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Abstract

Analysis and Implementation of Numerical Methods for
Simulating Dilute Polymeric Fluids

David Knezevic Doctor of Philosophy

Balliol College Michaelmas Term 2008

In this thesis we develop, analyse and implement a number of numerical methods for

simulating dilute polymeric fluids. We use a well-known model in which the polymeric

fluid is represented by a suspension of dumbbells in a Newtonian solvent. This model

is governed by a coupled Navier–Stokes–Fokker–Planck system of partial differential

equations, in which the Fokker–Planck equation is posed on a high-dimensional domain.

We first thoroughly analyse a Galerkin spectral method for the Fokker–Planck equa-

tion in configuration space, before combining this method with a finite element scheme

in physical space to obtain an alternating-direction method for the high-dimensional

Fokker–Planck equation. Alternating-direction methods have been considered previ-

ously in the literature for this problem (e.g. see [23, 24, 60]), but this approach has

not been subject to rigorous numerical analysis before. We develop many theoretical

results for our numerical algorithms, and we focus particularly on establishing stability

and convergence estimates. The numerical methods we develop are fully-practical, and

we present a range of numerical results demonstrating their accuracy and efficiency.

We also introduce a coupled numerical algorithm for the Navier–Stokes–Fokker–

Planck system, which we use to simulate polymeric fluid flow problems of physical

interest. The numerical method for the high-dimensional Fokker–Planck equation is

the most computationally intensive part of this coupled algorithm, but it is well suited

to implementation on a parallel computer, and we exploit this fact to make large-scale

computations feasible.
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Chapter 1

Introduction

The study of the dynamics of polymeric fluids has been an area of active research

since the 1950’s and has undergone significant evolution since that time. In the early

work in this field, analytical techniques were developed with the goal of deriving exact

solutions for idealised flow problems. With the increasing availability of computational

power in subsequent years, it was natural for researchers to apply numerical methods

to more complicated flow problems for polymeric fluids (and non-Newtonian fluids in

general) than were tractable with analytical methods. This line of research, known

as computational rheology, took root in the 1970’s and it remains an exciting and

challenging area of scientific computing today.

In this thesis we investigate a particular problem from computational rheology: the

simulation of dilute polymeric fluids using deterministic multiscale numerical methods.

We focus our attention on the rigorous analysis of the numerical methods developed

here and we also present a wide array of computational results, which demonstrate the

effectiveness of the methods in practice.

The essence of the subject of modelling dilute polymeric fluids is encapsulated in the

coupled Navier–Stokes–Fokker–Planck system (this is discussed in detail in Section 1.3).

This system of equations is often referred to as the “micro-macro” model to emphasise

that it is fundamentally multiscale in nature. It is worth highlighting at the outset

that there is an extensive literature on numerical methods for simulating polymeric

fluids, but most of the previous work uses either a fully macroscopic approach in

order to circumvent the multiscale nature of the Navier–Stokes–Fokker–Planck system

(see the text [69] for an overview of this field) or a stochastic approach in which

the micro-macro system is treated using Monte-Carlo-type methods (cf. [68]). The

direction pursued in this thesis is rather different; our goal is to solve the micro-

macro system using deterministic methods (e.g. finite element or spectral methods).

This will subsequently be referred to as the deterministic multiscale approach. The

1
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various advantages and disadvantages of fully macroscopic, stochastic and deterministic

multiscale methods will be discussed in detail later, but it should be noted at the

outset that the deterministic multiscale method has received far less attention in the

literature than the other approaches, probably because this approach can be highly

computationally intensive. The central goal of this thesis, therefore, is to develop

multiscale numerical methods for the micro-macro model of dilute polymeric fluids

and to address some of the questions related to numerical analysis of such methods,

which, up to now, have not been considered in the literature.

In this introductory chapter, we discuss background material on the mathematical

modelling of polymer fluids. Newtonian fluids are briefly considered in Section 1.1, and

then in Section 1.2 some “coarse-grained” mechanical models for polymer molecules

are introduced. Next, in Section 1.3, we derive the Fokker–Planck equation and define

the coupled Navier–Stokes–Fokker–Planck system. Section 1.4 contains a literature

review of the many and varied numerical methods that have been used for simulating

polymeric fluids (these methods fall into the three categories mentioned in the previous

paragraph), and the chapter concludes with an overview of the outlook and goals of

this thesis.

1.1 Overview of Newtonian fluid dynamics

The success of classical fluid dynamics in accurately describing the properties of a wide

range of fluids (typically with low molecular weight, e.g. water) using macroscopic

continuum models is well established. We begin with a very brief review of some

principles of classical fluid dynamics (for a full discussion see [11]) as this will be useful

for elucidating important ideas in the theory of polymeric fluids.

In the case of Newtonian fluids it has been experimentally established that in a

shear flow, i.e. u = u(y), v = 0 where u and v are the components of a two-dimensional

velocity field u∼ = (u, v), the fluid stress can be related to shear rate by “Newton’s law

of viscosity”:

σyx = µ
du

dy
, (1.1)

where σyx denotes the force per unit area acting in the x-direction, on a surface normal

to the y-direction. That is, stress is proportional to shear rate and the viscosity, µ,

is the constant of proportionality. This relationship can be generalised to a tensor

equation for the stress tensor, σ
≈

, and the strain tensor as follows:

σ
≈

= −pI
≈

+ µ
(
∇∼ u∼ + (∇∼ u∼)T

)
. (1.2)
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This equation provides a relationship between the stress and strain of a fluid (in this

case, a simple linear equation) and is known as a constitutive equation.

Combining the Newtonian constitutive equation (1.2) with the equations of conser-

vation of mass:

∇∼ · u∼ = 0, (1.3)

and momentum:

ρ

(
∂u∼
∂t

+ u∼ · ∇∼ u∼
)

= ∇∼ · σ≈ , (1.4)

where ρ is the fluid density (assumed to be constant), gives rise to the Navier–Stokes

equations for an incompressible, viscous, isothermal fluid:

∂u∼
∂t

+ u∼ · ∇∼ u∼ − ν∆u∼ +∇∼ p = 0, (1.5)

∇∼ · u∼ = 0, (1.6)

where the momentum equation has been divided through by ρ, the pressure in (1.5)

has implicitly been rescaled by ρ and ν := µ/ρ is the kinematic viscosity. These

equations (which involve only macroscopic quantities) form the cornerstone of classical

fluid dynamics.

The situation with polymeric fluids, however, is quite different. In general the

contributions to the stress tensor σ
≈

from microscopic polymer molecules cannot be

averaged out into purely macroscopic quantities and therefore in order to faithfully

simulate a polymeric fluid, the microscopic and macroscopic length scales must be cou-

pled together. This coupling is achieved by the Navier–Stokes–Fokker–Planck system

alluded to above.

In the next section, mechanical models (i.e. systems containing masses, rigid rods

and/or springs) for microscopic polymer molecules are considered. From the perspec-

tive of polymer fluid dynamics, the purpose of these models is to capture the most

important characteristics of polymer molecules in systems with many fewer degrees

of freedom and in order to yield mathematical models for polymeric fluids that are

analytically and computationally tractable.

1.2 Modelling polymeric fluids

Polymer molecules consist of long chains of repeated basic structural units, or monomers.

Polymers of interest typically contain on the order of 103 to 106 monomers and the

presence of these long chain molecules in a fluid can dramatically affect the fluid’s

macroscopic properties. In particular, polymer molecules introduce elastic properties
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and, as a result, polymeric fluids are often described as viscoelastic. Viscoelasticity

gives rise to an exotic range of phenomena, such as shear-thinning, rod-climbing, the

“tubeless siphon”, and elastic recoil [17].

Most approaches to the mathematical modelling of polymeric fluids are based on

kinetic theory, in which the behaviour of the microscopic polymer molecules is charac-

terised in a statistical sense. The starting point in deriving kinetic–theory–based equa-

tions is to propose a simple mechanical model that represents an individual polymer

molecule. A mechanical model that would faithfully capture the microscopic proper-

ties of an actual polymer would be extremely complicated, with a very high number of

degrees of freedom, and would be prohibitively difficult to deal with and as a result, a

range of simplifications and idealisations have been proposed.

The following “coarse-grained” models for polymer molecules are discussed below:

the freely rotating chain model; the bead-rod chain model; the bead-spring chain model;

and the dumbbell model (see Chapter 10 of Bird et. al. [18] for more details on each

of these). This hierarchy of models is depicted in Figure 1.1(a).

The Freely Rotating Chain Model

It was observed by Flory [33] that bond angles between monomers in a polymer chain

are restricted to quite narrow ranges about their average values (up to ∼ 3% deviation).

This motivated the freely rotating chain model which represents each monomer unit

as a bead, where adjacent beads are joined by a rigid, massless rod and where rods are

set at a fixed angle (the average bond angle) but are free to rotate. This model has

been used in a number of kinetic theory studies by Kirkwood [48]. For the purposes of

multiscale computations, though, this model is far too complex. It requires one degree

of freedom for each monomer, so that the number of degrees of freedom in a single

chain would be on the order of 103 to 106.

The Bead-Rod Chain Model

The bead-rod chain model is significantly simpler. It lumps a group of monomers into

a single bead and adjacent beads are connected by a massless rod. The constraint on

bond angle is dropped so that this model is referred to as “freely jointed”. The num-

ber of degrees of freedom for this model is typically around 100. The bead-rod chain

was first analysed in a seminal paper by Kramers in 1944 [51], and the model is often

referred to as a Kramers chain. While clearly a considerable simplification from the

freely rotating chain, this model still reflects a number of the important characteristics

of a polymer molecule – in particular the bead-rod chain has a large number of internal
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degrees of freedom, it can be oriented and deformed by a flow and it has a constant

contour length.

The Bead-Spring Chain Model

The bead-spring chain is a yet coarser model; a polymer is modelled by a chain of

typically around 10 beads joined by springs. The model is completed by specifying a

force law for the springs (see below). This model has been the basis of a number of

kinetic-theory-based investigations of polymer fluids, e.g. the seminal papers of Rouse

and Zimm [71,86].

The Dumbbell Model

The dumbbell model is the simplest in the hierarchy of coarse-grained mechanical

models for polymers; it consists of only two masses, which are connected by a spring

(or sometimes a rigid rod, although we only consider the spring case in this thesis). A

dumbell is fully specified by the position of its centre of mass, x∼, and its configuration

(or end-to-end) vector, q
∼

(see Figure 1.1(b)). Despite the simplicity of the dumbbell

model, it is still very useful for simulating polymeric fluids in many flow regimes because

dumbbells can be stretched and oriented by a flow, and these two actions determine

the main contributions from polymer molecules to the macroscopic properties of a

viscoelastic fluid.

Spring Force Laws

As indicated above, a force law, F∼ , must also be defined for the coarse-grained models

that contain one or more springs. In general, the elastic force is assumed to be defined

by a (sufficiently smooth) potential U : R≥0 → R via

F∼ (q
∼
) = H U ′(1

2
|q
∼
|2)q
∼
, (1.7)

where q
∼

is the configuration vector (as illustrated in Figure 1.1(b)) of a given spring

and H ∈ R>0 is the spring constant. The simplest force law is that of a Hookean

spring:

U(s) = s and F∼ (q
∼
) = Hq

∼
. (1.8)

Many interesting analytical results have been derived for dilute solutions of Hookean

dumbbells; indeed the simple linear relationship in (1.8) makes this model attractive

from the mathematical point of view. For example, it is well known that the Oldroyd-

B macroscopic model for dilute polymeric fluids (originally derived from continuum

mechanics considerations [67]) is equivalent to the Hookean dumbbell micro-macro



6

(a) (b)

Figure 1.1: (a) Diagram of the hierarchy of mechanical models for polymer molecules, de-
scending from a polymer molecule with on the order of 103 to 106 monomers to the dumbbell
model, containing only two masses connected by a spring. (b) A more detailed depiction of
the dumbbell model. The state of a dumbbell is defined by the position of its centre of mass,
x∼, and its configuration (or end-to-end) vector, q

∼
. The dumbbell shown in this schematic can

move in R3, and therefore has six degrees-of-freedom.

model (e.g. see [6]). However, due to the physically unrealistic ability of Hookean

springs to be infinitely stretched these models can break down in certain cases, such as

strong extensional flows. A remedy is to use the Finitely Extensible Non-linear Elastic

(FENE) force law, suggested by Warner [82], for which we have,

U(1
2
|q
∼
|2) = − l

2
max

2
ln

(
1−
|q
∼
|2

l2max

)
and F∼ (q

∼
) =

Hq
∼

1− |q
∼
|2/l2max

. (1.9)

As the name suggests, FENE springs can only be stretched a finite amount because

the spring potential is unbounded as |q
∼
| → lmax. Unlike with Hookean springs, there is

no equivalent macroscopic formulation for suspensions of FENE dumbbells; the FENE

dumbbell model requires a truly multiscale approach. Note also that for |q
∼
| < lmax

fixed, the FENE force converges to the Hookean spring force as lmax →∞.

In this thesis, the focus is on developing deterministic multiscale methods for simu-

lating the flow of a suspension of FENE dumbbells1 in a Newtonian solvent. This is an

imposing challenge in itself because (as discussed in Section 1.3) for a d-dimensional

flow, the Fokker–Planck equation is posed in 2d spatial dimensions, where we consider

1Although, in Chapter 2, we consider a more general class of spring potentials that include the
FENE potential as a special case.
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d = 2 or 3. Solving this high-dimensional equation is a large-scale computational prob-

lem, which requires highly specialised numerical methods. Replacing dumbbells with

bead-spring chains would clearly make the problem far more challenging still. The de-

velopment of methods to treat the bead-spring chain case efficiently using deterministic

algorithms (as opposed to Monte Carlo approaches) has received attention in the liter-

ature recently (see Section 1.4). Extending the work in this thesis to the bead-spring

case is a goal of future research.

1.3 The micro-macro model

With the background material developed in the previous two sections it is now possible

to derive the Navier–Stokes–Fokker–Planck model for dilute polymeric fluids. As indi-

cated above, we consider a dilute solution of polymer chains suspended in a Newtonian

solvent, and we assume that individual polymer chains do not interact with one an-

other, but can be convected, stretched and oriented by the macroscopic velocity field,

and are also subject to thermal agitation due to the motion of the solvent molecules.

Suppose the fluid is confined to a physical domain Ω, assumed to be a bounded open

set in Rd, d = 2 or 3, and that appropriate boundary conditions are imposed on ∂Ω.

The conservation equations for polymeric fluids are the same as for the Newtonian case,

but the presence of polymer molecules contributes a polymeric extra-stress, represented

by the tensor τ
≈
. That is, the total stress tensor σ

≈
is given by

σ
≈

= −pI
≈

+ µs(∇∼ u∼ + (∇∼ u∼)T ) + τ
≈
, (1.10)

where in this case the viscosity is labelled with a subscript s to indicate that it comes

from the solvent. Combining (1.10) with the conservation of mass and momentum

equations yields a modified form of the Navier–Stokes equations in which the divergence

of τ
≈

arises as a source term. Thus, the model problem takes the following form:

Find u∼ : (x∼, t) ∈ Ω × R → u∼(x∼, t) ∈ Rd and p : (x∼, t) ∈ Ω × R → p(x∼, t) ∈ R such

that

∂u∼
∂t

+ u∼ · ∇∼ u∼ − νs∆u∼ +∇∼ p =
1

ρ
∇∼ · τ≈ in Ω× (0, T ], (1.11)

∇∼ · u∼ = 0 in Ω× (0, T ], (1.12)

u∼(x∼, 0) = u∼0(x∼) ∀x∼ ∈ Ω, (1.13)

where νs is the kinematic solvent viscosity, νs := µs/ρ. The system is completed by

specifying appropriate boundary conditions on ∂Ω.
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The system (1.11)–(1.13) models the macroscopic flow of a polymeric fluid, and the

contributions of microscopic polymer molecules enter through the extra-stress tensor,

τ
≈
. In the case that the polymers are represented by coarse-grained models (e.g. dumb-

bells), it turns out that τ
≈

can be computed in terms of a statistical averaging of the

probability density function describing the distribution of configurations of polymer

molecules within the fluid.2 The probability density function for dumbbell configura-

tions will henceforth be denoted ψ, and the idea of the deterministic multiscale method

is to compute ψ directly by solving a partial differential equation (the high-dimensional

Fokker–Planck equation alluded to above) so that τ
≈

can be computed and fed into the

macroscopic system (1.11)–(1.13).

1.3.1 Derivation of the Fokker–Planck equation

In this section the Fokker–Planck equation for polymeric fluids that governs ψ is derived

from first principles. For the purposes of the derivation, it suffices to consider the

general spring force law (1.7). Similar derivations can be found in Bird et. al. [18], the

Ph.D. thesis of Lozinski [59] or the paper by Barrett & Süli [10].

First of all, consider an isolated dumbell immersed in a Newtonian solvent with

fluid velocity given by u∼(x∼, t). Denote by r∼1(t), r∼2(t) ∈ Ω ⊂ Rd the position vectors

of the two masses of the dumbbell at time t, where Ω is referred to as physical space.

For the purpose of this derivation we assume that Ω = Rd; this allows us to avoid

complications associated with the behaviour of dumbbells at the domain boundary.

From Section 1.3.2 onwards, we shall assume Ω is a bounded subset of Rd.

As in Figure 1.1(b), the centre of mass, x∼(t), and configuration vector, q
∼
(t), are

defined as:

x∼(t) = (r∼1(t) + r∼2(t)) /2 and q
∼
(t) = r∼2(t)− r∼1(t). (1.14)

Assuming Ω is convex then x∼(t) ∈ Ω. Also, let configuration space be the set of all

admissible configuration vectors (which we assume to be a time-invariant domain), i.e.

D = {q
∼
∈ Rd : q

∼
= r∼2 − r∼1, for all admissible r∼1, r∼2 ∈ Ω}.

For example, for Hookean dumbbells, configuration space is all of Rd, whereas for

FENE dumbbells, we have D = B(0, lmax), where B(0, s) ⊂ Rd is the ball centered

at the origin with radius s. It is more natural to treat the Fokker–Planck equation

2The precise equation for computing τ
≈

is known as Kramers expression, and it is discussed below
in Section 1.3.3.
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in (x∼, q∼)-coordinates than in (r∼1, r∼2)-coordinates because with the FENE model for

example, for a given r∼1, we have r∼2 ∈ B(r∼1, lmax), i.e. in contrast to the vectors

(x∼, q∼) ∈ Ω×D, the domains of r∼1 and r∼2 cannot be decoupled in this case.

Considering an isolated dumbbell, Newton’s Second Law can be applied to the ith

bead such that F∼
total
i = mia∼i, where a∼i is the acceleration of bead i = 1, 2 and F∼

total
i is

the sum of the following components:

• F∼
drag
i : Drag force due to bead i moving through the viscous solvent.

• B∼ i: Brownian force due to random collisions of solvent molecules with bead i.

• F∼ i: The spring force on bead i, e.g. (1.9).

Hence, we have the following force balance equations for beads 1 and 2:

m1a∼1(t) = F∼
drag
1 (t) +B∼ 1(t) + F∼ (r∼2(t)− r∼1(t)),

m2a∼2(t) = F∼
drag
2 (t) +B∼ 2(t) + F∼ (r∼1(t)− r∼2(t)).

We model the hydrodynamic drag force, F∼
drag, using Stokes’ law for the viscous drag

on a sphere at low Reynolds number [1], i.e.

F∼
drag
i = ζ

(
u∼(r∼i(t), t)−

dr∼i
dt

(t)

)
,

where the term inside the brackets is the velocity of bead i relative to the velocity of

the solvent, and ζ is the friction coefficient.

Following Schieber & Öttinger [72] we consider the zero-mass limit for the dumbbell

beads and therefore multiplying through by dt we obtain the following two equations:

ζ ( dr∼1(t)− u∼(r∼1(t), t) dt) = B∼ 1(t) dt+ F∼ (r∼2(t)− r∼1(t)) dt, (1.15)

ζ ( dr∼2(t)− u∼(r∼2(t), t) dt) = B∼ 2(t) dt+ F∼ (r∼1(t)− r∼2(t)) dt. (1.16)

Equations (1.15) and (1.16) are referred to as Langevin’s equations [26] for the dumb-

bell. The Brownian force is defined as,

B∼ i(t) dt :=
√

2kBT ζ dW∼ i(t), (1.17)

where W∼ i(t) is a d-component Wiener process [70] and kB = 1.38× 10−23 m2kg s−2K−1

is Boltzmann’s constant and T is the absolute temperature measured in Kelvin, K.

The coefficient
√

2kBT ζ in (1.17) is due to the Einstein–Smoluchowski relation, which
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determines the diffusion coefficient in Brownian motion [65]. Therefore, (1.15), (1.16)

can be rewritten as follows:

d

[
r∼1(t)
r∼2(t)

]
=

[
u∼(r∼1(t), t) + ζ−1F∼ (r∼2(t)− r∼1(t))
u∼(r∼2(t), t) + ζ−1F∼ (r∼1(t)− r∼2(t))

]
dt+

√
2kBT
ζ

d

[
W∼ 1(t)
W∼ 2(t)

]
. (1.18)

Defining

X(t) :=

[
r∼1(t)
r∼2(t)

]
, W (t) :=

[
W∼ 1(t)
W∼ 2(t)

]
, σ :=

√
2kBT
ζ

I
≈
,

b(X(t)) :=

[
u∼(r∼1(t), t) + ζ−1F∼ (r∼2(t)− r∼1(t))
u∼(r∼2(t), t) + ζ−1F∼ (r∼1(t)− r∼2(t))

]
,

(1.18) can be written as the following stochastic differential equation:

dX(t) = b(X(t)) + σ(X(t)) dW (t), X(0) = X. (1.19)

We can now use the forward Kolmogorov equation to obtain a partial differential equa-

tion for the evolution of the probability density function of the stochastic process

t 7→ X(t) (see Corollary 5.2.10 in [53]).

Theorem 1.1 Forward Kolmogorov (Fokker–Planck) equation. Let the ran-

dom variable X(t) have a density function (z∼, t) 7→ ψ(z∼, t) of class C2,1(Rd×Rd, [0,∞))

(i.e. twice continuously differentiable with respect to z∼ ∈ Rd×Rd and once with respect

to t), and let X(0) = X be a square-integrable random variable with density func-

tion ψ0 ∈ C2(Rd × Rd). Also, suppose that b and σ in (1.19) are globally Lipschitz

continuous, and a(z∼) = σ(z∼)σ(z∼)T . Then,

∂ψ

∂t
+

2d∑
j=1

∂

∂zj
(bjψ) =

1

2

2d∑
i,j=1

∂2

∂zi∂zj
(aijψ), (1.20)

in R2d × [0,∞) where ψ(z∼, 0) = ψ0(z∼) for z∼ ∈ Rd.

Remark 1.2 The Hookean spring force satisfies the global Lipschitz continuity as-

sumption in Theorem 1.1, whereas the FENE force does not. Indeed, the FENE force

is only locally Lipschitz on D, and it is not defined on all of Rd. Nevertheless, we shall

proceed based on the conjecture that Theorem 1.1 applies in the FENE case also.
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Applying Theorem 1.1 to (1.19) yields:

∂ψ12

∂t
+ ∇∼ r1 ·

[
u∼(r∼1, t)ψ

12 +
1

ζ
F∼ (r∼2 − r∼1)ψ12

]
(1.21)

+ ∇∼ r2 ·
[
u∼(r∼2, t)ψ

12 +
1

ζ
F∼ (r∼1 − r∼2)ψ12

]
=
kBT
ζ

∆r1ψ
12 +

kBT
ζ

∆r2ψ
12,

where ψ12 denotes the probability density function with respect to (r∼1, r∼2)-coordinates.

Changing to (x∼, q∼)-coordinates and letting ψ(x∼, q∼, t) := ψ12(r∼1, r∼2, t), we obtain

∂ψ

∂t
+ ∇∼ q ·

([
u∼(x∼ + q

∼
/2, t)− u∼(x∼ − q∼/2, t)

]
ψ − 2

ζ
F∼ (q
∼
)ψ

)
(1.22)

+ ∇∼ x ·

(
u∼(x∼ − q∼/2, t) + u∼(x∼ + q

∼
/2, t)

2
ψ

)
=
kBT
2ζ

∆xψ +
2kBT
ζ

∆qψ,

where we have used the fact that F∼ (q
∼
) = −F∼ (−q

∼
) (cf. (1.7)).

In order to simplify (1.22) further, we adopt the local homogeneity assumption,

which states that u∼ and ψ are linear in x∼ on the length scale of a dumbbell. This is a

plausible assumption because the dumbbell length scale is typically orders of magnitude

smaller than the macroscopic length scale. Using linear expansions of u∼(x∼ + q
∼
/2) and

u∼(x∼ − q∼/2) in (1.22) yields:

∂ψ

∂t
+∇∼ x · (u∼ψ) +∇∼ q ·

(
κ
≈
q
∼
ψ − 2

ζ
F∼ (q
∼
)ψ

)
=
kBT
2ζ

∆xψ +
2kBT
ζ

∆qψ, (1.23)

where κ
≈

:= ∇∼ xu∼ is a standard short-hand notation for ∇∼ xu∼. Note that by incompress-

ibility of u∼, tr(κ
≈

) = 0.

The next step is to put (1.23) into non-dimensional form by scaling as follows:

x∼ := L0x̂∼, q
∼

:= l0q̂∼, u∼ := U0û∼, t := L0/U0t̂, ψ := ψ̂/ld0, (1.24)

where l0 :=
√
kBT /H is the characteristic length-scale of a dumbbell and L0, U0 are

the characteristic length and velocity of the macroscopic flow, respectively.

Applying (1.24) to (1.23) yields:

U0

L0

∂ψ

∂t
+
U0

L0

∇∼ x ·(u∼ψ)+∇∼ q ·
(
U0

L0

κ
≈
q
∼
ψ − 1

2λ
F∼ (q
∼
)ψ

)
=

1

2λ
∆qψ+

1

8λ

(
l0
L0

)2

∆xψ, (1.25)

where λ := ζ/4H is the characteristic relaxation time of a dumbbell, and the hat

superscripts have been dropped in (1.25) for notational convenience.

Note that for the FENE case, |q̂
∼
| ∈ [0,

√
b) where b := Hl2max/kBT and therefore

configuration space in non-dimensional form is D = B(0,
√
b) ⊂ Rd, and (1.9) becomes:

U(1
2
|q
∼
|2) := − b

2
ln

(
1−
|q
∼
|2

b

)
, F∼ (q

∼
) =

q
∼

1− |q
∼
|2/b

. (1.26)
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The dimensionless parameter b is typically in the range [10, 100]. In [43], Jourdain,

Lelièvre and Le Bris showed that for the stochastic differential equation modelling a

suspension of FENE dumbbells (which corresponds to the deterministic Fokker–Planck-

based model considered here), the solution exists and has trajectorial uniqueness if, and

only if, b > 2 (cf. also Example 1.2 in [9]). Hence, throughout the rest of this thesis,

we assume that b ∈ (2,∞) for the FENE potential.

Multiplying (1.25) through by L0/U0 gives:

∂ψ

∂t
+∇∼ x · (u∼ψ) +∇∼ q ·

(
κ
≈
q
∼
ψ − 1

2Wi
F∼ (q
∼
)ψ

)
=

1

2Wi
∆qψ +

1

8Wi

(
l0
L0

)2
∆xψ, (1.27)

where Wi := λU0/L0 is the non-dimensional Weissenberg number, which is the ratio of

the microscopic to macroscopic time-scales, and is typically on the order of 1 or 10.

Equation (1.27) contains an x∼-diffusion term. The standard approach in the liter-

ature has been to discard this term outright because its coefficient is typically on the

order of 10−8 [15]. However, it has been recognised by Barrett & Süli [10] that, from

the point of view of analysis, this simplification is counterproductive because when

the x∼-diffusion term is neglected (1.27) becomes a degenerate parabolic equation that

exhibits hyperbolic behaviour in physical space. Nevertheless, the focus of this thesis

is on developing a computational framework for the coupled micro-macro system and,

due to its small coefficient, the physical space diffusion term would have a negligible ef-

fect in such a framework. Hence, from now on we consider the Fokker–Planck equation

with no x∼-diffusion, i.e.

∂ψ

∂t
+∇∼ x · (u∼ψ) +∇∼ q ·

(
κ
≈
q
∼
ψ − 1

2Wi
F∼ (q
∼
)ψ

)
=

1

2Wi
∆qψ. (1.28)

Notice that (at least in the case of FENE or Hookean dumbbells) the Fokker–Planck

equation (1.28) contains an unbounded advection coefficient F∼ . This is inconvenient

from the point of view of analysis. Therefore we will focus on the following Kolmogorov

symmetrisation [50] of the Fokker–Planck equation, in which the spring force, F∼ , has

been absorbed into a weighted diffusion term,

∂ψ

∂t
+∇∼ x · (u∼ψ) +∇∼ q · (κ≈ q∼ψ) =

1

2Wi
∇∼ q ·

(
M∇∼ q

(
ψ

M

))
, (1.29)

where M is the (normalised) Maxwellian defined by

q
∼
7→M(q

∼
) :=

1

C
exp

(
−U(1

2
|q
∼
|2)
)
∈ L1(D), C :=

∫
D

exp
(
−U(1

2
|q
∼
|2)
)

dq
∼
. (1.30)

The Maxwellian transformation used in (1.29) allows us to circumvent analytical dif-

ficulties introduced by the unbounded convection term, F∼ . In Chapter 2, we will also
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consider an alternative transformation of (1.28) due to Chauvière & Lozinski [24] that

allows us to deal with the unbounded convection term in a different manner, and hence

a range of theoretical results can be proved for the Chauvière–Lozinski transformed

equation also.

The function (x∼, q∼, t) 7→ ψ(x∼, q∼, t) represents the probability, at time t, of finding a

dumbbell with center of mass in the volume element x∼+ dx∼ and orientation vector in the

element q
∼
+ dq

∼
. Recall that the above derivation of the Fokker–Planck equation assumed

that Ω = Rd, but we shall henceforth assume that Ω is a bounded subset of Rd. Also,

it is crucial to note that (1.29) is posed in 2d spatial dimensions, plus time. Since the

computational complexity of classical numerical methods grows exponentially with the

dimension of the spatial domain, the high-dimensionality of (1.29) poses a significant

computational challenge. Developing a fully practical computational framework for

this high-dimensional equation is a central goal of this thesis.

1.3.2 Properties of the probability density function

Since ψ is a probability density function (pdf) for each x∼ ∈ Ω, the initial condition

should be non-negative:

ψ(x∼, q∼, 0) = ψ0(x∼, q∼) ≥ 0, for a.e. (x∼, q∼) ∈ Ω×D, (1.31)

and should also satisfy the following normalisation property:∫
D

ψ0(x∼, q∼) dq
∼

= 1, for a.e. x∼ ∈ Ω. (1.32)

We now show that (1.32) is preserved for t ∈ (0, T ] for solutions of (1.29). In Chapter 2,

the function space K0 is introduced as the space in which weak solutions of the Fokker–

Planck equation in configuration space are sought and, by definition,
√
MC∞0 (D) is

dense in K0. We defer further discussion of K0 until Chapter 2. Suppose now that

ψ(x∼, ·, t) ∈
√
MC∞0 (D) ⊂ K0. Then, integrating (1.29) in configuration space and

applying the divergence theorem gives:

∂

∂t

∫
D

ψ dq
∼

+∇∼ x ·
(
u∼

(∫
D

ψ dq
∼

))
=

∫
D

∇∼ q ·
(
−κ
≈
q
∼
ψ +

1

2Wi
M∇∼ q

(
ψ

M

))
dq
∼

=

∫
∂D

(
−κ
≈
q
∼
ψ +

1

2Wi
M∇∼ q

(
ψ

M

))
· n∼ ds = 0,
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where n∼ is the outward unit normal on ∂D, and the boundary terms vanish due to the

compact support of ψ in D. This result extends to all K0 by density. Let %(x∼, t) be

defined as follows:

%(x∼, t) :=

∫
D

ψ(x∼, q∼, t) dq
∼
. (1.33)

Then (1.33) can be rewritten as,

∂

∂t
%(x∼, t) +∇∼ x · (u∼ %(x∼, t)) = 0, for all ψ ∈ K0.

It follows from the Reynolds transport theorem, that

∂

∂t

∫
V (t)

%(x∼, t) dx∼ = 0, t ∈ (0, T ), (1.34)

for an arbitrary material volume V (t) and hence the following result has been estab-

lished.

Lemma 1.3 Let V (t) ⊂ Ω be an arbitrary material volume for t ∈ [0, T ], and let

%0(x∼, t) =
∫
D
ψ0(x∼, q∼, t). Then∫

V (t)

%(x∼, t) dx∼ =

∫
V (0)

%0(x∼, t) dx∼. (1.35)

for all ψ ∈ K0.

An important consideration that will be returned to in subsequent chapters is

whether results analogous to Lemma 1.3 can be established for solutions (both contin-

uous and discrete) based on the weak formulation of (1.29).

It is also desirable to preserve the property (1.31) for t ∈ (0, T ]. This non-

negativity property is considered for weak solutions of the Fokker–Planck equation

(cf. Lemma 2.7) as well as for approximate solutions obtained via a Galerkin spectral

approach (cf. Remark 2.20) in Chapter 2.

1.3.3 Polymeric extra-stress

As indicated above, in the context of the coupled Navier–Stokes–Fokker–Planck system,

the purpose of solving (1.29) is so that the polymeric extra-stress tensor, τ
≈
, can be

computed and fed into the right-hand side of (1.11). The polymeric extra-stress tensor

is determined by the following equation, known as Kramers expression:

τ
≈
(x∼, t) = np

(∫
D

F∼ (q
∼
)⊗ q

∼
ψ dq

∼
− I
≈

)
, (x∼, t) ∈ Ω× (0, T ], (1.36)
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where np is the polymer number density, i.e. the number of polymer molecules per

unit volume. For a derivation of (1.36), see, for example, [55]. Note that it follows

from (1.36) that τ
≈

is symmetric. Since τ
≈

enters into (1.11) only via its divergence, the

constant npI≈ in (1.36) has no effect in the coupled system and therefore we ignore it

from now on. Non-dimensionalising (1.36) according to (1.24) gives,

τ
≈
(x∼, t) = npkBT

∫
D

F∼ (q
∼
)⊗ q

∼
ψ(x∼, q∼, t) dq

∼
. (1.37)

At this point we make the specific assumption that F∼ is the FENE force in order to

derive the full Navier–Stokes–Fokker–Planck system, in non-dimensional form, for a

suspension of FENE dumbbells.

It can be shown that for a dilute solution of FENE dumbbells in shear flow, the

(1, 2)-component of τ
≈

is approximated by,

τ12 ≈ γ̇λnpkBT
(

b

b+ d+ 2

)
, (1.38)

where γ̇ is the shear rate (see [18]). Equation (1.38) is an asymptotic expression for τ12

that is valid for small γ̇. Therefore, by analogy with Newtonian fluids, the polymeric

viscosity, µp, for FENE dumbbell suspensions is defined as,

µp := λnpkBT
(

b

b+ d+ 2

)
, (1.39)

so that (1.37) can be rewritten:

1

ρ
τ
≈
(x∼, t) =

νp
λ

b+ d+ 2

b

∫
D

F∼ (q
∼
)⊗ q

∼
ψ(x∼, q∼, t) dq

∼
, (1.40)

where the equation has been divided through by the density ρ as in (1.11), and νp :=

µp/ρ.

Equation (1.40) provides a bridge between the Fokker–Planck equation and the

Navier–Stokes equation. The full coupled form of the micro-macro system is discussed

in the next section.

1.3.4 The coupled Navier–Stokes–Fokker–Planck system

The Fokker–Planck equation and Kramers expression have been written in terms of

non-dimensional variables in (1.29) and (1.40), respectively. Therefore, it remains to

non-dimensionalise the Navier–Stokes equations, (1.11), (1.12), in the same manner.

The mass conservation equation, (1.12), contains only one non-zero term and therefore
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rescaling is trivial. Applying (1.24) in the momentum equation, letting ν = νs + νp,

rescaling pressure as p = U2
0 p̂ and using (1.40) yields

∂u∼
∂t

+ u∼ · ∇∼ xu∼ +∇∼ xp =
γ

Re
∆xu∼ +

b+ d+ 2

b

1− γ
Re Wi

∇∼ x · τ≈, (1.41)

where Re := L0U0/ν (i.e. the Reynolds number) and γ := νs/ν are non-dimensional

parameters.3 Note that we have absorbed the coefficients on the right-hand side of

(1.40) into the momentum equation in order to perform non-dimensionalisation.

Combining the equations heretofore derived gives the following system:

∂u∼
∂t

+ u∼ · ∇∼ xu∼ +∇∼ xp =
γ

Re
∆xu∼ +

b+ d+ 2
b

1− γ
Re Wi

∇∼ x · τ≈, (x∼, t) ∈ Ω× (0, T ], (1.42)

∇∼ x · u∼ = 0, (x∼, t) ∈ Ω× (0, T ], (1.43)
∂ψ

∂t
+∇∼ x · (u∼ψ) +∇∼ q · (κ≈ q∼ψ) =

1
2Wi

∇∼ q ·
(
M∇∼ q

ψ

M

)
, (x∼, q∼, t) ∈ Ω×D × (0, T ], (1.44)

τ
≈
(x∼, t) =

∫
D
F∼ ⊗ q∼ψ(x∼, q∼, t) dq

∼
, (x∼, t) ∈ Ω× (0, T ], (1.45)

u∼(x∼, 0) = u∼0(x∼), x∼ ∈ Ω, ψ(x∼, q∼, 0) = ψ0(x∼, q∼), (x∼, q∼) ∈ Ω×D. (1.46)

Equations (1.42)–(1.46) are the coupled Navier–Stokes–Fokker–Planck model for

dilute polymeric fluids. Note that the non-dimensionalisation used above is the same

as the one introduced on page 8 of [55]. In Chapter 4, we also consider a Stokes–Fokker–

Planck model in which (1.42) is replaced by a simpler linear equation (cf. (4.4)) that

is relevant for modelling creeping flows, i.e. in the limit Re→ 0+.

In the discussion above, we have assumed that both Ω and D are domains in Rd so

that the Fokker–Planck equation is posed on Ω×D ⊂ R2d. However, it is not essential

that this is the case and, for example, in [23] the authors considered a micro-macro

model in which Ω ⊂ R2 and D ⊂ R3. No significant complications are introduced from

the theoretical or implementational point of view by allowing the dimensionality of D

and Ω to be different, but for the rest of this dissertation we will restrict our attention

to the case when these domains have the same dimensionality.

1.4 Literature review of numerical methods for sim-

ulating polymeric fluids

As indicated in the opening of this chapter, the techniques for numerically simulat-

ing polymeric fluids can be grouped into three categories: fully macroscopic methods,

3Hat superscripts have again been dropped in (1.41) for notational simplicity; the variables are to
be understood as non-dimensional.
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stochastic multiscale methods and deterministic multiscale methods. A survey of some

of the key literature for each method is presented below.

Fully macroscopic methods

Continuum numerical simulations of polymeric fluids have been popular since the

1970’s. In some sense, this is the most natural approach to simulating polymeric

fluids because by avoiding consideration of the microscopic length scales, one can save

an enormous amount of computational effort. However, except in certain simple cases

(e.g. a suspension of Hookean dumbbells, see Section 1.2) in order to derive a closed

form macroscopic model for a polymeric fluid, it is necessary to resort to an ad hoc

“closure approximation”, and the shortcomings of such approximations are well doc-

umented [45, 56, 84]. Nevertheless, in many situations, macroscopic models are suffi-

ciently accurate to capture the relevant characteristics of polymer flows and in such

cases these methods are preferable to using multiscale methods.

A macroscopic computation typically employs standard tools of computational fluid

dynamics, such as finite elements, finite volumes or spectral methods, but specialised

considerations are usually necessary in practice in order to ensure convergence. The

challenges of developing continuum numerical methods for polymeric fluids are epit-

omised by the well-known “high Weissenberg number” problem, which refers to the

difficulty of developing numerical methods that remain stable as Wi is increased. The

development of macroscopic numerical methods for polymer fluids is clearly a very

important field of research; a vast literature has been developed and yet there remain

many unresolved issues in this area that are the focus of ongoing research. However,

since the focus of this thesis is on multiscale methods, we will not consider fully macro-

scopic methods any further here (for a detailed discussion, see the book by Owens &

Phillips [69]).

Stochastic multiscale methods

An alternative approach that has gained popularity since the early 1990’s is to treat the

micro-macro model directly by solving the stochastic differential equation (1.19) us-

ing Monte Carlo-type methods and coupling with deterministic numerical methods for

solving the Navier–Stokes equations (1.11), (1.12). The Monte Carlo method involves

distributing a large number of model polymer molecules throughout the computational

domain and tracking their motion as they are convected along streamlines and stretched

and oriented by a flow. The stress field, τ
≈
, can then be determined by computing en-

semble averages, so that the Navier–Stokes equations can then be solved (with source
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term ∇∼ x · τ≈) to determine the macroscopic velocity field, typically using finite-elements

or some other standard CFD method. In 1992 Öttinger & Laso [54] proposed the first

scheme of this type, which is referred to by the acronym CONNFFESSIT for “Calcula-

tion of Non-Newtonian Flow: Finite Elements and Stochastic Simulation Technique”.

Many other flavours of stochastic multiscale methods have subsequently been devel-

oped, such as the method of Brownian configuration fields [40] and the Lagrangian

particle method [36]. Note also that there has been a lot of interest in the mathemati-

cal properties of multiscale stochastic methods. For example, existence and uniqueness

of solutions have been established for stochastic simulations of suspensions of Hookean

and FENE dumbbells in papers by Jourdain, Lelièvre & Le Bris [41,42,43].

The stochastic multiscale approach is a computationally intensive procedure – it

is little wonder, therefore, that there was no work done in this direction prior to the

1990’s. Moreover, a drawback of the stochastic approach is that it introduces a slowly

decaying stochastic error (typically O(N−1/2) as N → ∞). Variance reduction tech-

niques were developed to ameliorate this error term and reduce the number of polymer

molecules one must track in order to compute an ensemble average to within a given

error tolerance (see [46] for an overview of variance reduction in this context). However,

even with variance reduction techniques, the presence of stochastic error is a significant

limitation of the stochastic approaches and circumventing this is an important motiva-

tion for moving to deterministic methods. On the other hand, an important advantage

of the stochastic approach is that it scales well with the number of degrees of freedom

in the polymer model – this ensures that stochastic methods remain effective when

applied to bead-spring chain polymer models [46].

Deterministic multiscale methods

As indicated earlier, the deterministic multiscale approach involves solving the cou-

pled Navier–Stokes–Fokker–Planck system directly. This approach has received com-

paratively little attention, most likely because solving the high-dimensional Fokker–

Planck equation is an imposing computational challenge. Nevertheless, literature on

this method extends back to the 1970’s although the early works in which the Fokker–

Planck equation was solved directly were not truly multiscale since simplified flow

regimes were considered for which ψ was assumed to be a function of q
∼

and t only

(problems in which ψ does not depend on x∼ are often referred to as homogeneous

flows). For example, Stewart & Sørensen in 1972 [76] used spherical harmonics to

solve the Fokker–Planck equation for a steady shear flow of a dilute suspension of rigid

dumbbells. Warner [82] applied a similar approach to the study of shear flows of FENE
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dumbbells. The first work in which a deterministic approach was utilised to simulate

a non-homogeneous velocity flow was by Fan in 1989 [32], who considered a planar

channel flow using a rigid dumbbell polymer model, and also made the simplifying

assumption that the physical space convection term, u∼ · ∇∼ xψ, vanished. Fan’s work

was subsequently built upon by Nayak [66] and Grosso et al. [35] who eliminated this

assumption on u∼ · ∇∼ xψ.

Recently, the deterministic multiscale approach has been further developed by

Lozinski, Chauviére and collaborators, who proposed a spectral method for simulat-

ing the micro-macro model for dilute solutions of FENE dumbbells [23, 24, 59, 60, 61].

Similarly, Helzel & Otto [38] solved the micro-macro model arising in the simulation

of suspensions of rod-like polymers using finite difference and finite volume methods.

In the papers of Lozinski, Chauviére et al. and Helzel & Otto, the authors decom-

posed the Fokker–Planck equation (1.28) (i.e. in the non-symmetrised form) according

to

∂ψ

∂t
+ (Lx + Lq)ψ = 0, (1.47)

where

Lqψ = ∇∼ q · (κ≈ q∼ψ)− 1

2Wi

(
∇∼ q · F∼ (q

∼
)ψ + ∆qψ

)
, (1.48)

Lxψ = ∇∼ x · (u∼ψ), (1.49)

and then they used an alternating-direction approach based on the operators Lq and

Lx to compute numerical solutions.

That is, suppose that 0 = t0 < t1 < · · · < tn < · · · ≤ T is a uniform partition of

spacing ∆t of the interval [0, T ]. A (two-stage) alternating-direction scheme involves

approximating the solution, ψ, by ψ2 in the following manner: given ψ2(tn), n ≥ 0,

with ψ2(t0) = ψ0, find ψ1 and ψ2 such that,

∂ψ1

∂t
+ Lqψ1 = 0, t ∈ (tn, tn+1], ψ1(tn) = ψ2(tn), (1.50)

∂ψ2

∂t
+ Lxψ2 = 0, t ∈ (tn, tn+1], ψ2(tn) = ψ1(tn+1). (1.51)

A practical alternating-direction numerical method is based on spatial and temporal

discretisation of (1.50) and (1.51).

