to test. However, in Section 5.2, we attempt to minimize
mesh bias by measuring errors on unstructured meshes.

Code availability: For reproducibility, an implementation of the deflated
barrier method as well as scripts to generate the convergence plots and solutions
can be found at https://bitbucket.org/papadopoulos/deflatedbarrier/.
The version of the software used in this paper is archived on Zenodo [35].

5.1. Discontinuous-forcing

Consider the optimization problem (BP), with a homogeneous Dirichlet
boundary condition on u, Ω = (0, 1)2, volume fraction γ = 1/3, viscosity ν = 1
and a forcing term given by

f(x, y) =

{
(10, 0)> if 3/10 < x < 7/10 and 3/10 < y < 7/10,

(0, 0)> otherwise.
(5.1)

The inverse permeability, α, is as given in (2.1), with α = 2.5×104 and q = 1/10,
which satisfies (A1)–(A5). Here q is a penalty parameter which controls the level
of intermediate values (between zero or one) in the optimal design. Figure 1
depicts the material distribution of three minimizers. One local minimizer is in
the shape of a figure eight and the two Z2 symmetric global minimizers are in
the shape of annuli. Since the domain is convex, g = 0, and f ∈ L2(Ω)d, then,
by the regularity results proven in the Appendix, u ∈ H2(Ω)2 and p ∈ H1(Ω).
The conditions of Theorem 3 hold and, therefore, ρ ∈ H1(Uθ) for every θ > 0. In
this particular example, the support of ρ is compactly contained in the support
of the velocity in all three solutions. Therefore, we conclude that ρ ∈ H1(Ω).
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Figure 1: The material distribution of a local (left) and the global (middle and right) min-
imizers of the discontinuous-forcing optimization problem. Black corresponds to a value of
ρ = 0 and white corresponds to a value of ρ = 1, with the gray regions indicating intermediate
values. The arrows indicate the velocity profile of the solutions.

Consider a (P2)2 ×P1 Taylor–Hood finite element discretization for the ve-
locity and the pressure, and a P0 piecewise constant finite element discretization
for the material distribution. Since all three solutions are isolated local mini-
mizers, by Theorem 4, there exists a sequence of finite element solutions to the
discretized first-order optimality conditions that strongly converges to the figure
eight solution, and different sequences of different finite element solutions that
strongly converge to the two annulus solutions. Their existence is confirmed in
Figure 2.

Since ρ ∈ H1(Ω) and we are using a P0 finite element discretization, a
näıve prediction for the convergence rate of the L2-norm error of the material
distribution is O(h). This rate is observed in the bottom left panel of Figure
2. Moreover, since the minimum regularity of the velocity is u ∈ H2(Ω)d, and
we are using a (P2)2 finite element discretization, a prediction for the expected
convergence rates of the velocity are O(h) and O(h2) for the H1-norm and
L2-norm errors of the velocity, respectively.

In the standard Stokes system, the regularity of u is related to the regularity
of the forcing term f ∈ Hs(Ω)d, such that u ∈ Hs+2(Ω)d (assuming the domain
and boundary data are also suitably regular). Here, the regularity of the forcing
term satisfies s < 1/2. If we assume that the velocity has the additional reg-
ularity u ∈ Hs+2(Ω)d, s ∈ (0, 1/2), in this context, a prediction for the upper
limit of the convergence rate is O(hr) and O(ht+1), for some r, t ∈ [1, s + 1],
for the H1-norm and L2-norm errors of the velocity, respectively. The rates
observed in the top panels of Figure 2 match this prediction. The H1-norm
error is decreasing at a rate slightly faster than O(h3/2) for all three solutions
and the L2-norm error convergence rate is O(h2) for the figure eight solution
and O(h5/2) for the annuli solutions. We hypothesize that the upper limit of
the convergence rate of the L2-norm error of the velocity is bounded by the
relatively slower rate of the convergence of the material distribution.

Finally, since the minimum regularity of the pressure is p ∈ H1(Ω) and the
discretization is P1, a prediction for the convergence rate of the L2-norm error
is O(hr), for some r ∈ [1, s+ 1]. Initially, the convergence rate is O(h3/2) which

27



matches our näıve prediction. However, on finer meshes, the convergence rate
increases. We hypothesize that this speedup is artificial and is caused by the
lack of resolution of the refined finite element solutions that are being used as
proxies for the solutions of the infinite-dimensional problem in the error norm
estimate. Qualitatively, it can be checked that mesh refinement in areas where
the discretized material distribution lies between 1/10 and 9/10 is an ineffective
strategy for improving the approximation of the pressure that solves the infinite-
dimensional problem over the whole domain.
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Figure 2: The convergence of uh, ρh, and ph in the discontinuous-forcing problem for the
figure eight and annulus solutions on structured meshes, with a P0× (P2)2×P1 discretization
for (ρh,uh, ph).

5.2. Double-pipe

Consider the optimization problem (BP) [6, Sec. 4.5], with two prescribed
flow inputs and two prescribed outputs, where Ω = (0, 3/2) × (0, 1), γ = 1/3,
f = (0, 0)> and ν = 1 and the boundary conditions on u are given by the
boundary data

g(x, y) =


(
1− 144(y − 3/4)2, 0

)>
if 2/3 ≤ y ≤ 5/6, x = 0 or 3/2,(

1− 144(y − 1/4)2, 0
)>

if 1/6 ≤ y ≤ 1/3, x = 0 or 3/2,

(0, 0)> elsewhere on ∂Ω.

(5.2)
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The function α is as given in (2.1), with α = 2.5 × 104 and q = 1/10. Figure
3 visualizes the setup of the problem and depicts the material distribution of
the two minimizers. One local minimizer is a straight channel solution and the
global minimizer is in the form of a double-ended wrench.

