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SECOND PUBLIC EXAMINATION

Honour School of Mathematics Part C: Paper C6.4
Honour School of Mathematics and Statistics Part C: Paper C6.4

Master of Science in Mathematical Sciences: Paper C6.4

Finite Element Methods for Partial Differential

Equations

TRINITY TERM 2023

Tuesday 06 June, 2:30pm to 4:15pm

You may submit answers to as many questions as you wish but only the best two will count for
the total mark. All questions are worth 25 marks.

You should ensure that you observe the following points:

• start a new answer booklet for each question which you attempt.

• indicate on the front page of the answer booklet which question you have attempted in that
booklet.

• cross out all rough working and any working you do not want to be marked. If you have used
separate answer booklets for rough work please cross through the front of each such booklet
and attach these answer booklets at the back of your work.

• hand in your answers in numerical order.

If you do not attempt any questions, you should still hand in an answer booklet with the front
sheet completed.

Do not turn this page until you are told that you may do so
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1. Suppose that Ω ⊂ Rd is a Lipschitz domain and let ∆ denote the Laplace operator in d
space-dimensions. Suppose further that f ∈ L2(Ω) and consider the boundary-value problem

∆2u+ u = f in Ω,

u = 0 and ∆u = 0 on ∂Ω.
(1)

(a) [6 marks] By introducing the substitution w := −∆u, show that the boundary-value
problem (1) can be rewritten as the following system of second-order elliptic boundary-
value problems:

−∆u− w = 0 in Ω,

u−∆w = f in Ω,

u = 0 and w = 0 on ∂Ω.

(2)

State the weak formulation of the boundary-value problem (2), and show by applying the
Lax–Milgram theorem on the Hilbert space V := H1

0 (Ω) ×H1
0 (Ω) that (2) has a unique

weak solution (u,w) ∈ V.

[You may assume the Poincaré–Friedrichs inequality, asserting the existence of a positive
constant K = K(Ω) such that ‖v‖2L2(Ω) 6 K‖∇v‖2L2(Ω) for all v ∈ H1

0 (Ω).]

(b) [8 marks] Now suppose that Uh and Wh are finite-dimensional subspaces of H1
0 (Ω) and

define Vh := Uh×Wh. Based on the weak formulation from part (a), formulate a Galerkin
approximation over the subspace Vh of V to the boundary-value problem (2), and show
that it has a unique solution (uh, wh) ∈ Vh.

Show further that

‖∇(u− uh)‖2L2(Ω) + ‖∇(w − wh)‖2L2(Ω)

6
(
‖u− uh‖2H1(Ω) + ‖w − wh‖2H1(Ω)

) 1
2

(
min
vh∈Uh

‖u− vh‖2H1(Ω) + min
zh∈Wh

‖w − zh‖2H1(Ω)

) 1
2

.

Hence deduce that there exists a positive real number C, independent of h, such that(
‖u− uh‖2H1(Ω) + ‖w − wh‖2H1(Ω)

) 1
2
6 C

(
min
vh∈Uh

‖u− vh‖2H1(Ω) + min
zh∈Wh

‖w − zh‖2H1(Ω)

) 1
2

.

(c) [4 marks] Let Ω ⊂ R2 be a bounded open polygonal domain and suppose that {Mh}h>0

is a shape-regular mesh sequence on Ω, indexed by the mesh size h, consisting of closed
triangular cells. Suppose further that Uh and Wh consist of continuous piecewise linear
functions defined on Mh. Show that, if both u and w belong to H2(Ω) ∩ H1

0 (Ω), then
there exists a positive real number C∗ = C∗(u,w), independent of h, such that(

‖u− uh‖2H1(Ω) + ‖w − wh‖2H1(Ω)

) 1
2
6 C∗h.

[Bounds on the error between a function v ∈ H2(Ω)∩H1
0 (Ω) and its continuous piecewise

linear interpolant Ihv may be used without proof.]

(d) [7 marks] Let N denote the number of nodes of the mesh Mh from part (c) that are
contained in Ω, and let Uh and Wh be as in part (c). Show that if Uh = Wh, then
the finite element approximation of (2) can be restated as a system of linear algebraic
equations whose matrix has the form

A =

(
S −M
M S

)
,

where the blocks S and M are N ×N symmetric positive definite matrices, whose entries
you should carefully define in terms of the basis functions φi, i = 1, . . . , N , of Uh = Wh.
Show further that the matrix A is positive definite.
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2. (a) [5 marks] Consider the degree-2 Lagrange CG2 element on a nondegenerate triangle K,
shown in Fig. 1 below. Let V := P2(K), where

P2(K) := span{xα1
1 xα2

2 |K : α1 + α2 6 2, αi ∈ N>0 for i = 1, 2},

with (x1, x2) signifying the Cartesian coordinates for K and the degrees of freedom, in-
dicated with the black dots at the three vertices and at the midpoints of the edges of K,
referring to point evaluation.

Figure 1: Degrees of freedom for the element CG2 on the triangle K.

Prove that this element is unisolvent.