In the case of the Fokker–Planck equation, (1.50) is a convection-diffusion equation

posed on D and (1.51) is a first-order hyperbolic equation on Ω. After discretising in

space and time, the two-stage scheme described above can be implemented by alter-

nating between applying Lx to Ω cross sections of Ω × D and Lq to D cross-sections
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of Ω×D. This type of scheme is also referred to as a dimension splitting or operator

splitting approach. We will use the three terms (i.e. alternating direction/dimension

splitting/operator splitting) interchangeably in this thesis, but our preference will be

for the name ‘alternating-direction method’, since we believe it is more descriptive than

the alternatives.

Using this operator-splitting, the “curse of dimensionality” associated with the nu-

merical solution of the Fokker–Planck equation in 2d dimensions is ameliorated, as the

splitting leads to a sequence of d-dimensional solves at each time step rather than a sin-

gle 2d-dimensional solve. Also, this splitting of L allows different numerical methods to

be used in Ω and D. In Chapter 3 we consider alternating-direction numerical methods

for the FENE Fokker–Planck equation on Ω×D and we use a heterogeneous alternating-

direction method based on a finite-element method in Ω and a single-domain Galerkin

spectral in D. These are appropriate choices because a finite-element method is flexi-

ble enough to deal with the general domain Ω, whereas D is always a ball in Rd and

is therefore the Lq operator is well suited to a spectral discretisation via a polar or

spherical co-ordinate transformation to a cartesian product domain. Note also that we

shall primarily focus is on the Maxwellian transformed Fokker–Planck equation and

therefore instead of Lq as defined in (1.48), we will generally consider the following

q
∼
-direction operator:

Lqψ = ∇∼ q · (κ≈ q∼ψ)− 1

2Wi
∇∼ q ·

(
M∇∼ q

(
ψ

M

))
. (1.52)

The operators (1.48) and (1.52) are identical. However, as we discuss in Chapter 2, the

natural weak formulation of (1.52), in which we use test functions ϕ/M , is not identical

to the standard weak formulation of (1.48) in which unweighted test functions, ϕ, are

used.

Lozinski & Chauvière [23,24,60] demonstrated that compared to a stochastic method

for the FENE dumbbell model, their deterministic multiscale scheme was more effi-

cient in terms of computational cost, and was also more accurate due to the absence

of stochastic error for the benchmark problem of laminar flow around a cylindrical

obstacle in a channel.

A further interesting observation by Lozinski & Chauvière was that the direct dis-

cretisation of (1.28) did not lead to a stable numerical method, and instead they used

a substitution of the form ψ/(1− |q
∼
|2/b)s, for some s that is chosen on computational

grounds (for example, the authors recommended s = 2 and s = 2.5 for d = 2 and

d = 3, respectively [23, 24]). We return to this point in Section 2.2.1 where we show
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that the bilinear form corresponding to the Chauvière–Lozinski-transformed FENE

Fokker–Planck equation is coercive for s > 1/2, hence it is not surprising that Lozinski

& Chauvière’s method was unstable when no substitution was used.

Based on the results of Lozinski & Chauvière, it is clear that the deterministic

multiscale approach can be effective for models with low-dimensional configuration

space. However, it is still an open question whether this approach can be extended to

bead-spring chain dumbbell models in which configuration space has dimension greater

than three. There has been some recent work in this direction using numerical methods

that were developed for high-dimensional (i.e. d � 3) PDEs. For example, Ammar,

Mokdad, Chinesta & Keunings developed a reduced basis approach and used it to

solve the Fokker–Planck equation in configuration space of dimension up to 20 [2, 3].

An alternative idea is to use sparse grids, which have been shown to be effective for

solving elliptic and parabolic PDEs in high-dimensional domains [73,80]. This idea was

applied to the Fokker–Planck equation by Delaunay, Lozinski & Owens [27]. Attempts

to solve the Fokker–Planck equation for configuration spaces for d � 3 are still at an

early stage, and indeed the numerical results presented in the literature so far have

been for homogeneous flows only. Nevertheless, reduced basis and sparse grid methods

appear to be a promising approach for this problem and may enable the development

of efficient deterministic multiscale methods for simulating suspensions of bead-spring

chains.

Clearly the well-posedness of the Navier–Stokes–Fokker–Planck system is a prereq-

uisite for the success of the deterministic multiscale approach. PDE analysis of the

micro-macro model is outside the scope of this thesis, but it is worth noting here that

there have been a number of recent papers in which the question of existence of solu-

tions (among many other things) has been considered (e.g. see [6, 9, 10, 57, 58]). The

review article of Li & Zhang [55] provides an informative overview of this literature.

1.5 Outlook and goals

We are now in a position to give more details on the aims of this thesis. Our focus is

on the deterministic multiscale method. As discussed in Section 1.4, several different

deterministic multiscale numerical methods have been developed in the literature, but

the numerical analysis of these methods has not previously been considered in detail.

The central goal of this work, therefore, is to develop rigorous analysis of deterministic

multiscale methods in order to ensure that there is a firm theoretical foundation for

this approach.
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We begin in Chapter 2, by focusing on the analysis of a Galerkin spectral method

for discretising (1.50), i.e. the q
∼
-direction part of the Fokker–Planck equation (or

equivalently, the Fokker–Planck equation for a homogeneous flow problem). The focus

in Chapter 2, is on the Maxwellian transformed Fokker–Planck equation (cf. (1.52)),

but we also consider the transformation proposed by Chauvière & Lozinski for (1.48) in

some detail. Numerical methods based on either transformation require careful anal-

ysis; the Maxwellian weight arising in the principal part of the symmetrised formula-

tion is degenerate in the sense that it vanishes on ∂D, and the Chauvière–Lozinski-

transformed scheme contains the unbounded convection coefficient F∼ . We also pay

particular attention to the practical implementation of the spectral method on D, and

we present numerical results for the cases d = 2 and d = 3.

In Chapter 3, the Galerkin spectral method developed in Chapter 2 is combined

with a finite element method in Ω to yield the alternating-direction scheme with which

we obtain approximate solutions of (1.29). We show that some subtle issues arise in the

numerical analysis of such alternating-direction schemes and, as a result, we develop

a specialised quadrature-based Galerkin alternating-direction method for the Fokker–

Planck equation that is amenable to stability and convergence analysis; this analysis

builds upon the arguments in Chapter 2. We also present some computational results

in order to provide experimental support for our theoretical results, and to demonstrate

the effectiveness of our alternating-direction approach in practice.

The focus in Chapter 4 is on obtaining computational results for the Navier–Stokes–

Fokker–Planck system. Our approach is to couple a standard finite element scheme

for solving the Navier–Stokes equations with an alternating-direction method from

Chapter 3 for the Fokker–Planck equation. Solving the Fokker–Planck equation is the

bottleneck step in this algorithm, due to the fact that it is posed on Ω × D. The

numerical results in Chapter 4, and indeed in Chapters 2 and 3 as well, are for the

FENE dumbbell case only. However, it would be straightforward to apply the methods

developed in this thesis to more general dumbbell spring potentials, such as potentials

that satisfy Hypotheses A and B defined in Chapter 2.

Finally, we want to emphasise an important innovation developed in this thesis: the

application of parallel computation to alternating-direction numerical methods for the

Fokker–Planck equation. Alternating-direction algorithms are well suited to implemen-

tation on parallel computers since they involve solving a large number of independent

equations in each time-step. We show in Chapters 3 and 4 that our alternating direction

approach can be efficiently implemented in parallel, and this enables us to solve large-
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scale deterministic multiscale problems that may otherwise have been computationally

intractable (e.g. an important large-scale case is when Ω×D ⊂ R6).



Chapter 2

The Fokker–Planck Equation in
Configuration Space

This chapter is concerned with the numerical approximation of the d-dimensional

Fokker–Planck equation posed in configuration space:

∂ψ

∂t
+∇∼ q · (κ≈ q∼ψ) =

1

2Wi
∇∼ q ·

(
M∇∼ q

ψ

M

)
, (q
∼
, t) ∈ D × (0, T ], (2.1)

where the d× d tensor κ
≈

is assumed to belong to (C[0, T ])d×d (i.e. it is independent of

x∼) and is such that tr(κ
≈

)(t) = 0 for all t ∈ [0, T ]. It will be assumed throughout that

(2.1) is supplemented with the following initial and boundary conditions:

ψ(q
∼
, 0) = ψ0(q

∼
), for all q

∼
∈ D, (2.2)

ψ(q
∼
, t) = o

(√
M(q

∼
)
)
, as dist(q

∼
, ∂D)→ 0+, for all t ∈ (0, T ]. (2.3)

The boundary condition (2.3) follows from the weak formulation of (2.1) developed

below (cf. (2.5), (2.6)). The initial datum ψ0 is such that ψ0 ≥ 0 and
∫
D
ψ0(q

∼
) dq
∼

= 1, as

in (1.31) and (1.32). We will henceforth use the notation d(q
∼
) := dist(q

∼
, ∂D) =

√
b−|q

∼
|.

The motivation for studying this subproblem is that, as indicated in Chapter 1,

an efficient approach to the numerical solution of (1.44) in 2d + 1 variables is based

on operator-splitting with respect to (q
∼
, t) and (x∼, t) as in (1.50), (1.51). Thereby,

the resulting time-dependent transport equation with respect to (x∼, t) is completely

standard, ψt +∇∼ x · (u∼(x∼, t)ψ) = 0, while the transport-diffusion equation with respect

to (q
∼
, t) is (2.1).

The focus of this chapter is on the analysis and implementation of spectral methods

for computing numerical solutions of (2.1). We emphasise rigour in establishing the

analytical properties of the weak formulation of (2.1) and also in developing spectral

24
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convergence estimates for the numerical methods based on this weak formulation. Most

of the material in this chapter follows the paper [49].

As indicated in Chapter 1, we are primarily interested in solving the micro-macro

equations for FENE dumbbells. However, the analysis in this chapter is valid for a

more general class of spring force laws. Therefore, the following structural hypotheses,

which generalise the relevant properties of the FENE spring potential, are adopted.

Hypothesis A. The spring potential U ∈ C1([0, b
2
)) is a non-negative monotonic

increasing function, with U(0) = 0, lims→b/2− U(s) = +∞, lims→b/2−( b
2
− s)U ′(s) <∞.

�
Hypothesis A is consistent with the physical requirement that, in order to faithfully

model finite stretching of polymer chains, the spring force F∼ (q
∼
) should have infinite in-

tensity when the maximum admissible elongation |q
∼
| =
√
b is reached; i.e., the function

q
∼
7→ U ′(1

2
|q
∼
|2) should tend to +∞ as d(q

∼
)→ 0+.

Recall the definition of the Maxwellian M for a spring potential U , (1.30). Since, by

Hypothesis A, U(1
2
|q
∼
|2)→ +∞ as d(q

∼
)→ 0+, it follows that M(q

∼
)→ 0+ as d(q

∼
)→ 0+.

Hypothesis B.
√
M ∈ H1

0(D), and M is a weight function of type 3 on D in the

sense of Triebel [78], p.247, Definition 3.2.1.3c; i.e., there exist positive constants c1,

c2 and λ, and a positive monotonic increasing function τ defined on the interval (0, λ),

such that c1 τ(d(q
∼
)) ≤M(q

∼
) ≤ c2 τ(d(q

∼
)) for all q

∼
∈ D satisfying d(q

∼
) < λ. �

Hypotheses A and B will be assumed throughout this chapter.

Example 2.1 Consider the function U defined by

U(s) := −f(s) ln

(
1− 2s

b

)
, s ∈ [0, b

2
), with b > 2,

where f ∈ C∞[0, b
2
] is a monotonic nondecreasing function, positive on (0, b

2
], with

f( b
2
) > 1; then U and the associated Maxwellian M satisfy hypotheses A and B, re-

spectively. When f(s) = b/2, the FENE potential is recovered.

The central difficulty of (2.1), (2.2), (2.3), from both the analytical and the com-

putational point of view, is the presence in (2.1) of the degenerate Maxwellian M(q
∼
),

with limd(q
∼
)→ 0+

M(q
∼
) = 0.

Most numerical methods developed for the Fokker–Planck equation have been based

on the ‘original’ form of the equation,

∂ψ

∂t
+∇∼ q ·

(
κ
≈
q
∼
ψ
)

=
1

2Wi
∇∼ q ·

(
∇∼ qψ + F∼ (q

∼
)ψ
)
, (2.4)
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see, for example, [23, 24, 60] or [2, 3]. From the theoretical viewpoint at least, the

advantage of (2.1) over (2.4), is that on transformation into weak form the diffusion

operator becomes symmetric (see (2.5)), which facilitates the analysis of the Fokker–

Planck equation for a general class of Maxwellians. Notwithstanding this potential

theoretical advantage, the computational benefits, or otherwise, of discretising (2.1)

rather than (2.4) remain to be understood.

The aims of the analysis in this chapter are therefore two-fold:

(a) The principal objective is to develop the mathematical and numerical analysis

of equation (2.1) for the class of Maxwellians satisfying Hypotheses A and B.

The discretisation of the equation is based on a spectral Galerkin method in

the spatial variable q
∼

coupled with backward Euler time-stepping. One can, of

course, consider more accurate time discretisation schemes, such as an nth-order

backward differentiation formula, BDFn, n ∈ {2, . . . , 6}, for example. High-order

time discretisation of the problem is, however, a secondary consideration to the

central theme of this chapter, and it is not discussed here.

(b) In the special case of the FENE model, it shall be shown how the results under (a)

can be adapted to the case of alternative discretisation proposed by Chauvière

& Lozinski [23, 24, 59, 60], which applies a transformation, different from the

symmetrising transformation considered under (a), to the ‘original’ form (2.4) of

the Fokker–Planck equation. The transformed equation is then approximated in

the same way as in (a), using a spectral Galerkin method in space and a backward

Euler discretisation in time.

Since the analytical arguments under (b) are almost identical to those under (a),

for the sake of brevity, attention will be focused on (a), but the key adjustments

that need to be made in order to obtain the corresponding results under (b) shall be

systematically indicated.

First of all, we define the function spaces relevant to the weak formulation of (2.1).

Note that since only configuration space is considered in this chapter, ‖ · ‖ and (·, ·)
will denote the L2(D) norm and inner-product, respectively. In subsequent chapters

when numerical methods for the Fokker–Planck equation on physical space as well as

configuration space are considered, the non-subscripted norm and inner-product will

imply the domain Ω×D.
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Let

H :=

{
ϕ ∈ L2

loc(D) :

∫
D

(
ϕ√
M

)2

dq
∼
<∞

}
,

K :=

{
ϕ ∈ H :

∫
D

((
ϕ√
M

)2

+
∣∣∣√M ∇∼ q

( ϕ
M

)∣∣∣2) dq
∼
<∞

}
,

and define K0 as the closure of
√
MC∞0 (D) in the norm of K. Taking test functions as

ϕ/M with ϕ ∈ K0, we get the following weak formulation of the initial-boundary-value

problem (2.1).

Given ψ0 ∈ H, find ψ ∈ L∞(0, T ; H) ∩ L2(0, T ; K0) such that

d
dt

∫
D

ψ ϕ

M
dq
∼
−
∫
D
κ
≈
q
∼

ψ√
M
·
√
M ∇∼ q

( ϕ
M

)
dq
∼

(2.5)

+
1

2Wi

∫
D

√
M ∇∼ q

(
ψ

M

)
·
√
M ∇∼ q

( ϕ
M

)
dq
∼

= 0 ∀ϕ ∈ K0,

in the sense of distributions on (0, T ), and ψ(·, 0) = ψ0(·).
Now, by introducing the notation

ϕ̂ :=
ϕ√
M

and ∇∼ M ϕ̂ :=
√
M ∇∼ q

(
ϕ̂√
M

)
(2.5) can be reformulated on observing that, by the definition of K, ϕ ∈ K0 if, and only

if, ϕ̂ ∈ H1
0(D;M), where H1

0(D;M) is the closure of C∞0 (D) in the norm of H1(D;M),

and

H1(D;M) :=

{
ζ ∈ L2(D) : ‖ζ‖2

H1(D;M) :=

∫
D

(
|ζ|2 + |∇∼ Mζ|2

)
dq
∼
<∞

}
.

When applied to an element of H1
0(D;M) the norm ‖·‖H1(D;M) will be written ‖·‖H1

0(D;M).

As a matter of fact, it shall be shown in Section 2.1 that C∞0 (D) is dense in H1(D;M)

and therefore, perhaps somewhat counter-intuitively, H1
0(D;M) = H1(D;M), and also

K0 = K.

Remark 2.2 We note in passing that the substitution ϕ̂ = ϕ/
√
M also appears in the

recent paper by Du, Liu and Yu [29], though the operator ∇∼ M does not.

In the case of the FENE Maxwellian (cf. Example 2.1), Chauvière & Lozinski

[23,24,59,60] used a spectral method to approximate ψ/M2s/b instead of ψ/
√
M , where

s is a parameter that was chosen on the basis of numerical experiments. Clearly, the

two expressions coincide when s = b/4; on the other hand, the values s = 2 and

s = 2.5 were recommended in [23, 24, 59, 60] on computational grounds for d = 2
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and d = 3, respectively. More will be said in Sections 2.2, 2.3 and 2.5 about the

analytical implications of using, in the special case of the FENE model, the substitution

ψ̂ := ψ/M2s/b instead of the substitution ψ̂ := ψ/
√
M . In particular, we shall show that

both substitutions result in unconditionally stable and convergent numerical methods,

although in the case of the Chauvière & Lozinski type substitution it will be necessary

to assume for this purpose that b ≥ 4s2/(2s − 1) with s > 1/2, while the symmetrised

formulation based on (2.1) will be seen to result in a stable and optimally convergent

scheme for all b > 2. In Section 2.6 we shall perform quantitative comparisons of the

two approaches through numerical experiments. �

With these notational conventions, (2.5) has the following form.

Given ψ̂0 := ψ0/
√
M ∈ L2(D), find ψ̂ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1

0(D;M)) such

that

d

dt

∫
D

ψ̂ ϕ̂ dq
∼
−
∫
D

κ
≈
q
∼
ψ̂ · ∇∼ M ϕ̂ dq

∼
+

1

2Wi

∫
D

∇∼ M ψ̂ · ∇∼ M ϕ̂ dq
∼

= 0 ∀ϕ̂ ∈ H1
0(D;M),

(2.6)

in the sense of distributions on (0, T ), and ψ̂(·, 0) = ψ̂0(·).
The function space H1(D;M) may appear exotic. However, it will be shown in

Section 2.1 that, under Hypotheses A and B, H1(D;M) = H1
0(D;M) and H1

0(D) ⊂
H1

0(D;M). The connection between H1
0(D;M) and H1

0(D) will prove helpful in the

development of Galerkin methods for (2.6), since the construction of finite-dimensional

subspaces of H1
0(D) and the analysis of their approximation properties are well under-

stood.

In Section 2.2 the weak formulation (2.6) of the initial boundary value problem

will be revisited. A backward Euler semidiscretisation of the weak formulation shall

be constructed, and the unconditional stability of the temporal semidiscretisation in

the `∞(0, T ; L2(D)) and `2(0, T ; H1
0(D;M)) norms shall be established. Also, in the

case of the FENE model with b ≥ 4s2/(2s − 1) and s > 1/2, it will be demonstrated

that these results can be carried across, independent of the spatial dimension d, to a

weak formulation that results from using the alternative substitution ψ̂ := ψ/M2s/b;

the cases of s = 2 and s = 2.5 correspond to the methods proposed by Chauvière &

Lozinski for d = 2 and d = 3, respectively.

In Section 2.3 the fully-discrete method is developed and, using the stability results

from Section 2.2, a bound on the global error in terms of the approximation error in a

suitably defined spectral projection operator is derived.

In Section 2.4, the precise definition of the projection operator is given: its non-

standard form stems from a decomposition lemma, Lemma 2.14, for elements of the
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Sobolev space H1(D) transformed to polar coordinates. For ease of presentation, we

confine ourselves to the case of two space dimensions (d = 2) in Section 2.4; analogous

arguments could be developed in the d = 3 case.

The convergence analysis is completed in Section 2.5 by showing that, under Hy-

potheses A and B, the method exhibits optimal-order convergence in the Maxwellian-

weighted norm ‖·‖`2(0,T ;H1
0(D;M)) with respect to the spatial and temporal discretisation

parameters.

Section 2.6 is devoted to numerical experiments that illustrate the performance of

the method. We focus solely on the FENE potential in this section. First of all, we

discuss the implementation of our Galerkin spectral method for the d = 2 case in Sec-

tion 2.6.1, and we also present a range of computational results in order to illustrate the

behaviour of the method in practice, as well as to provide experimental verification of

the convergence analysis from Section 2.5. In Section 2.6.2, we compare the behaviour

of the numerical method based on the backward Euler temporal discretisation with a

semi-implicit scheme in which the transport term in (2.6) is treated explicitly in time.

The semi-implicit scheme is used in Chapter 3, and the results of Section 2.6.2 have

important implications there. Finally, we consider the implementation of the spectral

method in three spatial dimensions in Section 2.6.3 and we demonstrate that, as ex-

pected, the behaviour of the Galerkin spectral method is essentially the same as in the

d = 2 case.

2.1 Properties of Maxwellian-weighted spaces

In this section, density results are derived for the Maxwellian-weighted function spaces

that were defined above. Since the density results below are not specific to the

FENE model, they shall be stated more generally, for any potential U and associated

Maxwellian M that satisfy Hypotheses A and B, respectively.

(a) Suppose that the Maxwellian M satisfies Hypothesis B; M is then a weight-

function of Type 3 in the sense of Triebel. According to [78], Theorem 3.2.2a, the

weighted Sobolev space H1
M(D) = {v ∈ L2

M(D) : ∇∼ qv ∈ (L2
M(D))d} is a Hilbert space

with respect to the norm ‖ · ‖H1
M (D) defined by

‖v‖H1
M (D) :=

(
‖v‖2

L2
M (D) + ‖∇∼ qv‖2

L2
M (D)

) 1
2
,

and L2
M(D) = (1/

√
M ) L2(D) is a Hilbert space with norm ‖ · ‖L2

M (D) defined by

‖v‖L2
M (D) := ‖

√
Mv‖, where ‖ · ‖ denotes the L2(D) norm induced by the L2(D) inner

product (·, ·). By [78], Theorem 3.2.2c, C∞(D) is dense in both H1
M(D) and L2

M(D);
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see also Ch. I, Sec. 7, in Kufner [52], or one of [13,14]. Thus, since v ∈ H1
M(D) if and

only if
√
M v ∈ H1(D;M), it follows that

√
M C∞(D) is dense in the Hilbert spaces

H1(D;M) and L2(D), whereby H1(D;M) is dense in L2(D).

(b) Now suppose that U satisfies Hypothesis A and the associated Maxwellian M

satisfies Hypothesis B. It follows from Hardy’s inequality (see, for example, [4,63]) that∫
D

(
1−
|q
∼
|2

b

)−2

|ψ̂(q
∼
)|2 dq

∼
≤ 4b‖∇∼ qψ̂‖2 ∀ψ̂ ∈ H1

0(D). (2.7)

Since ∇∼ M ψ̂ = ∇∼ qψ̂ + 1
2
q
∼
U ′
(

1
2
|q
∼
|2
)
ψ̂, Hypothesis A implies that there exists C1 ∈

R>0 (for the FENE model C1 = 1) such that (1−|q
∼
|2/b)2|U ′(1

2
|q
∼
|2)|2 ≤ C2

1 for all q
∼
∈ D,

whereby

‖∇∼ M ψ̂‖ ≤ (1 + C1b)‖∇∼ qψ̂‖ ∀ψ̂ ∈ H1
0(D). (2.8)

Now, (2.8) implies that H1
0(D) ⊂ H1(D;M).

Finally, we show that H1(D;M) = H1
0(D;M). As

√
MC∞(D) ⊂ H1

0(D) ⊂ H1(D;M)

and
√
MC∞(D) is dense in H1(D;M) (cf. (a) above), we deduce that H1

0(D) is dense

in H1(D;M). Since C∞0 (D) is dense in H1
0(D), it follows from (2.8) that C∞0 (D) is also

dense in H1(D;M). By definition, H1
0(D;M) is the closure of C∞0 (D) in H1(D;M); thus

H1(D;M) = H1
0(D;M), and therefore also K = K0. As H1(D;M) is continuously and

densely embedded into L2(D), it follows that H1
0(D;M) is continuously and densely

embedded into L2(D).

Remark 2.3 A third hypothesis (referred to as Hypothesis C) was introduced in [49],

which enabled the inequalities:

inf
c∈Ker(∇∼ M )

∫
D

|ψ̂ − c |2 dq
∼
≤
∫
D

|∇∼ M ψ̂|2 dq
∼
, (2.9)

and

inf
c∈Ker(∇∼ M )

∫
D

|ψ̂ − c |2

1−
|q
∼
|2

b

dq
∼
≤ b

b− 2

∫
D

|∇∼ M ψ̂|2 dq
∼
, (2.10)

to be established for all ψ̂ ∈ H1(D;M).

2.2 Analysis of the backward Euler semidiscretisa-

tion

As noted in the opening of this chapter, by setting ψ̂(·, t) := ψ(·, t)/
√
M for t ∈ [0, T ]

and ϕ̂ := ϕ/
√
M in (2.5) and writing ψ̂0 := ψ0/

√
M , the following weak formulation

of the initial-boundary-value problem (2.1), (2.2), (2.3) is obtained:
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Given ψ̂0 ∈ L2(D), find ψ̂ ∈ L∞(0, T ; L2(D))∩L2(0, T ; H1
0(D;M)) such that (2.6) holds

in the sense of distributions on (0, T ), and ψ̂(·, 0) = ψ̂0(·).

The function ψ, representing a weak solution to the problem (2.5), is then recovered

from ψ̂ through the substitution ψ :=
√
M ψ̂. Thus, instead of constructing a Galerkin

approximation to ψ, the aim is to construct a Galerkin approximation to ψ̂ from a

finite-dimensional subspace of H1
0(D;M), from which an approximation to ψ̂ can be

obtained straightforwardly.

Let NT ≥ 1 be an integer, ∆t = T/NT , and tn = n∆t, for n = 0, 1, . . . , NT .

Discretising (2.6) in time using the backward Euler method yields the following semi-

discrete numerical scheme.

Given ψ̂0 := ψ̂0 = ψ0/
√
M ∈ L2(D), find ψ̂n+1 ∈ H1

0(D;M), n = 0, . . . , NT − 1,

such that

∫
D

ψ̂n+1 − ψ̂n

∆t
ϕ̂ dq

∼
−
∫
D

(κ
≈
n+1 q

∼
ψ̂n+1) · ∇∼ M ϕ̂ dq

∼
+

1
2Wi

∫
D
∇∼ M ψ̂

n+1 · ∇∼ M ϕ̂ dq
∼

= 0,(2.11)

for all ϕ̂ ∈ H1
0(D;M).

Let us first show that for any ∆t, sufficiently small, problem (2.11) has a unique

solution. To this end, we consider the bilinear form B(·, ·) defined on H1
0(D;M) ×

H1
0(D;M) by

B(ψ̂, ϕ̂) :=
1

∆t

∫
D

ψ̂ ϕ̂ dq
∼
−
∫
D

(κ
≈
n+1 q

∼
ψ̂) · ∇∼ M ϕ̂ dq

∼
+

1

2Wi

∫
D

∇∼ M ψ̂ · ∇∼ M ϕ̂ dq
∼
,

and, for ψ̂n ∈ L2(D) fixed, we define the linear functional `(ψ̂n; ·) on H1
0(D;M) by

`(ψ̂n; ϕ̂) :=
1

∆t

∫
D

ψ̂n ϕ̂ dq
∼
.

Clearly,

B(ψ̂, ψ̂) ≥ 1

∆t

(
1−∆tWib‖κ

≈
‖2

L∞(0,T )

) ∫
D

|ψ̂|2 dq
∼

+
1

4Wi

∫
D

|∇∼ M ψ̂|2 dq
∼
,

and hence, on assuming that ∆tWib‖κ
≈
‖2

L∞(0,T ) < 1 and letting c∆t := 1
∆t

(
1−∆tWib‖κ

≈
‖2

L∞(0,T )

)
,

we deduce that

B(ψ̂, ψ̂) ≥ min

(
c∆t,

1

4Wi

)
‖ψ̂‖2

H1
0(D;M). (2.12)

Also, by a simple application of the Cauchy–Schwarz inequality, B(·, ·) is a bounded

bilinear functional on H1
0(D;M) × H1

0(D;M) and, for any ψ̂n ∈ L2(D), `(ψ̂n; ·) is

a bounded linear functional on H1
0(D;M). Since H1

0(D;M) is a Hilbert space with
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norm ‖ · ‖H1
0(D;M), the Lax–Milgram theorem implies the existence of a unique solution

ψ̂n+1 ∈ H1
0(D;M) such that

B(ψ̂n+1, ϕ̂) = `(ψ̂n; ϕ̂) ∀ϕ̂ ∈ H1
0(D;M), n = 0, 1, . . . , NT − 1. (2.13)

As ψ̂0 ∈ L2(D), we have thus shown that, for any ∆t = T/NT such that ∆tWi b‖κ
≈
‖2

L∞(0,T ) <

1, the problem (2.11) has a unique solution {ψ̂n ∈ H1
0(D;M) : n = 1, . . . , NT}.

For the purposes of the convergence analysis that will be carried out below, we

consider an extended version of the scheme (2.11) with a nonzero right-hand side:∫
D

ψ̂n+1 − ψ̂n

∆t
ϕ̂ dq

∼
−
∫
D

(κ
≈
n+1 q

∼
ψ̂n+1) · ∇∼ M ϕ̂ dq

∼
+

1

2Wi

∫
D

∇∼ M ψ̂
n+1 · ∇∼ M ϕ̂ dq

∼

=

∫
D

µn+1ϕ̂ dq
∼

+

∫
D

ν∼
n+1 · ∇∼ M ϕ̂ dq

∼
∀ϕ̂ ∈ H1

0(D;M), (2.14)

for n = 0, . . . , NT − 1, where µn+1 ∈ L2(D) and ν∼
n+1 ∈ (L2(D))d for all n ≥ 0. We

have the following stability result for (2.14).

Lemma 2.4 (The first stability inequality) Let ∆t = T/NT , NT ≥ 1, κ
≈
∈

(C[0, T ])d×d, ψ̂0 ∈ L2(D), and define c0 := 1 + 4Wib‖κ
≈
‖2

L∞(0,T ). If ∆t is such that

0 < c0∆t ≤ 1/2, then we have, for all m such that 1 ≤ m ≤ NT ,

‖ψ̂m‖2 +
m−1∑
n=0

∆t

∥∥∥∥∥ ψ̂n+1 − ψ̂n√
∆t

∥∥∥∥∥
2

+
m−1∑
n=0

∆t

2Wi
‖∇∼ M ψ̂

n+1‖2

≤ e2c0m∆t

{
‖ψ̂0‖2 +

m−1∑
n=0

2∆t
(
‖µn+1‖2 + 4Wi‖ν∼

n+1‖2
)}

.

Proof. Let 0 ≤ n ≤ NT − 1. Setting ϕ̂ = ψ̂n+1, we write the first term in (2.14)

as ∫
D

ψ̂n+1 − ψ̂n

∆t
ψ̂n+1 dq

∼
=

1

2∆t

(
‖ψ̂n+1‖2 − ‖ψ̂n‖2

)
+

1

2∆t
‖ψ̂n+1 − ψ̂n‖2

using the identity (α− β)α = 1
2
(α2 − β2) + 1

2
(α− β)2.

Applying the Cauchy–Schwarz inequality to the transport term in (2.14), we have∫
D

(κ
≈
n+1 q

∼
ψ̂n+1) · ∇∼ M ψ̂

n+1 dq
∼
≤
√
b |κ
≈
n+1| ‖ψ̂n+1‖ ‖∇∼ M ψ̂

n+1‖.

Combining these results and applying the Cauchy–Schwarz inequality to the right-hand

side terms in (2.14) gives

‖ψ̂n+1‖2 + ‖ψ̂n+1 − ψ̂n‖2 +
∆t

Wi
‖∇∼ M ψ̂

n+1‖2

≤ ‖ψ̂n‖2 + 2∆t
√
b |κ
≈
n+1|‖ψ̂n+1‖‖∇∼ M ψ̂

n+1‖

+2∆t‖µn+1‖‖ψ̂n+1‖+ 2∆t‖ν∼
n+1‖‖∇∼ M ψ̂

n+1‖

=: ‖ψ̂n‖2 + T1 + T2 + T3.
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Using Cauchy’s inequality 2αβ ≤ εα2 + ε−1β2 with ε > 0 on each of T1 and T3, we

deduce that

T1 ≤ ε‖∇∼ M ψ̂
n+1‖2 +

1

ε
∆t2b|κ

≈
n+1|2‖ψ̂n+1‖2, T3 ≤ ε‖∇∼ M ψ̂

n+1‖2 +
1

ε
∆t2‖ν∼

n+1‖2.

Choosing ε = ∆t/(4Wi) then gives

‖ψ̂n+1‖2 + ‖ψ̂n+1 − ψ̂n‖2 +
∆t

2Wi
‖∇∼ M ψ̂

n+1‖2

≤ ‖ψ̂n‖2 + 4∆tWib|κ
≈
n+1|2‖ψ̂n+1‖2 + 4∆tWi‖ν∼

n+1‖2 + T2.

Similarly, we have T2 ≤ ∆t‖ψ̂n+1‖2 + ∆t‖µn+1‖2, and therefore, on defining c0 :=

1 + 4Wib‖κ
≈
‖2

L∞(0,T ), we get

(1− c0∆t)‖ψ̂n+1‖2 + ‖ψ̂n+1 − ψ̂n‖2 +
∆t

2Wi
‖∇∼ M ψ̂

n+1‖2

≤ ‖ψ̂n‖2 + ∆t‖µn+1‖2 + 4∆tWi‖ν∼
n+1‖2.

As c0∆t ≤ 1
2
, dividing through by (1 − c0∆t) and using the fact that 1 ≤ 1

1−c0∆t
≤ 2,

we have

‖ψ̂n+1‖2 + ‖ψ̂n+1 − ψ̂n‖2 +
∆t

2Wi
‖∇∼ M ψ̂

n+1‖2

≤ 1

1− c0∆t

(
‖ψ̂n‖2 + ∆t‖µn+1‖2 + 4∆tWi‖ν∼

n+1‖2
)

≤ (1 + 2c0∆t)‖ψ̂n‖2 + 2∆t
(
‖µn+1‖2 + 4Wi‖ν∼

n+1‖2
)
. (2.15)

Summing over n = 0, . . . ,m− 1 in (2.15) we obtain

‖ψ̂m‖2 +
m−1∑
n=0

∆t

∥∥∥∥∥ ψ̂n+1 − ψ̂n√
∆t

∥∥∥∥∥
2

+
m−1∑
n=0

∆t

2Wi
‖∇∼ M ψ̂

n+1‖2

≤

{
‖ψ̂0‖2 +

m−1∑
n=0

2∆t
(
‖µn+1‖2 + 4Wi‖ν∼

n+1‖2
)}

+ 2c0

m−1∑
n=0

∆t‖ψ̂n‖2, (2.16)

for all m ∈ {1, . . . , NT}. By induction (or by a discrete Gronwall lemma) we deduce

that

‖ψ̂m‖2 +
m−1∑
n=0

∆t

∥∥∥∥∥ ψ̂n+1 − ψ̂n√
∆t

∥∥∥∥∥
2

+
m−1∑
n=0

∆t

2Wi
‖∇∼ M ψ̂

n+1‖2

≤ e2c0m∆t

{
‖ψ̂0‖2 +

m−1∑
n=0

2∆t
(
‖µn+1‖2 + 4Wi‖ν∼

n+1‖2
)}

, 1 ≤ m ≤ NT ,

and that completes the proof. �
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Theorem 2.5 Suppose that ψ̂0 ∈ L2(D) and that κ
≈
∈ (C[0, T ])d×d. Then, there exists

a unique function ψ̂ in L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
0(D;M)) ∩ C([0, T ]; L2(D)), such

that

(ψ̂(·, 0)− ψ̂0, ŵ) = 0 ∀ŵ ∈ L2(D)

and

−(ψ̂0, ϕ̂(·, 0))−
∫ T

0

∫
D

ψ̂
∂ϕ̂

∂t
dq
∼

dt−
∫ T

0

∫
D

(κ
≈
q
∼
ψ̂) · ∇∼ M ϕ̂ dq

∼
dt (2.17)

+
1

2Wi

∫ T

0

∫
D

∇∼ M ψ̂ · ∇∼ M ϕ̂ dq
∼

dt = 0, ∀ϕ̂ ∈ H1(0, T ; H1
0(D;M)), ϕ̂(·, T ) = 0.

The function ψ =
√
Mψ̂ will be called the weak solution of the initial-boundary-value

problem (2.1), (2.2), (2.3).

Proof. This theorem is proved in Section 3 of [49], the interested reader is referred

to that paper for details. The argument makes use of the stability result in Lemma 2.4

in order to use compactness results for the bounded sequence of solutions to (2.11) as

∆t→ 0+. �

In the next lemma, a configuration space analogue of Lemma 1.3 is established and

also it is shown that a weak form of (1.31) is preserved on D. In the remark below, a

result is stated that is necessary for the proof of Lemma 2.7.

Remark 2.6 Suppose ϕ̂ ∈ H1
0(D;M) and L ≥ 0, and let [ψ̂n]− be the pointwise neg-

ative part of ψ̂n, i.e. [x]± := (x ± |x|)/2 for x ∈ R. Then, it is shown in Lemma 3.5

of [49] that

∇∼ M [ ϕ̂− L
√
M ]+ =

{
∇∼ M( ϕ̂− L

√
M ) = ∇∼ M ϕ̂ if ϕ̂ > L

√
M,

0 if ϕ̂ ≤ L
√
M ;

(2.18)

and

∇∼ M [ ϕ̂− L
√
M ]− =

{
∇∼ M( ϕ̂− L

√
M ) = ∇∼ M ϕ̂ if ϕ̂ < L

√
M,

0 if ϕ̂ ≥ L
√
M ;

(2.19)

i.e. that the [·]± operators act on functions in H1
0(D;M) as one would expect. Moreover,

[ ϕ̂−L
√
M ]+ and [ ϕ̂−L

√
M ]− belong to H1

0(D;M). The proof of these results is rather

technical and is therefore omitted here.

Lemma 2.7 Let ψ0 ∈ H and ψ =
√
Mψ̂ where ψ̂ ∈ L∞(0, T ; L2(D))∩L2(0, T ; H1

0(D;M))∩
C([0, T ]; L2(D)) is the weak solution to (2.17) subject to the initial condition ψ̂0 =
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ψ0/
√
M (i.e., the function ψ is the weak solution of the initial-boundary-value problem

(2.1), (2.2), (2.3)). Then,∫
D

ψ(q
∼
, t) dq

∼
=

∫
D

ψ0(q
∼
) dq
∼

∀t ∈ [0, T ).

Furthermore if ψ0 ≥ 0 a.e. on D, then ψ(·, t) ≥ 0 a.e. on D for all t ∈ [0, T ].

Proof. Fix any t ∈ (0, T ), and let ε ∈ (0, T−t]. Consider the function ϕ̂ε defined

by

ϕ̂ε(q∼, s) :=


√
M for s ∈ [0, t],√
M(t+ ε− s)/ε for s ∈ [t, t+ ε),

0 for s ∈ [t+ ε, T ].

Clearly, ϕ̂ε ∈ H1(0, T ; H1
0(D;M)) and ϕ̂ε(·, T ) = 0. Taking ϕ̂ε as test function in (2.17)

yields

−(ψ̂0,
√
M ) +

1

ε

∫ t+ε

t

(ψ̂(·, s),
√
M ) ds = 0.

Passing to the limit ε→ 0+ yields−(ψ̂0,
√
M )+(ψ̂(·, t),

√
M ) = 0, whereby (ψ(·, t), 1) =

(ψ0, 1), as required, for all t ∈ (0, T ); for t = 0 the equality holds trivially.

Now, suppose that ψ0 ∈ H and ψ0 ≥ 0; then, ψ̂0 ∈ L2(D) and ψ̂0 ≥ 0. For ∆t as in

Lemma 2.4, consider the sequence of functions (ψ̂n)NTn=0 ⊂ H1
0(D;M) defined by (2.13).

Let [ψ̂n]− be the pointwise negative part of ψ̂n, where [x]± := (x ± |x|)/2 for x ∈ R.

Then, by Remark 2.6, ([ψ̂n]−)NTn=0 ⊂ H1
0(D;M). It follows that

B([ψ̂n+1]− , [ψ̂n+1]−) = B(ψ̂n+1 , [ψ̂n+1]−) = `(ψ̂n; [ψ̂n+1]−),

where the first equality is due to the fact that [ψ̂n+1]− vanishes when ψ̂n+1 > 0, and the

second equality is due to (2.13). Suppose, for induction, that ψ̂n ≥ 0; this is certainly

true for n = 0, since ψ̂0 = ψ̂0 ≥ 0. Hence,

`(ψ̂n; [ψ̂n+1]−) =
1

∆t

∫
D

ψ̂n(q
∼
)[ψ̂n+1(q

∼
)]− dq

∼
≤ 0.

Therefore, B([ψ̂n+1]− , [ψ̂n+1]−) ≤ 0; thus, (2.12) implies that ‖[ψ̂n+1]−‖H1
0(D;M) ≤

0, whereby [ψ̂n+1]− = 0 and hence ψ̂n+1 ≥ 0. By induction, ψ̂n ≥ 0 for all n =

0, 1, . . . , NT . Then, passing to the limit ∆t→ 0+, it follows from Theorem 2.5 that the

weak solution ψ̂ is non-negative on D × [0, T ] (see [49]). �

Remark 2.8 The same argument used above to establish the non-negativity of ψ̂ can

be used to derive a weak maximum principle in the case that q
∼

Tκ
≈

(t) q
∼
≤ 0 for a.e.

t ∈ [0, T ] and q
∼
∈ D.
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Let

L = ess.supq
∼
∈D ψ̂0(q

∼
)/
√
M(q

∼
),

where it assumed that the essential supremum above is finite. Suppose that ψ̂n ≤ L
√
M ;

this is certainly true for n = 0. Then, following the argument above:

B([ψ̂n+1 − L
√
M ]+ , [ψ̂n+1 − L

√
M ]+) = B(ψ̂n+1 − L

√
M , [ψ̂n+1 − L

√
M ]+)

= B(ψ̂n+1 , [ψ̂n+1 − L
√
M ]+)− LB(

√
M , [ψ̂n+1 − L

√
M ]+)

= `(ψ̂n; [ψ̂n+1 − L
√
M ]+)− LB(

√
M , [ψ̂n+1 − L

√
M ]+)

=
1

∆t

∫
D

(ψ̂n(q
∼
)− L

√
M)[ψ̂n+1 − L

√
M ]+ dq

∼

+LWi

∫
D

(κ
≈
q
∼

√
M) · ∇∼ M [ψ̂n+1 − L

√
M ]+ dq

∼
,

where the diffusion term in B(·, ·) vanishes because
√
M ∈ ker(∇∼ M). The term on the

second-last line above is non-positive by the inductive hypothesis and, after integrating

by parts, we deduce that the term on the last line is also non-positive when q
∼

Tκ
≈
q
∼
≤ 0.1

Therefore, [ψ̂n+1 − L
√
M ]+ = 0; i.e., ψ̂n+1 ≤ L

√
M . Then, in the same way as in

Lemma 2.7, on passage to the limit ∆t→ 0+, this implies that

ess.sup(q
∼
,t)∈D×[0,T ] ψ(q

∼
, t)/M(q

∼
) ≤ ess.supq

∼
∈D ψ0(q

∼
)/M(q

∼
),

which can be thought of as a maximum principle for the initial-boundary value problem

in the case that q
∼

Tκ
≈
q
∼
≤ 0. �

By the next lemma, if κ
≈
∈ (H1(0, T ))d×d and ψ̂0 ∈ H1

0(D;M), then stability can be

established in stronger norms than in Lemma 2.4.