Figure 3: The setup of the double-pipe problem is shown on the left. The middle and right
figures depict the material distribution of the straight channel and double-ended wrench so-
lutions, respectively. Black corresponds to a value of ρ = 0 and white corresponds to a value
of ρ = 1, with the gray regions indicating intermediate values.

We employ a (P2)2 × P1 Taylor–Hood finite element discretization for the
velocity and the pressure, and a P1 continuous piecewise linear finite element
discretization for the material distribution. This example satisfies all the condi-
tions of Theorem 4 and, for both minimizers, we numerically verify that there
exists a sequence of finite element solutions that strongly converges to it in
Figure 4.

As mentioned earlier in this section, it may be possible to find a sequence of
mesh sizes, (hi), such that there exist two different sequences of finite element
solutions that strongly converge to the same isolated minimizer. In Figure 5, we
depict two different straight channel finite element solutions that exist on the
same unstructured mesh where h = 0.04. Both solutions satisfy the discretized
first-order optimality conditions (FOC1h)–(FOC3h) and both locally minimize
J(vh, ηh). Choosing one over the other would change the convergence pattern
of the strongly converging sequence. This may cause difficulty in practice, as
optimization strategies are unlikely to discover the discretized global minimum
without additional selection mechanisms.

6. Conclusions

In this work we have studied the fluid topology optimization model of Bor-
rvall and Petersson [6]. In the case of a homogeneous Dirichlet boundary condi-
tion and under a mild convexity assumption on the inverse permeability term,
α, we have shown that the material distribution necessarily lives in the Sobolev
space H1 inside any compact subset of the support of the velocity. Moreover,
we have formally treated the nonconvexity of the optimization problem (includ-
ing the case of inhomogeneous Dirichlet boundary conditions) and have shown
that, given an isolated minimizer of the infinite-dimensional problem, there
exists a sequence of discretized solutions, satisfying the associated first-order
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Figure 4: The convergence of uh, ρh, and ph for the double-pipe problem for both the straight
channel and double-ended wrench solutions on an unstructured mesh with a P1 × (P2)2 ×P1

discretization for (ρh,uh, ph).

Figure 5: Two different straight channel finite element solutions of the double-pipe optimiza-
tion problem that exist on the same unstructured mesh where h = 0.04. The differences can
be spotted at the midway point of the top channel.

optimality conditions, that strongly converges to the minimizer in the appro-
priate spaces. We have numerically verified that these sequences exist and have
discussed the observed convergence rates.
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Appendix. Elliptic regularity of the generalized Stokes system with
Dirichlet boundary data

Lemma 5. Let the domain Ω be either a convex polygon in two dimensions
or a convex polyhedron in three dimensions and consider the triple (u, ρ, p) ∈
H1

g(Ω)d × Cγ × L2
0(Ω) that satisfies (FOC1)–(FOC3). Suppose that the forcing

term f ∈ L2(Ω)d and the boundary datum g is the boundary trace of a function
ĝ ∈ H2(Ω)d on the boundary ∂Ω and satisfies

∫
∂Ω
g·n ds = 0. Then u ∈ H2(Ω)d

and p ∈ H1(Ω).

Proof. The idea of the proof is to reduce the system (FOC1)–(FOC2) to the
standard Stokes system with a homogeneous Dirichlet boundary condition and
invoke the regularity results of Kellogg and Osborn [36] and in three dimensions
the results found in Kozlov et al. [37] and Maz’ya and Shaposhnikova [38].

Let w := u − ĝ. Since the trace operator is a linear operator, we see that
w|∂Ω = (u − ĝ)|∂Ω = g − g = 0. Since u ∈ H1(Ω)d and ĝ ∈ H2(Ω)d, then
w ∈ H1

0 (Ω)d.
By substituting w into (FOC1)–(FOC2), we see that (FOC1)–(FOC2) is

equivalent to finding (w, p) ∈ H1
0 (Ω)d × L2

0(Ω) that satisfies for all (v, q) ∈
H1

0 (Ω)d × L2
0(Ω):∫

Ω

∇w : ∇v − p div(v) dx =

∫
Ω

(f − α(ρ)(w + ĝ)) · v −∇ĝ : ∇v dx, (A.1)∫
Ω

q div(w + ĝ) dx = 0. (A.2)

Define f̂ as f̂ := f −α(ρ)(w+ ĝ) + ∆ĝ. Since f ∈ L2(Ω)d, α(ρ) ∈ L∞(Ω), w ∈
H1

0 (Ω)d, and ĝ ∈ H2(Ω)d, then f̂ ∈ L2(Ω)d. By an application of integration
by parts on the final term on the right-hand side of (A.1), we see that (A.1)–
(A.2) is equivalent to finding (w, p) ∈ H1

0 (Ω)d × L2
0(Ω) that satisfies for all

(v, q) ∈ H1
0 (Ω)d × L2

0(Ω):∫
Ω

∇w : ∇v − p div(v) dx =

∫
Ω

f̂ · v dx, (A.3)∫
Ω

q div(w) dx =

∫
Ω

qφdx, (A.4)

where φ = −div(ĝ) a.e. and the divergence theorem implies that∫
Ω

φdx = −
∫
∂Ω

g · n ds = 0. (A.5)

We note that (A.3)–(A.4) is the standard Stokes system with a homogeneous
Dirichlet boundary condition and forcing term f̂ ∈ L2(Ω)d. Therefore, by the
elliptic regularity of the Stokes system [36, 37] and [38, Th. 13], w ∈ H2(Ω)d and
p ∈ H1(Ω). Since u = w+ĝ and ĝ ∈ H2(Ω)d, we conclude that u ∈ H2(Ω)d.
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