(b) [5 marks] Suppose that Ω ⊂ R2 is a triangle. Let ΓD be the union of two edges (including
their end-points) of Ω and let ΓN denote the remaining edge (excluding its end-points), so
that ΓD ∪ ΓN = ∂Ω. Let n denote the unit outward normal vector to ΓN . For f ∈ L2(Ω)
consider the elliptic boundary-value problem

−
(
∂2u

∂x2
+
∂2u

∂y2

)
+ u = f in Ω,

u = 0 on ΓD,

∂u

∂n
= 0 on ΓN .

(3)

Show that the boundary-value problem (3) has a unique weak solution u in a suitable
subspace V of H1(Ω), which you should carefully define.

(c) [4 marks] Let {Mh}h>0 be a shape-regular mesh sequence on Ω, indexed by the mesh
size h, consisting of closed triangular cells. Suppose further that Vh ⊂ V consists of
continuous piecewise quadratic functions vh; that is, on each triangle K of the mesh, vh|K
is a linear combination of monic polynomials of the form xα1yα2 , where α1, α2 ∈ N>0 with
α1 + α2 6 2.

Show that the finite element approximation of problem (3) posed on Mh has a unique
solution uh ∈ Vh.

(d) [5 marks] Let u and uh be as in parts (b) and (c) of the question, respectively, and suppose
that u ∈ H3(Ω) ∩ V.

Show that there exists a positive constant C1, independent of h, such that

‖u− uh‖H1(Ω) 6 C1h
2‖u‖H3(Ω).

[Bounds on the error between a function v and its continuous piecewise quadratic inter-
polant Ihv ∈ Vh may be used without proof.]

(e) [6 marks] Suppose that Ω is an acute triangle, that is, a triangle with three acute angles
(< π/2). By using the Aubin–Nitsche duality argument show further that

‖u− uh‖L2(Ω) 6 C2h
3‖u‖H3(Ω),

where C2 is a positive constant, independent of h.

[You may use without proof the following result. If Ω is an acute triangle and g ∈ L2(Ω),
then there exists a unique w ∈ H2(Ω) such that ∆w = g in Ω, w|ΓD

= 0, ∂w
∂n |ΓN

= 0, and
there exists a positive constant C3 such that ‖w‖H2(Ω) 6 C3‖g‖L2(Ω).]
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3. Suppose that Ω ⊂ R3 is a Lipschitz domain, f ∈ L2(Ω;R3), and µ and λ are positive constants.
Consider the functional J : H1(Ω;R3)→ R defined by

J(v) =
1

2
a(v, v)− `(v), v ∈ H1(Ω;R3),

where the bilinear functional a(·, ·) and the linear functional `(·) are defined, respectively, by

a(w, v) :=

∫
Ω

2µ ε(w(x)) : ε(v(x)) + λ div(w(x)) div(v(x)) dx, `(v) :=

∫
Ω
f(x) · v(x) dx.

For an R3-valued vector function v = (v1, v2, v3)T ∈ H1(Ω;R3), ε(v) ∈ L2(Ω;R3×3) is the
R3×3-valued matrix function such that

(ε(v))i,j :=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, i, j = 1, 2, 3.

Finally, for two matrices A,B ∈ R3×3 the Frobenius inner product “:” is defined by

A : B :=
3∑

i,j=1

Ai,jBi,j

and “·” signifies the dot-product in R3.

(a) [6 marks] Show that J is a convex functional on H1(Ω;R3); that is, for each pair of
functions v, w ∈ H1(Ω;R3) and for each θ ∈ [0, 1],

J(θv + (1− θ)w) 6 θJ(v) + (1− θ)J(w).

(b) [8 marks] Suppose that u ∈ H1
0 (Ω;R3) is such that J(v) > J(u) for all v ∈ H1

0 (Ω;R3).
Show that u is then the unique weak solution of the boundary-value problem

−2µdiv (ε(u))− λ grad(divu) = f on Ω,

u = 0 on ∂Ω,
(4)

with the divergence div(ε(u)) of the matrix function ε(u) taken row-wise.

(c) [5 marks] Suppose that Vh is a finite-dimensional subspace of H1
0 (Ω;R3).

Show that there exists a unique uh ∈ Vh such that

a(uh, vh) = `(vh) ∀ vh ∈ Vh.

Show further that
J(vh) > J(uh) > J(u) for all vh ∈ Vh.

(d) [6 marks] Consider the energy norm ‖ · ‖a on H1
0 (Ω;R3) defined by ‖v‖a := [a(v, v)]

1
2 .

Verify that ‖ · ‖a is indeed a norm.

Show further that uh is the best approximation from Vh to u in the energy norm ‖ · ‖a in
the sense that

‖u− uh‖a = min
vh∈Vh

‖u− vh‖a.

[The Poincaré–Friedrichs inequality (cf. part (a) of Question 1) and the following result, known
as Korn’s inequality, may be used without proof. There exists a positive constant C = C(Ω)
such that

3∑
i,j=1

∥∥∥∥ ∂vi∂xj

∥∥∥∥2

L2(Ω)

6 C

3∑
i,j=1

∥∥∥∥(ε(v))i,j −
1

3
δi,j div(v)

∥∥∥∥2

L2(Ω)

for all v ∈ H1
0 (Ω;R3). ]
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