Lemma 2.9 (The second stability inequality) Let ∆t = T/NT , NT ≥ 1, κ
≈
∈

(H1(0, T ))d×d, ψ̂0 ∈ H1
0(D;M), and define c0 := 1 + 4Wib‖κ

≈
‖2

L∞(0,T ). If ∆t is such that

0 < c0∆t ≤ 1/2, then, for all m such that 1 ≤ m ≤ NT ,

∆t
m−1∑
n=0

∥∥∥∥∥ ψ̂n+1 − ψ̂n

∆t

∥∥∥∥∥
2

+
1

4Wi
‖∇∼ M ψ̂

m‖2 +
1

2Wi

m−1∑
n=0

∆t

∥∥∥∥∥∇∼ M
ψ̂n+1 − ψ̂n√

∆t

∥∥∥∥∥
2

≤ e2c1m∆t

{
2∆t

m−1∑
n=0

‖µn+1‖2 + 12Wi max
1≤n≤m

‖ν∼
n‖2 + ∆t

m−1∑
n=1

∥∥∥∥ν∼n+1 − ν∼n

∆t

∥∥∥∥2

+
1

Wi
‖∇∼ M ψ̂

0‖2 +
(
b ‖κ
≈ t
‖2

L2(0,T ) + 12Wib ‖κ
≈
‖2

L∞(0,T )

)
S(ψ̂0, µ, ν∼,Wi,m∆t)

}
,

1In fact, if q
∼

Tκ
≈

(t) q
∼
≤ 0 for all q

∼
∈ Rd and t ∈ [0, T ], and tr(κ

≈
(t)) = 0 for all t ∈ [0, T ], then it must

be the case that q
∼

Tκ
≈

(t)q
∼

= 0 for all q
∼
∈ Rd and t ∈ [0, T ].
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where S(ψ̂0, µ, ν∼,Wi,m∆t) is the right-hand side of the inequality from Lemma 2.4

and c1 = 4Wi(1 + b ‖κ
≈
‖2

L∞(0,T )).

Proof. The proof is similar to that of Lemma 2.4, except one uses the test

function ϕ̂ = (ψ̂n+1 − ψ̂n)/∆t. �

It follows from Lemma 2.9, by an identical argument as in the proof of Theorem 2.5,

that the weak solution ψ̂ of (2.17) belongs to H1(0, T ; L2(D)) ∩ L∞(0, T ; H1
0(D;M)),

provided that κ
≈
∈ (H1(0, T ))d×d and ψ̂0 ∈ H1

0(D;M).

The stability result in Lemma 2.4 will be useful in Section 2.3, but for now, note

that setting µ = 0 and ν∼ = 0∼ in Lemmas 2.4 and 2.9 demonstrates the unconditional

stability of the time semidiscretisation in various norms. Also note that, evidently,

any fully-discrete method based on the semidiscrete scheme (2.11) and conforming

Galerkin discretisation in q
∼

using a finite-dimensional subspace PN(D) of H1
0(D;M)

will be unconditionally stable in the norms appearing on the left-hand sides of the

bounds in Lemmas 2.4 and 2.9.

2.2.1 Well-posedness of a Chauvière–Lozinski type transformed
FENE model

In this section we show that, in the case of the FENE model, the weak formulation

resulting from the substitution ψ̂ := ψ/M2s/b with b ≥ 4s2/(2s − 1) and s > 1/2 also

leads to a well-posed problem and a stable semidiscretisation in any number of space

dimensions. The minimum value of the function s ∈ (0,∞) 7→ 4s2/(2s− 1) is attained

at s = 1, yielding the maximum range of b values, b ≥ 4. This transformation was

proposed by Chauvière & Lozinski [59,24,23,60] in the special cases s = 2 and s = 2.5,

where these values were chosen on the basis of numerical experiments in two and three

space dimensions, respectively. For the sake of brevity, we shall confine ourselves to

establishing an energy estimate analogous to our first stability inequality in Lemma

2.4, and the discussion in this section is restricted to the FENE model.

Inserting ψ(q
∼
) = [M(q

∼
)]2s/bψ̂(q

∼
) into our model problem (2.1), where now M is the
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FENE Maxwellian, yields, on noting that tr(κ
≈

)(t) = 0 for all t ∈ [0, T ],

∂ψ̂

∂t
− 1

2Wi
∆qψ̂ =

1

2Wi

(1− 4s

b

)(
1−
|q
∼
|2

b

)−1

q
∼
− 2Wi(κ

≈
q
∼
)

 · ∇∼ qψ̂

+
1

2Wi

(
1−
|q
∼
|2

b

)−2 [
d

(
1− 2s

b

)(
1−
|q
∼
|2

b

)
+

2(s− 1)(2s− b)
b2

|q
∼
|2 +

4sWi

b
(q
∼

Tκ
≈
q
∼
)

(
1−
|q
∼
|2

b

)]
ψ̂. (2.20)

Denoting by A∼ (q
∼
, t) the expression in the first square bracket on the right-hand side of

(2.20) and by B(q
∼
, t) the expression in the second square bracket, multiplying (2.20) by

any ϕ̂ ∈ H1
0(D), integrating the resulting expression over D, and integrating by parts

in the second term on the left-hand side, yields the following weak formulation.

Given ψ̂0 = ψ0/M
2s/b ∈ L2(D), find ψ̂ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1

0(D)) such

that

d

dt

∫
D

ψ̂ ϕ̂ dq
∼

+
1

2Wi

∫
D

∇∼ qψ̂ · ∇∼ qϕ̂ dq
∼

=
1

2Wi

∫
D

(A∼ (q
∼
, t) · ∇∼ qψ̂) ϕ̂ dq

∼
+

1

2Wi

∫
D

(
1−
|q
∼
|2

b

)−2

B(q
∼
, t) ψ̂ ϕ̂ dq

∼
, (2.21)

for all ϕ̂ ∈ H1
0(D), in the sense of distributions on (0, T ), and with ψ̂(·, 0) = ψ̂0.

The backward Euler semidiscretisation of this weak formulation is as follows.

Given ψ̂0 := ψ̂0 = ψ0/M
2s/b ∈ L2(D), find ψ̂n+1 ∈ H1

0(D), n = 0, 1, . . . , NT − 1,

such that ∫
D

ψ̂n+1 − ψ̂n

∆t
ϕ̂ dq

∼
+

1

2Wi

∫
D

∇∼ qψ̂
n+1 · ∇∼ qϕ̂ dq

∼

=
1

2Wi

∫
D

(A∼ (q
∼
, tn+1) · ∇∼ qψ̂

n+1) ϕ̂ dq
∼

+
1

2Wi

∫
D

(
1−
|q
∼
|2

b

)−2

B(q
∼
, tn+1) ψ̂n+1 ϕ̂ dq

∼
, (2.22)

for all ϕ̂ ∈ H1
0(D).

We begin by showing that, for ∆t sufficiently small and all b ≥ 4s2/(2s − 1) and

s > 1/2, this problem has a unique solution. To this end, for t ∈ [0, T ] fixed, we
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consider the bilinear form defined on H1
0(D)× H1

0(D) by

C(ψ̂, ϕ̂) :=
1

∆t

∫
D

ψ̂ ϕ̂ dq
∼

+
1

2Wi

∫
D

∇∼ qψ̂ · ∇∼ qϕ̂ dq
∼

− 1

2Wi

∫
D

(A∼ (q
∼
, t) · ∇∼ qψ̂) ϕ̂ dq

∼
− 1

2Wi

∫
D

(
1−
|q
∼
|2

b

)−2

B(q
∼
, t)ψ̂ ϕ̂ dq

∼
.

Now, taking ϕ̂ = ψ̂ ∈ C∞0 (D), integration by parts in the third integral in the definition

of C, and then merging the resulting integral with the fourth integral in the definition

of C, yields

C(ψ̂, ψ̂) =
1

∆t
‖ψ̂‖2 +

1

2Wi
‖∇∼ qψ̂‖2 +

1

2Wi

(
2s− 1− 4s2

b

)∫
D

|q
∼
|2

b

(
1−
|q
∼
|2

b

)−2

|ψ̂|2 dq

− 1

4Wi

∫
D

[
d+

8sWi

b
(q
∼

Tκ
≈
q
∼
)

](
1−
|q
∼
|2

b

)−1

|ψ̂|2 dq
∼
.

Assuming that b ≥ 4s2/(2s − 1) with s > 1/2, and recalling that |q
∼
| <
√
b for q

∼
∈ D,

we then have that

C(ψ̂, ψ̂) ≥ 1

∆t
‖ψ̂‖2 +

1

2Wi
‖∇∼ qψ̂‖2− 1

4Wi
(d+ 8sWi‖κ

≈
‖L∞(0,T ))

∫
D

(
1−
|q
∼
|2

b

)−1

|ψ̂|2 dq
∼
.

Let us note that for, any β > 0,∫
D

(
1−
|q
∼
|2

b

)−1

|ψ̂|2 dq
∼
≤ 1

4β

∫
D

|ψ̂|2 dq
∼

+ β

∫
D

(
1−
|q
∼
|2

b

)−2

|ψ̂|2 dq
∼
. (2.23)

Hence, by (2.7) and fixing β as the unique solution of the equation 4b
(
d+ 8sWi‖κ

≈
‖L∞(0,T )

)
β =

1, we have that

C(ψ̂, ψ̂) ≥ 1

∆t

(
1− b∆t

4Wi
(d+ 8sWi‖κ

≈
‖L∞(0,T ))

2

)
‖ψ‖2 +

1

4Wi
‖∇∼ qψ̂‖2 ∀ψ̂ ∈ C∞0 (D).

Recalling that C∞0 (D) is dense in H1
0(D) and, by [13] and [14], also in the (1 −

|q
∼
|2/b)−2-weighted L2 space, L2

M−4/b(D), we thus deduce that, for any ∆t < 4Wi/(b(d+

8sWi‖κ
≈
‖L∞(0,T ))

2), the bilinear form C is coercive on H1
0(D)×H1

0(D). The existence of

a unique solution {ψ̂n}NTn=0 to the semidiscretisation (2.22) then follows from the Lax–

Milgram theorem, as in the previous section. Using the above coercivity argument, the

proof of stability of (2.22), stated in Lemma 2.10 below, is completely analogous to

the proof of Lemma 2.4 and is therefore omitted.
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Lemma 2.10 (Stability inequality) Let ∆t = T/NT , NT ≥ 1, κ
≈
∈ (C[0, T ])d×d,

ψ̂0 ∈ L2(D), b ≥ 4s2/(2s−1) with s > 1/2, and define c0 := b(d+8sWi‖κ
≈
‖L∞(0,T ))

2/(2Wi).

If ∆t is such that 0 < c0∆t ≤ 1/2, then we have, for all m such that 1 ≤ m ≤ NT ,

‖ψ̂m‖2 +
m−1∑
n=0

∆t

∥∥∥∥∥ ψ̂n+1 − ψ̂n√
∆t

∥∥∥∥∥
2

+
m−1∑
n=0

∆t

2Wi
‖∇∼ qψ̂

n+1‖2 ≤ e2c0m∆t‖ψ̂0‖2.

Using Lemma 2.10, the existence of a unique weak solution to (2.21) can be established

in the same way as for the symmetrised formulation.

2.3 The fully-discrete method

We now return to the semidiscrete method (2.11) based on the symmetrised version

of the Fokker–Planck equation and describe the construction of a fully-discrete nu-

merical method that stems from this semidiscretisation. At the end of the section

we shall comment on the extension of our results to a fully-discrete method based

on the semidiscretisation (2.22) of the Chauvière–Lozinski-transformed Fokker–Planck

equation (2.20) for the FENE model.

Let PN(D) be a finite-dimensional subspace of H1
0(D;M), to be chosen below, and

let ψ̂nN ∈ PN(D) be the solution at time level n of our fully-discrete Galerkin method:∫
D

ψ̂n+1
N − ψ̂nN

∆t
ϕ̂ dq

∼
−
∫
D

(κ
≈
n+1 q

∼
ψ̂n+1
N ) · ∇∼ M ϕ̂ dq

∼
+

1

2Wi

∫
D

∇∼ M ψ̂
n+1
N · ∇∼ M ϕ̂ dq

∼
= 0

∀ϕ̂ ∈ PN(D), n = 0, . . . , NT − 1, (2.24)

ψ̂0
N(·) := the L2(D) orthogonal projection of ψ̂0(·) = ψ̂(·, 0) onto PN(D). (2.25)

Remark 2.11 If the linear space PN(D) is selected so that
√
M ∈ PN(D), then, since√

M ∈ Ker(∇∼ M), it follows on taking ϕ̂ =
√
M in (2.24) that∫

D

√
M(q

∼
) ψ̂nN(q

∼
) dq
∼

=

∫
D

√
M(q

∼
) ψ̂0

N(q
∼
) dq
∼
, n = 1, . . . , NT ,

whereby, on letting ψnN :=
√
Mψ̂nN , we have that∫

D

ψnN(q
∼
) dq
∼

=

∫
D

ψ0
N(q
∼
) dq
∼
, n = 1, . . . , NT .

The function ψnN represents an approximation to the probability density function ψ =√
Mψ̂ at t = tn. Since, by Lemma 2.7,

∫
D
ψ(q
∼
, t) dq

∼
=
∫
D
ψ0(q

∼
) dq
∼

= 1 for all t ≥ 0,

we deduce, by choosing PN(D) so that
√
M ∈ PN(D), that this integral identity is

preserved under discretisation. The integral
∫
D
ψ(q
∼
, t) dq

∼
will sometimes be referred to

as the volume of ψ. �
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Our objective is to derive a bound on the global error enN := ψ̂(·, tn)− ψ̂nN . Clearly,

enN = (ψ̂(·, tn)− Π̂N ψ̂(·, tn)) + (Π̂N ψ̂(·, tn)− ψ̂nN) =: ηn + ξn,

where Π̂N ψ̂(·, tn) ∈ PN(D) is a certain projection of ψ̂(·, tn) onto PN(D) that will be

defined below. For the moment, the specific choices of PN ⊂ H1
0(D;M) and Π̂N are

irrelevant. Note also that η is defined for a.e. t ∈ (0, T ), i.e. not only at the discrete

time-levels.

We begin by bounding norms of ξ in terms of suitable norms of η. Substituting ξ

into (2.24), setting ϕ̂ = ξn+1, and noting that ξn = ψ̂(·, tn)− ψ̂nN − ηn, we have∫
D

ξn+1 − ξn

∆t
ξn+1 dq

∼
−
∫
D

(κ
≈
n+1 q

∼
ξn+1) · ∇∼ Mξ

n+1 dq
∼

+
1

2Wi

∫
D

∇∼ Mξ
n+1 · ∇∼ Mξ

n+1 dq
∼

=

∫
D

µn+1 ξn+1 dq
∼

+

∫
D

ν∼
n+1 · ∇∼ Mξ

n+1 dq
∼
, (2.26)

for n = 0, . . . , NT − 1, where

µn+1 :=

(
ψ̂(·, tn+1)− ψ̂(·, tn)

∆t
− ∂ψ̂

∂t
(·, tn+1)

)
− ηn+1 − ηn

∆t
, (2.27)

ν∼
n+1 := κ

≈
n+1q

∼
ηn+1 − 1

2Wi
∇∼ Mη

n+1. (2.28)

Since PN(D) ⊂ H1
0(D;M), (2.26) is in the form of (2.14); hence, applying Lemma

2.4, we obtain

‖ξm‖2+
1

2Wi

m−1∑
n=0

∆t‖∇∼ Mξ
n+1‖2 ≤ e2c0m∆t

{
‖ξ0‖2 +

m−1∑
n=0

2∆t
(
‖µn+1‖2 + 4Wi‖ν∼

n+1‖2
)}

,

(2.29)

for m = 1, . . . , NT . Let us first consider the term ‖ξ0‖ on the right-hand side of (2.29).

Since ψ̂0
N is the L2(D) orthogonal projection of ψ̂(·, 0) = ψ̂0 onto PN(D), we have

(ξ0, ϕ̂N) = −(η0, ϕ̂N) for all ϕ̂N ∈ PN(D). Setting ϕ̂N = ξ0 here and applying the

Cauchy–Schwarz inequality on the right-hand side yields ‖ξ0‖ ≤ ‖η0‖.
By the triangle inequality we have the following bound on ‖ν∼n+1‖:

‖ν∼
n+1‖ ≤

√
b |κ
≈
n+1| ‖ηn+1‖+

1

2Wi
‖∇∼ Mη

n+1‖, n = 0, . . . , NT − 1.

Hence for the third term on the right-hand-side of (2.29), we have

m−1∑
n=0

8Wi∆t‖ν∼
n+1‖2 ≤

m−1∑
n=0

∆t

(
16Wib|κ

≈
n+1|2‖ηn+1‖2 +

4

Wi
‖∇∼ Mη

n+1‖2

)

≤ 4c2

m−1∑
n=0

∆t‖ηn+1‖2
H1

0(D;M) = 4c2‖η‖2
`2(0,tm;H1

0(D;M)),
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for m = 1, . . . , NT , where c2 := max
(

1/Wi , 4Wib‖κ
≈
‖2

L∞(0,T )

)
.

It remains to bound ‖µm+1‖. We begin by observing that

‖µm+1‖ ≤

∥∥∥∥∥ ψ̂(·, tn+1)− ψ̂(·, tn)

∆t
− ∂ψ̂

∂t
(·, tn+1)

∥∥∥∥∥+

∥∥∥∥ηn+1 − ηn

∆t

∥∥∥∥ =: I + II.

Bounding both I and II by Taylor’s theorem with integral remainder yields

I2 ≤ ∆t

∫ tn+1

tn

∥∥∥∥∥∂2ψ̂

∂t2
(·, t)

∥∥∥∥∥
2

dt,

II2 ≤
∫
D

1

∆t

∫ tn+1

tn

∣∣∣∣∂η∂t (q
∼
, t)

∣∣∣∣2 dt dq
∼

=
1

∆t

∫ tn+1

tn

∥∥∥∥∂η∂t (·, t)
∥∥∥∥2

dt.

Therefore, we now have that

m−1∑
n=0

2∆t‖µn+1‖2 ≤ 4
m−1∑
n=0

∆t2
∫ tn+1

tn

∥∥∥∥∥∂2ψ̂

∂t2
(·, t)

∥∥∥∥∥
2

dt+ 4
m−1∑
n=0

∫ tn+1

tn

∥∥∥∥∂η∂t (·, t)
∥∥∥∥2

dt

= 4∆t2

∥∥∥∥∥∂2ψ̂

∂t2

∥∥∥∥∥
2

L2(0,tm;L2(D))

+ 4

∥∥∥∥∂η∂t
∥∥∥∥2

L2(0,tm;L2(D))

.

Combining the bounds on the three terms on the right-hand side of (2.29) we deduce

that

‖ξm‖2 +
1

2Wi

m−1∑
n=0

∆t‖∇∼ Mξ
n+1‖2

≤ e2c0m∆t
(
‖η0‖2 + 4c2‖η‖2

`2(0,tm;H1
0(D;M))

+4

∥∥∥∥∂η∂t
∥∥∥∥2

L2(0,tm;L2(D))

+ 4∆t2

∥∥∥∥∥∂2ψ̂

∂t2

∥∥∥∥∥
2

L2(0,tm;L2(D))

 . (2.30)

It remains to bound the first three terms in the bracket on the right-hand side of

(2.30). To do so we need to make a specific choice of the finite-dimensional space

PN(D) from which approximations to ψ̂ ∈ H1
0(D;M) are sought, and we also need

to specify the projector Π̂N . These issues will be discussed in the next section. We

shall then return, in Section 2.5, to (2.30) and complete the convergence analysis of

the numerical method.

Remark 2.12 In the case of the FENE model with b ≥ 4s2/(2s − 1) and s > 1/2

a bound analogous to (2.30) can be shown to hold for the fully-discrete version of

the semidiscretisation (2.22) based on a Chauvière–Lozinski-type transformation, with
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suitable fixed positive constants c0 and c2, except that PN(D) is then taken to be a finite-

dimensional subspace of H1
0(D), ∇∼ Mξ

n+1 on the left-hand side of the bound (2.30) is

replaced by ∇∼ qξ
n+1, and the norm ‖ · ‖`2(0,tm;H1

0(D;M)) on the right-hand side of (2.30) is

replaced by ‖ · ‖`2(0,tm;H1
0(D)). The main steps of the proof are identical to those above:

the Cauchy–Schwarz inequality and inequalities (2.7) and (2.23) are used in the course

of bounding the terms on the right-hand side of an error identity analogous to (2.26)

relating the sequence {ξm}NTm=0 to the sequence {ηm}NTm=0, while the terms on the left-

hand side of the error identity are bounded below as in the proof the stability inequality

stated in Lemma 2.10.

We note in particular that the fully-discrete version of the semidiscretisation (2.22)

based on a Chauvière–Lozinski type transformation ψ̂ = ψ/M2s/b and the finite-dimensional

Galerkin subspace PN(D) ⊂ H1
0(D) is unconditionally stable in the sense that the se-

quence of numerical solutions {ψ̂nN}
NT
n=0 generated by the fully-discrete scheme satis-

fies the stability inequality stated in Lemma 2.10, with ∆t = T/NT , NT ≥ 1, κ
≈
∈

(C[0, T ])d×d, ψ̂0
N ∈ PN(D), b ≥ 4s2/(2s−1), s > 1/2, c0 := b(d+8sWi‖κ

≈
‖L∞(0,T ))

2/(2Wi),

0 < c0∆t ≤ 1/2, and ψm, ψm−1 and ψ0 replaced by ψmN , ψm−1
N and ψ0

N , respectively,

without any conditions relating ∆t to N . The proof of this is identical to that of

Lemma 2.10, mutatis mutandis. We thus deduce that for b � 1 a time-step limita-

tion of the form ∆t = O(b−1) is needed in order to ensure that 0 < c0∆t ≤ 1/2, and

thereby the stability of the method. In this respect the scheme behaves identically to the

fully-discrete numerical method (2.24), (2.25), based on the symmetrised form of the

Fokker–Planck equation (cf. the conditions of Lemma 2.4, for example). �

2.4 Approximation results

It was shown in Section 2.1(b) that, under Hypotheses A and B, H1
0(D) ⊂ H1(D;M) =

H1
0(D;M). Therefore, any finite-dimensional space PN(D) ⊂ H1

0(D) is, trivially, also

contained in H1
0(D;M). The aim now is to make a specific choice of PN(D) and to

explore the approximation properties of the chosen space.

Remark 2.13 As in Remark 2.11, if, in addition,
√
M ∈ PN(D), then∫

D

ψnN(q
∼
) dq
∼

=

∫
D

ψ0
N(q
∼
) dq
∼
.

In the notation of Lemma 1.3, this can be written as %nN = %0
N . Since, by Hypothesis

B,
√
M ∈ H1

0(D), one can ensure that this integral identity holds by including
√
M in

the finite-dimensional space PN(D). �
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The definition of PN(D) and the choice of the projector Π̂N : H1
0(D;M)→ PN(D)

will depend on the number d of space dimensions. Since the case of d = 2 is sufficiently

representative, for the sake of brevity and ease of presentation we shall confine ourselves

to two space dimensions in this section, that is, when D is a disc of radius
√
b in R2.

Let D0 denote the slit disc D0 := D \ {(q1, 0) : 0 ≤ q1 <
√
b }. It is natural to

transform D0 into the rectangle (r, θ) ∈ R := (0, 1) × (0, 2π) in a polar co-ordinate

system, using the (bijective) change of variables q
∼

= (q1, q2) = (
√
b r cos θ,

√
b r sin θ) ∈

D0 where (r, θ) ∈ R. Given f ∈ H1(D), define f̃ on R by

f̃(r, θ) = f(q1, q2), q
∼

= (q1, q2) ∈ D0, (r, θ) ∈ R, q1 =
√
b r cos θ, q2 =

√
b r sin θ.

(2.31)

Thus,

‖f‖2
H1(D) = ‖f‖2

H1(D0) =

∫ 1

0

r

∫ 2π

0

b|f̃ |2 + |Drf̃ |2 +

∣∣∣∣∣Dθf̃

r

∣∣∣∣∣
2
 dθ dr.

where Dr denotes differentiation with respect to r. Motivated by this identity and

writing, here and henceforth, w̃(r) := r for the weight-function on the interval (0, 1),

the space H̃1
w̃(R) is defined as:

H̃1
w̃(R) := {f̃ ∈ L2

loc(0, 1; H1
p(0, 2π)) : f̃ ∈ L2

w̃(R), Drf̃ ∈ L2
w̃(R) and

1

r
Dθf̃ ∈ L2

w̃(R)},
(2.32)

equipped with the norm ‖ · ‖H̃1
w̃(R) defined by

‖f̃‖2
H̃1
w̃(R)

:=

∫ 1

0

w̃(r)

∫ 2π

0

|f̃ |2 + |Drf̃ |2 +

∣∣∣∣∣Dθf̃

r

∣∣∣∣∣
2
 dθ dr, (2.33)

where L2
w̃(R) is the w̃-weighted space of square-integrable functions on R, with norm

‖ · ‖L2
w̃(R) defined by

‖f̃‖2
L2
w̃(R) :=

∫ 1

0

w̃(r)

∫ 2π

0

|f̃(r, θ)|2 dθ dr =

∫
R

|f̃(r, θ)|2 r dr dθ,

and, for a non-negative integer t, the periodic Sobolev space Ht
p(0, 2π) is given by

Ht
p(0, 2π) := {f̃ ∈ Ht

loc(R) : f̃(θ + 2π) = f̃(θ) ∀θ ∈ R}.

H̃1
w̃,0(R) denotes the subspace of H̃1

w̃(R) consisting of all functions f̃ such that the trace

f̃(1, ·) = 0.
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We shall also require weighted Sobolev spaces of the form Hs,t
w̃ (R) := Hs

w̃(0, 1; Ht
p(0, 2π)),

equipped (for non-negative integers s and t) equipped with the norm:

‖f̃‖2
Hs,tw̃ (R)

:=
∑

0≤i≤s, 0≤j≤t

∫ 1

0

w̃(r)

∫ 2π

0

|Di
rD

j
θ f̃(r, θ)|2 dθ dr.

Similarly, for integers s ≥ 1 and t ≥ 0, we define Hs,t
w̃,0(R) := Hs

w̃,0(0, 1; Ht
p(0, 2π)),

where Hs
w̃,0(0, 1) := Hs

w̃(0, 1) ∩ H1
w̃,0(0, 1), and H1

w̃,0(0, 1) denotes the set of all ũ ∈
H1
w̃(0, 1) such that ũ(1) = 0. H1

w̃,0(0, 1) is endowed with the following inner product

and norm:

(ũ, ṽ)H1
w̃,0(0,1) :=

∫ 1

0

w̃(r) DrũDrṽ dr and ‖ũ‖H1
w̃,0(0,1) := {(ũ, ũ)H1

w̃,0(0,1)}
1
2 .

Note that w̃ is a Jacobi weight function when transformed to s ∈ (−1, 1), since

w̃(r(s)) = 1
2
(1 + s).2 This fact will be important later in this section.

Next, the projection operators are introduced. Due to the cartesian product struc-

ture of the set R it is natural to define distinct projection operators in the r and θ

co-ordinate directions. In the θ-direction, the orthogonal projection in the L2(0, 2π)

inner product is used (i.e., truncation of the Fourier series). This is denoted by

P F
N : L2(0, 2π) → SN(0, 2π), for N ≥ 1, where SN(0, 2π) is the space of all trigono-

metric polynomials in θ ∈ [0, 2π] of degree N or less.3 Also, let SNθ,0(0, 2π) be the

orthogonal complement in SNθ(0, 2π), with respect to the L2(0, 2π) inner product, of

the one-dimensional subspace spanned by constant functions.

The appropriate choice of projector in the r-direction is less immediate. First of all,

for N ≥ 1, let the operator P J
N : H1

w̃,0(0, 1)→ PN,0(0, 1) be the orthogonal projection in

the H1
w̃,0(0, 1) inner product,4 where PN,0(0, 1) is the space of all algebraic polynomials

in r ∈ [0, 1], of degree N or less, that vanish at r = 1.

It is tempting to define a two-dimensional projector onto SN(0, 2π)⊗PN,0(0, 1) as the

tensor product of the projectors P F
N and P J

N . Unfortunately, this choice is inadequate

due to the presence of the singular factor 1/r in the weighted Sobolev norm ‖ · ‖H̃1
w̃(R),

and a different definition is required. The lemma below motivates the choice of the

two-dimensional projector.

Lemma 2.14 (Decomposition Lemma) Let g̃ ∈ H̃1
w̃(R) and, for ε ∈ (0, 1), define

Rε := (ε, 1) × (0, 2π). There exist g̃1 ∈ H1
w̃(0, 1) and g̃2 ∈ H0,1

w̃ (R), with g̃2 ∈ H1(Rε)

2Jacobi weight functions are of the form (1− s)α(1 + s)β , s ∈ (−1, 1) with α, β > −1.
3The superscript F indicates Fourier projection.
4The J superscript indicates projection in a Jacobi-weighted inner-product.
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for each ε ∈ (0, 1) and rg̃2 ∈ H̃1
w̃(R), such that

g̃(r, θ) = g̃1(r) + rg̃2(r, θ) for a.e. (r, θ) ∈ R and g̃1(r) :=
1

2π
(g(r, ·), 1)L2(0,2π).

This is the unique such decomposition of g̃. If g̃ ∈ H̃1
w̃,0(R), then g̃1 ∈ H1

w̃,0(0, 1) and

rg̃2 ∈ H̃1
w̃,0(R), with g̃2(1, ·) = 0 in the sense of the trace theorem on H1(Rε), ε ∈ (0, 1).

Proof. Let g̃ ∈ H̃1
w̃(R); then, by virtue of Fubini’s theorem, g̃(r, ·) ∈ H1

p(0, 2π) for

a.e. r ∈ (0, 1). Let us define, for r ∈ (0, 1), the Fourier coefficients of g̃(r, ·) by

γ̃n(r) :=
1√
2π

∫ 2π

0

g̃(r, θ) exp(−inθ) dθ, n = 0, 1, . . . .

According to Parseval’s identity,

‖g̃‖2
H̃1
w̃(R)

=
∑
n∈Z

∫ 1

0

(
|γ̃n(r)|2 + |γ̃′n(r)|2 + n2

∣∣∣∣ γ̃n(r)

r

∣∣∣∣2
)
r dr <∞,

whereby, in particular, γ̃0 ∈ H1
w̃(0, 1) and

γ̃n ∈ H1(0, 1; r−1, r) :=

{
f̃ ∈ H1

loc(0, 1) :

∫ 1

0

(
r−1|f̃(r)|2 + r|f̃ ′(r)|2

)
dr <∞

}
,

for all n ∈ Z \ {0}.
For any ε ∈ (0, 1) and n ∈ Z \ {0}, γ̃n ∈ H1(ε, 1), and hence by a standard Sobolev

embedding, γ̃n ∈ C(0, 1]. Also, for 0 < r1 < r2 < 1,

γ̃n(r2)2 − γ̃n(r1)2 =

∫ r2

r1

d

ds
(γ̃n(s)2) ds = 2

∫ r2

r1

γ̃n(s)√
s

√
s γ̃′n(s) ds

≤ 2

(∫ r2

r1

s−1|γ̃n(s)|2 ds

) 1
2
(∫ r2

r1

s|γ̃′n(s)|2 ds

) 1
2

,

which is finite by the definition of H1(0, 1; r−1, r), and hence the left-most integral

above is finite also. Since the integral is a continous function of its limits, it follows

that γ̃2
n ∈ C[0, 1], and hence that |γ̃n| =

√
γ̃2
n ∈ C[0, 1]. We now show that γ̃n ∈ C(0, 1]

and |γ̃n| ∈ C[0, 1] implies that γ̃n ∈ C[0, 1].

There are two cases to consider; (i) |γ̃n(0)| = 0, and (ii) |γ̃n(0)| > 0. In case (i), we

set γ̃n(0) := 0. Then |γ̃n(r) − γ̃n(0)| = |γ̃n(r)| = | |γ̃n(r)| − |γ̃n(0)| | → 0+ as r → 0+,

by the continuity of |γ̃n| on [0, 1]. In case (ii), there exists δ > 0 such that |γ̃n(r)| > 0

for r ∈ [0, δ]. Hence the sign of γ̃n does not change on (0, δ], so that γ̃n is either |γ̃n| or

−|γ̃n| on the interval (0, δ]. Since |γ̃n|,−|γ̃n| ∈ C[0, 1], we can define γ̃n(0) to be one of

|γ̃n(0)| or −|γ̃n(0)| so that γ̃n ∈ C[0, 1] also.
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Now, since γ̃n ∈ C[0, 1], Parseval’s identity above then implies that, necessarily,

γ̃n(0) = 0 for all n ∈ Z \ {0}.
Let G̃n(r) := γ̃n(r)/r for n ∈ Z \ {0}, r ∈ (0, 1] and Ẽn(θ) := (exp(inθ))/

√
2π,

n ∈ Z, θ ∈ [0, 2π]. By Parseval’s identity, again,
√
r2 + n2 G̃n ∈ L2

w̃(0, 1), n ∈ Z \ {0}.
The following Fourier series expansion of g̃ can be written as follows:

g̃ =
1√
2π

γ̃0 + r
∑

n∈Z\{0}

G̃nẼn,

with equality in the sense of H̃1
w̃(R). We define g̃1 := γ̃0/

√
2π and g̃2 =

∑
n∈Z\{0} G̃nẼn

to deduce the stated decomposition g̃(r, θ) = g̃1(r) + rg̃2(r, θ), and we note that g̃1 =
1

2π
(g̃, 1)L2(0,2π) ∈ H1

w̃(0, 1) and g̃2 ∈ H0,1
w̃ (R); moreover, trivially, rg̃2 = g̃ − g̃1 ∈ H̃1

w̃(R).

Also, since g̃ ∈ H̃1
w̃(R) it follows that g̃ ∈ H1(Rε) and g̃1 ∈ H1(ε, 1) for any ε ∈ (0, 1).

Hence, g̃2 = (g̃ − g̃1)/r ∈ H1(Rε) for any ε ∈ (0, 1).

For g̃1 = γ̃0/
√

2π fixed, as in the statement of the lemma, the uniqueness of g̃2

follows easily by reductio ad absurdum: suppose that h̃2 is another function, with the

same regularity properties as g̃2, and such that g̃ = g̃1 + rh̃2. Then, r(h̃2− g̃2) = 0 a.e.

on R, and therefore h̃2 = g̃2 a.e. on R.

The final statement of the lemma follows directly from the definitions of γ̃n, n ∈ Z
and the definitions of g̃1 and g̃2 via the γ̃n, n ∈ Z. �

Suppose that g̃ ∈ H̃1
w̃,0(R). On applying Lemma 2.14 we deduce that g̃ has the

(unique) decomposition

g̃(r, θ) = g̃1(r) + rg̃2(r, θ), (2.34)

where g̃1 := 1
2π

(g̃, 1)L2(0,2π) ∈ H1
w̃,0(0, 1), g̃2 ∈ H0,1

w̃ (R) and g̃2(1, ·) = 0. Note also

that (g2(r, ·), 1))L2(0,2π) = 0 for a.e. r ∈ (0, 1). We shall assume in addition that

g̃2(·, θ) ∈ H1
w̃,0(0, 1) for a.e. θ ∈ (0, 2π); by virtue of Fubini’s theorem, a convenient

sufficient condition for this is that g̃2 ∈ H1,0
w̃,0(R), for example. We then define

P̃ J
N g̃(·, θ) := P J

N g̃1(·) + rP J
N g̃2(·, θ), θ ∈ (0, 2π),

where P J
N : H1

w̃,0(0, 1)→ PN,0(0, 1) is the orthogonal projector defined above.

There are a number of approximation results available in the literature related to

projectors in Jacobi-weighted inner products (see for example [12] or [20]). Since the

setting here is specific, we shall establish the required approximation properties of the

univariate projector P J
N from first principles. The approximation properties of P̃ J

N and

of our two-dimensional projector P F
N P̃

J
N will then follow. The relevant results are stated

in the next two lemmas.
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Lemma 2.15 Suppose that g̃ ∈ Hk
w̃,0(0, 1) with k ≥ 1; then,

‖g̃ − P J
N g̃‖H1

w̃(0,1) ≤ cN1−k‖g̃‖Hkw̃(0,1) (2.35)

and

‖g̃ − P J
N g̃‖L2

w̃(0,1) ≤ cN−k‖g̃‖Hkw̃(0,1). (2.36)

Proof. First consider (2.35). Note that by Pythagoras’ theorem,

‖g̃ − P J
N g̃‖H1

w̃,0(0,1) =
(
‖g̃‖2

H1
w̃,0(0,1) − ‖P

J
N g̃‖2

H1
w̃,0(0,1)

) 1
2 ≤ ‖g̃‖H1

w̃,0(0,1) ≤ ‖g̃‖Hkw̃(0,1).

If k = 1, the right-most term in this chain is equal to 1 ·N1−k‖g̃‖Hkw̃(0,1), while if k ≥ 2

and 1 ≤ N < k − 1, then it is bounded by (k − 1)k−1N1−k‖g̃‖Hkw̃(0,1).

Finally, if k ≥ 2 and N ≥ max(2, k − 1), then recall that, by the definition of P J
N ,

‖g̃ − P J
N g̃‖H1

w̃,0(0,1) ≤ ‖g̃ − ṽ‖H1
w̃,0(0,1) ∀ṽ ∈ PN,0(0, 1).

Select, in particular,

ṽ(r) = −
∫ 1

r

QJ
N−1Dsg̃(s) ds, r ∈ [0, 1],

where QJ
N−1 is the orthogonal projector in L2

w̃(0, 1) onto PN−1(0, 1), the set of all

algebraic polynomials of degree N − 1 or less on the interval [0, 1]. Thus,

‖g̃−P J
N g̃‖H1

w̃,0(0,1) ≤ ‖Drg̃−Drṽ‖L2
w̃(0,1) = ‖Drg̃−QJ

N−1(Drg̃)‖L2
w̃(0,1) ≤ c (N−1)1−k‖g̃‖Hkw̃(0,1),

where the last bound (scaled from the standard interval (−1, 1) to (0, 1)) comes from

Sec. 5.7.1 of Canuto et al. [20], and is valid for N ≥ max(2, k− 1), k ≥ 2. Hence, after

bounding (N − 1)1−k by 2k−1N1−k (recall that N ≥ 2 by hypothesis), it follows that

‖g̃ − P J
N g̃‖H1

w̃,0(0,1) ≤ c 2k−1N1−k‖g̃‖Hkw̃(0,1).

Now choosing ĉ = max{(k − 1)k−1, c 2k−1} for k ≥ 1, with the convention that

00 := 1,

‖g̃ − P J
N ṽ‖H1

w̃,0(0,1) ≤ ĉN1−k‖g̃‖Hkw̃(0,1)

for all N ≥ 1 (regardless of whether or not N ≥ k − 1).

For any ṽ ∈ H1
w̃,0(0, 1), we have:

‖ṽ‖2
L2
w̃(0,1) =

∫ 1

0

ṽ2(r)r dr =

∫ 1

0

(∫ 1

r

(
√
sDsṽ(s)

1√
s

ds

)2

r dr

≤
∫ 1

0

r

(∫ 1

r

|Dsṽ(s)|2s ds

)(∫ 1

r

1

s
ds

)
dr

≤
(∫ 1

0

r| log r| dr
)
‖ṽ‖2

H1
w̃,0(0,1) =

1

4
‖ṽ‖2

H1
w̃,0(0,1), (2.37)
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where we make the substitution r = et to evaluate
∫ 1

0
r| log r| dr. It follows from the

Friedrichs inequality above that ‖ · ‖H1
w̃,0(0,1) and ‖ · ‖H1

w̃(0,1) are equivalent norms on

H1
w̃,0(0, 1), and therefore (2.35) holds for any N ≥ 1.

The proof of (2.36) is based on a duality argument. Let e := g̃ − P J
N g̃ and note

that, by the hypotheses of the lemma on g̃, we have e ∈ L2
w̃(0, 1). Consider the mixed

Neumann–Dirichlet boundary-value problem:

−Dr(rDr ze(r)) = r e(r), r ∈ (0, 1), lim
r→0+

rDrze(r) = 0, ze(1) = 0. (2.38)

By (2.37) and the Lax–Milgram theorem, this has a unique weak solution ze ∈ H1
w̃,0(0, 1)

satisfying

(ze, v)H1
w̃,0(0,1) = (e, v)L2

w̃(0,1) ∀v ∈ H1
w̃,0(0, 1). (2.39)

Also, by (2.37),

‖ze‖2
H1
w̃(0,1) ≤

5

16
‖e‖2

L2
w̃(0,1).

We shall show that in fact D2
rze ∈ L2

w̃(0, 1), and thereby ze ∈ H2
w̃,0(0, 1). To this end,

note that

Drze(r) = −1

r

∫ r

0

s e(s) ds, r ∈ (0, 1].

Hence, Drze ∈ C(0, 1] and, on recalling that e ∈ L2
w̃(0, 1), the Cauchy–Schwarz inequal-

ity yields

|Drze(r)|2 ≤
1

2

∫ r

0

s|e(s)|2 ds, r ∈ (0, 1]. (2.40)

This inequality implies that limr→0+ Drze(r) = 0 and that, for any ε ∈ (0, 1),∫ 1

ε

1

r
|Drze(r)|2 dr ≤ 1

2ε

∫ 1

0

s|e(s)|2 ds.

Thus,
√
r(r−1Drze) ∈ L2(ε, 1); hence, by (2.38),

√
rD2

rze = −
√
r (e + r−1Drze) ∈

L2(ε, 1). Multiplying this equality by
√
rD2

rze and integrating over the interval (ε, 1)

gives ∫ 1

ε

r |D2
rze(r)|2 dr +

∫ 1

ε

Drze(r) D2
rze(r) dr = −

∫ 1

ε

r e(r) D2
rze(r) dr.

Hence, by computing explicitly the second integral on the left-hand side and applying

Cauchy’s inequality |αβ| ≤ 1
2
(α2 + β2) on the right-hand side, we obtain∫ 1

ε

r |D2
rze(r)|2 dr + |Drze(1)|2 ≤

∫ 1

ε

r |e(r)|2 dr + |Drze(ε)|2.
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Passing to the limit ε → 0+ and omitting the second term on the left-hand side gives

that D2
rze ∈ L2

w̃(0, 1) and ∫ 1

0

r |D2
rze(r)|2 dr ≤

∫ 1

0

r |e(r)|2 dr.

Combining this with our earlier bound from (2.39), we have that ‖ze‖2
H2
w̃(0,1)

≤ 21
16
‖e‖2

L2
w̃(0,1)

.

We are now ready to embark on the analysis of the projection error in the L2
w̃(0, 1)

norm. Recalling that e = g̃ − P J
N g̃ ∈ H1

w̃,0(0, 1), we deduce from the weak formulation

(2.39), the definition of the orthogonal projector P J
N , the Cauchy–Schwarz inequality,

(2.35) and the H2
w̃(0, 1) norm bound just derived that

‖g̃ − P J
N g̃‖2

L2
w̃(0,1) = (e, g̃ − P J

N g̃)L2
w̃(0,1) = (ze, g̃ − P J

N g̃)H1
w̃,0(0,1)

= (g̃ − P J
N g̃, ze − P J

Nze)H1
w̃,0(0,1)

≤ ‖g̃ − P J
N g̃‖H1

w̃,0(0,1)‖ze − P J
Nze‖H1

w̃,0(0,1)

≤ cN1−k‖g̃‖Hkw̃(0,1) ·N−1‖ze‖H2
w̃(0,1)

≤ cN−k‖g̃‖Hkw̃(0,1)‖g̃ − P J
N g̃‖L2

w̃(0,1), k ≥ 1.

Dividing the left-most and the right-most term in this chain by ‖g̃ − P J
N g̃‖L2

w̃(0,1) gives

(2.36). �

Next, for g̃ ∈ H̃1
w̃,0(R), with decomposition given in (2.34), we define the projection

operator Π̃N : H̃1
w̃,0(R)→ PN(R) as:

(Π̃N g̃)(r, θ) := (P F
Nθ
P̃ J
Nr g̃)(r, θ) = (P̃ J

NrP
F
Nθ
g̃)(r, θ),

where the finite-dimensional space PN(R) is defined as

PN(R) := PNr,0(0, 1)⊕ (rPNr,0(0, 1)⊗ SNθ,0(0, 2π)).

The structure of this space reflects the decomposition (2.34). Note that the constant

functions have been factored out of the space SNθ(0, 2π) in the definition of PN(R); this

is appropriate because, as observed above, (g2(r, ·), 1)L2(0,2π) = 0. The lemma below

establishes optimal order approximation results for this projector.

Lemma 2.16 Let g̃ ∈ H̃1
w̃,0(R), with decomposition g̃(r, θ) = g̃1(r) + rg̃2(r, θ), where

g̃1 = 1
2π

(g̃, 1)L2(0,2π) ∈ H1
w̃,0(0, 1), g̃2 ∈ H0,1

w̃ (R), g̃2(1, ·) = 0, and assume, in addition,

that g̃2(·, θ) ∈ H1
w̃,0(0, 1) for a.e. θ ∈ (0, 2π). If g̃1 ∈ Hk+1

w̃ (0, 1) and g̃2 ∈ Hk+1,0
w̃ (R) ∩

Hk,1
w̃ (R) ∩ H0,l+1

w̃ (R) ∩ H1,l
w̃ (R) for some k, l ≥ 1, then

‖g̃ − Π̃N g̃‖H̃1
w̃(R) ≤ C1N

−k
r

(
‖g̃1‖2

Hk+1
w̃ (0,1)

+ ‖g̃2‖2

Hk+1,0
w̃ (R)

+ ‖g̃2‖2

Hk,1w̃ (R)

) 1
2

+ C2N
−l
θ

(
‖g̃2‖2

H0,l+1
w̃ (R)

+ ‖g̃2‖2

H1,l
w̃ (R)

) 1
2
. (2.41)
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If g̃1 ∈ Hk
w̃(0, 1) and g̃2 ∈ Hk,0

w̃ (R) ∩ H0,l
w̃ (R) for some k, l ≥ 1, then

‖g̃ − Π̃N g̃‖L2
w̃(R) ≤ C1N

−k
r

(
‖g̃1‖2

Hkw̃(0,1) + ‖g̃2‖2

Hk,0w̃ (R)

) 1
2

+ C2N
−l
θ ‖g̃2‖H0,l

w̃ (R). (2.42)

Proof. The left-hand side in (2.41) is given by:

‖g̃ − Π̃N g̃‖2
H̃1
w̃(R)

=

∫ 1

0

w̃(r)

∫ 2π

0

{
(g̃ − Π̃N g̃)2 + (Drg̃ −Dr(Π̃N g̃))2

}
dθ dr

+

∫ 1

0

r−1

∫ 2π

0

(Dθg̃ −Dθ(Π̃N g̃))2 dθ dr =: I + II.

First consider term I. The two terms in the, inner, θ-integral in I will be treated

separately. Using the L2-error bound for Fourier projection, as well as the fact that

‖P F
Nθ
‖L(L2

p(0,2π),L2
p(0,2π)) ≤ 1, it follows that

‖g̃(r, ·)− Π̃N g̃(r, ·)‖2L2(0,2π) ≤
(
‖g̃(r, ·)− PFNθ g̃(r, ·)‖L2(0,2π) + ‖PFNθ(g̃(r, ·)− P̃ JNr g̃(r, ·))‖L2(0,2π)

)2

≤
(
C3N

−l
θ ‖D

l
θg̃(r, ·)‖L2(0,2π) + ‖g̃(r, ·)− P̃ JNr g̃(r, ·)‖L2(0,2π)

)2

≤ 2C2
3N
−2l
θ ‖Dl

θg̃2(r, ·)‖2L2(0,2π) + 2‖g̃(r, ·)− P̃ JNr g̃(r, ·)‖2L2(0,2π),

where Dl
θg̃ = rDl

θg̃2 and 0 ≤ r ≤ 1 have been used in the last line. Similarly,

‖Drg̃(r, ·)−Dr(Π̃N g̃(r, ·))‖2L2(0,2π) ≤ 2‖Drg̃ − PFNθDrg̃‖2L2(0,2π)

+2‖DrP
F
Nθ
g̃ −DrP

F
Nθ
P̃ JNr g̃(r, ·)‖2L2(0,2π)

≤ 2C2
3N
−2l
θ ‖Dl

θDrg̃(r, ·)‖2L2(0,2π)

+2‖Drg̃ −DrP̃
J
Nr g̃(r, ·)‖2L2(0,2π)

≤ 4C2
3N
−2l
θ

(
‖Dl

θg̃2(r, ·)‖2L2(0,2π) + ‖DrDl
θg̃2(r, ·)‖2L2(0,2π)

)
+2‖Drg̃(r, ·)−DrP̃

J
Nr g̃(r, ·)‖2L2(0,2π).

Therefore,

I≤ 6C2
3N
−2l
θ

∫ 2π

0

(
‖Dl

θg̃2(·, θ)‖2
L2
w̃(0,1) + ‖DrD

l
θg̃2(·, θ)‖2

L2
w̃(0,1)

)
dθ

+ 2

∫ 2π

0

‖g̃(·, θ)− P̃ J
Nr g̃(·, θ)‖2

H1
w̃(0,1) dθ.
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The final term on the right-hand side of the last inequality can then be bounded using

the univariate estimate (2.35):

‖g̃(·, θ)− P̃ J
Nr g̃(·, θ)‖2

H1
w̃(0,1) ≤ 2‖g̃1 − P J

Nr g̃1‖2
H1
w̃(0,1) + 2‖r(g̃2(·, θ)− P J

Nr g̃2(·, θ))‖2
H1
w̃(0,1)

≤ C2N−2k
r ‖g̃1‖2

Hk+1
w̃ (0,1)

+ 2

∫ 1

0

w̃(r)
{

(2 + r2)(g̃2(r, θ)− P J
Nr g̃2(r, θ))2 + 2r2(Dr(g̃2(r, θ)− P J

Nr g̃2(r, θ)))2
}

dr

≤ C2N−2k
r ‖g̃1‖2

Hk+1
w̃ (0,1)

+ 6‖g̃2(·, θ)− P J
Nr g̃2(·, θ)‖2

H1
w̃(0,1)

≤ C2
4N
−2k
r

(
‖g̃1‖2

Hk+1
w̃ (0,1)

+ ‖g̃2(·, θ)‖2
Hk+1
w̃ (0,1)

)
.

Therefore,

I ≤ 6C2
3N
−2l
θ

∫ 2π

0

(
‖Dl

θg̃2(·, θ)‖2
L2
w̃(0,1) + ‖DrD

l
θg̃2(·, θ)‖2

L2
w̃(0,1)

)
dθ

+ 2C2
4N
−2k
r

∫ 2π

0

(
‖g̃1‖2

Hk+1
w̃ (0,1)

+ ‖g̃2(·, θ)‖2
Hk+1
w̃ (0,1)

)
dθ, (2.43)

which is an optimal-order bound on I.

Next, consider II. Since θ-differentiation commutes with the projectors P J
Nr

and

P F
Nθ

, it follows that

II ≤ 2

∫ 1

0

r−1

∫ 2π

0

|Dθg̃(r, θ)− P F
Nθ

Dθg̃(r, θ)|2 dθ dr

+ 2

∫ 1

0

r−1

∫ 2π

0

|P F
Nθ

Dθg̃(r, θ)− P̃ J
Nr(P

F
Nθ

Dθg̃(r, θ))|2 dθ dr.

Therefore,

II ≤ 2

∫ 1

0

r−1

∫ 2π

0

∣∣rDθg̃2(r, θ)− rP F
Nθ

Dθg̃2(r, θ)
∣∣2 dθ dr

+ 2

∫ 2π

0

∫ 1

0

r−1|rP F
Nθ

Dθg̃2(r, θ)− P̃ J
Nr(rP

F
Nθ

Dθg̃2(r, θ))|2 dr dθ

≤ C2
5N
−2l
θ

∫ 1

0

w̃(r)

∫ 2π

0

|Dl+1
θ g̃2(r, θ)|2 dθ dr

+ 2

∫ 2π

0

∫ 1

0

w̃(r)|P F
Nθ

Dθg̃2(r, θ)− P J
Nr(P

F
Nθ

Dθg̃2(r, θ))|2 dr dθ

≤ C2
5N
−2l
θ

∫ 2π

0

‖Dl+1
θ g̃2(·, θ)‖2

L2
w̃(0,1) dθ + C2

6N
−2k
r

∫ 2π

0

‖P F
Nθ

Dθg̃2(r, θ)‖2
Hkw̃(0,1) dθ.

Where the L2
w(0, 1) norm error bound for P J

Nr
stated in (2.36), as well as the fact that

P̃ J
Nr

(rg̃2) = rP J
Nr

(g̃2) have been used in the argument above. For the second integral
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in the last line in the bound on II,

k∑
j=0

∫ 1

0

w̃(r)‖P F
Nθ

Dj
rDθg̃2(·, r)‖2

L2(0,2π) dr ≤
k∑
j=0

∫ 1

0

w̃(r)‖Dj
rDθg̃2(·, r)‖2

L2(0,2π) dr.

Therefore,

II ≤ C2
5N
−2l
θ

∫ 2π

0

‖Dl+1
θ g̃2(·, θ)‖2

L2
w̃(0,1) dθ + C2

6N
−2k
r

∫ 2π

0

‖Dθg̃2(·, θ)‖2
Hkw̃(0,1) dθ.

Combining the bounds for I and II with suitable constants C1 and C2, gives

‖g̃ − P F
Nθ
P̃ J
Nr g̃‖H̃1

w̃(R) ≤ C1N
−k
r

{∫ 2π

0

(‖g̃1‖2
Hk+1
w̃ (0,1)

+ ‖g̃2‖2
Hk+1
w̃ (0,1)

+ ‖Dθg̃2‖2
Hkw̃(0,1)) dθ

} 1
2

+C2N
−l
θ

{∫ 2π

0

(‖Dl+1
θ g̃2‖2

L2
w̃(0,1) + ‖Dl

θg̃2‖2
H1
w̃(0,1)) dθ

} 1
2

, (2.44)

which is (2.41). The proof of the L2
w̃(R) norm bound (2.42) is very similar: its main

ingredients are, in fact, contained in the argument above. Therefore, for the sake of

brevity, the details are omitted here. �

The bounds (2.41) and (2.42) can now be straightforwardly mapped from R to

D0. We define PN(D) as PN(R) mapped from R to D0 using the polar coordinate

transformation (2.31), and we suppose that ψ̂ ∈ Hk+1,l+1(D), with k, l ≥ 1, where

Hk,l(D) := {g ∈ H1
0(D) : g̃ ∈ H̃1

w̃,0(R) has a decomposition g̃(r, θ) = g̃1(r) + rg̃2(r, θ),

with g̃1 = 1
2π

(g̃, 1)L2(0,2π) ∈ Hk
w̃,0(0, 1)

and g̃2 ∈ Hk,0
w̃,0(R) ∩ Hk−1,1

w̃ (R) ∩ H0,l
w̃ (R) ∩ H1,l−1

w̃ (R)},

equipped with the norm ‖g‖Hk,l(D) :=
(
‖g‖2

Hkr (D)
+ ‖g‖2

Hlθ(D)

) 1
2

where, for g̃ = g̃1+rg̃2 ∈
Hk,l(D),

‖g‖Hkr (D) :=
(
‖g̃1‖2

Hkw̃(0,1) + ‖g̃2‖2

Hk,0w̃ (R)
+ ‖g̃2‖2

Hk−1,1
w̃ (R)

) 1
2
,

‖g‖Hlθ(D) :=
(
‖g̃2‖2

H0,l
w̃ (R)

+ ‖g̃2‖2

H1,l−1
w̃ (R)

) 1
2
.

We define

Π̂N : H1,1(D)→ PN(D) by (Π̂Ng)(q1, q2) = (Π̃N g̃)(r, θ), g ∈ H1,1(D).

Thus, recalling (2.8) and noting that Hk,l(D) ⊂ H1
0(D) ⊂ H1

0(D;M), k, l ≥ 1, we

deduce from (2.41) that

‖ψ̂ − Π̂N ψ̂‖H1
0(D;M) ≤ C1N

−k
r ‖ψ̂‖Hk+1

r (D) + C2N
−l
θ ‖ψ̂‖Hl+1

θ (D) (2.45)
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for all ψ̂ ∈ Hk+1,l+1(D), with k, l ≥ 1. Similarly, we obtain from (2.42) that

‖ψ̂ − Π̂N ψ̂‖L2(D) ≤ C1N
−k
r ‖ψ̂‖Hkr (D) + C2N

−l
θ ‖ψ̂‖Hlθ(D) (2.46)

for all ψ̂ ∈ Hk,l(D), with k, l ≥ 1.

2.5 Convergence analysis of the numerical method

In this section we use the two-dimensional approximation results derived in Section 2.4

to complete the convergence analysis of the fully-discrete numerical method (2.24),

(2.25), based on the symmetrised form of the Fokker–Planck equation. At the end

of the section we shall comment on the extension of our results to a fully-discrete

method that stems from the alternative semidiscretisation (2.22) in the case of the

FENE model.

We see from (2.30) that in order to obtain bounds on the norms of ξ appearing on

the left-hand side of (2.30) we need to bound the following terms:

‖η0‖, ‖η‖`2(0,T ;H1
0(D;M)) and

∥∥∥∥∂η∂t
∥∥∥∥

L2(0,T ;L2(D))

.

It follows from (2.45), (2.46) and the definition of η := ψ̂ − Π̂N ψ̂ that

‖η0‖ ≤ ‖ψ̂0 − Π̂N ψ̂0‖ ≤ C1N
−k
r ‖ψ̂0‖Hkr (D) + C2N

−l
θ ‖ψ̂0‖Hlθ(D),

‖η‖`2(0,T ;H1
0(D;M)) ≤ C1N

−k
r ‖ψ̂‖`2(0,T ;Hk+1

r (D)) + C2N
−l
θ ‖ψ̂‖`2(0,T ;Hl+1

θ (D)),∥∥∥∥∂η∂t
∥∥∥∥

L2(0,T ;L2(D))

≤ C1N
−k
r

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hkr (D))

+ C2N
−l
θ

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hlθ(D))

,

with k, l ≥ 1, provided that ψ̂ is such that the right-hand sides of these inequalities are

finite. Substituting these three bounds into the right-hand side of (2.30) we deduce,

with m∆t ≤ T , m = 0, 1, . . . , NT , that

‖ξ‖`∞(0,T ;L2(D)) + ‖∇∼ Mξ‖`2(0,T ;L2(D))

≤ C1N
−k
r

‖ψ̂0‖Hkr (D) + ‖ψ̂‖`2(0,T ;Hk+1
r (D)) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hkr (D))


+ C2N

−l
θ

‖ψ̂0‖Hlθ(D) + ‖ψ̂‖`2(0,T ;Hl+1
θ (D)) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hlθ(D))


+C3∆t

∥∥∥∥∥∂2ψ̂

∂t2

∥∥∥∥∥
L2(0,T ;L2(D))

. (2.47)
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Note, also, that

‖η‖`∞(0,T ;L2(D)) ≤ C1N
−k
r ‖ψ̂‖`∞(0,T ;Hkr (D)) + C2N

−l
θ ‖ψ̂‖`∞(0,T ;Hlθ(D)), (2.48)

‖∇∼ Mη‖`2(0,T ;L2(D)) ≤ C1N
−k
r ‖ψ̂‖`2(0,T ;Hk+1

r (D)) + C2N
−l
θ ‖ψ̂‖`2(0,T ;Hl+1

θ (D)). (2.49)

Now, by the triangle inequality,

‖ψ̂ − ψ̂N‖`∞(0,T ;L2(D)) + ‖∇∼ M(ψ̂ − ψ̂N)‖`2(0,T ;L2(D))

≤ ‖ξ‖`∞(0,T ;L2(D)) + ‖∇∼ Mξ‖`2(0,T ;L2(D))

+‖η‖`∞(0,T ;L2(D)) + ‖∇∼ Mη‖`2(0,T ;L2(D)),

whereby (2.47), (2.48) and (2.49) give

‖ψ̂ − ψ̂N‖`∞(0,T ;L2(D)) + ‖∇∼ M(ψ̂ − ψ̂N)‖`2(0,T ;L2(D))

≤ C1N
−k
r

‖ψ̂‖`∞(0,T ;Hkr (D)) + ‖ψ̂‖`2(0,T ;Hk+1
r (D)) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hkr (D))


+ C2N

−l
θ

‖ψ̂‖`∞(0,T ;Hlθ(D)) + ‖ψ̂‖`2(0,T ;Hl+1
θ (D)) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hlθ(D))


+ C3∆t

∥∥∥∥∥∂2ψ̂

∂t2

∥∥∥∥∥
L2(0,T ;L2(D))

.

We recall that ψ =
√
Mψ̂, and we define ψnN :=

√
Mψ̂nN . Consequently,

‖ψ − ψN‖`∞(0,T ;H) + ‖ψ − ψN‖`2(0,T ;K)

≤ C1N
−k
r

(∥∥∥∥ ψ√
M

∥∥∥∥
`∞(0,T ;Hkr (D))

+

∥∥∥∥ ψ√
M

∥∥∥∥
`2(0,T ;Hk+1

r (D))

+

∥∥∥∥ 1√
M

∂ψ

∂t

∥∥∥∥
L2(0,T ;Hkr (D))

)

+ C2N
−l
θ

(∥∥∥∥ ψ√
M

∥∥∥∥
`∞(0,T ;Hlθ(D))

+

∥∥∥∥ ψ√
M

∥∥∥∥
`2(0,T ;Hl+1

θ (D))

+

∥∥∥∥ 1√
M

∂ψ

∂t

∥∥∥∥
L2(0,T ;Hlθ(D))

)

+ C3∆t

∥∥∥∥ 1√
M

∂2ψ

∂t2

∥∥∥∥
L2(0,T ;L2(D))

, (2.50)

with k, l ≥ 1, provided that ψ is such that right-hand side is finite.

That completes the convergence analysis of the method in the case of d = 2. For

d = 3 the argument is identical, and rests on a three dimensional analogue of Lemma

2.14, this is discussed further in Section 2.6.3.

Starting from the second stability inequality stated in Lemma 2.9 and proceeding in

an identical manner as above, one can derive analogous error bounds in the h1(0, T ; H)

and `∞(0, T ; K) norms.
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Remark 2.17 In the case of the FENE Maxwellian,
√
M ∈ PN(D) if, and only if,

there exists a positive integer m such that b = 4m and Nr ≥ 2m. In order to ensure

that, more generally,
√
M ∈ PN(D) regardless of the specific choice of b and the value of

Nr, one can simply enrich PN(D) by adding
√
M as an extra basis function. However,

in general the polynomials in PN(D) approximate
√
M very closely, so this leads to a

highly ill-conditioned basis. A better solution is to add the component of
√
M orthogonal

to PN(D) (in the L2(D) inner product, for example,) to the basis, rather than
√
M

itself. This is implemented in Section 2.6 for a numerical example in which b is not

divisible by 4 and is shown to work well in that case. �

Remark 2.18 We make a second comment regarding the FENE model. Starting from

the variant of the inequality (2.30) alluded to in Remark 2.10 in connection with the

fully-discrete spectral method based on the semidiscretisation (2.22) with b ≥ 4s2/(2s−
1) and s > 1/2, one can derive an optimal-order error bound analogous to (2.50). The

core of the argument is identical to the one above, and is therefore omitted. �

2.6 Numerical results

Numerical methods for solving the Fokker–Planck equation arising from the FENE

dumbbell model for dilute polymeric fluids have been the focus of some attention

recently; Du et al. [29] developed a finite difference scheme that preserved the unit

integral property and the positivity of ψ, Chauvière & Lozinski [23,24,59,60] developed

a spectral method for this problem and Ammar et al. [2, 3] proposed a reduced-basis

method for solving the Fokker–Planck equation for FENE dumbbell chains. For a

survey of, alternative, stochastic techniques for the numerical simulation of polymeric

liquids we refer to the monograph of Öttinger [68] and the article of Jourdain, Lelièvre,

and Le Bris [42], for example. The computational results we present in this section

are for the FENE potential only, although it would be straightforward to modify the

numerical methods to apply to more general potentials that satisfy Hyptheses A and

B.

In Section 2.6.1, we discuss the implementation of two spectral Galerkin methods for

the d = 2 case based on the formulation (2.24), (2.25). We then present computational

results for these schemes in order to illustrate their behaviour in practice, as well as

to provide experimental support for the convergence theory developed in Section 2.5.

Next, we compare the two spectral Galerkin methods based on the formulation (2.24),

(2.25) with the method of Chauvière & Lozinski based on the ‘original’ form (2.4) of

the Fokker–Planck equation (or, more precisely, its transformed version (2.20) resulting
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from the substitution (2.60), with s = 2). Section 2.6.1 is concluded with a discussion

of the convergence rate of the extra-stress tensor, τ
≈
.

In Section 2.6.2, we present some numerical results for a semi-implicit temporal

discretisation of the Fokker–Planck equation in order to compare its performance with

the backward Euler scheme that has been emphasised in this chapter. Finally, we

consider the implementation of spectral Galerkin method in three spatial dimensions

in Section 2.6.3, and we show some computational results to demonstrate that the 3-

dimensional scheme exhibits essentially the same behaviour as the schemes considered

in the d = 2 case in Section 2.6.1.

2.6.1 Numerical methods in the two dimensional case

With D ⊂ R2, we suppose that ψ̂ ∈ H1
0(D) and hence, ψ̃ ∈ H̃1

w̃,0(R), where ψ̃(r, θ) :=

ψ̂(q1, q2) with q1 =
√
b r cos θ, q2 =

√
b r sin θ. Using the decomposition (2.34), ψ̃ can

be written in polar coordinates as follows:

ψ̃(r, θ) = ψ̃1(r) + rψ̃2(r, θ), (r, θ) ∈ R = (0, 1)× (0, 2π), (2.51)

where, as in Section 2.4, r has been scaled from (0,
√
b) to (0, 1), and ψ̃1 := 1

2π
(ψ̃, 1)L2(0,2π).

In the context of spectral methods in polar coordinates, (2.51) is referred to by Shen as

the essential pole condition [75]. This condition is a ‘first-order’ form of the following

full pole-condition [30]: in order that a function

ψ̃(r, θ) =
∑
n∈Z

γ̃n(r)Ẽn(θ), where Ẽn(θ) :=
1√
2π

exp(inθ),

is infinitely differentiable when transformed from polar to cartesian coordinates, it is

necessary that, for each n ∈ Z \ {0},

γ̃n(r) = O(r|n|) as r → 0+. (2.52)

That (2.51) is a ‘first-order’ form of the full pole condition is easily seen by writing

γ̃n(r) = r|n|G̃n(r), with G̃n(r) = O(1) as r → 0+; hence,

ψ̃(r, θ) =
1√
2π

γ̃0(r) + r
∞∑

n∈Z\{0}

r|n|−1G̃n(r)Ẽn(θ) =: ψ̃1(r) + rψ̃2(r, θ),

with ψ̃1(r) = γ̃0(r)/
√

2π = 1
2π

(ψ̃, 1)L2(0,2π), as required.

The full pole condition (2.52) is consistent with the result established in the proof

of Lemma 2.14 stating that the expansion coefficients γ̃n, n ∈ Z \ {0}, of a function
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in H̃1
w̃,0(R) satisfy γ̃n(r) = o(1) as r → 0+, although the conditions (2.52) are clearly

much more restrictive.

In order to fit into the framework of the numerical analysis in Sections 2.4 and

2.5, each element of PN(R) should satisfy (2.51) to ensure that PN(D) is contained in

H1
0(D). The discrete space PN(R), introduced in Section 2.4, satisfies this property. In

this section we define a spectral Galerkin method for the Fokker–Planck equation based

on a particular basis (denoted A) for PN(R) that satisfies the same decomposition.

For the purpose of comparison, we also introduce a second basis, B, in which each

function satisfies the full pole condition, (2.52). Thus, on mapping B from R to D

we obtain a basis for a finite-dimensional subspace of C∞(D) ∩ C0(D) ⊂ H1
0(D). The

reason for considering this second basis is that typical solutions of the FENE Fokker–

Planck equation are smooth on D, and therefore it is likely that in practice a Galerkin

method based on B will be more accurate than a method based on A: mapping the

basis A from R to D yields a finite-dimensional subspace of H1
0(D) only, which contains

functions that are not smooth at the origin in D. We note, however, that the span of B
does not coincide with PN(R), and therefore the approximation properties of B are not

covered by the results in Section 2.4 that led to the error bounds in Section 2.5. Hence,

the numerical results for basis A are intended to verify the analysis developed in the

previous sections, while basis B is introduced to indicate the gain in performance that

can be obtained by satisfying (2.52). By requiring more regularity from the basis than

it being a finite-dimensional subspace of H1
0(D) one could modify the arguments in

Section 2.4 to derive convergence estimates based on a pole condition of higher order

than (2.34), but this would make the derivation of the approximation results more

laborious (e.g., the projector P̃ J
N would have to obey (2.52) rather than (2.51)). Before

introducing bases A and B, we make the following observation.

Remark 2.19 Let ψ̂ be the weak solution of (2.6) corresponding to a given initial

condition ψ̂0, define ψ̂∗(q
∼
, t) := ψ̂(−q

∼
, t) and suppose that ψ̂0 is invariant under the

change of independent variable q
∼
7→ −q

∼
, i.e., ψ̂0(q

∼
) = ψ̂0(−q

∼
) for a.e. q

∼
∈ D. On

noting that M(q
∼
) = M(−q

∼
), q
∼
∈ D, it follows that the weak formulation (2.6) is also

invariant under this change of variable; hence ψ̂ and ψ̂∗ are weak solutions to the same

initial boundary-value problem. It follows by uniqueness of the weak solution established

in Section 2.2 that ψ̂(q
∼
, t) ≡ ψ̂∗(q

∼
, t), i.e., ψ̂(q

∼
, t) = ψ̂(−q

∼
, t) for a.e. q

∼
∈ D and a.e.

t ∈ [0, T ]. This evenness of ψ̂ in the D domain with respect to q
∼

translates into π-

periodicity of ψ̃ in the R domain with respect to θ. An identical statement applies to

the numerical solution (ψ̂nN)NTn=0 defined by (2.24), (2.25), provided PN(D) ⊂ H1
0(D)

is such that whenever a function q
∼
7→ v(q

∼
) belongs to PN(D) its even reflection q

∼
7→
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v(−q
∼
) also belongs to PN(D): if ψ̂0(q

∼
) = ψ̂0(−q

∼
) for a.e. q

∼
∈ D, uniqueness of the

L2(D) projection of ψ̂0 onto PN(D) implies that ψ̂0
N(q
∼
) = ψ̂0

N(−q) for a.e. q
∼
∈ D.

Uniqueness of the numerical solution then yields ψ̂nN(q
∼
) = ψ̂nN(−q

∼
) for a.e. q

∼
∈ D and

all n = 0, . . . , NT . �

The above remark demonstrates that (2.6) captures an important symmetry prop-

erty of the dumbbell model for polymeric fluids: the configuration probability density

function ψ is required to be symmetric about the origin in D because the beads of

a dumbbell are indistinguishable. As long as ψ̂0 and PN(D) are invariant under the

change of independent variable q
∼
7→ −q

∼
described in Remark 2.19, the numerical so-

lution will inherit the symmetry of the analytical solution implied by the symmetry

of the initial condition. A consequence of this observation is that we should require

the basis functions in A and B to obey the same symmetry condition; following [61],

this is achieved in the definitions below by only including even trigonometric modes

in θ. Strictly speaking therefore A is chosen to be a basis for the linear subspace of

PN(R) consisting of all π-periodic functions. Note, however, that if the solution were

2π-periodic, then one could simply include odd trigonometric modes as well. We are

now ready to define the bases A and B.

Basis A: Let A := A1 ∪ A2 where:

A1 := {(1− r)Pk(r) : k = 0, . . . , Nr − 1},

A2 := {r(1− r)Pk(r)Φil(θ) : k = 0, . . . , Nr − 1; i = 0, 1; l = 1, . . . , Nθ}.

Pk is a polynomial of degree k in r ∈ [0, 1] and Φil(θ) = (1 − i) cos(2lθ) + i sin(2lθ),

θ ∈ [0, π]. We denote by Pk the kth Chebyshev polynomial scaled from [−1, 1] to

[0, 1]. The numerical method is not particularly sensitive to this choice of polynomial,

however, and other choices work well also. Notice that the polynomials in A1 and A2

both contain the factor (1−r) in order to impose the homogeneous Dirichlet boundary

condition on ∂D, and functions in A2 contain an extra factor of r to enforce the

essential pole condition. Basis A is chosen so as to mimic the decomposition (2.51) of

the analytical solution ψ̃ ∈ H̃1
w̃,0(R) in polar coordinates: the role of span(A1) is to

approximate ψ̃1 while span(A2) is meant to approximate rψ̃2.

Basis B: This is, effectively, the basis proposed by Matsushima and Marcus [64]

and Verkley [79], except that, as above, we ensure that the functions are zero at r = 1

and that they are π-periodic in θ:

B = {Wlk(r)Φil(θ) : k = 0, . . . , Nr − 1; i = 0, 1; l = i, . . . , Nθ}, (2.53)
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where Wlk(r) = r2l(1 − r2)J
(0,2l)
k (2r2 − 1) and J

(α,β)
k (x) is the Jacobi polynomial on

[−1, 1] of degree k with respect to the weight (1 − x)α(1 + x)β (Φil is the same as in

A). Each element of B satisfies (2.52).

A and B both have cardinality N := Nr (2Nθ + 1). Expressing trial and test func-

tions in terms of either A or B, it is now straightforward to determine the discretisation

matrices corresponding to the integrals∫
D

ψ̂n+1
N ϕ̂ dq

∼
,

∫
D

∇∼ M ψ̂
n+1
N · ∇∼ M ϕ̂ dq

∼
,

∫
D

(κ
≈
n+1 q

∼
ψ̂n+1
N ) · ∇∼ M ϕ̂ dq

∼
(2.54)

from (2.24). We label these matrices M, S and Cn+1 for mass, stiffness and convection

respectively.

Using the ansatz ψ̃n+1
N (r, θ) =

∑N
v=1 Ψ̃n+1

v Yv(r, θ) for trial functions, where Yv is a

basis function (from either A or B) for 1 ≤ v ≤ N , denoting test functions as Yu for

1 ≤ u ≤ N and mapping (2.54) from D to R yields:

Muv =
∫ 1

0

∫ π

0
b r Yv(r, θ)Yu(r, θ) dr dθ, (2.55)

Suv =
∫ 1

0

∫ π

0

{
r
∂Yv
∂r

∂Yu
∂r

+
1
r

∂Yv
∂θ

∂Yu
∂θ

+
b

2
r2

1− r2

∂

∂r
(YuYv) +

b2

4
r3

(1− r2)2
YvYu

}
dr dθ, (2.56)

Cn+1
uv =

∫ 1

0

∫ π

0
br Yv

∂Yu
∂θ

(−κn+1
11 sin 2θ − κn+1

12 sin2 θ + κ21 cos2 θ) dr dθ

+
∫ 1

0

∫ π

0

(
b r2 Yv

∂Yu
∂r

+
b2

2
r3

1− r2
YvYu

)
×(

κn+1
11 cos 2θ +

1
2

(κn+1
12 + κn+1

21 ) sin 2θ
)

dr dθ. (2.57)

Note that if the Yu, Yv do not satisfy (2.51), then the entries of S may be undefined.

With these discretisation matrices in hand, the numerical solution is computed by

solving the following linear system for the coefficient vector Ψ̃n+1 := (Ψ̃n+1
1 , . . . , Ψ̃n+1

N )T ∈
RN , n = 0, 1, . . . , NT − 1:(

M + ∆t

(
1

2Wi
S−Cn+1

))
Ψ̃n+1 = MΨ̃n, (2.58)

with Ψ̃0 defined by the initial datum. Then, the numerical approximation to the

probability density function itself is obtained as ψn+1
N (q

∼
) =

√
M(q

∼
) ψ̃n+1

N (r, θ), where

r = |q
∼
|/
√
b and ψ̃n+1

N (r, θ) =
∑N

v=1 Ψ̃n+1
v Yv(r, θ).

For ease of evaluation, the integrals in (2.55), (2.56) and (2.57) can be factorised into

products of 1-dimensional integrals over r and θ. We evaluate the θ-integrals exactly
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using trigonometric identities, and, noting that the r-integrands are all polynomials, we

use Gauss quadrature to evaluate the r-integrals to machine precision. M and S are

constant matrices, which can be pre-computed and reused, but if κ
≈

is time-varying,

we must reassemble Cn+1 at every time-step. However, it is straightforward to factor

out the dependence of Cn+1 on κ
≈

so that the integrals that determine Cn+1 need not

be evaluated more than once. We use LU-decomposition to solve (2.58), which is

appropriate because the spectral discretisation matrices are generally of moderate size.

We now present some numerical results. For simplicity, in the computations con-

sidered below we always use the normalised Maxwellian (which satisfies the symmetry

property required in Remark 2.19 and also has unit volume) as the initial condition,

so that ψ̂0(q
∼
) =

√
M(q

∼
). Also, most of the results presented in this section are for

computations in which b was chosen to be divisible by 4 so that the spaces span(A)

and span(B) naturally contain
√
M , as in Remark 2.17. However, the basis enrichment

technique described in Remark 2.17 was implemented to obtain the results in Table 2.3

(in which b = 10) and, as discussed below, it worked well for that problem.

Henceforth, the two numerical methods that use basis A and basis B, respectively,

will be referred to as method A and method B.

First of all we present results from solving the Fokker–Planck equation with pa-

rameters b = 16, Wi = 1.2 and κ11 = −κ22 = 1.1, κ12 = 0.9, κ21 = −0.6 and with

∆t = 0.05. These parameters were chosen somewhat arbitrarily, but the intention here

is to visualise a typical evolution of ψN towards steady state, and to provide an initial

qualitative comparison of methods A and B (quantitative convergence results will be

presented below). By taking (Nr, Nθ) = (26, 20) with basis A and (Nr, Nθ) = (21, 15)

with basis B, the solutions from the two methods were indistinguishable to the eye

and appear to be fully resolved. As foreshadowed above, A required more degrees-of-

freedom than B to resolve the solution to comparable accuracy in this case because, as

can be seen in Figure 2.1, ψN is smooth at the origin in cartesian coordinates whereas

the basis functions in A are not necessarily smooth there. Nevertheless, a clear advan-

tage of basis A over basis B is that it is built by relying on the essential pole condition

only, as manifested by the decomposition in Lemma 2.14, which only requires the most

basic smoothness hypothesis, that ψ̃ ∈ H̃1
w̃,0(R) (implied by the assumption that the

weak solution ψ̂ ∈ H1
0(D;M) belongs to H1

0(D)).

Figure 2.1 shows snapshots of ψN at t = 0, t = 1, t = 2 and t = 3, and ψN is close

to steady state at t = 3.

To provide a quantitative study of the spatial accuracy of the numerical methods

defined in this section, we use the fact that when κ
≈

is a symmetric tensor the exact
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t = 0 t = 1

t = 2 t = 3

Figure 2.1: Snapshots of ψN at t = 0, t = 1, t = 2 and t = 3 illustrating evolution
towards steady state. In this case, we have ∆t = 0.05, b = 16, Wi = 1.2 and κ11 = −κ22 =
1.1, κ12 = 0.9, κ21 = −0.6. This computation was performed using basis A and basis B with
(Nr, Nθ) = (26, 20) and (Nr, Nθ) = (21, 15), respectively. The solutions were fully resolved
in each of these two cases.

steady-state solution of the Fokker–Planck equation is given by

ψexact(q∼) := M(q
∼
) exp(Wi q

∼

Tκ
≈
q
∼
), (2.59)

where C is a normalization constant chosen so that
∫
D
ψexact(q∼) dq

∼
= 1; see, [18]. We

now consider a particular case, referred to as extensional flow, in which κ
≈

= diag(δ,−δ).
This generally provides a good test case for numerical methods for the Fokker–Planck

equation because it yields particularly sharp solution profiles that are challenging to

resolve, and also the exact steady-state solution is available for comparison. In order to

compare the convergence rates of methods A and B, we solved two distinct extensional

flow problems for: (i) (b,Wi, δ) = (12, 1, 1) and (ii) (b,Wi, δ) = (20, 1, 2), with a

range of choices of (Nr, Nθ). In order to compare to the known exact steady-state

solution, we took 2000 time-steps (with ∆t = 0.05 and T = 100) in each case so

that the final numerical solution is a very close approximation to the steady-state
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solution. This allows us to compare the spatial convergence rates of the two numerical

methods without worrying about temporal discretisation error. Tables 2.1 and 2.2

show the relative errors (in the L2(D) and H1(D;M) norms) between the exact and

the computed steady-state solutions for extensional flows (i) and (ii), respectively.

We can see from the data in the tables that methods A and B converge rapidly

for both problem (i) and problem (ii) and that for each choice of (Nr, Nθ), basis B
outperforms basis A – again this is because the solution profiles are smooth at the

origin in cartesian coordinates, see Figure 2.2. Nevertheless, the rapid convergence

of method A is consistent with the spectral error estimates established in Section 2.5

(recall that these error estimates do not apply to method B because span(B) is not

the same as PN(R) analysed in Section 2.4). It is also clear that problem (ii) is more

challenging to resolve than problem (i); with both A and B, more basis functions are

required to attain a given accuracy for problem (ii) than for problem (i). Note that

the greater difficulty of resolving extensional flow (ii) is encoded in the convergence

estimates in Section 2.5 because the constants in these estimates depend exponentially

on b, δ (via ‖κ
≈
‖L∞(0,T )) and T . Moreover, the factor e2c0m∆t on the right-hand side in

Lemma 2.4 permits exponential growth in time of the norm of ψ̂N , and this is reflected

in the first row of Table 2.2 in which the solutions computed with (Nr, Nθ) = (10, 10) for

extensional flow (ii) resulted in numerical overflow.5 Note that this overflow behaviour

was only observed in the case of under-resolved computations that led to numerical

solutions containing numerical oscillations i.e. it was not observed in rows 2, 3 and 4

of Table 2.2; note also that Chauvière & Lozinski’s method behaves in the same way

for under-resolved solutions, as shown in Table 2.3.

The (fully resolved) solutions corresponding to extensional flow problems (i) and

(ii) are shown in Figure 2.2, and in each case both ψN and ψ̃N are plotted. It is clear

that the solution profiles corresponding to (ii) are much more severe, and therefore it is

not surprising that more modes were required in this case. The quantity of interest in

these computations is ψN , but ψ̃N is also plotted to emphasise the numerical difficulties

that are encountered as b and δ are increased. In the plots corresponding to (i), the

peaks in ψ̃N are higher than in ψN , but only by a factor of about 20. For (ii) on the

other hand, the peaks in ψ̃N are higher by a factor of roughly 5000. The causes of this

behaviour are two-fold: with δ = 2 the flow has stronger extensional character and

therefore the solution peaks are expected to be more concentrated and also, the larger

5When q
∼

Tκ
≈

(t)q
∼

= 0 for all t ∈ [0, T ], Lemma 2.4, with µ = 0 and ν∼ = 0∼, can be sharpened. The
inequality holds with c0 = 0, showing that the expression on the left-hand side of the inequality is
bounded by ‖ψ̂0‖2, uniformly in T , b and ‖κ

≈
‖L∞(0,T ).
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Relative L2(D) error Relative H1(D;M) error
(Nr, Nθ) Basis A Basis B Basis A Basis B
(10,10) 3.63× 10−2 4.61× 10−3 7.90× 10−2 8.82× 10−3

(15,15) 3.36× 10−3 9.19× 10−6 8.58× 10−3 2.33× 10−5

(20,20) 5.13× 10−5 4.63× 10−9 1.64× 10−4 1.52× 10−8

(25,25) 2.94× 10−7 1.74× 10−12 1.13× 10−6 6.94× 10−12

(30,30) 8.31× 10−10 1.70× 10−13 3.77× 10−9 1.70× 10−13

Table 2.1: Relative errors in the L2(D) and H1(D;M) norms (i.e. ‖ψ̂N−ψ̂exact‖/‖ψ̂exact‖
and ‖ψ̂N − ψ̂exact‖H1(D;M)/‖ψ̂exact‖H1(D;M), respectively) for extensional flow (i) at

steady-state, i.e. b = 12, Wi = 1 and δ = 1. ψ̂N is an approximation to the steady-
state solution obtained by taking 2000 time-steps with ∆t = 0.05, and ψ̂exact is the
exact steady-state solution which is known in this case because κ

≈
is symmetric.

Relative L2(D) error Relative H1(D;M) error
(Nr, Nθ) Basis A Basis B Basis A Basis B
(10,10) – – – –
(15,15) 2.47× 10−1 9.57× 10−2 1.79× 10−1 9.53× 10−2

(20,20) 3.91× 10−2 1.72× 10−3 4.88× 10−2 2.54× 10−3

(25,25) 9.07× 10−3 1.71× 10−4 9.77× 10−3 2.37× 10−4

(30,30) 1.50× 10−3 2.97× 10−6 2.61× 10−3 4.49× 10−6

(35,35) 3.37× 10−4 2.14× 10−8 5.60× 10−4 3.66× 10−8

(40,40) 2.54× 10−5 5.97× 10−9 4.55× 10−5 5.94× 10−9

Table 2.2: Relative errors in the L2(D) and H1(D;M) norms for extensional flow (ii)
at steady-state, i.e. (b,Wi, δ) = (20, 1, 2). The time-stepping strategy to compute the
approximate steady-state solution was the same as in Table 2.1. The hyphens in the
first row indicate that we obtained numerical overflow in those computations.

value of b means that
√
M is more strongly degenerate near ∂D so that ψ̂N = ψN/

√
M

takes larger values near the boundary. This second point can be seen as a drawback, for

b� 1, of the fully-discrete numerical method (2.24), (2.25), based on the symmetrised

form of the Fokker–Planck equation. Presumably Chauviére & Lozinski [24] fixed their

value of s (s = 2 for d = 2 and s = 2.5 for d = 3) in the transformation

ψ̂(q
∼
) := ψ(q

∼
)/[M(q

∼
)]2s/b = ψ(q

∼
)/(1− |q

∼
|2/b)s (2.60)

so as to avoid a similar effect; indeed, they presented some numerical results for b = 200.

Values of b this large do not appear to be feasible with the fully-discrete method (2.24),

(2.25), based on the substitution ψ̂N = ψN/
√
M .

As has been noted in Remark 2.12, there is in fact no difference between the stability

properties of the method based on (2.24), (2.25) and of a Chauvière–Lozinski type
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method. However, if b � 1, for a typical ψ we have that ‖ψ/
√
M‖L∞(D) = ‖ψ/(1 −

|q
∼
|2/b)b/4‖L∞(D) � ‖ψ/(1 − |q∼|

2/b)2‖L∞(D). Hence, compared to a Chauvière–Lozinski

type method with the recommended choice of s = 2 for d = 2, the maximum value

of the numerical approximation ψ̂N to the function ψ̂ defined by the scheme (2.24),

(2.25) can be much larger when b� 1, and can thereby require greater computational

effort to resolve to a given accuracy. The computational results that we consider in

this section are therefore restricted to moderate values of b.

(a) (b)

(c) (d)

Figure 2.2: Numerical approximations to the steady state solution for extensional flow prob-
lems (i) and (ii) using (Nr, Nθ) = (30, 30) and (Nr, Nθ) = (40, 40), respectively. Plots (a)
and (b) show ψN and ψ̃N respectively, at steady state for problem (i) and (c), (d) show ψN
and ψ̃N for (ii). The purpose of plots (b) and (d) is to demonstrate that ψ̃N usually has a
much steeper solution profile than ψN and this effect is amplified if either δ or b (or both)
are increased.

With these precursors, we now compare the accuracy of methods A and B to that

of the spectral method of Chauviére & Lozinski discussed in [24]. In Table 2 of that

paper, the authors presented convergence data for the (1, 1)-component of the polymeric

extra-stress tensor, τ
≈

= (τij), computed for an extensional flow at steady state for the
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parameters (b, λ, δ) = (10, 1, 5). Note that when ψ is a function of q
∼

and t only, τ
≈

is

defined as:

τ
≈
(t) :=

∫
D

F∼ ⊗ q∼ψ(q
∼
, t) dq

∼
=

∫
D

F∼ ⊗ q∼
√
M ψ̂(q

∼
, t) dq

∼
, (2.61)

where F∼ is taken to be the FENE spring force here. Table 2.3 reproduces Chauviére &

Lozinski’s results and compares them to the corresponding results for methods A and

B. Note that in this problem b is not divisible by 4. Therefore, in order to ensure that

the volume of ψN is conserved with methods A and B, we added the component of√
M orthogonal to span(A) (resp. span(B)) to the bases to obtain an enriched discrete

space that contains
√
M (cf. Remark 2.17).6 This ensured that the volume of ψN was

conserved to machine precision (except in the cases that rounding error polluted the

results, these are indicated by hyphens in the table).

The data in Table 2.3 show that for this problem method B converges at a com-

parable rate to the method of Chauviére & Lozinski, whereas A appears to converge

more slowly. Note that the reason why method B and Chauviére & Lozinski’s method

converge at a similar rate (at least in this case where b is relatively low) is that both

methods involve ansatzes that impose extra regularity at the origin in cartesian co-

ordinates; basis B satisfies the pole condition (2.52), and Chauviére & Lozinski use a

transformation that enforces ∂ψ
∂r

∣∣
r=0

= 0, which, when combined with π-periodicity in

θ, has a similar effect.

Relative error of τ11

(Nr, Nθ) Basis A Basis B Chauviére & Lozinski
(11,5) – – –
(13,6) – 4.8× 10−2 0.35
(21,10) 1.8× 10−3 2.0× 10−2 2.0× 10−2

(31,15) 2.1× 10−4 1.4× 10−4 1.4× 10−4

(41,20) 1.3× 10−5 8.7× 10−7 2.1× 10−7

Table 2.3: Comparison of the relative errors in τ11 for extensional flow with (b,Wi, δ) =
(10, 1, 5). The three schemes compared are methods A and B and the spectral method
of Chauviére & Lozinski. The data for the method of Chauviére & Lozinski is taken
from Table 2 in [24].

In fact, as discussed in Section 1.3.3, in the context of deterministic multiscale

computations for the micro-macro model, the primary reason for solving the Fokker–

Planck equation is to obtain an approximation of τ
≈
. Therefore, the computational

results in Table 2.3 are of great interest, and to shed further light on these results we

now consider the convergence of τ
≈

from a theoretical point of view.

6Orthogonalisation was performed in the L2(D) inner product.
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Let ψ̃ ∈ H̃1
w̃,0(R) be the weak solution of (2.6) (transformed to polar coordinates).

As in the proof of Lemma 2.14, we have

ψ̃(r, θ, t) = ψ̃1(r, t) + r
∞∑
l=1

(
Ãl(r, t) cos(2lθ) + B̃l(r, t) sin(2lθ)

)
, (2.62)

where we have only taken even modes in the sum (cf. Remark 2.19) and we use sin

and cos functions in (2.62) rather than complex exponentials to match the structure

of bases A and B. For simplicity, we will restrict our attention to the component τ11

of τ
≈
, although the other components can be treated in exactly the same way.

We consider τ11 to be a functional defined on ψ̂ ∈ L2(D) as follows:

τ11(ψ̂) =

∫
D

F1(q
∼
) q1

√
M(q

∼
) ψ̂(q

∼
, t) dq

∼
, (2.63)

whereby,

|τ11(ψ̂)| =

∣∣∣∣∫
D

q2
1 U
′(1

2
|q
∼
|2)
√
M(q

∼
) ψ̂ dq

∼

∣∣∣∣ ≤ b

(∫
D

U ′(1
2
|q
∼
|2)2M(q

∼
) dq
∼

) 1
2

‖ψ̂‖

=
b√
C

(∫
D

(
1− |q

∼
|2/b
) b

2
−2

dq
∼

) 1
2

‖ψ̂‖ =
b√
C

(
2πb

∫ 1

0

(1− r2)
b
2
−2 r dr

) 1
2

‖ψ̂‖

≤ b√
C

(
2
b
2
−1 πb

∫ 1

0

(1− r)
b
2
−2 dr

) 1
2

‖ψ̂‖, (2.64)

where C is the normalisation constant from (1.30). Hence, we require b > 2 so that

τ11 ∈ L2(D)′ = L2(D); this is the same condition that we assume for b throughout this

thesis.

Applying τ11 to (2.62) gives:

τ11(ψ̂) =
b2

√
C

∫ 1

0

∫ 2π

0

(1− r2)
b
4
−1r3 cos2(θ) ψ̃(r, θ, t) dr dθ

=
π b2

√
C

∫ 1

0

r3(1− r2)
b
4
−1
(
ψ̃1(r, t) +

r

2

(
Ã1(r, t)

))
dr. (2.65)

This shows that, quite remarkably, due to orthogonality with cos2(θ) = 1
2

+ 1
2

cos(2θ)

over θ ∈ (0, 2π), the functional τ11 filters out all but two terms of the infinite series in

(2.62). The same filtering occurs for Galerkin spectral methods that use trigonometric

polynomials in θ, such as method A, method B or the method of Chauviére & Lozinski.

We consider method A below, but the same approach could be applied to the other

methods.
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Suppose, using basis A, that our numerical solution is defined as follows:

ψ̃N(r, θ) = (1− r)
Nr−1∑
k=0

Ψ̃0,kPk(r) + r(1− r)
1∑
i=0

Nθ∑
l=1

Nr−1∑
k=0

Ψ̃i
l,kPk(r)Φil(θ).

Then, assuming Nθ ≥ 1, we have

τ11(ψ̂N ) =
π b2√
C

∫ 1

0
r3(1−r2)

b
4
−1

[(
(1− r)

Nr−1∑
k=0

Ψ̃0,kPk(r)

)
+
r

2

(
(1− r)

Nr−1∑
k=0

Ψ̃0
1,kPk(r)

)]
dr.

It follows that

τ11(ψ̂(tn))− τ11(ψ̂nN) =
π b2

√
C

∫ 1

0

r3(1− r2)
b
4
−1

[(
ψ̃1(r, tn)− (1− r)

Nr−1∑
k=0

Ψ̃n
0,kPk(r)

)

+
1

2

(
rÃ1(r, tn)− r(1− r)

Nr−1∑
k=0

Ψ̃0,n
1,kPk(r)

)]
dr. (2.66)

Applying the Cauchy-Schwarz inequality gives

|τ11(ψ̂(tn))− τ11(ψ̂nN)|2 ≤ C∗

∥∥∥∥∥ψ̃1(r, tn)− (1− r)
Nr−1∑
k=0

Ψ̃n
0,kPk(r)

∥∥∥∥∥
2

L2
w̃(0,1)

+
C∗
4

∥∥∥∥∥rÃ1(r, tn)− r(1− r)
Nr−1∑
k=0

Ψ̃0,n
1,kPk(r)

∥∥∥∥∥
2

L2
w̃(0,1)

, (2.67)

where,

C∗ =

{
2π2b4

(b/2−1)C
, 2 < b < 4

π2 b4

3C
, b ≥ 4

(2.68)

and, as in Section 2.4, L2
w̃(0, 1) is the r-weighted L2 space.

On the other hand, using Parseval’s identity, we have

‖ψ̂(·, tn)− ψ̂nN(·)‖2
L2(D) = b

∫ 1

0

∫ 2π

0

|ψ̃(r, θ, tn)− ψ̃nN(r, θ)|2r dr dθ

= 2πb

∥∥∥∥∥ψ̃1(r, tn)− (1− r)
Nr−1∑
k=0

Ψ̃n
0,kPk(r)

∥∥∥∥∥
2

L2
w̃(0,1)

+πb

Nθ∑
l=1

∥∥∥∥∥rÃl(r, tn)− r(1− r)
Nr−1∑
k=0

Ψ̃0,n
l,k Pk(r)

∥∥∥∥∥
2

L2
w̃(0,1)

+πb

Nθ∑
l=1

∥∥∥∥∥rB̃l(r, t
n)− r(1− r)

Nr−1∑
k=0

Ψ̃1,n
l,k Pk(r)

∥∥∥∥∥
2

L2
w̃(0,1)

+πb
∞∑

l=Nθ+1

(∥∥∥rÃl(r, tn)
∥∥∥2

L2
w̃(0,1)

+
∥∥∥rB̃l(r, t

n)
∥∥∥2

L2
w̃(0,1)

)
. (2.69)
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It follows that

‖τ11(ψ̃)− τ11(ψ̃N)‖`∞(0,T ) ≤
√

C∗
2πb
‖ψ̂ − ψ̂N‖`∞(0,T ;L2(D)). (2.70)

However, more importantly, we can see that the bound in (2.67) contains only two

terms from the infinite sum in (2.69) (albeit with different constants) and therefore we

expect that the error in τ11 will typically be much smaller than the error in ψ̂.

In practical computations, this manifests as superconvergence of τ
≈
. We demonstrate

this superconvergence here by comparing the L2(D) convergence data for ψ̂ from Tables

2.1 and 2.2 with the corresponding errors in τ11. These results are plotted in Figure 2.3

and we can clearly see that, prior to stagnation due to rounding error, τ11 converges at

a faster rate than ψ̂, and the error in τ11 is typically orders of magnitude smaller than

the ψ̂ error. This behaviour is extremely advantageous for micro-macro computations

in where the accuracy of τ
≈

(rather than ψ̂) is crucial.

One interesting thing to note from Figure 2.3(b) is that the error in τ11 appears

to stagnate at around 10−10 with both method A and method B, and in fact, the

error increases to some extent when the number of spectral basis functions is increased

further (e.g. compare Nr = Nθ = 35 to Nr = Nθ = 40 in the plot); this increase in

error is due to the fact that the condition number of the linear system (2.58) increases

with Nr and Nθ and hence we can lose extra digits of accuracy for larger values of Nr,

Nθ. Similarly, the condition number is larger for method A than for method B for the

computations considered in Figure 2.3(a), which is why the error in τ11 for method A
stagnates at around 10−11, whereas the error from method B stagnates at 10−13.

Remark 2.20 It was proved in Lemma 2.7 that the weak solution of the initial-boundary-

value problem (2.1), (2.2), (2.3) is non-negative a.e. on D. This property is not

guaranteed to hold for the numerical solution. However, our numerical experiments

consistently show that if there are sufficiently many modes in the approximation space

to accurately resolve the solution then this non-negativity property is preserved under

discretisation. This is illustrated in Figure 2.4 in which two cross-sections of the nu-

merical solution for the (b,Wi, δ) = (12, 1, 5) extensional flow are shown: the numerical

solution on the left is fully resolved, while the one on the right is under-resolved. In the

under-resolved case there are oscillations and clearly ψN ≥ 0 is not satisfied throughout

D, whereas the non-negativity property is accurately captured in the fully resolved case.

�
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(a) (b)

Figure 2.3: Comparison of convergence of ψ̂ and τ
≈
. In both plots, the horizontal axis shows

the value of Nr and Nθ (chosen to be equal in these computations). Plot (a) shows data for
the computations considered in Table 2.1 and plot (b) corresponds to Table 2.2. In both (a)
and (b), the solid black line represents the relative L2(D) error in ψ̂ for method A, and the
solid blue line represents the corresponding data for method B. The dashed black line shows
τ11 errors arising from method A, and the dashed blue line is analogous for method B.

(a) (b)

Figure 2.4: Cross-sections of the solution of the extensional flow problem with b = 12,
Wi = 1 and δ = 5 at steady state, obtained using method B. The fully-resolved solution
in (a) was obtained using (Nr, Nθ) = (41, 20), and the under-resolved solution in (b) was
obtained with (Nr, Nθ) = (26, 20).

2.6.2 The semi-implicit numerical method

Up until now we have confined our attention to the backward Euler temporal dis-

cretisation of the Fokker–Planck equation, as defined in (2.24). However, as we shall

see, the semi-implicit discretisation, which is identical to (2.24) except that the term
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∫
D
κ
≈
q
∼
ψ̂N ϕ̂ dq

∼
is treated explicitly in time, is important in Chapter 3. Therefore, as a

precursor to the next chapter, we consider this semi-implicit scheme here.

It should be noted that all of the analytical results that we obtained for the back-

ward Euler temporal discretisation (also referred to from now on as the fully-implicit

discretisation) in this chapter also carry across to the semi-implicit scheme – we do not

consider the details here, but, for example, in the process of proving Lemma 3.7 in the

next chapter, we establish a stability result for the semi-implicit scheme that is almost

identical to Lemma 2.4. However, although the L2(D) stability estimates (and therefore

also the asymptotic convergence results) are essentially identical for the fully-implicit

and semi-implicit schemes, we show in this section that for practical computations, the

fully-implicit discretisation tends to be much more stable in the sense that solutions ob-

tained from the semi-implicit scheme are more likely to exhibit the exponential growth

in time in the L2(D) norm that is allowed due to the constant e2c0m∆t in Lemma 2.4.

This is not surprising; it is well-known that fully-implicit schemes are generally more

stable than semi-implicit and explicit schemes for parabolic and hyperbolic PDEs.

All the details of the implementation of the semi-implicit method carry over from

the discussion of the fully-implicit method above; the only difference is that instead of

(2.58), the linear system in this case is:(
M +

∆t

2Wi
S

)
Ψ̃n+1 = (M + ∆tCn) Ψ̃n. (2.71)

We now present some numerical results that compare the fully-implicit and semi-

implicit schemes. We only consider method B here, with the understanding that the

behaviour for method A is essentially the same.

First of all, we repeated the computations in Table 2.1 (for an extensional flow with

(b,Wi, δ) = (12, 1, 1)) using the semi-implicit scheme, and the results were identical

to those reported in Table 2.1 for the backward Euler discretisation. However, on

increasing the Weissenberg number from 1 to 5 we then observed significant differences

between the two schemes. The results for the Wi = 5 computations are summarised in

Table 2.4.

We can see from the table that with (Nr, Nθ) = (15, 15), the semi-implicit scheme

led to numerical solutions for which the L2(D) norm error grew rapidly in time for

all three time-step sizes, ∆t = 0.1, 0.05 and 0.01 (indicated by hyphens in the table),

whereas the fully-implicit scheme had an O(1) error in each of these cases. In the com-

putations with (Nr, Nθ) = (20, 20), the fully-implicit method again performed better;

we needed to take ∆t = 0.01 in order to get an accurate solution with the semi-implicit

scheme, whereas the fully-implicit scheme was accurate with ∆t = 0.1. Finally, for
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∆t = 0.1, NT = 250 ∆t = 0.05, NT = 500 ∆t = 0.01, NT = 2500
(Nr, Nθ) Imp. Semi-Imp. Imp. Semi-Imp. Imp. Semi-Imp.
(15,15) 1.49 – 1.49 – 1.49 –
(20,20) 4.67× 10−2 – 4.67× 10−2 1.14× 10+2 4.67× 10−2 4.67× 10−2

(25,25) 2.96× 10−3 – 2.96× 10−3 2.96× 10−3 2.96× 10−3 2.96× 10−3

(30,30) 1.44× 10−4 – 1.44× 10−4 1.44× 10−4 1.44× 10−4 1.44× 10−4

Table 2.4: This table shows the relative L2(D) error, with respect to the exact steady-
state solution, for the implicit and semi-implicit schemes (using method B) applied to
an extensional flow problem with (b,Wi, δ) = (12, 5, 1). Three different time-step sizes
were tested, and the total number of time-steps, NT , was varied in order to ensure that
T = NT∆t was the same in each case.

(Nr, Nθ) = (25, 25) and (Nr, Nθ) = (30, 30), the two schemes behaved identically for

∆t = 0.05 and ∆t = 0.01, but the fully-implicit scheme remained accurate for ∆t = 0.1

whereas the semi-implicit scheme did not.

These observations indicate that the fully-implicit scheme is reliable for coarser

spatial discretisations and larger ∆t than the semi-implicit scheme. This is especially

noticeable when the Weissenberg number is increased (recall that the two methods

behaved identically for the extensional flow with Wi = 1). Note also that scaling κ
≈

has roughly the same effect as scaling Wi, e.g. the steady state solution (assuming it

exists) depends on the product Wiκ
≈

and not on Wi or κ
≈

separately.7 Hence, based

on the results in Table 2.4, we conclude that it is preferable to use the fully-implicit

temporal discretisation for problems in which Wi or |κ
≈
|, or both, are large (compared

to, say, 1).

2.6.3 Three dimensional implementation of the spectral method

We now consider the implementation of the spectral method developed in this chapter

in the case d = 3. This is closely related to the two-dimensional case, the primary

differences being that we now use the spherical coordinate change of variables:

q
∼

= (
√
br cos θ sinφ ,

√
br sin θ sinφ ,

√
br cosφ), (r, θ, φ) ∈ R := (0, 1)×(0, 2π)×(0, π),

instead of (2.31) and, following Chauviére & Lozinski [23], we choose each of our

basis functions to be a product of a spherical harmonic in (θ, φ) and polynomial in r.

Discretisations of this type have also been considered in the recent paper by Guo and

Huang [39]. Note that in this section, g̃(r, θ, φ) := g(q1, q2, q3).

7This can be seen by scaling Wi and κ
≈

in (2.1) and noting that ∂ψ
∂t vanishes at steady state.
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First of all, we redefine the space H̃1(R) for the purposes of this section, in order

to ensure that if g ∈ H1(D), D ⊂ R3 then g̃ ∈ H̃1(R). Following the approach in the

d = 2 case, we define ‖g̃‖2
H̃1(R)

by transforming ‖g‖2
H1(D) from cartesian to spherical

coordinates, and hence we have

‖g̃‖2
H̃1(R)

:=

∫
R

r2 sinφ

(
|g̃|2 +

∣∣∣∣∂g̃∂r
∣∣∣∣2 +

1

r2

∣∣∣∣∂g̃∂φ
∣∣∣∣2 +

1

r2 sin2 φ

∣∣∣∣∂g̃∂θ
∣∣∣∣2
)

dr dθ dφ,

and,

H̃1(R) := {f̃ ∈ L2
loc(R) : f̃(r, ·, φ) ∈ H1

p(0, 2π) for a.e. (r, φ) ∈ (0, 1)× (0, π)

and ‖f̃‖H̃1(R) <∞}.

We denote the spherical harmonics by Sl,m : (θ, φ) 7→ Sl,m(θ, φ) ∈ R. They are the

solutions of the equation

1

sinφ

∂

∂φ

(
sinφ

∂

∂φ
Sl,m(θ, φ)

)
+

1

sin2 φ

∂2

∂θ2
Sl,m(θ, φ) + l(l + 1)Sl,m(θ, φ) = 0, (2.72)

for a.e. (θ, φ) ∈ (0, 2π)× (0, π), where (2.72) is the angular part of Laplace’s equation

in spherical coordinates. It can be shown, by separation of variables, that the solutions

of (2.72) are of the form,

Sl,m(θ, φ) = C(l,m)Pm
l (cosφ)eimθ, (2.73)

for l ∈ Z≥0, |m| ≤ l, where Pm
l denotes an associated Legendre function and C(l,m)

is a normalisation constant. Also, the (appropriately normalised) spherical harmonics

satisfy the following orthogonality property:∫ 2π

0

∫ π

0

Sl1,m1(θ, φ)Sl2,m2(θ, φ) sinφ dθ dφ = δm1,m2δl1,l2 , (2.74)

where the overline notation denotes complex conjugation.

The next lemma shall motivate our definition of a spectral basis in the d = 3 case.

Lemma 2.21 Let g̃(r, θ) =
∑Nsph

l=0

∑
|m|≤l γ̃

m
l (r)Sl,m(θ, φ), Nsph ∈ Z≥0, γ̃0

0 ∈ H1
r2(0, 1)

where H1
r2(0, 1) is the r2-weighted H1-space, and

γ̃ml ∈ H1(0, 1; 1, r2) :=

{
f̃ ∈ H1

loc(0, 1) :

∫ 1

0

(
|f̃(r)|2 + r2|f̃ ′(r)|2

)
dr <∞

}
,

for l > 0. Then g̃ ∈ H̃1(R).
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Proof. Periodicity of g̃ in θ follows directly from the definition of the spherical

harmonics, hence it only remains to verify that ‖g̃‖H̃1(R) <∞.

Integrating by parts in θ and φ (which is valid for spherical harmonics), we obtain:

‖g̃‖2
H̃1(R)

=

∫
R

r2 sinφ

(
|g̃|2 +

∣∣∣∣∂g̃∂r
∣∣∣∣2
)

dr dθ dφ

−
∫
R

sinφ g̃

(
1

sinφ

∂

∂φ

(
sinφ

∂g̃

∂φ

)
+

1

sin2 φ

∂2g̃

∂θ2

)
dr dθ dφ, (2.75)

where the boundary conditions vanish due to periodicity. Substituting the series ex-

pression of g̃ into (2.75) and using (2.72) and (2.74), we get:

‖g̃‖2
H̃1(R)

=

Nsph∑
l=0

∑
|m|≤l

∫ 1

0

r2

{
|γ̃ml (r)|2 dr +

∣∣∣∣ dγ̃ml
dr

∣∣∣∣2
}

dr

+

∫
R


Nsph∑
l1=0

∑
|m1|≤l1

γ̃m1
l1

(r)Sl1,m1(θ, φ)



Nsph∑
l2=0

∑
|m2|≤l2

l2(l2 + 1) γ̃m2
l2

(r)Sl2,m2(θ, φ)

 sinφ dφ dθ dr

=

Nsph∑
l=0

∑
|m|≤l

∫ 1

0

{
r2|γ̃ml (r)|2 + r2

∣∣∣∣ d

dr
γ̃ml (r)

∣∣∣∣2 + l(l + 1)|γ̃ml (r)|2
}

dr. (2.76)

By the hypotheses on the γ̃ml , it follows that ‖g̃‖H̃1(R) is finite. �

Note that the γ̃ml in Lemma 2.21 need not be bounded on (0, 1) since, for example,

r−1/4 ∈ H1
r2(0, 1) ∩ H1(0, 1; 1, r2).

It will be convenient from now on to use the real and imaginary parts of the spherical

harmonics rather than the complex exponentials in (2.73), i.e.:

Sil,m(θ, φ) := C(l,m)Pm
l (cosφ)((1− i) cos(mθ) + i sin(mθ)), (2.77)

where now 0 ≤ l ≤ Nsph, i ∈ {0, 1}, and i ≤ m ≤ l. In this section, we consider basis

functions of the following form:

Y ik
lm(r, θ, φ) := (1− r)Qk(r)S

i
l,m(θ, φ), (2.78)

where (1 − r)Qk ∈ PNr,0(0, 1) (as in the d = 2 case, Qk is taken to be a Chebyshev

polynomial of degree k, 0 ≤ k ≤ Nr − 1, mapped from [−1, 1] to [0, 1], although

other polynomial choices could be considered also). Since PNr,0(0, 1) ⊂ H1
r2(0, 1) ∩

H1(0, 1; 1, r2), it follows from Lemma 2.21, that any finite linear combination of basis

functions of the form (2.78) is contained in H̃1
0(R). This is a simpler situation than in

two dimensions, since now we do not need to impose a specialised decomposition in

order to guarantee inclusion in H̃1(R).
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Below we will introduce a basis on which our Galerkin spectral method in three

dimensions will be based on. Before defining this basis, however, we first consider

the symmetry property discussed in Remark 2.19 in the d = 3 case. In fact, most of

Remark 2.19 carries over to three dimensions unchanged; the only difference is that now

the evenness of ψ̂ in the D domain with respect to q
∼

translates to requiring that we only

use spherical harmonics in R for which l is an even number. This can be seen by the

following argument. Suppose, using the change of variables to spherical coordinates,

that q
∼
7→ (r, θ, φ). Then also −q

∼
7→ (r, θ+ π, π − φ). Now, the symmetry condition we

wish to impose is that for any basis function Y ik
lm defined in (2.78), we have Y ik

lm(r, θ, φ) =

Y ik
lm(r, θ+ π, π− φ). This, in turn, requires that Sil,m(θ, φ) = Sil,m(θ+ π, π− φ). Noting

that,

Sil,m(θ, φ) = Pm
l (cosφ)((1− i) cos(mθ) + i sin(mθ)),

and

Sil,m(θ + π, π − φ) = (−1)mPm
l (− cosφ)((1− i) cos(mθ) + i sin(mθ)),

it follows that we can only use associated Legendre functions for which Pm
l (x) =

(−1)mPm
l (−x), for all x ∈ [−1, 1]. Since the associated Legendre functions are defined

as,

Pm
l (x) = (−1)m(1− x2)m/2

dm

dxm
(Pl(x)),

where Pl(x) is a Legendre polynomial of degree l (for which Pl(x) = (−1)lPl(−x)), it

follows that the required symmetry condition is satisfied if, and only if, l is an even

number (for any m = 0, . . . , l).

Remark 2.22 In [23], Chauviére & Lozinski restricted their attention to two dimen-

sional macroscopic velocity fields, in which case a more restrictive symmetry condition

was appropriate, i.e. that ψ(r, θ, φ) = ψ(r, θ + π, φ), and hence they only considered

spherical harmonics for which both l and m were even numbers. Compared to the more

general symmetry condition considered above, the condition of Chauviére & Lozinski

leads to a reduction in computational effort because for a given Nsph, fewer basis func-

tions are used since the spherical harmonics with odd m are discarded, and also it is

only necessary to consider θ ∈ (0, π). In this thesis, however, we are interested in

treating the case in which the macroscopic velocity field can be three dimensional, and

therefore we require the symmetry condition for Y ik
lm identified above.

With the considerations discussed above in mind, we can now define a basis, denoted

C, as follows:

C := {Y ik
lm : 0 ≤ k ≤ Nr − 1, i ∈ {0, 1}, l ∈ {0, 2, 4, . . . , Nsph} and i ≤ m ≤ l}.
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From now on, the numerical method that uses basis C will be referred to as method C.
At this point, we could take a detour to consider three dimensional approximation

results for span(C) ⊂ H̃1
0(R), which would then allow us to extend our convergence

results from Section 2.5 to the d = 3 case. However, given that we have already

considered approximation results in detail for d = 2, and given that the approach

in the d = 3 case would be completely analogous, for the sake of brevity, we omit

discussion of approximation theory in three dimensions here. Note, however, that Guo

& Huang [39] recently derived approximation results for a spectral method on the unit

ball in R3, which could be applied to the convergence analysis of method C (e.g. see

Theorem 2.3 in that paper, which is similar to our approximation result (2.46)).

Below we will test the performance of method C on some model problems. First

of all, however, we specify the spherical coordinate form of the discretisation matrices

defined in (2.54). Using the same notation that we used for the discretisation matrices

in polar coordinates, we let N denote the total number of basis functions, we set

ψ̃n+1
N (r, θ, φ) =

∑N
v=1 Ψ̃n+1

v Yv(r, θ, φ), where Yv is a basis function from C for 1 ≤ v ≤ N ,

and we denote the test functions by Yu for 1 ≤ u ≤ N . Then,

(Mq)uv =
∫ 1

0

∫ 2π

0

∫ π

0
b3/2 YuYv r

2 sinφ dr dθ dφ, (2.79)

(Sq)uv =
∫ 1

0

∫ 2π

0

∫ π

0

{
b1/2

∂Yu
∂r

∂Yv
∂r

r2 sinφ+ b1/2
1

sinφ
∂Yu
∂θ

∂Yv
∂θ

+ b1/2
∂Yu
∂φ

∂Yv
∂φ

sinφ

+
b3/2

2
r3 sinφ

(
1− r2

)−1
[
∂Yu
∂r

Yv + Yu
∂Yv
∂r

]
+
b5/2

4
r4 sinφ

(
1− r2

)−2
YuYv

}
dr dθ dφ, (2.80)

(Cmq )uv =
∫ 1

0

∫ 2π

0

∫ π

0
Yv

{
kr

[
b3/2r3∂Yu

∂r
+
b5/2

2
r4
(
1− r2

)−1
Yu

]

+kθ b3/2r2∂Yu
∂θ

+ kφ b
3/2r2 sinφ

∂Yu
∂φ

}
dr dθ dφ, (2.81)

where kr = (κ
≈

(x∼m)e∼r) · e∼r, kθ = (κ
≈

(x∼m)e∼r) · e∼θ and kφ = (κ
≈

(x∼m)e∼r) · e∼φ, with e∼r, e∼θ, e∼φ

the unit vectors in the r, θ and φ directions:

e∼r = (cos θ sinφ, sin θ sinφ, cosφ),

e∼θ = (− sin θ, cos θ, 0),

e∼φ = (cos θ cosφ, sin θ cosφ,− sinφ).

Note that κ
≈
q
∼

=
√
b r (kre∼r + kθe∼θ + kφe∼φ), and (e∼r, e∼θ, e∼φ) is an orthonormal basis for

R3 for any (θ, φ) ∈ (0, 2π)×(0, π). We refer to Section 2.6.1 for the details of computing
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the discretisation matrices and the solution of the resulting linear system; the approach

is completely analogous here.

Next, we present some computational results for method C. We consider the back-

ward Euler temporal discretisation of the FENE Fokker–Planck equation here, as op-

posed to the semi-implicit scheme considered in Section 2.6.2, and we restrict our

attention to producing plots of the same type as in Figure 2.3 in order to visualise the

convergence rates for ψ̂ and τ
≈
, and also to verify that we obtain superconvergence of

τ
≈

in the d = 3 case. Note that theoretical underpinning of the superconvergence of τ
≈

characterised in (2.67) and (2.69) can also be established in 3-dimensions; the reasoning

is the same, except that we use Parseval’s identity based on spherical harmonics, as in

Lemma 2.21.

As in the two dimensional case, we know the exact steady state solution for problems

in which κ
≈

is a symmetric 3 × 3 tensor (cf. (2.59)). We now consider two distinct

problems; for each problem we have κ
≈

= κ
≈
T so that we can compare the numerical

solution with the exact steady state solution, and as in Tables 2.1 and 2.2 we take 2000

time-steps with ∆t = 0.05 to obtain an accurate approximation to the steady state

solution.

The first problem we consider is a three dimensional extensional flow with b = 12,

Wi = 1 and κ
≈

defined as follows:

κ
≈

=

 1 0 0
0 −1/2 0
0 0 −1/2

 . (2.82)

Figure 2.5(a) shows the convergence plots for ψ̂ and τ11 for this problem. It is clear

from the figure that we obtain spectral convergence of ψ̂, and also, just as in Figure 2.3,

we observe superconvergence of τ11.

Next, we consider a problem in which κ
≈

is a full tensor:

κ
≈

=

 0.5 0.2 0.5
0.2 −0.25 −0.4
0.5 −0.4 −0.25

 , (2.83)

and where b = 12 and Wi = 1 again. The convergence plot for this computation is

shown in Figure 2.5(b), and the behaviour is much the same as in Figure 2.5(a).

2.7 Conclusions

The purpose of this chapter has been to develop a rigorous foundation for the numer-

ical approximation of Fokker–Planck equations. We restricted our attention to the
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(a) (b)

Figure 2.5: Comparison of convergence of ψ̂ and τ
≈

for method C for two different problems
(we compared to the exact steady state solution, (2.59), by taking 2000 time-steps with
∆t = 0.05). Plot (a) corresponds to a three dimensional extensional flow problem with
b = 12 and Wi = 1 and with κ

≈
defined in (2.82). Plot (b) is analogous, except that in this

case κ
≈

is as in (2.83). In both plots, the horizontal axis represents Nr and Nsph (chosen to be
equal in these computations), and the solid and dashed lines show the relative L2(D) error
and relative τ11 error, respectively.

configuration space part of (1.44), but the work in this chapter will be built upon in

subsequent chapters in order to develop numerical methods on Ω×D.

We focused on the symmetrised weak formulation of the Maxwellian-transformed

equation, and we used the substitution ψ̂ = ψ/
√
M . The resulting formulation (2.6)

facilitated the development of a number of analytical results in Sections 2.2 and 2.3.

Using the approximation results derived in Section 2.4, optimal-order convergence of

the fully-discrete spectral Galerkin method (2.24), (2.25) was established for the case

of d = 2; an analogous procedure could be carried out for d = 3. This analysis was

performed for spring potentials that satisfy Hypotheses A and B; see Example 2.1.

In the case of the FENE model, we indicated the extension of our analysis to a class

of numerical methods based on another change of variable, proposed by Chauvière

& Lozinski; here a different transformation, (2.60), is applied to the Fokker–Planck

equation. We showed that, at the analytical level at least, the two approaches lead to

methods with very similar stability and accuracy properties.

Section 2.6 addressed issues related to the implementation of numerical methods

for the FENE Fokker–Planck equation. In Section 2.6.1 we considered two distinct

implementations, methods A and B, for the d = 2 case, and these methods were also

compared to the spectral method discussed in the paper of Chauviére & Lozinski [24]



79

on the basis of numerical results reported therein. We showed that methods A and B
work well for values of b up to about 20, and are comparable to the method formulated

in [24] in terms of computational efficiency in this parameter range, with method B
being more accurate than method A, and of a very similar accuracy as the method

in [24]. Also, we demonstrated that the convergence of τ
≈

tends to be much more rapid

than the convergence of ψ̂ using our Galerkin spectral methods; this is highly advanta-

geous in the context of the micro-macro computations. In Section 2.6.3 we considered

the implementation of the Galerkin spectral method, based on the symmetrised formu-

lation, in three spatial dimensions. We constructed a H̃1(R)-conforming spectral basis,

C, and demonstrated that the convergence properties of the spectral method based on

C are essentially the same as for the two dimensional spectral methods considered in

Section 2.6.1.

The numerical methods and analytical results developed in this chapter are built

upon in Chapter 3, where we consider the Fokker–Planck equation on Ω×D.



Chapter 3

Alternating-Direction Methods for
the Full Fokker–Planck Equation

3.1 Introduction

In this chapter, we develop numerical methods for the Maxwellian-transformed Fokker–

Planck equation posed on Ω×D × (0, T ]:

∂ψ

∂t
+ u∼ · ∇∼ xψ +∇∼ q · (κ≈ q∼ψ) =

1

2Wi
∇∼ q ·

(
M∇∼ q

ψ

M

)
, (x∼, q∼, t) ∈ Ω×D × (0, T ], (3.1)

ψ(x∼, q∼, 0) = ψ0(x∼, q∼), (x∼, q∼) ∈ Ω×D. (3.2)

Throughout this chapter we assume that u∼ : (x∼, t) ∈ Ω × (0, T ] 7→ u∼(x∼, t) ∈ Rd is

an a priori defined vector field (hence κ
≈

= ∇∼ xu∼ is known a priori also). The precise

hypotheses on u∼ and κ
≈

shall be specified below.

The above equation will be referred to as the full Fokker–Planck equation, to distin-

guish it from the equation posed on D×(0, T ] only, that was studied in Chapter 2. From

now on, we focus on the Maxwellian-transformed form of the Fokker–Planck equation

given above (and its weak formulation in which the prinicpal part of the differential

operator is symmetric). However, it should be noted that the numerical methods de-

veloped and analysed in the forthcoming sections could just as well be based on the

Chauvière–Lozinski-transformed equation that was studied in Section 2.2.1, and was

also used to solve the full FENE Fokker–Planck equation in [23,24,60].

As discussed in Chapter 1, due to the cartesian product structure of the domain Ω×
D, a natural approach to solving (3.1), (3.2) is to use an operator splitting/alternating-

direction approach, cf. (1.50), (1.51). This is the approach that we pursue in this

chapter. The Galerkin spectral method on D that was developed in Chapter 2 will be

used to solve (1.50), and a finite element method for (1.51) will also be introduced.

80
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A finite element method is convenient for the x∼-direction solver because the physical

space domain, Ω, need not have simple geometry. As in Chapter 2, all of the analysis

in this chapter is valid for any spring potential that satisfies Hypotheses A and B, but

in the computational results section we consider the FENE model only.

We propose a fully-practical alternating-direction Galerkin method for (3.1). The

approach is similar in spirit to the alternating-direction method used by Chauvière &

Lozinski in [23,24,60]. However, there are some important theoretical questions related

to applying alternating-direction methods in this context, which have not previously

been addressed in the literature, and we focus on these questions in this chapter.

In particular, we consider the stability and convergence analysis of our alternating-

direction scheme for (3.1) in Sections 3.4, 3.5, 3.6 and 3.7. It is not obvious a priori

what effect applying a splitting of the form (1.50), (1.51) will have on a discretisation of

(3.1), and therefore it is important to rigorously establish the stability and convergence

properties of the alternating-direction numerical methods developed here.

The reader will note that the alternating-direction method under consideration here

is nonstandard in the sense we consider d-dimensional cross-sections (rather than one-

dimensional cross-sections) of Ω×D. This poses a formidable computational challenge

because, as shall be seen in Section 3.3, we typically need to solve a large number

problems posed in d spatial dimensions in each time-step. However, the method is

extremely well suited to implementation on a parallel architecture since the q
∼
-direction

solves are completely independent from one another, and similarly the x∼-direction solves

are decoupled also. We discuss the parallel implementation of our alternating-direction

scheme in Section 3.8, and our computational results in Section 3.9 were obtained using

this parallel implementation.

The structure of this chapter is as follows. The weak formulation of the full Fokker–

Planck equation is discussed in Section 3.2. We then introduce a quadrature-based

alternating-direction procedure in Section 3.3 and derive stability results for this scheme

in Section 3.4. Using the approximation results in Section 3.6, we then derive con-

vergence estimates in Section 3.7. The implementation of the numerical method is

described in Section 3.8, and in Section 3.9, numerical results for the FENE Fokker–

Planck equation are presented in the simplified case that the macroscopic velocity, u∼,

is taken to be a constant-in-time vector field.
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3.2 Weak formulation and spatial discretisation

The full Fokker–Planck equation considered in this chapter depends on x∼ ∈ Ω as well

as q
∼
∈ D, and therefore we will require the use of slightly different function spaces

than in Chapter 2. Let L2(Ω×D) be defined in the obvious way, and let (·, ·) and ‖ · ‖
denote the L2 inner-product and norm over Ω×D:

(f, g) :=

∫
Ω×D

f(x∼, q∼)g(x∼, q∼) dx∼ dq
∼

and ‖f‖2 := (f, f).

We assume throughout this chapter that u∼ is a divergence-free d-component vector

function, i.e.

∇∼ x · u∼(x∼, t) = 0 for a.e. (x∼, t) ∈ Ω× (0, T ]. (3.3)

It would be straightforward to adapt the arguments in this chapter to the case where

u∼ is not divergence free, but this would make the analysis more messy and it would

shed no further light on the properties of the numerical methods under consideration.

Therefore in the interests of clarity and brevity, in this chapter we restrict our attention

to the case when (3.3) is satisfied.

Also, we suppose that

u∼ ∈ L∞(0, T ; L∞(Ω)) and ∇∼ xu∼ = κ
≈
∈W1,∞(0, T ; L∞(Ω)), (3.4)

where, to simplify notation, we do not explicitly label the d or d × d dimensionality

of the function spaces for u∼(x∼, t) ∈ Rd and κ
≈

(x∼, t) ∈ Rd×d. The assumption in (3.4)

for κ
≈

is stronger than the assumptions in Chapter 2; recall that in Lemma 2.4 and

Theorem 2.5 we required κ
≈
∈ C[0, T ] and in Lemma 2.10 we required κ

≈
∈ H1(0, T ).

We shall also use the following space:

X :=
{
ϕ ∈ L2(Ω×D) : ϕ ∈ L2(Ω; H1

0(D;M)) ∩ H1(Ω; L2(D))
}
,

equipped with the following norm:

‖ϕ‖X :=

{∫
Ω×D

(
|ϕ|2 + |∇∼ Mϕ|2

)
dx∼ dq

∼

} 1
2

.

Employing the substitution ψ̂ = ψ/
√
M that was used in Chapter 2, the weak

formulation of (3.1) is as follows: Given ψ̂0 ∈ L2(Ω × D), find ψ̂ ∈ L∞(0, T ; L2(Ω ×
D)) ∩ L2(0, T ;X ) such that

d

dt
(ψ̂, ζ) +

(
u∼ · ∇∼ xψ̂ , ζ

)
−
(
κ
≈
q
∼
ψ̂ , ∇∼ Mζ

)
+

1

2Wi

(
∇∼ M ψ̂ , ∇∼ Mζ

)
= 0 ∀ ζ ∈ X , (3.5)

ψ̂(x∼, q∼, 0) = ψ̂0(x∼, q∼), (x∼, q∼) ∈ Ω×D, (3.6)
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in the sense of distributions on (0, T ). Following Chapter 2, we impose zero Dirichlet

boundary conditions on Ω × ∂D for t ∈ (0, T ]. For simplicity, we avoid boundary

conditions on ∂Ω × D by assuming that the macroscopic velocity field is an enclosed

flow, i.e. that

u∼ · n∼ = 0 on ∂Ω, (3.7)

where n∼ ∈ Rd is the unit outward normal for Ω. Also, the initial condition (3.6) is

understood to be imposed in a weak sense and, as in Chapter 2, ψ is recovered by

multiplying ψ̂ by
√
M .

The term containing κ
≈

in (3.5) will be of particular interest since, as we shall see, it

is the most difficult term to treat using an alternating-direction method. We introduce

the following bilinear form notation for this term, which will be convenient later on:

C(κ
≈

; f, g) :=
(
κ
≈
q
∼
f , ∇∼ Mg

)
. (3.8)

Next, we establish a statement analogous to Lemma 1.3 for the weak solution of

(3.5). Recall that

%(x∼, t) :=

∫
D

ψ(x∼, q∼, t) dq
∼

=

∫
D

√
M(q

∼
) ψ̂(x∼, q∼, t) dq

∼
.

Noting from Hypothesis B in Chapter 2 that
√
M ∈ H1

0(D) ⊂ H1
0(D;M), we set

ζ =
√
M in (3.5), to obtain(
∂ψ̂

∂t
+ u∼ · ∇∼ xψ̂,

√
M

)
=

(
∂ψ

∂t
+ u∼ · ∇∼ xψ, 1

)
=

∫
Ω

(
∂%

∂t
+ u∼ · ∇∼ x%

)
dx∼ = 0. (3.9)

Due to (3.7), the material volume Ω does not change with time and therefore applying

the Reynolds transport theorem as in Lemma 1.3, we obtain,

d

dt

∫
Ω

%(x∼, t) dx∼ = 0, (3.10)

or equivalently,
∫

Ω
%(x∼, t) dx∼ =

∫
Ω
%0(x∼) dx∼ for t ∈ (0, T ].

Remark 3.1 By taking test functions of the form ζ = χS
√
M , where χS is a mollified

characteristic function for S ⊂ Ω, one could extend the above result to arbitrary subsets

of Ω and therefore recover Lemma 1.3 in its full generality for the weak solution. �

We now introduce the spatial discretisation of (3.5), (3.6). Let Vh be a NΩ-

dimensional H1(Ω)-conforming finite element space corresponding to a triangulation Th
of Ω. Also, as in Chapter 2, let PN(D) ⊂ H1

0(D) ⊂ H1
0(D;M) be an ND-dimensional
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space spanned by a set of spectral basis functions on D (such as A,B or C from Sec-

tion 2.6). Noting that Vh ⊗ PN(D) ⊂ X , we obtain a spatially discrete formulation of

the full Fokker–Planck equation as follows:

Let ψ̂h,N(·, ·, 0) ∈ Vh⊗PN(D) be the L2(Ω×D) projection of ψ̂0 onto Vh⊗PN(D).

Find ψ̂h,N(·, ·, t) ∈ Vh⊗PN(D), t ∈ (0, T ] satisfying (3.5) for all ζ ∈ Vh⊗PN(D) in the

sense of distributions on (0, T ).

It would be possible to finite difference in time the spatially discrete formulation

defined above in order to obtain a fully-discrete numerical method. However, this

would be impractical in the present context because the discrete problem at each time-

level would be posed on the domain Ω×D. As we have indicated, a more reasonable

alternative is to use an alternating-direction method to split each 2d-dimensional solve

into a sequence of d-dimensional solves. This idea is considered in detail in the next

section.

3.3 The alternating-direction numerical method

We begin this section by presenting a brief general overview of alternating-direction

methods and we will then consider how to derive an alternating-direction method for

(3.5), (3.6).

We concentrate on schemes that use a Galerkin spatial discretisation since this will

allow us to use arguments analogous to those in Sections 2.2 and 2.3 in order to establish

stability and convergence properties. The seminal work on alternating-direction meth-

ods of this type is by Douglas & Dupont [28]. In the example below, we illustrate the

approach of Douglas & Dupont by considering a Galerkin-based alternating-direction

method for the constant-coefficient heat equation in two spatial dimensions.

Example 3.2 Suppose (x, y, t) ∈ (a1, a2) × (b1, b2) × (0, T ) 7→ u(x, y, t) ∈ R, with

u(·, ·, 0) = u0(·, ·) and

∂u

∂t
−∆u = 0, on (x, y, t) ∈ (a1, a2)× (b1, b2)× (0, T ),

with homogeneous Dirichlet boundary conditions in space. The corresponding weak

formulation of this problem is:

Find u ∈ L∞(0, T ; L2((a1, b1)× (a2, b2))) ∩ L2(0, T ; H1
0((a1, b1)× (a2, b2))) satisfying∫

Ω

∂u

∂t
v dx dy +

∫
Ω

∇u · ∇v dx dy = 0 ∀v ∈ H1
0((a1, b1)× (a2, b2)), (3.11)

u(x, y, 0) = u0(x, y), (x, y) ∈ (a1, a2)× (b1, b2), (3.12)
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in the sense of distributions on (0, T ).

Suppose that Xh and Yh are H1
0(a1, b1)- and H1

0(a2, b2)-conforming finite element

spaces, respectively, with bases {vi ∈ Xh : 1 ≤ i ≤ N} and {wi ∈ Yh : 1 ≤ i ≤ N}
such that Xh = span({vi}1≤i≤N) and Yh = span({wi}1≤i≤N). Let Xh ⊗ Yh denote the

following tensor product space:

Xh ⊗ Yh :=

{
z : z =

N∑
i,j=1

αijviwj, αij ∈ R for each 1 ≤ i, j ≤ N

}
.

It follows that Xh ⊗ Yh ⊂ H1
0(a1, b1; H1

0(a2, b2)) ⊂ H1
0((a1, b1) × (a2, b2)). Using this

tensor product finite element space we define a finite element scheme for this problem

by replacing H1
0((a1, b1) × (a2, b2)) with Xh ⊗ Yh in the weak formulation above. Also,

supposing we employ Crank–Nicolson finite differencing to discretise (3.11) in time,

then we obtain the following fully discrete problem (written in matrix form) at each

time-step: Given unh ∈ Xh ⊗ Yh, find un+1
h ∈ Xh ⊗ Yh satisfying(

Mx ⊗My +
∆t

2
(Sx ⊗My +Mx ⊗ Sy)

)
un+1
h

=

(
Mx ⊗My −

∆t

2
(Sx ⊗My +Mx ⊗ Sy)

)
unh, (3.13)

where Mx and Sx (resp. My and Sy) are the Xh (resp. Yh) mass and stiffness matrices,

and the matrix tensor product1 is defined as follows for matrices A ∈ Rm×n and B ∈
Rp×q:

A⊗B =

 a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 ∈ Rmp×nq.

Since the matrices in (3.13) are tensor products of the x- and y-direction discreti-

sation matrices, we can approximate (3.13) using the following two stage method:(
Mx +

∆t

2
Sx

)
⊗ I un∗h =

(
Mx −

∆t

2
Sx

)
⊗ I unh (3.14)

I ⊗
(
My +

∆t

2
Sy

)
un+1
h = I ⊗

(
My −

∆t

2
Sy

)
un∗h . (3.15)

These equations define the fully discrete Galerkin alternating-direction method for this

problem. We refer to (3.14) as the x∼-direction stage and to (3.15) as the y-direction

stage.

1Also referred to as the Kronecker product.
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By multiplying (3.14) by I ⊗ (My −∆t/2Sy) and (3.15) by (Mx + ∆t/2Sx)⊗ I, we

see that the Galerkin alternating-direction method is equivalent to the following:(
Mx ⊗My +

∆t

2
(Sx ⊗My +Mx ⊗ Sy) +

(∆t)2

4
Sx ⊗ Sy

)
un+1
h

=

(
Mx ⊗My −

∆t

2
(Sx ⊗My +Mx ⊗ Sy) +

(∆t)2

4
Sx ⊗ Sy

)
unh. (3.16)

This is referred to as the equivalent one-step method for (3.14), (3.15). We can see

that the one-step method is identical to the Crank-Nicolson scheme, (3.13), except for

the presence of the O((∆t)2) perturbation terms in (3.16).

Using the approach of Douglas & Dupont, the next step is to rewrite (3.16) in inner

product form as follows: Given unh ∈ Xh ⊗ Yh, find un+1
h ∈ Xh ⊗ Yh satisfying∫

Ω

un+1
h − unh

∆t
vh dx dy +

1

2

∫
Ω

{
∇un+1

h · ∇vh +
∆t

2

(
∂un+1

h

∂x

∂vh
∂y

+
∂un+1

h

∂y

∂vh
∂x

)}
dx dy

=
1

2

∫
Ω

{
−∇unh · ∇vh +

∆t

2

(
∂unh
∂x

∂vh
∂y

+
∂unh
∂y

∂vh
∂x

)}
dx dy (3.17)

for all vh ∈ Xh ⊗ Yh. From here, one can use standard energy analysis to establish

stablity and convergence properties of (3.17), and therefore, equivalently, of (3.14),

(3.15).

We now apply the approach described in Example 3.2 to the weak formulation,

(3.5). First of all, define the bases

{Yk ∈ PN(D) : 1 ≤ k ≤ ND} and {Xi ∈ Vh : 1 ≤ i ≤ NΩ}, (3.18)

such that span({Yk}1≤k≤ND) = PN(D) and span({Xi}1≤i≤NΩ
) = Vh. Recalling (2.54),

we define Mq, Sq ∈ RND×ND as

(Mq)lk :=

∫
D

Yk(q∼)Yl(q∼) dq
∼
, (3.19)

(Sq)lk :=

∫
D

∇∼ MYk(q∼) · ∇∼ MYl(q∼) dq
∼
. (3.20)

Similarly, Mx, Tx ∈ RNΩ×NΩ are defined as follows:

(Mx)ij :=

∫
Ω

Xi(x∼)Xj(x∼) dx∼, (3.21)

(Tx)ij :=

∫
Ω

(u∼ · ∇∼ xXj(x∼))Xi(x∼) dx∼. (3.22)
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A fully discrete form of (3.5) using a backward-Euler time discretisation can be

written as follows: Given ψ̂nN =
∑

jl γ
n
jlXj Yl ∈ Vh ⊗ PN(D), find the vector γ

∼
n+1 ∈

RND NΩ , defining a function ψ̂n+1
N =

∑
jl γ

n+1
jl Xj Yl ∈ Vh ⊗ PN(D), such that

Mx ⊗Mq

(
γ
∼
n+1 − γ

∼
n

∆t

)
+ Tx ⊗Mq γ∼

n+1 +
1

2Wi
Mx ⊗ Sq γ∼

n+1

−C(κ
≈
n+1; ψ̂n+1

N , ζik) = 0, (3.23)

where ζik = Xi× Yk ∈ Vh⊗PN(D). It is also possible to obtain a tensor product form

discretisation matrix of C(κ
≈

; ·, ·), i.e. consider C(κ
≈

; ζjl, ζik) as follows:

C(κ
≈

; ζjl, ζik) =

∫
Ω×D

(
κ
≈
n+1(x)q

∼
Xj(x∼)Yl(q∼)

)
· ∇∼ M(Xi(x∼)Yk(q∼)) dx∼ dq

∼

=
d∑

s,t=1

(∫
Ω

κn+1
st (x∼)Xi(x∼)Xj(x) dx∼

)(∫
D

qt Yl(q∼)
√
M

∂

∂qs

(
Yk(q∼)√
M

)
dq
∼

)
.

Therefore, we define the matrices Cst
x ∈ RNΩ×NΩ and Cst

q ∈ RND×ND for 1 ≤ s, t ≤ d

such that (
Cst
x

)
ij

:=

∫
Ω

κn+1
st (x∼)Xi(x∼)Xj(x) dx∼, (3.24)

(
Cst
q

)
kl

:=

∫
D

qt Yl(q∼)
√
M

∂

∂qs

(
Yk(q∼)√
M

)
dq
∼
. (3.25)

Hence, we can rewrite the term on the final line of (3.23) as
∑d

s,t=1C
st
x ⊗ Cst

q γ∼
n+1.

However, since this matrix expression for C(κ
≈

; ·, ·) contains neither Mx nor Mq, we

can no longer factorise the resulting equation in the same way as in (3.14), (3.15). That

is, the term C(κ
≈

; ·, ·) causes difficulties because its ‘coefficient’, κ
≈

(x∼)q
∼
, depends on both

the x∼- and q
∼
-directions.

This issue has been considered a number of times in the literature. For example, in

the context of collocation-based alternating-direction schemes Celia & Pinder [21, 22]

and Bialecki & Fernandes [16] developed methods that could handle equations with

general variable coefficients. However, as indicated earlier, our focus is on developing

a Galerkin-based framework, and therefore, again, the work of Douglas & Dupont is

the most relevant here. In [28], Douglas & Dupont developed a “Laplace modification”

scheme for the heat equation with general coefficients which involved discretising the

equation
∂u

∂t
= ∇ · (a(x, y, t, u)∇u) + f(x, y, t, u),
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as follows,(
un+1 − un

∆t
, v

)
+ (an(un)∇un,∇v) + λ

(
∇(un+1 − un),∇v

)
= (fn(un), v) ,

where λ is a constant scalar, which must satisfy a lower bound condition related to

the supremum of |a| in order to ensure the stability of the numerical method. This

discretisation then allows the use of a standard Galerkin alternating-direction method,

as in Example 3.2, because the term containing a can be moved to the right-hand side

and treated as a source term.

However, it is not obvious how to apply this kind of approach to (3.23), because

our problematic term is a convection term rather than a diffusion term. The most

natural idea in the spirit of Douglas & Dupont would be to move the C(κ
≈

; ·, ·) term

to the right-hand side of (3.23) and treat it explicitly in time. This idea is feasible,

but for the purposes of practical computations, we would like to have the option of

using a fully-implicit temporal discretisation. Indeed, the numerical results in Sec-

tion 2.6.2 demonstrated that the semi-implicit temporal discretisation of the Fokker–

Planck equation in which the term C(κ
≈

; ·, ·) was treated explicitly in time was less

stable than the backward Euler discretisation, especially for problems in which the

product Wi ‖κ
≈
‖L∞(0,T ;L∞(Ω)) is significantly larger than 1.

In order to circumvent this limitation, we develop a Galerkin alternating-direction

approach that is an almagamation of the Douglas & Dupont framework and a new

quadrature-based method. Using this approach, we can define either a fully-implicit

in time or a semi-implicit in time alternating-direction method for the Fokker–Planck

equation. We shall consider both options in detail in this chapter.

3.3.1 The hybrid alternating-direction scheme

The first ingredient of this scheme is a quadrature rule on Ω.

Let {(x∼m, wm), wm > 0, x∼m ∈ Ω,m = 1, . . . , QΩ} define an element-based quadra-

ture rule on the triangulation Th, where the x∼m are the quadrature points and the wm

are the corresponding weights. Therefore, for functions f, g ∈ C0(Ω), the quadrature

sum is evaluated element-wise as follows,

QΩ∑
m=1

wmf(x∼m)g(x∼m) =
∑
K∈Th

QK∑
l=1

wKl f(x∼
K
l )g(x∼

K
l ), (3.26)

where QK is the number of quadrature points in element K. From now on, we will use

the left-hand side of (3.26) as a shorthand for the right-hand side.
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We now introduce two alternative hypotheses on the accuracy of the quadrature

rule, Quadrature Hypothesis 1 (QH1) and Quadrature Hypothesis 2 (QH2).

Quadrature Hypothesis 1 (QH1). The quadrature rule satisfies

QΩ∑
m=1

wmκij(x∼m)f(x∼m)g(x∼m) =

∫
Ω

κij(x∼)f(x∼)g(x∼) dx∼, (3.27)

for all f, g ∈ Vh and for each component κij of κ
≈

. �

As discussed in Chapter 4, in the context of the Navier–Stokes–Fokker–Planck sys-

tem, we compute the macroscopic velocity field, u∼ by solving the Navier–Stokes equa-

tions using a finite element method on the triangulation Th, i.e. the same triangulation

that is used for the alternating-direction method for the Fokker–Planck equation. As

a result, it is reasonable to assume that the components of κ
≈

= ∇∼ xu∼ are represented

by piecewise polynomials on Th and in this case it is certainly possible to satisfy QH1

by choosing an appropriate element-based quadrature rule.

Quadrature Hypothesis 2 (QH2). The quadrature rule satisfies

QΩ∑
m=1

wmf(x∼m)g(x∼m) =

∫
Ω

f(x∼)g(x∼) dx∼, (3.28)

for all f, g ∈ Vh. �

QH1 is a stronger hypothesis than QH2, and therefore in general we will require a

larger value of QΩ in order to satisfy QH1. Some results in the following analysis will

require QH1, whereas for others, QH2 will suffice. Refer to Section 3.8 for a discussion

of specific quadrature rules that we use to satisfy QH1 and QH2 in practice.

Next, let ψ̂h,N ∈ Vh⊗PN(D) denote the numerical solution of the full Fokker–Planck

equation. Recalling the bases from (3.18), ψ̂h,N can be written in terms of coefficients

{ψ̂ik} as follows:

ψ̂h,N :=

NΩ∑
i=1

ND∑
k=1

ψ̂ikXiYk ∈ Vh ⊗ PN(D). (3.29)

Define the line functions, ψ̂k, for k = 1, . . . , ND as follows:

ψ̂k :=

NΩ∑
i=1

ψ̂ikXi ∈ Vh, (3.30)

and note that (3.29) can be rewritten using (3.30) as follows:

ψ̂h,N(x∼, q∼) =

ND∑
k=1

ψ̂k(x∼)Yk(q∼). (3.31)
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The formula (3.31) shall be useful in the discussion of the alternating-direction methods

below.

As discussed above, the term C(κ
≈

; ·, ·) is the most problematic in terms of applying

an alternating-direction method to the Fokker–Planck equation. Therefore we begin by

considering how to use a quadrature-based scheme to derive an alternating-direction

type of formulation of this term.

Suppose that QH1 is satisfied and that we have the line function decomposition

(3.31) for ψ̂h,N , in which ψ̂k ∈ Vh for k = 1 . . . , ND. Also, let ζ = X×Y ∈ Vh⊗PN(D).

Then,

C(κ
≈

; ψ̂h,N , ζ) =

∫
Ω×D

(κ
≈
q
∼
ψ̂h,N(x∼, q∼)) · ∇∼ Mζ(x∼, q∼) dq

∼
dx∼

=

∫
D

ND∑
k=1

∫
Ω

[
κ
≈
q
∼
ψ̂k(x∼)Yk(q∼)

]
· ∇∼ M

(
X(x∼)Y (q

∼
)
)

dx∼ dq
∼

=

∫
D

ND∑
k=1

QΩ∑
m=1

wm

[
κ
≈

(x∼m) q
∼
ψ̂k(x∼m)Yk(q∼)

]
· ∇∼ M

(
X(x∼m)Y (q

∼
)
)

dq
∼

=

QΩ∑
m=1

wmX(x∼m)

{
ND∑
k=1

ψ̂k(x∼m)

(∫
D

(κ
≈

(x∼m) q
∼
Yk(q∼)) · ∇∼ MY (q

∼
) dq

∼

)}
. (3.32)

This shows the equivalence between the Galerkin formulation of C(κ
≈

; ·, ·) on Ω × D

and the quadrature sum over m = 1, . . . , QΩ of the term

ND∑
k=1

ψ̂k(x∼m)

(∫
D

(κ
≈

(x∼m) q
∼
Yk(q∼)) · ∇∼ MY (q

∼
) dq

∼

)
, (3.33)

which is the q
∼
-direction discretisation of C(κ

≈
; ·, ·).

Note that (3.33) is exactly the discretisation of the q
∼
-convection term that was

used in the spectral method in Chapter 2, except that now κ
≈

depends on x∼ ∈ Ω,

and we sample κ
≈

at the quadrature points x∼m. Also, the coefficient vector in (3.33)

corresponding to the quadrature point x∼m is the set of sampled line functions, ψ̂k(x∼m),

k = 1, . . . , ND.

The preceding discussion relied on QH1, however we can use an analogous argument

when only QH2 is assumed, in which case the quadrature rule is no longer exact for the

κ
≈

-weighted integral in (3.27) and therefore we do not have equality between the second

and third lines of (3.32). Instead, a quadrature error, E, is introduced as follows:

QΩ∑
m=1

wmκij(x∼m) ψ̂k(x∼m)X(x∼m) =

∫
Ω

κij(x∼) ψ̂k(x∼)X(x∼) dx∼ + E(κij, ψ̂k, X). (3.34)
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Modifying (3.32) to include this error term, we obtain:

QΩ∑
m=1

wmX(x∼m)

{
ND∑
k=1

ψ̂k(x∼m)

(∫
D

(κ
≈

(x∼m) q
∼
Yk(q∼)) · ∇∼ MX(q

∼
) dq

∼

)}

= C(κ
≈

; ψ̂h,N , ζ) +

ND∑
k=1

∫
D

E
≈

(κ
≈
, ψ̂k, X) q

∼
Yk(q∼) · ∇∼ MY (q

∼
) dq
∼
, (3.35)

where
(
E
≈

(κ
≈
, ψ̂k, X)

)
ij

:= E(κij, ψ̂k, X). Of course, the precise nature of E
≈

will depend

on the choice of quadrature rule and the problem at hand. Nevertheless, if appropriate

hypotheses on the rate of decay of E
≈

are specified, it would be possible to consider the

stability and convergence properties of an alternating-direction method that includes

a quadrature error term of this form. However, for simplicity and brevity, we do not

consider such quadrature error terms in the numerical analysis in this chapter. It is

worth noting though that we develop a stability argument in Section 3.4 that only

relies on QH2, and in which we do not need to consider quadrature error terms such

as in (3.34).

It is clear from (3.32) that sampling functions at the quadrature points {x∼m ∈
Ω, m = 1, . . . , QΩ} will play an important role in the alternating-direction methods we

define below. We will also require a reconstruction operator, which maps from a set of

values at the quadrature points to a function in Vh. We now introduce this operator.

To simplify notation, we first define the following discrete inner product and norm over

Ω for {fm}, {gm} ∈ RQΩ :

({fm}, {gm})`2(Ω) :=

QΩ∑
m=1

wmfmgm, and ‖{fm}‖`2(Ω) := ({fm}, {fm})
1
2

`2(Ω). (3.36)

Note that, by (3.27) or (3.28), for f, g ∈ Vh, ({f(x∼m)}, {g(x∼m)})`2(Ω) = (f, g)L2(Ω),

where (·, ·)L2(Ω) is the standard L2 inner product on Ω. Next we define the reconstruc-

tion operator R : {fm} ∈ RQΩ 7→ R{fm} ∈ Vh such that

(R{fm}, X)L2(Ω) = ({fm}, {X(x∼m)})`2(Ω) ∀X ∈ Vh. (3.37)

Remark 3.3 For any R{fm} ∈ Vh, there exist real numbers γ1, . . . , γNΩ
such that

R{fm} =
∑NΩ

j=1 γjXj. Letting X = Xi, i = 1, . . . , NΩ above it is clear that (3.37) is

equivalent to the linear system Mxγ∼ = F∼ where Mx ∈ RNΩ×NΩ is the Vh mass matrix,

γ
∼

= (γ1, . . . , γNΩ
)T , and F∼ ∈ RNΩ is such that Fi = ({fm}, {Xi(x∼m)})`2(Ω). The matrix

Mx is non-singular, and therefore the reconstruction operator defined in (3.37) is well-

defined. �
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We are now in a position to discuss the alternating-direction Galerkin methods that

are the focus of this chapter. We introduce two algorithms below, denoted method I and

method II. Each method utilises a hybrid alternating-direction method, which combines

the quadrature approach illustrated in (3.32) with a standard Douglas-Dupont type

Galerkin alternating-direction method.

The distinction between method I and method II is that method I uses a semi-

implicit spectral method in the q
∼
-direction (i.e. the term C(κ

≈
; ·, ·) is treated explicitly

in time) whereas method II uses a fully-implicit temporal discretisation.

3.3.2 Method I: Semi-implicit scheme

Method I is initialised by computing the L2(Ω × D) projection, ψ̂0
h,N , of the initial

datum ψ̂0 ∈ L2(Ω×D) onto Vh ⊗ PN(D), so that ψ̂0
h,N ∈ Vh ⊗ PN(D), satisfies(

ψ̂0, ζ
)

=
(
ψ̂0
h,N , ζ

)
for all ζ ∈ Vh ⊗ PN(D). (3.38)

Then, as in (1.50), (1.51), this alternating-direction method consists of two stages

at each time-step: the q
∼
-direction stage and the x∼-direction stage. We begin with the

q
∼
-direction stage, in which we essentially use the Galerkin spectral method in D from

Chapter 2.

Suppose ψ̂nh,N ∈ Vh⊗PN(D). Then in the q
∼
-direction stage we compute ψ̂n∗h,N(x∼m, ·) ∈

PN(D) for each m = 1, . . . , QΩ satisfying∫
D

ψ̂n∗h,N(x∼m, q∼)− ψ̂
n
h,N(x∼m, q∼)

∆t
Yl(q∼) dq

∼
+

1

2Wi

∫
D

∇∼ M ψ̂
n∗
h,N(x∼m, q∼) · ∇∼ MYl(q∼) dq

∼

=

∫
D

(κ
≈
n(x∼m) q

∼
ψ̂nh,N(x∼m, q∼)) · ∇∼ MYl(q∼) dq

∼
, (3.39)

for l = 1, . . . , ND. (3.39) defines an ND ×ND linear system at each quadrature point.

In order to separate out the x∼- and q
∼
-direction dependencies more clearly, we rewrite

this equation in terms of line functions using (3.30), i.e.:

ND∑
k=1

ψ̂n∗k (x∼m)

(∫
D

Yk(q∼)Yl(q∼) dq
∼

+
∆t

2Wi

∫
D

∇∼ MYk(q∼) · ∇∼ MYl(q∼) dq
∼

)

=

ND∑
k=1

ψ̂nk (x∼m)

(∫
D

Yk(q∼)Yl(q∼) dq
∼

+ ∆t

∫
D

(κ
≈
n(x∼m) q

∼
Yk(q∼)) · ∇∼ MYl(q∼) dq

∼

)
, (3.40)

for l = 1, . . . , ND. This system is solved at each quadrature point x∼m, m = 1, . . . , QΩ.

Equation (3.40) shows that in the q
∼
-direction stage, the sampled values of the line

functions, i.e. ψn∗k (x∼m), k = 1, . . . , ND, m = 1, . . . , QΩ, are the coefficients to be
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computed. We determine these values by solving a different linear system at each

quadrature point. Note that these linear systems are completely independent from one

another. This independence enables parallel computation to be used very effectively

in this context; this will be discussed in more detail later.

The q
∼
-direction stage is complete once the values ψn∗k (x∼m), k = 1, . . . , ND, m =

1, . . . , QΩ have been computed, and then we can begin solving in the x∼-direction. In

the x∼-direction stage, we use a finite element discretisation of the transport equation

(1.51) to update the output data from the q
∼
-direction stage. That is, for a given k, we

find ψ̂n+1
k ∈ Vh, satisfying:∫
Ω

ψ̂n+1
k Xi dx∼ + ∆t

∫
Ω

(
u∼
n+1 · ∇∼ xψ̂

n+1
k

)
Xi dx∼ =

∫
Ω

R{ψ̂n∗k (x∼m)}Xi dx∼, (3.41)

for i = 1, . . . , NΩ.

Note, however, that based on (3.37), for the right-hand side in (3.41) we have:∫
Ω

R{ψ̂n∗k (x∼m)}Xi dx∼ =

QΩ∑
m=1

wm ψ̂
n∗
k (x∼m)Xi(x∼m) =: Fi. (3.42)

Hence we do not actually have to explicitly compute R{ψ̂n∗k (x∼m)} ∈ Vh in order to

solve (3.41), since it is equivalent to solve the following system:∫
Ω

ψ̂n+1
k Xi dx∼ + ∆t

∫
Ω

(
u∼
n+1 · ∇∼ xψ̂

n+1
k

)
Xi dx∼ = Fi, (3.43)

for i = 1, . . . , NΩ. We solve (3.43) for each k = 1, . . . , ND, and, just as in the q
∼
-

direction, these computations are decoupled from one another.

Once the x∼-direction computations are complete, we have the numerical solution at

time level n+ 1:

ψ̂n+1
h,N =

ND∑
k=1

ψ̂n+1
k Yk ∈ Vh ⊗ PN(D).

Hence method I is defined by the initialisation (3.38), the q
∼
-direction spectral method

(3.40) and the x∼-direction finite element method (3.43).

Before continuing further, we first verify that the q
∼
- and x∼-direction numerical

methods are well-defined.

Lemma 3.4 Let Aq ∈ RND×ND denote the matrix appearing on the left-hand side of

(3.40), i.e.

Aq := Mq +
∆t

2Wi
Sq, (3.44)
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and let Ax ∈ RNΩ×NΩ be the matrix from the left-hand side of (3.41),

Ax := Mx + ∆tTx. (3.45)

The matrices Aq and Ax are non-singular.

Proof. The result follows straightforwardly from the positive-definiteness of the

bilinear forms, Bq(·, ·) : PN(D)×PN(D) 7→ R, and Bx(·, ·) : Vh×Vh 7→ R, defining Aq

and Ax respectively.

Consider Bq(X,X) for any X ∈ PN(D) \ {0}:

Bq(X,X) = ‖X‖2
L2(D) +

∆t

2Wi
‖∇∼ MX‖2

L2(D) ≥ ‖X‖2
L2(D) > 0. (3.46)

Similarly, integrating by parts and utilising the enclosed flow and divergence free

assumptions for Bx(Y, Y ) with Y ∈ Vh\{0}, we have,

Bx(Y, Y ) = ‖Y ‖2
L2(Ω) −

∆t

2

∫
Ω

(∇∼ x · u∼
n+1)Y 2 dx∼ = ‖Y ‖2

L2(Ω) > 0. (3.47)

This completes the proof. �

In the next lemma we derive a Galerkin formulation posed on Ω×D for method I.

This will allow us to apply arguments analogous to those in Chapter 2 to the numerical

analysis of method I.

Lemma 3.5 Suppose the x∼-direction quadrature rule satisfies QH1. Method I is equiv-

alent to the following fully-discrete formulation:

Given ψ̂0
h,N ∈ Vh⊗PN(D) defined as in (3.38), for each n = 0, . . . , NT − 1, ψ̂n+1

h,N ∈
Vh ⊗ PN(D) satisfies(

ψ̂n+1
h,N − ψ̂nh,N

∆t
, ζ

)
+
(
u∼ · ∇∼ xψ̂

n+1
h,N , ζ

)
+

1

2Wi

(
∇∼ M ψ̂

n+1
h,N , ∇∼ Mζ

)
+

∆t

2Wi

(
∇∼ M

(
u∼ · ∇∼ xψ̂

n+1
h,N

)
,∇∼ Mζ

)
−
(
κ
≈
n q
∼
ψ̂nh,N , ∇∼ Mζ

)
= 0, (3.48)

for all ζ ∈ Vh ⊗ PN(D).

Proof. Multiplying (3.40) through by Xi(x∼m), where Xi ∈ Vh, and performing
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the weighted sum according to (3.26) gives,

ND∑
k=1

({ψ̂n∗k (x∼m)}, {Xi(x∼m)})`2(Ω)

(∫
D

Yk(q∼)Yl(q∼) dq
∼

+
∆t

2Wi

∫
D

∇∼ MYk(q∼) · ∇∼ MYl(q∼) dq
∼

)

=

ND∑
k=1

({ψ̂nk (x∼m)}, {Xi(x∼m)})`2(Ω)

(∫
D

Yk(q∼)Yl(q∼) dq
∼

)

+∆t

QΩ∑
m=1

wmXi(x∼m)

{
ND∑
k=1

ψ̂nk (x∼m)

(∫
D

(κ
≈
n(x∼m) q

∼
Yk(q∼)) · ∇∼ MYl(q∼) dq

∼

)}
. (3.49)

Using the reconstruction operator, (3.37), with the `2 inner products and the argu-

ment of (3.32) on the term on the third line2, we obtain the following formulation for

Rψ̂n∗h,N ∈ Vh ⊗ PN(D),

∫
Ω×D

Rψ̂n∗h,N(x∼, q∼)− ψ̂
n
h,N(x∼, q∼)

∆t
ζ(x∼, q∼) dq

∼
dx∼ +

1

2Wi

∫
Ω×D
∇∼ MRψ̂n∗h,N(x∼, q∼) · ∇∼ Mζ(x∼, q∼) dq

∼
dx∼

=

∫
Ω×D

(κ
≈
n(x∼) q

∼
ψ̂nh,N(x∼, q∼)) · ∇∼ Mζ(x∼, q∼) dq

∼
dx∼, (3.50)

where ζ = Xi × Yl is an element of Vh ⊗ PN(D) and the numerical solution at the

intermediate “time level” n∗ is defined as:

Rψ̂n∗h,N :=

ND∑
k=1

R{ψ̂n∗k (x∼m)}Yk ∈ Vh ⊗ PN(D). (3.51)

Equation (3.50) is the Galerkin formulation of (3.39) on Ω × D that is obtained by

performing a quadrature sum over all QΩ quadrature points in Ω.

The x∼-direction stage is more straightforward to deal with; we use the classical

Douglas-Dupont Galerkin alternating-direction approach for (3.41), since it does not

contain any q
∼
-dependent coefficients.

Let R{ψ̂n∗k (x∼m)} =
∑NΩ

i=1 γ
n∗
ik Xi so that according to (3.51), the vector γ

∼
n∗ =

(γn∗11 , . . . , γ
n∗
NΩ1, γ

n∗
12 , . . . , γ

n∗
NΩND

) ∈ RND NΩ defines Rψ̂n∗h,N . Similarly, denote the coef-

ficient vector for ψ̂n+1
h,N as γ

∼
n+1 ∈ RND NΩ , and since the vector entries are ordered in

blocks according to the q
∼
-direction degrees-of-freedom, it follows that (3.41) can be

written as a linear system where the matrices are in tensor product form, i.e.:

(Iq ⊗Mx + ∆tIq ⊗ Tx) γ∼
n+1 = Iq ⊗Mxγ∼

n∗, (3.52)

2Note that ψ̂k in the term on the last line of (3.49) must be at time level n for the argument of
(3.32) to apply since it relies on the values {ψ̂nk (x∼m)} interpolating a function in Vh.
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where the discretisation matrices are as in (3.21) and (3.22), and Iq is the ND × ND

identity matrix.

Equation (3.50) can be written in tensor product matrix form also:(
Mq ⊗Mx +

∆t

2Wi
Sq ⊗Mx

)
γ
∼

n∗ = Mq ⊗Mxγ∼
n + ∆tC(κ

≈
n; ψ̂nh,N , ζil), (3.53)

where ζil = Xi × Yl ∈ Vh ⊗ PN(D), for 1 ≤ i ≤ NΩ and 1 ≤ l ≤ ND. Also, Mq and Sq

are defined in (3.19), (3.20), respectively.

Multiplying (3.52) by (Mq⊗Ix+∆t/(2Wi)Sq⊗Ix), where Ix is the NΩ×NΩ identity

matrix, yields(
Mq ⊗Mx + ∆tMq ⊗ Tx +

∆t

2Wi
Sq ⊗Mx +

(∆t)2

2Wi
Sq ⊗ Tx

)
γ
∼

n+1

=

(
Mq ⊗Mx +

∆t

2Wi
Sq ⊗Mx

)
γ
∼

n∗. (3.54)

Equating the left-hand side of (3.53) with the right-hand side of (3.54) gives:(
Mx ⊗Mq + ∆tMq ⊗ Tx +

∆t

2Wi
Sq ⊗Mx +

(∆t)2

2Wi
Sq ⊗ Tx

)
γ
∼

n+1

= Mq ⊗Mxγ∼
n + ∆tC(κ

≈
n; ψ̂nh,N , ζil). (3.55)

Equation (3.55) is equivalent to the inner product form in (3.48) and hence the

proof is complete. �

Equation (3.48) will subsequently be referred to as the equivalent one-step formu-

lation for method I. Note that (3.48) contains the cross-term,

∆t

2Wi

(
∇∼ M

(
u∼ · ∇∼ xψ̂

n+1
h,N

)
,∇∼ Mζ

)
,

which is not present in the weak formulation (3.5). This is analogous to the alternating-

direction formulation of the heat equation that was derived in Example 3.2, in which

cross-terms of the form

∆t

2

(
∂un+1

h

∂x

∂vh
∂y

+
∂un+1

h

∂y

∂vh
∂x

)
and

∆t

2

(
∂unh
∂x

∂vh
∂y

+
∂unh
∂y

∂vh
∂x

)
,

were generated.
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3.3.3 Method II: Fully-implicit scheme

Method II is very similar to method I, the sole difference being that the term C(κ
≈

; ·, ·)
is now treated implicitly in time, and therefore we refer to method II as a fully-implicit

scheme. We do not discuss the initialisation step or the x∼-direction scheme here because

they are the same as in method I. Instead, we move immediately to discussing the q
∼
-

direction stage of method II.

Using the line function notation of (3.40), the q
∼
-direction numerical method is

defined as follows: Given the line functions ψ̂nk ∈ Vh, k = 1, . . . , ND, determine the

values ψ̂n∗k (x∼m) satisfying

ND∑
k=1

ψ̂n∗k (x∼m)

(∫
D

Yk(q∼)Yl(q∼) dq
∼

+
∆t

2Wi

∫
D

∇∼ MYk(q∼) · ∇∼ MYl(q∼) dq
∼

−∆t

∫
D

(κ
≈
n+1(x∼m) q

∼
Yk(q∼)) · ∇∼ MYl(q∼) dq

∼

)
=

ND∑
k=1

ψ̂nk (x∼m)

∫
D

Yk(q∼)Yl(q∼) dq
∼
, (3.56)

for all l = 1, . . . , ND, and for each quadrature point x∼m,m = 1, . . . , QΩ.

Note that (3.56) is exactly the backward Euler Galerkin spectral method that was

studied in Chapter 2. It follows as in Section 2.2 that for ∆t sufficiently small the

associated bilinear form is coercive, and therefore the linear system defined in (3.56) is

non-singular.

Unfortunately we cannot derive an equivalent one-step Galerkin formulation for

method II using the same reasoning as in Lemma 3.5 because the proof of that lemma

relied on the term C(κ
≈

; ·, ·) being explicit-in-time (cf. footnote 2). In order to derive a

one-step formulation for method II, we would need to recover an integral ofR{ψn∗k (x∼m)}
over Ω×D by performing the quadrature sum of the discretisation of C(κ

≈
; ·, ·) in (3.56).

However, this is not possible because this would require a κ
≈

-weighted reconstruction

operator, as distinct from the unweighted reconstruction operator defined in (3.37).

Nevertheless, even without an equivalent one-step formulation, we are still able to

prove that method II is stable. This is shown in the next section.

Remark 3.6 It is possible to modify method II to obtain a Crank-Nicolson scheme,

for example, by adding the term

−1

2

ND∑
k=1

ψ̂nk (x∼m)

(
∆t

2Wi

∫
D

∇∼ MYk(q∼) · ∇∼ MYl(q∼) dq
∼
−∆t

∫
D

(κ
≈
n(x∼m) q

∼
Yk(q∼)) · ∇∼ MYl(q∼) dq

∼

)
to the right-hand side of (3.56), as well as adding the term

−1

2

∫
Ω

(
u∼
n · ∇∼ xψ̂

n
k

)
Xi dx∼,
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on the right-hand side of the x∼-direction equation.

However, we are ultimately interested in solving the coupled Navier–Stokes–Fokker–

Planck system and, as discussed in Chapter 4, the scheme we use for solving this coupled

system introduces an O(∆t) temporal discretisation error. Therefore, there will be no

utility in using a Crank-Nicolson discretisation of the Fokker–Planck equation and hence

we do not consider this idea any further. �

3.4 Stability of methods I and II

First of all, we consider the stability of method I. In this case, the availability of an

equivalent one-step method allows the use of standard energy analysis as in the proof

of Lemma 3.7 below.

Following Chapter 2, we introduce the following right-hand side forcing terms,(
µn+1, ζ

)
,
(
ν∼
n+1 , ∇∼ Mζ

)
, (3.57)

where µ ∈ L2(Ω×D) and ν∼ ∈ L2(Ω×D)d. Right-hand side terms of this form will be

useful when we derive convergence estimates in Section 3.5.

Lemma 3.7 If QH1 holds, so that we have the equivalent one-step formulation for

method I given in Lemma 3.5, then letting ∆t = T/NT , NT ≥ 1, κ
≈
∈ (C[0, T ])d×d,

ψ̂0
h,N ∈ L2(Ω×D), for ψ̂sh,N ∈ Vh ⊗ PN(D) we have the following stability estimate:

‖ψ̂sh,N‖2 +
s−1∑
n=0

∆t

∥∥∥∥∥ ψ̂n+1
h,N − ψ̂nh,N√

∆t

∥∥∥∥∥
2

+
s−1∑
n=0

∆t

2Wi
‖∇∼ M ψ̂

n+1
h,N ‖

2

≤ eKs∆t

{
‖ψ̂0

h,N‖2 +
s−1∑
n=0

2∆t
(
‖µn+1‖2 + 4‖ν∼

n+1‖2
)}

, (3.58)

for all s such that 1 ≤ s ≤ NT , where K = 2(1 + 4Wi b |κ
≈
|2L∞(0,T ;L∞(Ω))).

Proof. Consider (3.48) with the right-hand side terms of (3.57):(
ψ̂n+1
h,N − ψ̂nh,N

∆t
, ζ

)
+
(
u∼ · ∇∼ xψ̂

n+1
h,N , ζ

)
+

1

2Wi

(
∇∼ M ψ̂

n+1
h,N , ∇∼ Mζ

)
+

∆t

2Wi

(
∇∼ M

(
u∼ · ∇∼ xψ̂

n+1
h,N

)
, ∇∼ Mζ

)
−
(
κ
≈
n q
∼
ψ̂nh,N , ∇∼ Mζ

)
=
(
µn+1, ζ

)
+
(
ν∼
n+1 , ∇∼ Mζ

)
, (3.59)
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for all ζ ∈ Vh ⊗ PN(D). Set ζ = ψ̂n+1
h,N in (3.59) to get(

ψ̂n+1
h,N − ψ̂nh,N

∆t
, ψ̂n+1

h,N

)
+
(
u∼ · ∇∼ xψ̂

n+1
h,N , ψ̂n+1

h,N

)
+

1

2Wi
‖∇∼ M ψ̂

n+1
h,N ‖

2

+
∆t

2Wi

(
∇∼ M

(
u∼ · ∇∼ xψ̂

n+1
h,N

)
, ∇∼ M ψ̂

n+1
h,N

)
−
(
κ
≈
n q
∼
ψ̂nh,N , ∇∼ M ψ̂

n+1
h,N

)
=
(
µn+1, ψ̂n+1

h,N

)
+
(
ν∼
n+1 , ∇∼ M ψ̂

n+1
h,N

)
. (3.60)

The x∼-transport term vanishes because of (3.3) and (3.7). Similarly, the first term on

the second line vanishes since(
∇∼ M

(
u∼ · ∇∼ xψ̂

n+1
h,N

)
, ∇∼ M ψ̂

n+1
h,N

)
=

∫
Ω×D

M
d∑
j=1

(
d∑
i=1

ui

(
∂

∂xi

∂

∂qj

ψ̂n+1
h,N√
M

)(
∂

∂qj

ψ̂n+1
h,N√
M

))
dx∼ dq

∼

=
1

2

∫
Ω×D

M
d∑
j=1

 d∑
i=1

ui
∂

∂xi

(
∂

∂qj

ψ̂n+1
h,N√
M

)2
 dx∼ dq

∼

= −1

2

∫
Ω×D

M
d∑
j=1

(∇∼ x · u∼)

(
∂

∂qj

ψ̂n+1
h,N√
M

)2
 dx∼ dq

∼
= 0.

Applying the identity 2(a− b)a = a2 − b2 + (a− b)2 to the first term in (3.60), yields

‖ψ̂n+1
h,N ‖

2 +
∥∥∥ψ̂n+1

h,N − ψ̂
n
h,N

∥∥∥2

+
∆t

Wi
‖∇∼ M ψ̂

n+1
h,N ‖

2 = ‖ψ̂nh,N‖2

+2∆t
(
κ
≈
n q
∼
ψ̂nh,N ,∇∼ M ψ̂

n+1
h,N

)
+ 2∆t

(
µn+1, ψ̂n+1

h,N

)
+ 2∆t

(
ν∼
n+1 , ∇∼ M ψ̂

n+1
h,N

)
=: ‖ψ̂nh,N‖2 + T1 + T2 + T3. (3.61)

Treating T1, T2 and T3 as in the proof of Lemma 2.4, we obtain:

(1−∆t)‖ψ̂n+1
h,N ‖

2 + ∆t

∥∥∥∥∥ ψ̂n+1
h,N − ψ̂nh,N√

∆t

∥∥∥∥∥
2

+
∆t

2Wi
‖∇∼ M ψ̂

n+1
h,N ‖

2 (3.62)

≤ (1 + C0∆t)‖ψ̂nh,N‖2 + ∆t
(
‖µn+1‖2 + 4‖ν∼

n+1‖2
)
,

where C0 := 4Wi b |κ
≈
|2L∞(0,T ;L∞(Ω)). Suppose that ∆t ≤ 0.5; then

‖ψ̂n+1
h,N ‖

2 + ∆t

∥∥∥∥∥ ψ̂n+1
h,N − ψ̂nh,N√

∆t

∥∥∥∥∥
2

+
∆t

2Wi
‖∇∼ M ψ̂

n+1
h,N ‖

2

≤ 1 + C0∆t

1−∆t
‖ψ̂nh,N‖2 + 2∆t

(
‖µn+1‖2 + 4‖ν∼

n+1‖2
)

≤ (1 +K∆t)‖ψ̂nh,N‖2 + 2∆t
(
‖µn+1‖2 + 4‖ν∼

n+1‖2
)
,
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where K = 2(1 + C0) = 2(1 + 4Wi b |κ
≈
|2L∞(0,T ;L∞(Ω))).

Summing over n = 0, . . . , s− 1 gives,

‖ψ̂sh,N‖2 +
s−1∑
n=0

∆t

∥∥∥∥∥ ψ̂n+1
h,N − ψ̂nh,N√

∆t

∥∥∥∥∥
2

+
s−1∑
n=0

∆t

2Wi
‖∇∼ M ψ̂

n+1
h,N ‖

2

≤

{
‖ψ̂0

h,N‖2 +
s−1∑
n=0

2∆t
(
‖µn+1‖2 + 4‖ν∼

n+1‖2
)}

+K

s−1∑
n=0

∆t‖ψ̂nh,N‖2,

and applying a discrete Gronwall lemma yields (3.58). �

We cannot apply an analogous argument for method II due to the absence of an

equivalent one-step method. However, by combining stability results for the q
∼
-direction

and x∼-direction methods we can establish the stability of method II, as shown in the

next lemma.

Lemma 3.8 Suppose QH2 is satisfied and let ∆t = T/NT , NT ≥ 1. Then for ψ̂nh,N ∈
Vh ⊗ PN(D) computed using alternating-direction method II we have

‖ψ̂nh,N‖ ≤ ec0n∆t‖ψ̂0
h,N‖. (3.63)

for 1 ≤ n ≤ NT , where c0 := 1 + 4Wi b |κ
≈
|2L∞(0,T ;L∞(Ω)).

Proof. From the proof of Lemma 2.4, we have the following bound for (3.56) at

a given quadrature point x∼m ∈ Ω,

‖ψ̂n∗(x∼m, ·)‖
2
L2(D) ≤ (1 + 2c0∆t)‖ψ̂n(x∼m, ·)‖

2
L2(D). (3.64)

Rewriting (3.64) in terms of a basis {Y1, . . . , YND} of PN(D), which, without loss of

generality may be assumed to be orthogonal in the L2(D) inner product, we obtain:

ND∑
k=1

ψ̂n∗k (x∼m)2‖Yk‖2
L2(D) ≤ (1 + 2c0∆t)

ND∑
k=1

ψ̂nk (x∼m)2‖Yk‖2
L2(D). (3.65)

Using (3.26) to sum (3.65) for m = 1, . . . , QΩ, and then employing (3.36), we have

ND∑
k=1

‖{ψ̂n∗k (x∼m)}‖2
`2(Ω) ‖Yk‖2

L2(D) ≤ (1 + 2c0∆t)

ND∑
k=1

‖{ψ̂nk (x∼m)}‖2
`2(Ω) ‖Yk‖2

L2(D). (3.66)
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Since ψ̂nh,N ∈ Vh⊗PN(D), it follows that ψ̂nk ∈ Vh, and therefore (as observed below

(3.36)) the discrete `2(Ω) norm on the right-hand side above is equal to the continuous

L2(Ω) norm, so that

ND∑
k=1

‖{ψ̂n∗k (x∼m)}‖2
`2(Ω) ‖Yk‖2

L2(D) ≤ (1 + 2c0∆t)

ND∑
k=1

‖ψ̂nk‖2
L2(Ω) ‖Yk‖2

L2(D)

= (1 + 2c0∆t)‖ψ̂nh,N‖2. (3.67)

Also, by (3.3) and (3.7), it follows easily from (3.41) that:

‖ψ̂n+1
k ‖2

L2(Ω) ≤ ‖R{ψ̂n∗k (x∼m)}‖2
L2(Ω), (3.68)

for each k. Multiplying through by ‖Yk‖2
L2(D) in (3.68) and summing over k = 1, . . . , ND

gives

‖ψ̂n+1
h,N ‖

2 =

ND∑
k=1

‖ψ̂n+1
k ‖2

L2(Ω)‖Yk‖2
L2(D) ≤

ND∑
k=1

‖R{ψ̂n∗k (x∼m)}‖2
L2(Ω)‖Yk‖2

L2(D). (3.69)

By taking {fm} = {ψ̂n∗k (x∼m)} and X = R{ψ̂n∗k (x∼m)} ∈ Vh in (3.37) and applying

the Cauchy-Schwarz inequality in the `2 inner product, we have

‖R{ψ̂n∗k (x∼m)}‖2
L2(Ω) =

(
{ψ̂n∗k (x∼m)}, {R{ψ̂n∗k (x∼m)}(x∼m)}

)
`2(Ω)

≤ ‖{ψ̂n∗k (x∼m)}‖`2(Ω) ‖R{ψ̂n∗k (x∼m)}‖`2(Ω)

= ‖{ψ̂n∗k (x∼m)}‖`2(Ω) ‖R{ψ̂n∗k (x∼m)}‖L2(Ω),

and therefore,

‖R{ψ̂n∗k (x∼m)}‖L2(Ω) ≤ ‖{ψ̂n∗k (x∼m)}‖`2(Ω). (3.70)

Combining (3.67), (3.69) and (3.70), gives,

‖ψ̂n+1
h,N ‖

2 ≤ (1 + 2c0∆t)‖ψ̂nh,N‖2, (3.71)

from which (3.63) follows easily on noting that 1 + 2c0∆t ≤ e2c0∆t. �

Remark 3.9 The argument in Lemma 3.8 can also be applied to method I and hence

it follows that method I is stable when only QH2 is satisfied.
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3.5 Convergence analysis for method I, Part 1

In this section, the equivalent one-step scheme (3.48) and Lemma 3.7 are used to prove

that the numerical solution obtained using method I converges to the weak solution of

(3.5), (3.6). The convergence argument presented here is analogous to the approach

in Section 2.3. Note that we need access to an equivalent one-step formulation to use

this approach in the context of alternating-direction methods, and therefore we only

consider the convergence analysis of method I.

Let ψ̂(·, ·, t) be the weak solution of (3.5), (3.6) at time t ∈ (0, T ). To simplify

the notation, we write ψ̂(t) := ψ̂(·, ·, t) throughout the rest of this section. As in

Section 2.3, we define

enh,N := ψ̂(tn)− ψ̂nh,N = (ψ̂(tn)− Πψ̂(tn)) + (Πψ̂(tn)− ψ̂nh,N) =: ηn + ξn,

where Π is a projection operator that projects onto Vh ⊗ PN(D). Π shall be defined

later.

Noting that ξn ∈ Vh ⊗ PN(D), we apply the equivalent one-step formulation for

method I, (3.48), to ξn = ψ̂(tn)− ψ̂nh,N − ηn and set ζ = ξn+1, to obtain:(
ξn+1 − ξn

∆t
, ξn+1

)
+
(
u∼ · ∇∼ xξ

n+1, ξn+1
)

+
1

2Wi
‖∇∼ Mξ

n+1‖2

+
∆t

2Wi

(
∇∼ M(u∼ · ∇∼ xξ

n+1),∇∼ Mξ
n+1
)
−
(
κ
≈
nq
∼
ξn,∇∼ Mξ

n+1
)

=

(
ψ̂(tn+1)− ψ̂(tn)

∆t
, ξn+1

)
+
(
u∼ · ∇∼ xψ̂(tn+1), ξn+1

)
+

1

2Wi

(
∇∼ M ψ̂(tn+1),∇∼ Mξ

n+1
)

+
∆t

2

(
∇∼ M(u∼ · ∇∼ xψ̂(tn+1)),∇∼ Mξ

n+1
)
−
(
κ
≈
nq
∼
ψ̂(tn),∇∼ Mξ

n+1
)

−
(
ηn+1 − ηn

∆t
, ξn+1

)
−
(
u∼ · ∇∼ xη

n+1, ξn+1
)
− 1

2Wi

(
∇∼ Mη

n+1,∇∼ Mξ
n+1
)

− ∆t

2Wi

(
∇∼ M(u∼ · ∇∼ xη

n+1),∇∼ Mξ
n+1
)

+
(
κ
≈
nq
∼
ηn,∇∼ Mξ

n+1
)
, (3.72)

where the terms containing ψ̂nh,N and ψ̂n+1
h,N vanish since ψ̂h,N satisfies (3.48).

First of all we use the identities

κ
≈
n = κ

≈
n+1 −

∫ tn+1

tn

∂κ
≈

∂t
dt and ψ̂n = ψ̂n+1 −

∫ tn+1

tn

∂ψ̂

∂t
dt,

to obtain:
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(
κ
≈
nq
∼
ψ̂(tn),∇∼ Mξ

n+1
)

=
(
κ
≈
n+1q

∼
ψ̂(tn+1),∇∼ Mξ

n+1
)
−

((∫ tn+1

tn

∂κ
≈

∂t
dt

)
q
∼
ψ̂(tn),∇∼ Mξ

n+1

)

−

(
κ
≈
n+1q

∼

(∫ tn+1

tn

∂ψ̂

∂t
dt

)
,∇∼ Mξ

n+1

)
+

((∫ tn+1

tn

∂κ
≈

∂t
dt

)
q
∼

(∫ tn+1

tn

∂ψ̂

∂t
dt

)
,∇∼ Mξ

n+1

)
=:
(
κ
≈
n+1q

∼
ψ̂(tn+1),∇∼ Mξ

n+1
)
−
(
K1∼
,∇∼ Mξ

n+1
)
−
(
K2∼
,∇∼ Mξ

n+1
)

+
(
K3∼
,∇∼ Mξ

n+1
)
.

Now, considering only the terms containing ψ̂ on the right-hand side of (3.72), we

have:(
ψ̂(tn+1)− ψ̂(tn)

∆t
, ξn+1

)
+
(
u∼ · ∇∼ xψ̂(tn+1), ξn+1

)
+

1

2Wi

(
∇∼ M ψ̂(tn+1),∇∼ Mξ

n+1
)

+
∆t

2Wi

(
∇∼ M(u∼ · ∇∼ xψ̂(tn+1)),∇∼ Mξ

n+1
)
−
(
κ
≈
nq
∼
ψ̂(tn),∇∼ Mξ

n+1
)

=

(
ψ̂(tn+1)− ψ̂(tn)

∆t
− ∂ψ̂

∂t
(tn+1), ξn+1

)
+

∆t

2Wi

(
∇∼ M(u∼ · ∇∼ xψ̂(tn+1)),∇∼ Mξ

n+1
)

+
(
K1∼
,∇∼ Mξ

n+1
)

+
(
K2∼
,∇∼ Mξ

n+1
)
−
(
K3∼
,∇∼ Mξ

n+1
)
, (3.73)

where the fact that ψ̂ satisfies (3.5), and the expansion of the term
(
κ
≈
nq
∼
ψ̂(tn),∇∼ Mξ

n+1
)

from above, have been used on the right-hand side. Using (3.73) on the right-hand side

of (3.72), we have:(
ξn+1 − ξn

∆t
, ξn+1

)
+
(
u∼ · ∇∼ xξ

n+1, ξn+1
)

+
1

2Wi
‖∇∼ Mξ

n+1‖2

+
∆t

2

(
∇∼ M(u∼ · ∇∼ xξ

n+1),∇∼ Mξ
n+1
)
−
(
κ
≈
nq
∼
ξn,∇∼ Mξ

n+1
)

=
(
µn+1, ξn+1

)
+
(
ν∼
n+1,∇∼ Mξ

n+1
)
, (3.74)

where

µn+1 :=
ψ̂(tn+1)− ψ̂(tn)

∆t
− ∂ψ̂

∂t
(tn+1)− ηn+1 − ηn

∆t
− u∼ · ∇∼ xη

n+1, (3.75)

ν∼
n+1 :=

∆t

2Wi
∇∼ M(u∼ · ∇∼ xψ̂(tn+1)) +K1∼

+K2∼
−K3∼

− 1

2Wi
∇∼ Mη

n+1 (3.76)

− ∆t

2Wi
∇∼ M(u∼ · ∇∼ xη

n+1) + κ
≈
nq
∼
ηn.

Therefore, applying the stability result (3.58) to (3.74) gives

‖ξn‖2 +
n−1∑
m=0

∆t

2Wi
‖∇∼ Mξ

m+1‖2 ≤ eKn∆t

{
‖ξ0‖2 +

n−1∑
m=0

2∆t
(
‖µm+1‖2 + 4‖ν∼

m+1‖2
)}

.

(3.77)
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The next step is to bound the right-hand side of (3.77) in terms of norms of η and ψ̂.

First of all, just as in Section 2.3, we have that ‖ξ0‖ ≤ ‖η0‖. Next we consider

‖µm+1‖:

‖µm+1‖2 ≤ 3

∥∥∥∥∥ ψ̂(tm+1)− ψ̂(tm)

∆t
− ∂ψ̂

∂t
(tm+1)

∥∥∥∥∥
2

+ 3

∥∥∥∥ηm+1 − ηm

∆t

∥∥∥∥2

+ 3‖u∼ · ∇∼ xη
m+1‖2

=: 3 (I + II + III). (3.78)

For term I, applying Taylor’s theorem with integral remainder yields

I ≤ ∆t

∫ tm+1

tm

∥∥∥∥∥∂2ψ̂

∂t2
(·, ·, t)

∥∥∥∥∥
2

dt,

and for term II we have the following bound:

II ≤
∫

Ω×D

1

∆t

∫ tm+1

tm

∣∣∣∣∂η∂t (x∼, q∼, t)

∣∣∣∣2 dt dx∼ dq
∼

=
1

∆t

∫ tm+1

tm

∥∥∥∥∂η∂t (·, ·, t)
∥∥∥∥2

dt.

Term III is simple to bound by pulling out the supremum of u∼, as follows:

III =

∫
Ω×D

(
u∼ · ∇∼ xη

m+1
)2

dx∼ dq
∼
≤ ‖u∼‖

2
L∞(0,T ;L∞(Ω))‖∇∼ xη

m+1‖2. (3.79)

Therefore,

n−1∑
m=0

2∆t‖µm+1‖2 ≤ 6
n−1∑
m=0

∆t2
∫ tm+1

tm

∥∥∥∥∥∂2ψ̂

∂t2
(·, ·, t)

∥∥∥∥∥
2

dt+ 6
n−1∑
m=0

∫ tm+1

tm

∥∥∥∥∂η∂t (·, ·, t)
∥∥∥∥2

dt

+6‖u∼‖
2
L∞(0,T ;L∞(Ω))

n−1∑
m=0

∆t‖∇∼ xη
m+1‖2

= 6∆t2

∥∥∥∥∥∂2ψ̂

∂t2

∥∥∥∥∥
2

L2(0,tm;L2(Ω×D))

+ 6

∥∥∥∥∂η∂t
∥∥∥∥2

L2(0,tm;L2(Ω×D))

+6‖u∼‖
2
L∞(0,T ;L∞(Ω))‖∇∼ xη‖2

`2(0,tm;L2(Ω×D)). (3.80)

Next we derive upper bounds for the norms of the terms on the right-hand side of
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(3.76). First of all, we consider the cross-term,

‖∇∼ M(u∼ · ∇∼ xψ̂(tn+1))‖2 =

∫
Ω×D

∣∣∣∣∣∇∼ M

(
d∑
i=1

ui
∂

∂xi
ψ̂(tn+1)

)∣∣∣∣∣
2

dx∼ dq
∼

=

∫
Ω×D

d∑
j=1

{
√
M

∂

∂qj

(
d∑
i=1

ui
∂

∂xi

(
ψ̂(tn+1)√

M

))}2

dx∼ dq
∼

=

∫
Ω×D

d∑
j=1

{
d∑
i=1

ui
∂

∂xi

(
√
M

∂

∂qj

(
ψ̂(tn+1)√

M

))}2

dx∼ dq
∼

=

∫
Ω×D

d∑
j=1

{
u∼ · ∇∼ x

(
√
M

∂

∂qj

(
ψ̂(tn+1)√

M

))}2

dx∼ dq
∼

≤
∫

Ω×D

d∑
j=1

|u∼|2
∣∣∣∣∣∇∼ x

(
√
M

∂

∂qj

(
ψ̂(tn+1)√

M

))∣∣∣∣∣
2
 dx∼ dq

∼

≤ ‖u‖2
L∞(0,T ;L∞(Ω))‖∇∼ x∇∼ Mψ(tn+1)‖2. (3.81)

By the same reasoning as in (3.81), it follows that:

‖∇∼ M(u∼ · ∇∼ xη
n+1)‖2 ≤ ‖u‖2

L∞(0,T ;L∞(Ω))‖∇∼ x∇∼ Mη
n+1‖2. (3.82)

Also, we have

‖κ
≈
nq
∼
ηn‖2 ≤ b‖κ

≈
‖2

L∞(0,T ;L∞(Ω)) ‖ηn‖2, (3.83)

and finally it remains to bound the norms of K1∼
, K2∼

and K3∼
, for which we have,

‖K1∼
‖2 =

∫
Ω×D

{(∫ tn+1

tn

∂κ
≈

∂t
q
∼

dt

)
ψ̂(tn)

}2

dx∼ dq
∼

(3.84)

≤ ∆t2b

∥∥∥∥∂κ≈∂t
∥∥∥∥2

L∞(0,T ;L∞(Ω))

∥∥∥ψ̂(tn)
∥∥∥2

,

‖K2∼
‖2 =

∫
Ω×D

{
κ
≈
n+1q

∼

(∫ tn+1

tn

∂ψ̂

∂t
dt

)}2

dx∼ dq
∼

≤ ∆t b‖κ
≈
‖2

L∞(0,T ;L∞(Ω))

∫ tn+1

tn

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

2

dt, (3.85)

and

‖K3∼
‖2 =

∫
Ω×D

{(∫ tn+1

tn

∂κ
≈

∂t
q
∼

dt

)(∫ tn+1

tn

∂ψ̂

∂t
dt

)}2

dx∼ dq
∼

≤ ∆t3b

∥∥∥∥∂κ≈∂t
∥∥∥∥2

L∞(0,T ;L∞(Ω))

∫ tn+1

tn

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

2

dt, (3.86)
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and it is convenient to bound K2∼
and K3∼

together as follows:

‖K2∼
‖2 + ‖K3∼

‖2 ≤ b∆t ‖κ
≈
‖2

W1,∞(0,T ;L∞(Ω))

∫ tn+1

tn

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

2

dt.

Therefore,

n−1∑
m=0

8∆t‖ν∼
m+1‖2

≤
n−1∑
m=0

56∆t

(
∆t2

4Wi2

∥∥∥∇∼ M(u∼ · ∇∼ xψ̂(tm+1))
∥∥∥2

+
∆t2

4Wi2
‖∇∼ M(u∼ · ∇∼ xη

m+1)‖2

+
1

4Wi2
‖∇∼ Mη

m+1‖2 + ‖κ
≈
mq
∼
ηm‖2 + ‖K1∼

‖2 + ‖K2∼
‖2 + ‖K3∼

‖2

)
≤

n−1∑
m=0

56∆t
( ∆t2

4Wi2
‖u‖2

L∞(0,T ;L∞(Ω))

(
‖∇∼ x∇∼ M ψ̂(tm+1)‖2 + ‖∇∼ x∇∼ Mη

m+1‖2
)

+
1

4Wi2
‖∇∼ Mη

n+1‖2 + b‖κ
≈
‖2

L∞(0,T ;L∞(Ω)) ‖ηn‖2

+∆t2b

∥∥∥∥∂κ≈∂t
∥∥∥∥2

L∞(0,T ;L∞(Ω))

∥∥∥ψ̂(tm)
∥∥∥2

+ ∆t b‖κ
≈
‖2

W1,∞(0,T ;L∞(Ω))

∫ tm+1

tm

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

2

dt
)

=
14

Wi2
∆t2‖u‖2

L∞(0,T ;L∞(Ω))

(
‖∇∼ x∇∼ M ψ̂‖2

`2(0,tn;L2(Ω×D)) + ‖∇∼ x∇∼ Mη‖2
`2(0,tn;`2(Ω×D))

)
+

14

Wi2
‖∇∼ Mη‖2

`2(0,tn;L2(Ω×D)) + 56 b‖κ
≈
‖2

L∞(0,T ;L∞(Ω)) ‖η‖2
`2(0,tn;L2(Ω×D))

+56 b∆t2
∥∥∥∥∂κ≈∂t

∥∥∥∥2

L∞(0,T ;L∞(Ω))

∥∥∥ψ̂∥∥∥2

`2(0,tn;L2(Ω×D))

+56 ∆t2 b‖κ
≈
‖2

W1,∞(0,T ;L∞(Ω))

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

2

L2(0,tn;L2(Ω×D))

. (3.87)

We now combine the bounds in (3.77), (3.80) and (3.87) to get:
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‖ξn‖2 +
n−1∑
m=0

∆t
2Wi
‖∇∼ Mξ

m+1‖2

≤ eKn∆t

{
‖η0‖2 + 6∆t2

∥∥∥∥∥∂2ψ̂

∂t2

∥∥∥∥∥
2

L2(0,tn;L2(Ω×D))

+ 6
∥∥∥∥∂η∂t

∥∥∥∥2

L2(0,tn;L2(Ω×D))

+6‖u∼‖
2
L∞(0,T ;L∞(Ω))‖∇∼ xη‖2`2(0,tn;L2(Ω×D))

+
14

Wi2
∆t2‖u‖2L∞(0,T ;L∞(Ω))

(
‖∇∼ x∇∼ M ψ̂‖2`2(0,tn;L2(Ω×D)) + ‖∇∼ x∇∼ Mη‖2`2(0,tn;L2(Ω×D))

)
+

14
Wi2
‖∇∼ Mη‖2`2(0,tn;L2(Ω×D)) + 56 b‖κ

≈
‖2L∞(0,tn;L∞(Ω)) ‖η‖

2
`2(0,tn;L2(Ω×D))

+56 b∆t2
∥∥∥∥∂κ≈∂t

∥∥∥∥2

L∞(0,T ;L∞(Ω))

∥∥∥ψ̂∥∥∥2

`2(0,tn;L2(Ω×D))

+56 ∆t2 b‖κ
≈
‖2W1,∞(0,T ;L∞(Ω))

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

2

L2(0,tn;L2(Ω×D))

}
. (3.88)

Now, just as in Chapter 2, we need to bound the terms containing η in (3.88). This

is considered in the next section.

3.6 Approximation results on Ω×D

In order to use the approximation results from Section 2.4, we restrict our attention to

the d = 2 case here although, of course, analogus results could be obtained for the d = 3

case. We denote the projection operator considered in Section 2.4 (referred to there

as Π̂N) by Πq : H1,1(D) → PN(D). Also, we consider a quasi-interpolation operator,

Ix : L1(Ω) → Vh, which is a generalisation of the standard finite element interpolant

such that the quasi-interpolant is well-defined for non-smooth functions; we refer to

Section 4.8 of [19] for the details of the definition of this operator (alternatively, see [25]

or [74]).

We have the following result for Ix (cf. Theorem (4.8.12) in [19]):

Theorem 3.10 Suppose that Th is non-degenerate in the sense that there exists ρ > 0

such that for all K ∈ Th, diam(BK) ≥ ρ diam(K), where BK is the largest ball contained

in K. Suppose also that the set of shape functions for each element K ∈ Th contains

all polynomials of degree less than m. Then, there exists a positive constant C such

that (∑
K∈Th

h
p(s−k)
K ‖v − Ix v‖pWs,p(K)

)1/p

≤ C|v|Wk,p(Ω),
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for all v ∈Wk,p(Ω), 0 ≤ k ≤ m, 1 ≤ p ≤ ∞, 0 ≤ s ≤ k, where hK := diam(K).

Corollary 3.11 (cf. Corollary 4.8.15 in [19]) Setting s = k in Theorem 3.10, it

follows that

‖Ix v‖Wk,p(Ω) ≤ C|v|Wk,p(Ω) ∀v ∈Wk,p(Ω), (3.89)

for 0 ≤ s, k ≤ m, where m is as in Theorem 3.10, and 1 ≤ p ≤ ∞. Also, letting

h = maxK∈Thdiam(K) in Theorem 3.10, we obtain

‖v − Ixv‖Ws,p(Ω) ≤ Chk−s|v|Wk,p(Ω), (3.90)

for 0 ≤ s ≤ k, 0 ≤ k ≤ m, and m, p as in (3.89).

For the projection operator Πq, recall from Section 2.4 that:

‖ψ̂ − Πqψ̂‖H1
0(D;M) ≤ C1N

−k
r ‖ψ̂‖Hk+1

r (D) + C2N
−l
θ ‖ψ̂‖Hl+1

θ (D), (3.91)

and

‖ψ̂ − Πqψ̂‖L2(D) ≤ C1N
−k
r ‖ψ̂‖Hkr (D) + C2N

−l
θ ‖ψ̂‖Hlθ(D). (3.92)

Now, let the projection operator Π : L1(Ω;H1,1(D))→ Vh ⊗ PN(D) be defined as

Π := Ix Πq = Πq Ix,

so that η := ψ̂−Πψ̂. We will use the approximation properties listed above for Πq and

Ix to derive bounds for the terms ‖η‖, ‖∇∼ xη‖, ‖∇∼ Mη‖ and ‖∇∼ x∇∼ Mη‖ that appear on

the right-hand side of (3.88).

First of all, consider ‖η‖:

‖η‖ = ‖ψ̂ − IxΠqψ̂‖ ≤ ‖ψ̂ − Ixψ̂‖+ ‖Ixψ̂ − ΠqIxψ̂‖ =: I + II.

From (3.90), we have that

I =

(∫
D

‖ψ̂ − Ixψ̂‖2
L2(Ω) dq

∼

) 1
2

≤ Chs
(∫

D

|ψ̂|2Hs(Ω) dq
∼

) 1
2

.

Also,

II =

(∫
Ω

‖Ixψ̂ − ΠqIxψ̂‖2
L2(D) dx∼

) 1
2

≤ C1N
−k
r

(∫
Ω

‖Ixψ̂‖2
Hkr (D) dx∼

) 1
2

+ C2N
−l
θ

(∫
Ω

‖Ixψ̂‖2
Hlθ(D) dx∼

) 1
2

≤ C1N
−k
r

(∫
Ω

‖ψ̂‖2
Hkr (D) dx∼

) 1
2

+ C2N
−l
θ

(∫
Ω

‖ψ̂‖2
Hlθ(D) dx∼

) 1
2

,
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where we used (3.89) with k = 0, p = 2 to obtain the last line.

We treat ‖∇∼ xη‖ similarly:

‖∇∼ xη‖ ≤ ‖∇∼ xψ̂ −∇∼ xIxψ̂‖+ ‖∇∼ xIxψ̂ − Πq∇∼ xIxψ̂‖

≤ Chs
(∫

D

|ψ̂|2Hs+1(Ω) dq
∼

) 1
2

+C1N
−k
r

(∫
Ω

‖∇∼ xIxψ̂‖2
Hkr (D) dx∼

) 1
2

+ C2N
−l
θ

(∫
Ω

‖∇∼ xIxψ̂‖2
Hlθ(D) dx∼

) 1
2

≤ Chs
(∫

D

|ψ̂|2Hs+1(Ω) dq
∼

) 1
2

+C1N
−k
r

(∫
Ω

‖∇∼ xψ̂‖2
Hkr (D) dx∼

) 1
2

+ C2N
−l
θ

(∫
Ω

‖∇∼ xψ̂‖2
Hlθ(D) dx∼

) 1
2

.

Next, we have

‖∇∼ Mη‖ ≤ ‖∇∼ M ψ̂ − Ix∇∼ M ψ̂‖+ ‖∇∼ MIxψ̂ −∇∼ MΠqIxψ̂‖

≤ Chs
(∫

D

|∇∼ M ψ̂|2Hs(Ω) dq
∼

) 1
2

+C1N
−k
r

(∫
Ω

‖Ixψ̂‖2
Hk+1
r (D)

dx∼

) 1
2

+ C2N
−l
θ

(∫
Ω

‖Ixψ̂‖2
Hl+1
θ (D)

dx∼

) 1
2

≤ Chs
(∫

D

|∇∼ M ψ̂|2Hs(Ω) dq
∼

) 1
2

+C1N
−k
r

(∫
Ω

‖ψ̂‖2
Hk+1
r (D)

dx∼

) 1
2

+ C2N
−l
θ

(∫
Ω

‖ψ̂‖2
Hl+1
θ (D)

dx∼

) 1
2

.

Finally, we derive a bound for the cross-term ‖∇∼ x∇∼ Mη‖ as follows:

‖∇∼ x∇∼ Mη‖ ≤ ‖∇∼ x∇∼ M ψ̂ −∇∼ xIx∇∼ M ψ̂‖+ ‖∇∼ M∇∼ xIxψ̂ −∇∼ MΠq∇∼ xIxψ̂‖

≤ Chs
(∫

D

|∇∼ M ψ̂|2Hs+1(Ω) dq
∼

) 1
2

+C1N
−k
r

(∫
Ω

‖∇∼ xIxψ̂‖2
Hk+1
r (D)

dx∼

) 1
2

+ C2N
−l
θ

(∫
Ω

‖∇∼ xIxψ̂‖2
Hl+1
θ (D)

dx∼

) 1
2

≤ Chs
(∫

D

|∇∼ M ψ̂|2Hs+1(Ω) dq
∼

) 1
2

+C1N
−k
r

(∫
Ω

‖∇∼ xψ̂‖2
Hk+1
r (D)

dx∼

) 1
2

+ C2N
−l
θ

(∫
Ω

‖∇∼ xψ̂‖2
Hl+1
θ (D)

dx∼

) 1
2

.

Therefore, we have the following optimal order bounds for the terms on the right-

hand side of (3.88):

‖η0‖ ≤ Chs‖ψ̂0‖Hs(Ω;L2(D)) + C1N
−k
r ‖ψ̂0‖L2(Ω;Hkr (D)) + C2N

−l
θ ‖ψ̂0‖L2(Ω;Hlθ(D)),
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‖η‖`2(0,tn;L2(Ω×D)) ≤ Chs
∥∥∥ψ̂∥∥∥

`2(0,tn;Hs(Ω;L2(D)))
+ C1N

−k
r

∥∥∥ψ̂∥∥∥
`2(0,tn;L2(Ω;Hkr (D)))

+ C2N
−l
θ

∥∥∥ψ̂∥∥∥
`2(0,tn;L2(Ω;Hlθ(D)))

,

∥∥∥∥∂η∂t
∥∥∥∥

L2(0,tn;L2(Ω×D))

≤ Chs

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,tn;Hs(Ω;L2(D)))

+ C1N
−k
r

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,tn;L2(Ω;Hkr (D)))

+ C2N
−l
θ

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,tn;L2(Ω;Hlθ(D)))

,

‖∇∼ xη‖`2(0,tn;L2(Ω×D)) ≤ Chs‖ψ̂‖`2(0,tn;Hs+1(Ω;L2(D)))

+C1N
−k
r ‖ψ̂‖`2(0,tn;H1(Ω;Hkr (D))) + C2N

−l
θ ‖ψ̂‖`2(0,tn;H1(Ω;Hlθ(D))),

‖∇∼ Mη‖`2(0,tn;L2(Ω×D)) ≤ Chs‖ψ̂‖`2(0,tn;Hs(Ω;H1
0(D;M)))

+C1N
−k
r ‖ψ̂‖`2(0,tn;L2(Ω;Hk+1

r (D))) + C2N
−l
θ ‖ψ̂‖`2(0,tn;L2(Ω;Hl+1

θ (D))),

‖∇∼ x∇∼ Mη‖`2(0,tn;L2(Ω×D)) ≤ Chs‖ψ̂‖`2(0,tn;Hs+1(Ω;H1
0(D;M)))

+C1N
−k
r ‖ψ̂‖`2(0,tn;H1(Ω;Hk+1

r (D))) + C2N
−l
θ ‖ψ̂‖`2(0,tn;H1(Ω;Hl+1

θ (D))).

3.7 Convergence analysis for method I, Part 2

Putting the estimates derived above into (3.88), with appropriate constants C1, C2 C3

and C4, we obtain:

‖ξ‖`∞(0,T ;L2(Ω×D)) + ‖∇∼ Mξ‖`2(0,T ;L2(Ω×D))

≤ C1h
s
(
‖ψ̂0‖Hs(Ω;L2(D)) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hs(Ω;L2(D)))

+
∥∥∥ψ̂∥∥∥

`2(0,T ;Hs(Ω;H1
0(D;M)))

+
∥∥∥ψ̂∥∥∥

`2(0,T ;Hs+1(Ω;L2(D)))

)
+C2N

−k
r

(
‖ψ̂0‖L2(Ω;Hkr (D)) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;L2(Ω;Hkr (D)))

+ ‖ψ̂‖`2(0,T ;H1(Ω;Hkr (D)))

+‖ψ̂‖`2(0,T ;L2(Ω;Hk+1
r (D)))

)
+C3N

−l
θ

(
‖ψ̂0‖L2(Ω;Hlθ(D)) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;L2(Ω;Hlθ(D)))

+ ‖ψ̂‖`2(0,T ;H1(Ω;Hlθ(D)))

+
∥∥∥ψ̂∥∥∥

`2(0,T ;L2(Ω;Hl+1
θ (D)))

)
+C4∆t

(∥∥∥ψ̂∥∥∥
`2(0,T ;L2(Ω×D))

+
∥∥∥ψ̂∥∥∥

H2(0,T ;L2(Ω×D))
+ ‖∇∼ x∇∼ M ψ̂‖`2(0,T ;L2(Ω×D))

+N−kr ‖ψ̂‖`2(0,T ;H1(Ω;Hk+1
r (D))) +N−lθ ‖ψ̂‖`2(0,T ;H1(Ω;Hl+1

θ (D)))

)
.
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Hence, by the triangle inequality:

‖ψ̂ − ψ̂h,N‖`∞(0,T ;L2(Ω×D)) + ‖∇∼ M (ψ̂ − ψ̂h,N )‖`2(0,T ;L2(Ω×D))

≤ ‖ξ‖`∞(0,T ;L2(Ω×D)) + ‖∇∼ Mξ‖`2(0,T ;L2(Ω×D)) + ‖η‖`∞(0,T ;L2(Ω×D)) + ‖∇∼ Mη‖`2(0,T ;L2(Ω×D))

≤ C1h
s
(
‖ψ̂‖`∞(0,T ;Hs(Ω;L2(D))) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hs(Ω;L2(D)))

+
∥∥∥ψ̂∥∥∥

`2(0,T ;Hs(Ω;H1
0(D;M)))

+
∥∥∥ψ̂∥∥∥

`2(0,T ;Hs+1(Ω;L2(D)))

)
+C2N

−k
r

(
‖ψ̂‖`∞(0,T ;L2(Ω;Hkr (D))) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;L2(Ω;Hkr (D)))

+ ‖ψ̂‖`2(0,T ;H1(Ω;Hkr (D)))

+‖ψ̂‖`2(0,T ;L2(Ω;Hk+1
r (D)))

)
+C3N

−l
θ

(
‖ψ̂‖`∞(0,T ;L2(Ω;Hlθ(D))) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;L2(Ω;Hlθ(D)))

+ ‖ψ̂‖`2(0,T ;H1(Ω;Hlθ(D)))

+
∥∥∥ψ̂∥∥∥

`2(0,T ;L2(Ω;Hl+1
θ (D)))

)
+C4∆t

(∥∥∥ψ̂∥∥∥
`2(0,T ;L2(Ω×D))

+
∥∥∥ψ̂∥∥∥

H2(0,T ;L2(Ω×D))
+ ‖∇∼ x∇∼ M ψ̂‖`2(0,T ;L2(Ω×D))

+N−kr ‖ψ̂‖`2(0,T ;H1(Ω;Hk+1
r (D))) +N−lθ ‖ψ̂‖`2(0,T ;H1(Ω;Hl+1

θ (D)))

)
. (3.93)

Therefore, with ψh,N =
√
Mψ̂h,N , the estimate analogous to (2.50) for alternating-

direction method I is the following:

‖ψ − ψh,N‖`∞(0,T ;L2(Ω;H)) + ‖ψ − ψh,N‖`2(0,T ;L2(Ω;K))

≤ C1h
s
(∥∥∥∥ ψ√

M

∥∥∥∥
`∞(0,T ;Hs(Ω;L2(D)))

+
∥∥∥∥ 1√

M

∂ψ

∂t

∥∥∥∥
L2(0,T ;Hs(Ω;L2(D)))

+
∥∥∥∥ ψ√

M

∥∥∥∥
`2(0,T ;Hs(Ω;H1

0(D;M)))

+
∥∥∥∥ ψ√

M

∥∥∥∥
`2(0,T ;Hs+1(Ω;L2(D)))

)
+C2N

−k
r

(∥∥∥∥ ψ√
M

∥∥∥∥
`∞(0,T ;L2(Ω;Hkr (D)))

+
∥∥∥∥ 1√

M

∂ψ

∂t

∥∥∥∥
L2(0,T ;L2(Ω;Hkr (D)))

+
∥∥∥∥ ψ√

M

∥∥∥∥
`2(0,T ;H1(Ω;Hkr (D)))

+
∥∥∥∥ ψ√

M

∥∥∥∥
`2(0,T ;L2(Ω;Hk+1

r (D)))

)
+C3N

−l
θ

(∥∥∥∥ ψ√
M

∥∥∥∥
`∞(0,T ;L2(Ω;Hlθ(D)))

+
∥∥∥∥ 1√

M

∂ψ

∂t

∥∥∥∥
L2(0,T ;L2(Ω;Hlθ(D)))

+
∥∥∥∥ ψ√

M

∥∥∥∥
`2(0,T ;H1(Ω;Hlθ(D)))

+
∥∥∥∥ ψ√

M

∥∥∥∥
`2(0,T ;L2(Ω;Hl+1

θ (D)))

)
+C4∆t

(∥∥∥∥ ψ√
M

∥∥∥∥
`2(0,T ;L2(Ω×D))

+
∥∥∥∥ ψ√

M

∥∥∥∥
H2(0,T ;L2(Ω×D))

+
∥∥∥∥∇∼ x∇∼ M

ψ√
M

∥∥∥∥
`2(0,T ;L2(Ω×D))

+N−kr

∥∥∥∥ ψ√
M

∥∥∥∥
`2(0,T ;H1(Ω;Hk+1

r (D)))

+N−lθ

∥∥∥∥ ψ√
M

∥∥∥∥
`2(0,T ;H1(Ω;Hl+1

θ (D)))

)
, (3.94)
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for s, k, l ≥ 1, provided that ψ is such that the right-hand side is finite. Note than an

obvious difference between (3.94) and (2.50) is that in (3.94) we require∥∥∥∥∇∼ x∇∼ M
ψ√
M

∥∥∥∥
`2(0,T ;L2(Ω×D))

<∞.

This regularity condition is necessitated by the presence of the cross term,(
∇∼ M

(
u∼ · ∇∼ xψ̂

n+1
h,N

)
,∇∼ Mζ

)
,

in (3.48).

Remark 3.12 Looking at (3.94), it could be argued that there is a mismatch between

the convergence rates of the finite element method in Ω and the spectral method in D,

in the sense that the spectral method will generally be far more accurate. This is a

reasonable point, but we believe that in practice the numerical method analysed here is

appropriate. First of all, while in general a finite element scheme will have a low-order

convergence rate, its flexibility is invaluable when it comes to meshing physical space

domains that may be complicated. Moreoever, we do not have a diffusion operator in

the x∼-direction, so it is not obvious that ψ will be highly smooth in Ω.

Nevertheless, it is certainly also reasonable to use a higher-order method for solving

the transport equation in physical space, for example, Chauvière & Lozinski used a spec-

tral element method for this purpose in [23, 24]. Note that the analysis in this chapter

would carry over essentially unchanged if we replaced the finite element discretisation

of (3.41) by a higher-order method.

On the other hand, the q
∼
-direction is much better suited to the use of a high-order

method since D is always a ball in Rd, and, as seen in Section 2.6, at least for the FENE

potential, the solution profiles in D are generally very smooth. Note that in practice the

spectral convergence of the q
∼
-direction numerical method means that the discrete space

PN(D) need only have a rather low dimensionality. This is highly advantageous because

(a) each q
∼
-direction solve requires relatively modest computational resources and (b) a

reduction in the dimensionality of PN(D) reduces the number of x∼-direction solves that

need to be performed each time-step (cf. (3.41)).

Remark 3.13 In the preceding argument, we made use of the (pointwise) divergence-

free assumption, (3.3). This assumption was made to simplify the argument, but it is

not essential, i.e. it follows from (3.4) that ∇∼ x · u∼ ∈ L∞(Ω), hence if we allowed ∇∼ x · u∼
to be non-zero the preceding convergence argument could be modified to use the norm

‖∇∼ x · u∼‖L∞(Ω) instead of (3.3).
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Now, following the discussion in Section 2.6.1, we consider the convergence of τ
≈
. In

order to coincide with Section 2.6.1, here we consider only the FENE spring force and

the case in which d = 2.

Using Parseval’s identity from Chapter 2, we write the weak solution ψ̂(x∼, q∼, t) =

ψ̃(x∼, r, θ, t) as follows:

ψ̃(x∼, r, θ, t) = ψ̃1(x∼, r, t) + r
∞∑
l=1

(
Ãl(x∼, r, t) cos(2lθ) + B̃l(x∼, r, t) sin(2lθ)

)
, (3.95)

and supposing we use basis A in the q
∼
-direction, we define the numerical solution as:

ψ̃h,N(x∼, r, θ) = (1− r)
Nr−1∑
k=0

Ψ̃0,k(x∼)Pk(r) + r(1− r)
1∑
i=0

Nθ∑
l=1

Nr−1∑
k=0

Ψ̃i
l,k(x∼)Pk(r)Φil(θ),

where Ψ̃0,k, Ψ̃
i
l,k ∈ Vh are line functions as in (3.30).

Therefore, proceeding as in Section 2.6, we obtain

‖τ11(ψ̂(tn))− τ11(ψ̂nh,N)‖2
L2(Ω)

≤ C∗

∫
Ω

∥∥∥∥∥ψ̃1(x∼, r, t
n)− (1− r)

Nr−1∑
k=0

Ψ̃n
0,k(x∼)Pk(r)

∥∥∥∥∥
2

L2
w̃(0,1)

dx∼

+
C∗
4

∫
Ω

∥∥∥∥∥rÃ1(x∼, r, t
n)− r(1− r)

Nr−1∑
k=0

Ψ̃0,n
1,k(x∼)Pk(r)

∥∥∥∥∥
2

L2
w̃(0,1)

dx∼, (3.96)

where C∗ is defined in (2.68).

Also, the analogue of (2.69) here is:

‖ψ̂(·, ·, tn)− ψ̂nN (·, ·)‖2L2(Ω×D)

= 2πb
∫

Ω

∥∥∥∥∥ψ̃1(x∼, r, t
n)− (1− r)

Nr−1∑
k=0

Ψ̃n
0,k(x∼)Pk(r)

∥∥∥∥∥
2

L2
w̃(0,1)

dx∼

+πb
Nθ∑
l=1

∫
Ω

∥∥∥∥∥rÃl(x∼, r, tn)− r(1− r)
Nr−1∑
k=0

Ψ̃0,n
l,k (x∼)Pk(r)

∥∥∥∥∥
2

L2
w̃(0,1)

dx∼

+πb
Nθ∑
l=1

∫
Ω

∥∥∥∥∥rB̃l(x∼, r, tn)− r(1− r)
Nr−1∑
k=0

Ψ̃1,n
l,k (x∼)Pk(r)

∥∥∥∥∥
2

L2
w̃(0,1)

dx∼

+πb
∞∑

l=Nθ+1

∫
Ω

(∥∥∥rÃl(x∼, r, tn)
∥∥∥2

L2
w̃(0,1)

+
∥∥∥rB̃l(x∼, r, tn)

∥∥∥2

L2
w̃(0,1)

)
dx∼, (3.97)
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and hence, once again, the τ11 error only contains two terms from the infinite series in

(3.97), and as in (2.70), we have

‖τ11(ψ̂)− τ11(ψ̂h,N)‖`∞(0,T ;L2(Ω)) ≤
√

C∗
2πb
‖ψ̂ − ψ̂h,N‖`∞(0,T ;L2(Ω×D)). (3.98)

Note that since the line functions Ψ̃n
0,k and Ψ̃0,n

1,k in (3.96) are computed by solv-

ing (3.41) using the x∼-direction finite element method, we expect an O(hs) error to

dominate the spatial convergence rate of τ
≈
, just as in (3.94). However, by comparing

(3.96) and (3.97), we can see that only relatively few terms in the q
∼
-direction spectral

expansion of ψ̂h,N contribute to the τ11 error. Hence, this suggests that the accuracy

of τ
≈

will be less sensitive to the resolution of the q
∼
-direction spectral method than the

accuracy of ψ̂h,N . In Section 3.9 we show that this is indeed the case in practice.

3.8 Implementation of methods I and II

In this section we consider the implementation of the q
∼
-direction spectral method and

the x∼-direction finite element method in Sections 3.8.1 and 3.8.2, respectively, and then

in Section 3.8.3 we discuss the x∼-direction quadrature rule used to integrate these two

methods into a single alternating-direction algorithm. Finally, we consider the parallel

implementation of the alternating-direction methods in Section 3.8.4.

3.8.1 The q
∼
-direction stage

We note first of all that from an implementational point of view method I and method

II are almost identical; the only difference between the two methods is that method

I uses a semi-implicit temporal discretisation whereas method II uses the backward

Euler scheme.

Therefore, letting ψ̂
∼
n∗(x∼m) ∈ RND be the vector with kth entry equal to ψ̂n∗k (x∼m)

and defining ψ̂
∼
n(x∼m) analogously, the set of q

∼
-direction linear systems to be solved at

time-level n for method I is:(
Mq +

∆t

2Wi
Sq

)
ψ̂
∼

n∗(x∼m) =
(
Mq + ∆t Cm

q

)
ψ̂
∼

n(x∼m), (3.99)

for m = 1, . . . , QΩ, whereas for method II we solve:(
Mq +

∆t

2Wi
Sq −∆t Cm

q

)
ψ̂
∼

n∗(x∼m) = Mqψ̂∼
n(x∼m), (3.100)

for m = 1, . . . , QΩ. The matrices Mq, Sq and Cm
q in (3.99) and (3.100) are as defined

in (2.54), where κ
≈

in Cm
q is sampled at x∼m. These matrices depend on the choice of



115

basis of PN(D); refer to Section 2.6 for a discussion of the construction of bases A and

B for the d = 2 case, and basis C in the case of d = 3.

It is clear that for both method I and method II, we must solve an ND×ND linear

system QΩ times per time-step in the q
∼
-direction. QΩ can be very large in practice. For

example, in Section 3.9 we consider some computations for which QΩ is on the order of

104. The use of parallel computation can be very helpful in this situation because the

q
∼
-direction linear solves are independent and therefore it is straightforward to perform

them in parallel (we discuss this in detail in Section 3.8.4).

It is also interesting to note that method I requires significantly less computational

effort in each time-step than method II because the matrix on the left-hand side in

(3.99) is constant for all m and therefore we need only perform one LU-factorisation

per time-step with method I, whereas the linear system in (3.100) must be reassembled

and solved afresh at each quadrature point x∼m since in general κ
≈

(x∼m) varies from

one quadrature point to the next. On the other hand, the numerical experiments

in Section 2.6.2 indicate that the backward Euler temporal discretisation of the q
∼
-

direction equation is more stable, and it allows one to take larger time-steps, especially

for larger values of Wi or ‖κ
≈
‖L∞(Ω). Hence, there is a familiar trade-off in efficiency:

each time-step is faster with method I, but we can take larger time-steps with method

II. Therefore the optimal choice of numerical method depends on the problem at hand.

Remark 3.14 The alternating direction method used by Chauvière & Lozinski in [24]

is similar to method II in that it treats the κ
≈

convection term implicitly in time. In the

follow-up papers [23,60] the same authors developed a fast solver approach in which the

computational work required for each q
∼
-direction solve was significantly reduced. How-

ever, their fast solver was based on an assumption that κ
≈

arises from a two-dimensional

velocity field (i.e. that Ω ⊂ R2) whereas in this thesis we are interested in developing

numerical methods that are suitable for Ω ⊂ R3.

The q
∼
-direction solvers for methods I and II were implemented in the C++ pro-

gramming language and PETSc [5] was used to perform the linear algebra operations.

PETSc was a natural choice in this context because it is designed for use on parallel

architectures, which is a feature we made extensive use of.

3.8.2 The x∼ -direction stage

In the x∼-direction, methods I and II are identical: For each line function, ψ̂n∗k , k =

1, . . . , ND, we solve the transport equation (3.43). This involves solving an NΩ × NΩ
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linear system ND times, although the system matrix Mx + ∆t Tx only needs to be

assembled once per time-step.

In our implementation, we used an H1(Ω)-conforming finite element method with

quadratic shape functions to perform the x∼-direction computations, and we used GM-

RES to solve the resulting linear systems. Hence, assuming sufficient regularity for

ψ/
√
M , we can set s = 2 in (3.94), which yields O(h2) terms in the error estimate.

Note that in order to strengthen the norm in which the x∼-direction solver is stable,

Chauviére & Lozinski used an SUPG scheme to discretise the transport equation in [24].

It would be straightforward to integrate such a scheme into our alternating-direction

framework, but since the analysis in the preceding sections was performed for a stan-

dard Galerkin formulation in the x∼-direction, for consistency, we prefer to use the

Galerkin method in practice also. Moreover, our numerical results in Section 3.9 and

in Chapter 4 demonstrate that the standard Galerkin formulation performs well in

practice.

This method was implemented using the free, open source C++ finite element library

libMesh [47]. Note also that the x∼-direction computations are independent from one

another, and hence parallel computation can again be used effectively.

3.8.3 The x∼ -direction quadrature rule

We have a great deal of freedom in the choice of the x∼-direction quadrature rule.

From the analytical point of view, it is preferable to choose a quadrature rule that

satisfies QH1, since then, at least with method I, we have access to the equivalent

one-step formulation (3.48), which was the foundation of the convergence analysis of

Section 3.7. However, Lemma (3.67) also shows that only QH2 is required for the

stability of method I and method II. In practice, the overall computation time depends

very strongly on QΩ and hence it is often desirable to only satisfy QH2 in order to keep

QΩ as low as possible.

We now discuss some quadrature rules with which we can satisfy either QH2 or

both QH1 and QH2 (recall that QH1 is a stronger hypothesis than QH2). Of course,

the quadrature rules depend on the element type and the dimension; we will con-

sider triangles and quadrilaterals in two dimensions and tetrahedra and hexahedra in

three dimensions. We discuss element-based quadrature rules only. By combining the

quadrature rule on each element of Th we obtain a global formula as in (3.26).

We assume that each element K ∈ Th is an affine mapping of some canonical

element K̂. Hence we only need to consider quadrature rules on K̂.
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Tensor product elements: In this case, we consider K̂ to be either the square

[−1, 1]2 or the cube [−1, 1]3. Let {x̂1, . . . , x̂n} and {ŵ1, . . . , ŵn} define the points and

weights of a Gaussian quadrature rule, such that x̂i ∈ (−1, 1) and ŵi > 0 for each i

(e.g. see Chapter 10 of [77]). It is well known that a Gaussian quadrature rule with n

points in one dimension is optimal in the sense that it integrates polynomials of degree

2n− 1 on x̂ ∈ [−1, 1] exactly.

For tensor product finite elements defined on the reference square [−1, 1]2, the

natural choice of quadrature rule is a tensor product Gaussian rule. For example,

following [85], we use the quadrature points:

{(x̂1, x̂1), (x̂1, x̂2), . . . , (x̂1, x̂n), (x̂2, x̂1), . . . , (x̂n, x̂n)},

and corresponding weights:

{ŵ1 ŵ1 , ŵ1 ŵ2, . . . , ŵ1 ŵn , ŵ2 ŵ1, . . . , ŵn ŵn}.

This quadrature rule involves QK̂ = n2 points and weights and exactly integrates

polynomials on [−1, 1]2 of degree 2n− 1 in each direction. A three dimensional tensor

product Gauss quadrature rule on [−1, 1]3 can be defined analogously.

It is clear from the discussion above that we can construct tensor product Gauss

quadrature rules to exactly integrate polynomials of arbitrarily high degree on [−1, 1]2

or [−1, 1]3. We now consider how many quadrature points we require to satisfy QH1

or QH2 on tensor product elements in two and three dimensions.

In the computations considered in Section 3.9 and in Chapter 4, we use tensor

product quadratic shape functions on each element K ∈ Th for ψ̂h,N and for u∼. Hence

the components of κ
≈

= ∇∼ xu∼ can also be quadratic in each direction. Therefore, in

order to satisfy QH1, we need to be able to exactly integrate polynomials of degree six,

and for QH2 we need to integrate polynomials of degree four exactly. Let p denote the

highest degree polynomial that can be exactly integrated by a quadrature rule. We use

the following tensor product quadrature rules on the reference square and cube:

• QH1, p = 7: QK̂ = 16 on K̂ = [−1, 1]2, and QK̂ = 64 on K̂ = [−1, 1]3.

• QH2, p = 5: QK̂ = 9 on K̂ = [−1, 1]2, and QK̂ = 27 on K̂ = [−1, 1]3.

These quadrature rules are implemented in the libMesh software package.

Simplices: In this case we assume that K̂ is either a triangle in two dimensions

or a tetrahedron in three dimensions. We again consider quadratic shape functions
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for u∼ and ψ̂h,N , but since we are no longer using tensor product finite elements, the

components of κ
≈

= ∇∼ xu∼ are only linear functions in this case, so that in order to satisfy

QH1 we need to exactly integrate fifth degree polynomials. To satisfy QH2, we need

to exactly integrate degree four polynomials, as in the tensor product case.

In our computations, we used the following quadrature rules, which are implemented

in the libMesh software package on triangles and tetrahedra:

• QH1 on triangles, p = 5: QK̂ = 7 [81].

• QH2 on triangles, p = 4: QK̂ = 6 [62].

• QH1 & QH2 on tetrahedra, p = 5: QK̂ = 14 [81].

Note that there is a fourth order 11 point quadrature rule on tetrahedra from [44] that

is implemented in libMesh also, but it contains a negative weight and therefore we

cannot use it for our alternating-direction method since we need the quadrature rule to

define an inner product, cf. (3.36). Therefore we use the same p = 5 rule on tetrahedra

for both QH1 and QH2.

3.8.4 Parallel implementation of the alternating-direction method

It is clear that the computational effort required to solve the high-dimensional Fokker–

Planck equation can be very large, particularly in the case d = 3. Parallel computation

is a key ingredient in the alternating-direction framework developed in this thesis, since

it makes many problems tractable that would otherwise be well beyond our reach. As

indicated above, methods I and II are very well suited to implentation on a parallel

architecture; indeed these algorithms are “embarassingly parallel” in the sense that

they involve performing a large number of independent solves in each time-step.

More specifically, suppose we use Nproc processors (Nproc ≥ 1) to solve a problem

(using either method I or II) with parameters ND, NΩ denoting the number of basis

functions in the q
∼
-direction and x∼-direction, respectively, and QΩ defining the number

of quadrature points in Ω, as in (3.26). At time-level n, we store a dense matrix

Dn ∈ RQΩ×ND , where (Dn)ij = ψ̂nj (x∼ i), and ψ̂nj ∈ Vh is a line function as in (3.30). The

entries of Dn uniquely determine ψ̂nh,N ∈ Vh ⊗ PN(D). In practice Dn can be a very

large matrix, so we partition it among the processors so that each processor stores a

subset of the rows (for q
∼
-direction solves) or columns (for x∼-direction solves) of Dn. We

would like these submatrices to be equally sized to obtain ideal load balancing between

processors, but depending on QΩ, ND and Nproc, this is often not possible. However,

to simplify the discussion here, we will assume for the remainder of this section that
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Nproc is a common divisor of QΩ and ND and hence that the submatrices are equally

sized.

Now, let us consider the q
∼
-direction computations at time-level n (we do not dis-

tinguish between methods I and II here because, from the point of view of the cur-

rent discussion, they are identical). We distribute Dn so that each processor stores

QΩ/Nproc rows of the matrix. Then, simultaneously, each processor solves the QΩ/Nproc

q
∼
-direction problems corresponding to its rows in Dn and updates the data in the ma-

trix. In this manner, Dn is updated to Dn∗ where (Dn∗)ij = ψ̂n∗j (x∼ i).

Next, we perform the x∼-direction computations. First of all, however, we need to

redistribute Dn∗ so that each processor stores ND/Nproc columns of the matrix.3 This

involves a global communication operation between all of the processors, which can

be time consuming. The time required to perform this parallel communication step

depends on the problem size and the number of processors being used. We discuss

this issue with regard to some practical computations in Section 3.9, where we show

that by selecting Nproc appropriately it is generally possible to ensure that the matrix

redistribution steps take only a small proportion of the overall computation time.

So, once this matrix redistribution is complete, the x∼-direction computations on

each processor proceed in the same way as in the q
∼
-direction. That is, each processor

works sequentially through its ND/Nproc columns, first solving (3.43), and then sam-

pling the resulting line function ψ̂n+1
k at x∼m for m = 1, . . . , QΩ and writing these values

back into the matrix. This yields the updated matrix Dn+1 on completion of all of the

x∼-direction solves.

This process is performed for each time-step, n = 1, . . . , NT . Note that for com-

putations with the Navier–Stokes–Fokker–Planck system we will need to compute

the extra-stress tensor τ
≈

also. This can be easily included into the framework de-

scribed above. Suppose we have just finished the x∼-direction solves so that Dn+1

has been computed and is stored column-wise so that each processor holds ND/Nproc

columns of the matrix. Then to begin the next time-step, we redistribute Dn+1

again so that each processor holds QΩ/Nproc rows. Once the redistribution is com-

plete and before we begin the q
∼
-direction solves, for each m = 1, . . . , QΩ we compute

and store the values τ
≈
n+1(x∼m) ∈ Rd×d using (1.45) on the q

∼
-direction cross-section

ψ̂n+1
h,N (x∼m, ·) ∈ PN(D); this is again done row by row, and hence each processor only

performs QΩ/Nproc computations with Kramers expression. Using (3.37), we can re-

construct R{τ
≈
n+1(x∼m)} ∈ (Vh)

d×d, which can be used in the right-hand side of (1.42).

3In our implementation, we performed this redistribution using PETSc’s transpose operation for
parallel dense matrices.
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3.9 Numerical results

In this section, we present some numerical results for the alternating-direction ap-

proach considered in this chapter applied to a model problem for the FENE Fokker–

Planck equation in the d = 2 case. We take u∼ to be the solution of the steady in-

compressible Navier–Stokes equations with Re = 1, and with forcing term f(x, y) =

(5 sin(2πy),−5 sin(2πx)), in the domain Ω = (0, 1)2. In this case, ‖κ
≈
‖L∞(Ω) ≈ 2. We

imposed the Dirichlet boundary condition u∼ = 0 on ∂Ω, which ensures that (3.7) is

satisfied. The streamlines of u∼ are shown in Figure 3.1, and we take u∼ to be constant

in time throughout t ∈ (0, T ]. This velocity field was obtained by solving the Navier–

Stokes equations using the Taylor–Hood finite element scheme with quadratic shape

functions for u∼ and linear shape functions for the pressure (this numerical method is

discussed in more detail in Section 4.2), and we use the same finite element mesh,

Th, for the Navier–Stokes equations as for the alternating-direction method, and hence

u∼ ∈ Vh. Note that in general the Taylor-Hood scheme for the Navier–Stokes equations

does not yield a (pointwise) divergence-free velocity field, and hence the assumption

(3.3) is not satisfied for the computational results in this section. However, as noted

in Remark 3.13, the analysis developed in this chapter can be extended essentially

unchanged to the case in which u∼ is not divergence-free.

Figure 3.1: Streamlines of the macroscopic velocity field u∼ driving the enclosed flow model
problem. The velocity field is the solution of the steady Navier–Stokes equation with Re = 1
on Ω = (0, 1)2 with forcing f(x, y) = (5 sin(2πy),−5 sin(2πx)).

We now consider computations using methods I and II for the model problem
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described above, with the parameters Wi = 1 and b = 12. Also, in each of the

computations discussed below, we used the initial condition ψ̂0
h,N(x∼, q∼) =

√
M(q

∼
),

where M is the normalised Maxwellian and we ensured that Nr ≥ 6, since according to

Remark 2.17, that guarantees that
√
M ∈ PN(D) in this case. Our goal is to compare

the performance of methods I and II, and to study the convergence of these methods

under mesh refinement. All of the computations in this section were performed on the

Lonestar parallel computer at the Texas Advanced Computing Center (TACC), http:

//www.tacc.utexas.edu, and we used the parallel implementation of the alternating

direction method described in Section 3.8.

We do not know the exact solution of the Fokker–Planck equation with the velocity

field in Figure 3.1 and therefore in order to obtain quantitative convergence results we

first computed a “reference solution”, ψ̂ref , and corresponding polymeric extra-stress

tensor, τ
≈ref , using method I with basis A in the q

∼
-direction and with a quadrature rule

on Ω that satisfied QH1. We obtained this reference solution using a highly refined

discrete space, (Vh ⊗ PN(D))ref , for which Th was a 40 × 40 uniform mesh of square

finite elements and (Nr, Nθ) = (14, 14). In order to satisfy QH1 in this case we required

QK̂ = 16, and hence QΩ = 25600 (cf. Section 3.8.3). We took 200 time-steps with

∆t = 10−3 so that T = 0.2; this value of ∆t is sufficiently small so that temporal

discretisation error does not contaminate the spatial convergence results presented

below. The components of τ
≈ref at T = 0.2 are shown in Figure 3.2.

τref,11 τref,12 τref,22

Figure 3.2: The components of τ
≈ref at T = 0.2. Note that we do not show τref,21 since it is

identical to τref,12. In the τref,11 and τref,22 plots, the values range from 0.882 (blue) to 1.15
(red), and in the τref,12 plot we have -0.229 (blue) to 0.229 (red).

In order to obtain convergence data, we then computed ψ̂h,N and the corresponding

stress tensor τ
≈

for several coarser discrete spaces than (Vh ⊗ PN(D))ref . First of all

http://www.tacc.utexas.edu
http://www.tacc.utexas.edu
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we carried out this process using the same numerical method with which we obtained

the reference solution, i.e. method I with basis A and a quadrature rule that satisfied

QH1. The solution data obtained from these computations are denoted ψ̂I and τ
≈I

below. Then, we also computed a corresponding set of numerical solutions on the same

discrete spaces, but using method II with basis A and a quadrature rule that only

satisfied QH2.4 We denote the solution data in this second case by ψ̂II and τ
≈II.

The numerial results for ψ̂I and τ
≈I were obtained using a numerical method that

satisfies all of the hypotheses required by the convergence estimates in Section 3.7

(except the divergence-free assumption on u∼, but, as mentioned above, this assumption

is not essential; we only used it in order to simplify the analysis in this chapter). Hence,

the ψ̂I and τ
≈I convergence data in the table allow us to compare the theoretical estimates

with practical convergence results. Also, the numerical results enable us to compare

the convergence behaviour of method I with QH1 to method II with QH2. These

two methods are very similar to one another hence we expect to observe the same

convergence behaviour in the two cases, but it is important to provide experimental

evidence that these two methods converge to the same solution, and at the same rate,

in practice because strictly speaking the convergence analysis in this chapter is only

valid for method I with QH1.

The convergence estimates (3.94) and (3.98) indicate that if the error due to the

q
∼
-direction spectral method is negligible compared to the error from the x∼-direction

finite element method, we should obtain O(h2) convergence rates for both ψ̂ and τ
≈

as Th is refined. Table 3.1 gives the relative errors ‖ψ̂I − ψ̂ref‖L2(Ω×D)/‖ψ̂ref‖L2(Ω×D)

and ‖ψ̂II − ψ̂ref‖L2(Ω×D)/‖ψ̂ref‖L2(Ω×D) as well as ‖τI,11 − τref,11‖L2(Ω)/‖τref,11‖L2(Ω) and

‖τII,11−τref,11‖L2(Ω)/‖τref,11‖L2(Ω), at T = 0.2, for the discrete spaces that we considered.

In order to gain further insight into the convergence behaviour of the numerical

methods, we plotted the data in Table 3.1 in Figures 3.3 and 3.4.

In Figure 3.3, the convergence results for ψ̂I and ψ̂II with (Nr, Nθ) = (6, 6) and

(Nr, Nθ) = (10, 10) are plotted on a log-log scale. We have also included a plot of h2

to show how the decay of the computed errors compare to the expected asymptotic

rate. First of all, it is clear from the figure that the two numerical methods behave

very similarly; the lines from ψ̂I and ψ̂II are almost indistinguishable. Also, Figure 3.3

shows that we obtain O(h2) convergence when (Nr, Nθ) = (10, 10). However, when

(Nr, Nθ) = (6, 6), the plots plateau, which indicates that the error due to the spectral

method dominates the O(h2) finite element error when Th is a 20× 20 mesh.

4Recall that we only require QK̂ = 9 to satisfy QH2 on square finite elements.
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Th (Nr, Nθ) ψ̂I error τI,11 error ψ̂II error τII,11 error
5× 5 (6, 6) 2.07× 10−2 1.63× 10−2 2.08× 10−2 1.63× 10−2

5× 5 (8, 8) 2.05× 10−2 1.63× 10−2 2.06× 10−2 1.63× 10−2

5× 5 (10, 10) 2.05× 10−2 1.63× 10−2 2.06× 10−2 1.63× 10−2

10× 10 (6, 6) 6.25× 10−3 4.22× 10−3 6.30× 10−3 4.24× 10−3

10× 10 (8, 8) 5.62× 10−3 4.22× 10−3 5.65× 10−3 4.23× 10−3

10× 10 (10, 10) 5.54× 10−3 4.22× 10−3 5.58× 10−3 4.23× 10−3

20× 20 (6, 6) 3.29× 10−3 9.95× 10−4 3.40× 10−3 1.07× 10−3

20× 20 (8, 8) 1.80× 10−3 9.90× 10−4 1.89× 10−3 1.04× 10−3

20× 20 (10, 10) 1.52× 10−3 9.90× 10−4 1.67× 10−3 1.04× 10−3

Table 3.1: Convergence of ψ̂ and τ11 with respect to the reference solution ψ̂ref and ref-
erence polymeric stress tensor τref,11 for a series of increasingly refined discrete spaces.
The errors are calculated in the L2 norm at T = 0.2, and are normalised by dividing by
‖ψ̂ref(·, ·, T )‖L2(Ω×D) = 0.31 and ‖τref,11(·, T )‖L2(Ω) = 1.04.

Figure 3.3: Plots of the ψ̂I and ψ̂II convergence data in Table 3.1. The black line shows the
expected asymptotic decay rate, h2, and the blue and red lines show the convergence of the
two numerical methods when (Nr, Nθ) is fixed at (6, 6) and (10, 10), respectively.

The τI,11 and τII,11 convergence data is plotted in Figure 3.4. The data in Table 3.1

is almost identical for (Nr, Nθ) = (6, 6), (8, 8) and (10, 10), and therefore we only show

the (Nr, Nθ) = (6, 6) data in the figure. The plot shows that we obtained O(h2)

convergence for both τI,11 and τII,11 as Th is refined from a 5× 5 mesh to 20× 20 mesh,

when (Nr, Nθ) = (6, 6). This is markedly different from the convergence behaviour of

ψ̂h,N , in which the q
∼
-direction spectral error for (Nr, Nθ) = (6, 6) dominated the finite

element error on the 20×20 x∼-direction mesh. Therefore, this indicates that, just as in

Section 2.6, the D domain spectral method exhibits superconvergence for τ
≈

compared
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to ψ̂. This behaviour is dictated by (3.96), which indicates that only a small fraction

of the terms in the expansion of ψ̂h,N in terms of spectral basis functions contribute

to the error in τ
≈
. As has been noted earlier, the superconvergence of τ

≈
is extremely

beneficial in the context of micro-macro computations for simulating dilute polymeric

fluids because in that setting the error in ψ̂ is irrelevant; we are solely interested in the

τ
≈

error.

Figure 3.4: Plots of the τI,11 and τII,11 convergence data in Table 3.1. The black line shows
the expected asymptotic decay rate, h2, and the solid and dashed blue lines show, respectively,
the τI,11 and τII,11 data for (Nr, Nθ) = (6, 6). The data for the other values of (Nr, Nθ) are
not plotted since the τ11 convergence data in Table 3.1 is virtually unaffected by increasing
the number of spectral basis functions.

Recall from the discussion in Section 3.8.1 that we expect method I to require

significantly less computational work per time-step in the q
∼
-direction than method II.

To demonstrate this in practice, we solved the same enclosed flow model problem using

both method I and method II. We used a 20 × 20 uniform mesh Th of square finite

elements with QΩ = 3600 and basis B with (Nr, Nθ) = (15, 15) so that ND = 465. With

Nproc = 4, the total computation time per time-step for method I was 1.75 seconds,

whereas for method II it was 3.42 seconds. This difference is due to the fact that

method II took 2.37 seconds per time-step to perform the q
∼
-direction computations,

whereas method I only took 0.70 seconds per time-step in the q
∼
-direction.

Nevertheless, for problems of physical interest, method II is often the preferred

alternating-direction method. This is because the fully implicit temporal discretisation

used by method II is more stable than the semi-implicit scheme in method I, especially

for larger flow rates and Weissenberg numbers (cf. Section 2.6.2). Hence method I

can require much smaller time-step sizes than method II, and this can often outweigh

the reduced computational complexity per time-step of method I. Also, for large-scale
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problems we generally prefer to satisfy only QH2 rather than QH1 since with QH2

we can obtain a smaller value of QΩ, which in turn reduces the computational work

required in each time-step of the alternating-direction method.

We now move on to consider the scaling of the computation time as we increase

the number of processors in the parallel implementation of the alternating-direction

method. The enclosed-flow problem considered above provides a convenient test case

with which we can quantify the parallel speedup for the alternating-direction method.

We studied this speedup by, first of all, solving the enclosed flow problem on one node

of the Lonestar parallel computer (each node contains 4 processors) to get the base

computation time per time-step, which we denote T (1). We then repeated the same

computation, but using more computational nodes of the parallel computer and we

recorded the computation time, T (N), in each case, where N denotes the number of

computational nodes that were used. We refer to the ratio T (1)/T (N) as the parallel

speedup.

The parameters that have the most significant effect on the computation time of the

parallel alternating-direction scheme are ND and QΩ, since these determine the num-

ber of x∼- and q
∼
-direction solves that need to be performed each time-step. Note that

there are only two steps in the alternating-direction algorithm for which the computa-

tion time does not scale down proportionally to the number of processors being used:

the matrix assembly for (3.43), which must be performed exactly once per time-step

irrespective of Nproc, and also the dense matrix redistribution that precedes direction

changes in the alternating-direction method. However, if the x∼- and q
∼
-direction solves

dominate the overall computation time, then we can expect that the parallel speedup

will scale linearly with the number of processors being used.

In order to examine the scaling of the parallel speedup in practice, we performed

computations for two different discrete spaces, such that (i) ND = 120 and QΩ = 3600,

and (ii) ND = 1800 and QΩ = 8100. We solved the enclosed flow problem for these

spaces using a number of different choices of Nproc. We used method II with basis B
to obtain the data below, but the parallel speedup behaviour is essentially the same

whether we use methods I or II or bases A or B. The base computation times were

T (1) = 0.53 seconds for the (ND, QΩ) = (120, 3600) computation, and T (1) = 157.0

seconds for the (ND, QΩ) = (1800, 8100) case.

The parallel speedup of the alternating-direction method for the two discrete spaces

discussed above is plotted in Figure 3.5. In the case that (ND, QΩ) = (1800, 8100), we

obtained a parallel speedup of 14.8 when N = 15 (i.e. Nproc = 60), whereas the

speedup tailed off to less than 10 when N = 15 for the computation with (ND, QΩ) =
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(120, 3600). This difference in the scaling of the parallel speedup is primarily due to the

fact that the overhead from the redistribution of Dn is much larger, as a proportion of

the overall computation time, for the smaller problem. For example, for the (ND, QΩ) =

(120, 3600) problem, matrix redistribution took 8.66% of the overall computation time

when N = 1, but when N = 15, it increased to 30.4%. By contrast, in the larger

problem with (ND, QΩ) = (1800, 8100), more time is spent on the q
∼
- and x∼-direction

solves in each time-step, so that only 0.89% of the computation time was taken for

the matrix redistribution when N = 1, which increased to 2.25% when N = 15. Since

2.25% is still only a small proportion of the overall computation time, the matrix

redistribution overhead does not significantly detract from the near optimal scaling of

the parallel speedup shown in Figure 3.5 for the (ND, QΩ) = (1800, 8100) case. This

indicates that as long as the values of ND and QΩ are large enough, the alternating-

direction method can scale efficiently to a very large number of processors.

Figure 3.5: Plot of speedup, i.e. T (1)/T (N), as the number of computational nodes is
increased from 1 to 15. The speedup data for (ND, QΩ) = (120, 3600) is plotted as a solid
line and the dashed line shows the data for (ND, QΩ) = (1800, 8100). For each computation
we chose the number of nodes so that Nproc(= 4N) was a common divisor of ND and QΩ in
order to ensure optimal load balancing in each case so that the comparisons of computation
time are fair.
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3.10 Conclusions

In this chapter we developed an alternating-direction method for the Fokker–Planck

equation, which is a hybrid of a classical Douglas–Dupont-type Galerkin alternating-

direction scheme, and a new quadrature based scheme. We were able to derive a range

of theoretical results for this scheme, including stability results in Section 3.4 and

convergence estimates in Section 3.7. Much of this theory built upon the analysis of

the Fokker–Planck equation in D that was considered in Chapter 2.

We also put particular emphasis on practical computations in this chapter, and we

discussed the implementation of the alternating-direction scheme in Section 3.8, and

followed up in Section 3.9 by presenting a range of computational results for alternating-

direction methods I and II applied to a model problem with a fixed velocity field, u∼. We

demonstrated that the convergence rates observed in practice for this model problem

are accurately described by the theoretical results in Section 3.7. Moreover, we showed

that, just as in Chapter 2, the q
∼
-direction spectral method yields a more accurate

solution for τ
≈

than it does for ψ̂, which means that if we are solely interested in the

accuracy of τ
≈

– as is the case when we consider the Navier–Stokes–Fokker–Planck

system – then we can take fewer spectral basis functions than we would need if ψ̂ were

the quantity of primary interest. This leads to significant savings when we solve the

Navier–Stokes–Fokker–Planck system, since the computational work required by the

alternating-direction method for the Fokker–Planck equation depends strongly on ND,

the number of q
∼
-direction basis functions.

In the next chapter we combine the numerical methods developed in this chapter

for the Fokker–Planck equation with a finite element scheme for solving the Navier–

Stokes equations to obtain an algorithm for solving the full micro-macro model for

dilute polymeric fluids.



Chapter 4

The Coupled
Navier–Stokes–Fokker–Planck
System

4.1 Introduction

In this chapter we develop an algorithm for solving the Navier–Stokes–Fokker–Planck

system, (1.42)–(1.46), and we use this algorithm to obtain computational results for

flow problems that are of physical interest. This chapter is relatively brief because the

components of our algorithm are already well understood; we use a standard mixed

finite element method for solving the Navier–Stokes equations and we couple this to

the alternating-direction scheme for the Fokker–Planck equation that was considered in

detail in Chapter 3. Theoretical analysis of the coupled algorithm is outside the scope

of this dissertation; our focus in this chapter is on obtaining practical computational

results. We expect, however, that a convergence analysis along the lines of those

developed in the papers [7] and [8] could be pursued in the case of the numerical

algorithm applied herein to the coupled Navier–Stokes–Fokker–Planck system.

The numerical method for the Navier–Stokes–Fokker–Planck system is discussed in

Section 4.2, and we present numerical results in Section 4.3. Note that throughout this

chapter we consider the FENE potential only but, once again, the methodology would

be the same for any spring potential that satisfies Hypotheses A and B.

4.2 Numerical method for the micro-macro model

The algorithm we use to couple the numerical methods for the Navier–Stokes equations

and the Fokker–Planck equation is essentially the same as those used by Chauvière &

128
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Lozinski [23,24,60] and Helzel & Otto [38] for this purpose. We discuss this procedure

below, but first we introduce numerical methods for the Navier–Stokes equations, and

also for the Stokes equations.

Recall the non-dimensionalised Navier–Stokes equations from Chapter 1, in which

∇∼ x · τ≈ arises as a forcing term:

∂u∼
∂t

+ u∼ · ∇∼ xu∼ +∇∼ xp =
γ

Re
∆xu∼ +

b+ d+ 2

b

1− γ
Re Wi

∇∼ x · τ≈, (4.1)

∇∼ x · u∼ = 0. (4.2)

In this chapter we will also consider a Stokes–Fokker–Planck model, which is valid in

the limit Re → 0+. In the Stokes equations the incompressibility condition (4.2) is

unchanged, but we use the following momentum equation (in dimensional form):

∇∼ xp = νs∆xu∼ +
1

ρ
∇∼ x · τ≈, (4.3)

instead of (1.11). We non-dimensionalise (4.3) by using (1.24) and the pressure rescal-

ing p = (νU0/L0)p̂,1 to obtain:

∇∼ xp = γ∆xu∼ +
b+ d+ 2

b

1− γ
Wi
∇∼ x · τ≈. (4.4)

Next, we introduce mixed finite element approximations of the incompressible

Navier–Stokes and Stokes equations. The numerical analysis of these equations is

well understood and therefore we discuss our approach only briefly; for further details

see [31] or [34].

As in Chapter 3, let Th denote a finite element triangulation of Ω, and let Vh be

the corresponding finite element space with quadratic shape functions that we used

for the alternating-direction method for ψ̂h,N in Chapter 3. Also, let Ph denote the

H1(Ω)-conforming finite element space based on Th that uses linear shape functions.

Then Vh and Ph are the Taylor–Hood finite element spaces for the Navier–Stokes equa-

tions (cf. Chapter 5 of [31]); these spaces are known to satisfy the inf-sup stability

condition (cf. Section 12.6 of [19]). As noted in Chapter 3, in general the Taylor–Hood

scheme does not yield a pointwise divergence free velocity field. In the context of the

coupled Navier–Stokes–Fokker–Planck system, this may lead to undesirable effects, for

example, related to the integral conservation property identified for the Fokker–Planck

equation in (3.10). We did not examine the behaviour of this integral property in our

numerical experiments presented in Section 4.3, but this is a question of interest for

future research.

1This pressure scaling is appropriate for creeping flow.
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Using the discrete spaces introduced above, our numerical method for the Navier–

Stokes system is defined as follows:

Suppose u∼
0
h ∈ (Vh)

d, p0
h ∈ Ph and τ

≈
n
h,N ∈ (L2(Ω))d×d for n = 0, . . . , NT −1 are given.

Then, for n = 0, . . . , NT − 1, find u∼
n+1
h ∈ (Vh)

d and pn+1
h ∈ Ph satisfying:∫

Ω

u∼
n+1
h − u∼nh

∆t
· v∼ dx∼ +

∫
Ω

u∼
n+1
h · ∇∼ xu∼

n+1
h · v∼ dx∼ −

∫
Ω

pn+1
h ∇∼ x · v∼ dx∼

+
γ

Re

∫
Ω

∇∼ xu∼
n+1
h : ∇∼ xv∼ dx∼ +

b+ d+ 2

b

1− γ
Re Wi

∫
Ω

τ
≈
n
h,N : ∇∼ xv∼ dx∼

+

∫
∂Ω

(
pn+1
h I

≈
− γ

Re
∇∼ xu∼

n+1
h − b+ d+ 2

b

1− γ
Re Wi

τ
≈
n
h,N

)
· v∼ · n∼ ds = 0 ∀v∼ ∈ (Vh)

d, (4.5)∫
Ω

q∇∼ x · u∼
n+1
h dx∼ = 0 ∀q ∈ Ph. (4.6)

Note that for tensors A
≈

and B
≈

, the colon notation used above is defined as A
≈

: B
≈

:=∑
aijbij.

In this chapter we consider channel flow problems in which we have an inflow

boundary, ∂Ωin, an outflow boundary, ∂Ωout and channel wall boundaries ∂Ω0, such

that ∂Ω = ∂Ωin ∪ ∂Ωout ∪ ∂Ω0. We assume that the channel wall boundaries are

stationary and we impose the no-slip boundary condition u∼h = 0∼ on ∂Ω0. Also, we

impose u∼h = u∼ in on ∂Ωin, where u∼ in is an inflow velocity profile corresponding to a

fully-developed flow. In Section 4.3, the maximum of u∼ in is denoted by Umax. As a

result of these Dirichlet boundary conditions, we have v∼ = 0∼ on ∂Ωin ∪ ∂Ω0. Also, on

∂Ωout, we impose (
pn+1
h I

≈
− γ

Re
∇∼ xu∼

n+1
h − b+ d+ 2

b

1− γ
Re Wi

τ
≈
n
h,N

)
= 0
≈
.

Hence the boundary term in (4.5) vanishes on all of ∂Ω. Note that the τ
≈h,N

terms in

(4.5) are at time-level n rather than n + 1; we shall see below that this enables us to

couple the Fokker–Planck and Navier–Stokes equations in a convenient manner.

The momentum equation, (4.5), is nonlinear due to the term
∫

Ω
u∼
n+1
h ·∇∼ xu∼

n+1
h ·v∼ dx∼.

Hence, we use Newton’s method to solve the nonlinear system of equations arising from

(4.5) and (4.6) at each time-level.

We now turn our attention to the Stokes equations, which we discretise in a very

similar manner. The difference is that we replace (4.5) with the following equation:

−
∫

Ω

pn+1
h ∇∼ x · v∼ dx∼ + γ

∫
Ω

∇∼ xu∼
n+1
h : ∇∼ xv∼ dx∼ +

b+ d+ 2

b

1− γ
Wi

∫
Ω

τ
≈
n
h,N : ∇∼ xv∼ dx∼

+

∫
∂Ω

(
pn+1
h I

≈
− γ∇∼ xu∼

n+1
h − b+ d+ 2

b

1− γ
Wi

τ
≈
n
h,N

)
· v∼ · n∼ ds = 0 ∀v∼ ∈ (Vh)

d. (4.7)
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We we apply the same boundary conditions as discussed above for the Navier–Stokes

case, and therefore the boundary term in (4.7) vanishes also. Note that there is no

time derivative in (4.4), and hence in this case the time dependence comes only through

τ
≈
n
h,N and the boundary data. The Stokes equations are linear and therefore we do not

require a Newton scheme in this case.

The mixed finite element methods described above for the Navier–Stokes and Stokes

equations were implemented in the finite element library libMesh [47]. In both cases,

we solve the linear systems that arise from the finite element discretisations using GM-

RES with incomplete LU factorisation as a preconditioner. In order to obtain faster

convergence rates for the iterative solver one could apply more advanced precondi-

tioning techniques, such as the techniques discussed in [31] that take advantage of the

structure of the linear systems arising from the discretisation of Stokes or Navier–Stokes

problems. However, there is little incentive for us to accelerate the convergence of our

Navier–Stokes or Stokes solvers in this way because the overall computation time for

computations with the Navier–Stokes–Fokker–Planck system is dominated by solving

the Fokker–Planck equation on Ω×D.

In Chapter 3, we restricted our attention to enclosed flows to simplify the analysis

in that chapter, but we are now interested in problems that have inflow and outflow

boundaries. Therefore, we need to define the boundary conditions for the Fokker–

Planck equation on ∂Ωin and ∂Ωout.

In fact, since the Fokker–Planck equation on Ω is a pure advection problem, we

do not need to do anything different on ∂Ωout since by definition we have u∼h · n∼ > 0

there.2 However, we do need to treat the inflow boundary differently. Suppose we

set u∼
n
h|∂Ωin

= u∼
n
in for the Stokes/Navier–Stokes system for n = 1, . . . , NT . Then that

boundary data also defines κ
≈
n
in = ∇∼ xu∼

n
in on ∂Ωin,3 and κ

≈ in in turn determines the inflow

boundary data, ψ̂in, on ∂Ωin×D for the Fokker–Planck equation. That is, for s ∈ ∂Ωin,

ψ̂nin(s, ·) : q
∼
∈ D 7→ ψ̂nin(s, q

∼
) ∈ R for n = 1, . . . , NT is determined by solving the q

∼
-

direction Fokker–Planck equation corresponding to κ
≈
n
in(s), so that ψ̂nin(s, ·) ∈ PN(D)

for each n. Writing

ψ̂in(s, q
∼
) =

ND∑
k=1

ψ̂in,k(s)Yk(q), (s, q
∼
) ∈ ∂Ωin ×D,

it then follows from (3.31) that ψ̂in,k defines the inflow boundary data on ∂Ωin for ψ̂k

in (3.43). In practice we only solve for ψ̂in at the nodes of Th on ∂Ωin so that we

2n∼ is the outward unit normal to ∂Ω.
3Since u∼in is a fully-developed flow, we assume that the velocity field upstream of ∂Ωin has the

same profile u∼in; this ensures that ∇∼ xu∼in is well-defined on the inflow boundary.
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can impose the inflow boundary condition on the line function ψ̂k in an interpolatory

sense. Notice also that we can compute the inflow boundary data for ψ̂h,N before we

begin solving the Navier–Stokes–Fokker–Planck system, since u∼ in and κ
≈ in are specified

a priori.

We now define the algorithm for solving the Navier–Stokes–Fokker–Planck system.

First of all, we initialise the system to the equilibrium state by setting u∼
0
h = 0∼ on

Ω, and therefore κ
≈

0 = ∇∼ xu∼
0
h = 0

≈
on Ω also. Putting κ

≈
= 0

≈
in (2.59), we can see

that ψ = M is the corresponding equilibrium steady-state solution, and hence we set

ψ̂0
h,N =

√
M ∈ Vh⊗PN(D) on Ω×D.4 Also, for consistency with ψ̂0

h,N , we set τ
≈

0
h,N = I

≈

on Ω. Then, for n = 0, . . . , NT − 1, we perform the following steps:

1. Compute u∼
n+1
h ∈ Vh and pn+1

h ∈ Ph using the mixed finite element method dis-

cussed above for either the Navier–Stokes or Stokes system. We use the tensor

τ
≈
n
h,N in (4.5) or (4.7).

2. Use method I or method II to compute ψ̂n+1
h,N ∈ Vh ⊗ PN(D) with κ

≈
n in (3.40)

for method I or with κ
≈
n+1 in (3.56) for method II, and u∼

n+1
h in (3.43) for either

method.

3. Using (1.45), compute τ
≈
n+1
h,N on Ω based on ψ̂n+1

h,N ∈ Vh ⊗ PN(D).

4. Return to 1. and continue marching in time.

Note that the τ
≈h,N

terms in the momentum equations (4.5) or (4.7) are explicit in

time. This allows the Stokes/Navier–Stokes equations to be coupled to the Fokker–

Planck equation in a simple manner, but the drawback is that the algorithm defined

in steps 1. to 4. above is only conditionally stable. In Section 4.3 we use ∆t = 0.01

and this time-step size is sufficiently small to yield a reliable numerical method for the

micro-macro problems that we consider.

4.3 Numerical Results

In this section, we consider two distinct problems. The first is a planar contraction

flow in the d = 2 case, which we discuss in Section 4.3.1, and the second is a flow

around a sphere in the d = 3 case, considered in Section 4.3.2. For each of these two

problems we present numerical results for one particular discrete space Vh ⊗ PN(D),

but in each case we performed mesh refinement studies (i.e. we solved using a sequence

4We assume here that
√
M ∈ PN (D), which is reasonable according to Remark 2.17.
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of increasingly refined spaces) to ensure that the numerical results shown below are

accurate.

4.3.1 4–1 planar contraction flow

Contraction flows are standard benchmark problems in computational rheology because

they are challenging from the numerical point of view and they also have practical

relevance in industrial applications (for a detailed discussion of contraction flows see

Chapter 8 of [69]). In this section we consider the coupled Navier–Stokes–Fokker–

Planck model with Re = 1 in a contracting domain, which is 10 units long, 4 units

wide in the wider section and 1 unit wide in the narrow section. We set ∂Ωin and ∂Ωout

to be the left-hand and right-hand boundaries of Ω, respectively, and we let the top

edge boundary be ∂Ω0. In this case, to save computational work we also imposed a

symmetry boundary condition on the bottom boundary by setting the y-component

of u∼h to zero there. We set u∼ in to be a parabolic inflow profile, corresponding to

steady Poiseuille flow in a channel, that vanishes at the top boundary and achieves its

maximum value of Umax = 1 at the symmetry boundary.

As specified in Chapter 3, we need κ
≈

= ∇∼ xu∼h ∈ L∞(Ω) in order to use alternating-

direction methods I or II. Clearly, for any finite element approximation, u∼h, this condi-

tion will be satisfied. Nevertheless, for the moment, let us consider the weak solution,

u∼ ∈ Hk(Ω) for some k > 0. In order to guarantee that ∇∼ xu∼ ∈ L∞(Ω), we require the

embedding Hk−1(Ω) ⊂ L∞(Ω) to hold; a sufficient condition for this embedding is that

k > 2. However, contraction flows of polymeric fluids are typically simulated using

‘L-shaped’ domains and it is well known that the Stokes and Navier–Stokes equations

exhibit a corner singularity on domains of this type so that in general u∼ 6∈ H2(Ω) (cf.

Remark 5.10 in [31]). Therefore, ∇∼ xu∼ will not, in general, belong to L∞(Ω), and hence

the sequence κ
≈h

= ∇∼ xu∼h will not be uniformly bounded in h as h → 0+. As a result,

instead of an L-shaped domain, we use the physical space domain with a rounded cor-

ner shown in Figure 4.1. Also, in order to resolve the solution satisfactorily, the finite

element mesh, Th, has been graded so that it is finer near the corner.

We applied the algorithm defined in Section 4.2 for the coupled Navier–Stokes–

Fokker–Planck system to the contraction flow problem described above. We set b = 12,

Wi = 0.8, γ = 0.59 and took 500 time-steps with ∆t = 0.01 so that T = 5. We

used alternating-direction method II with basis A and the p = 4 quadrature rule

on triangles for which QK̂ = 6 (cf. Section 3.8.3) so that QH2 was satisfied. The
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mesh Th contained 905 triangular finite elements and therefore QΩ = 5430.5 Also, we

used (Nr, Nθ) = (20, 20) for the q
∼
-direction spectral method, so that ND = 820. The

macroscopic velocity field at T = 5 is plotted in Figure 4.1(b) and the corresponding

components of τ
≈h,N

are shown in Figure 4.2. The computation was performed using 40

processors of the Lonestar supercomputer at the Texas Advanced Computing Centre

using the parallel implementation of the alternating-direction method described in

Section 3.8.4, and each time-step took 1.16 seconds.

As shown in Table 2.4, the backward Euler temporal discretisation of the Fokker–

Planck equation in the q
∼
-direction is more stable than the semi-implicit discretisation

in the case that Wi ‖κ
≈
‖L∞(Ω) = 5. Therefore, for the contraction flow problem consid-

ered here, in which Wi ‖κ
≈
‖L∞(Ω) ≈ 10 (the maximum κ

≈
values occur near the corner),

the stability advantage of method II outweighs method I’s advantage of lower compu-

tational cost per time-step.

(a) (b)

Figure 4.1: (a) The finite element mesh Th used for the contraction flow computations. Th
contains 905 triangular elements. (b) Streamlines for the macroscopic velocity field; this
corresponds closely to the Figure 8.9 in [69], which shows computational results for planar
contraction flows obtained using the fully macroscopic Oldroyd B model.

4.3.2 Flow around a sphere

The planar flow of a polymeric fluid around a cylindrical obstacle in a channel has

also been a popular benchmark problem in the computational rheology literature (see

Chapter 9 of [69]). In this section we consider a three-dimensional analogue in which we

solve the micro-macro model for a suspension of FENE dumbbells for the flow around

a sphere with radius 1 in a three-dimensional channel with 4× 4 square cross-section.

56335 quadrature points would have been required to satisfy QH1; hence we obtain a significant
reduction in the number of q

∼
-direction solves per time-step by satisfying QH2 only.
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τ11

τ12

τ22

Figure 4.2: The components of τ
≈h,N

at T = 5. In the τ11 plot, values range from 0.45 (blue)
to 15.7 (red), in the τ12 (= τ21) plot we have -9.75 (blue) to 1.41 (red) and in the τ22 plot,
0.46 (blue) to 11.5 (red). The polymeric extra-stress is largest in the region near the rounded
corner.

In this case Ω ⊂ R3 and Ω ×D ⊂ R6. We set b = 12, Wi = 1, γ = 0.59 and we used

the Stokes equations for the macroscopic velocity field.

The mesh Th is shown in Figure 4.3. We set u∼ in to be the velocity profile corre-

sponding to steady Stokes flow in a channel with square cross-section, with Umax = 1.

We also imposed a no-slip boundary condition condition on the channel walls and on

the spherical obstacle, and we set two symmetry boundary conditions so that we only

needed to simulate the flow in one quarter of the domain. We again used alternating-

direction method II for this problem since Wi ‖κ
≈
‖L∞(Ω) ≈ 5.

The mesh Th contains 5150 tetrahedral elements. According to Section 3.8.3, we

require QK̂ = 14 in order to satisfy either QH1 or QH2, and hence we have QΩ = 72100.

For the q
∼
-direction spectral method we used basis C with (Nr, Nsph) = (12, 12), so that

ND = 1092. Therefore, in each time-step, 72100 three-dimensional q
∼
-direction solves

and 1092 three-dimensional x∼-direction solves were performed. We took 100 time-steps
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with ∆t = 0.01 to reach T = 1. Plots of the x-component of u∼h and of ph at T = 1

are shown in Figure 4.3. Also, the components of the polymeric extra-stress tensor at

T = 1 are shown in Figure 4.4. This computation was performed with Nproc = 128 and

it took 38.7 seconds to evaluate each time-step of the coupled Stokes-Fokker–Planck

system.

(a) (b)

Figure 4.3: (a) Plot of the pressure, ph ∈ Ph, at T = 1, with values ranging from 0.5 (blue)
to 14.4 (red). Also, this plot shows the mesh Th. Note that the mesh is very fine in the
vicinity of the spherical obstacle in order to resolve the solution structure in that region. (b)
The x-component of the macroscopic velocity field at T = 1; values range from 0 (blue) to 1
(red).

4.4 Conclusions

In this chapter we introduced a deterministic multiscale algorithm for the micro-macro

model of dilute polymeric fluids. This algorithm couples the alternating-direction

scheme from Chapter 3 to a finite element method (for Stokes or Navier–Stokes) for

computing the macroscopic velocity field. We used this algorithm to simulate two chan-

nel flows; a 4–to–1 contraction (with a rounded reentrant corner to avoid a singularity

in u∼) in Section 4.3.1, and a flow around a spherical obstacle in a channel with square

cross-section in Section 4.3.2.

We made extensive use of parallel computation in order to obtain the computational

results in Section 4.3. In particular, to the best of our knowledge the micro-macro model

has not previously been used in the case that Ω × D ∈ R6 and this was only made

feasible in Section 4.3.2 through the use of large-scale parallel computation.
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τ11 τ12

τ13 τ22

τ23 τ33

Figure 4.4: Plots of the components of the polymeric extra-stress tensor, τ
≈h,N

, at T = 1
for the channel flow around a spherical obstacle. The minimum (blue) and maximum (red)
values in each plot are as follows; τ11: 0.53 to 6.25, τ12: -1.25 to 2.41, τ13: -1.21 to 2.5, τ22:
0.48 to 3.35, τ23: -0.33 to 1.15 and τ33: 0.47 to 3.46.



Chapter 5

Conclusions

In this dissertation we have considered the analysis and implementation of numerical

methods for solving the multiscale Navier–Stokes–Fokker–Planck system, (1.42)–(1.46),

which models the flow of dilute polymeric fluids. From both the theoretical and com-

putational point of view, the most challenging component of this coupled model is the

high-dimensional Fokker–Planck equation, (1.44), which is posed on the domain Ω×D
in 2d spatial dimensions. Hence, most of our attention was focused on the Fokker–

Planck equation, and we developed a computational framework for this equation that

is efficient in practice and is also underpinned by rigorous theoretical analysis.

First of all, in Chapter 2, we considered the Fokker–Planck equation on D only.

We derived a range of analytical results for the weak solution of this equation, and

we proved stability bounds and optimal order convergence estimates for a Galerkin

spectral method for this problem. These results were obtained for the Maxwellian-

transformed Fokker–Planck equation for any spring potential satisfying Hypotheses A

and B. This transformation led to a convenient symmetrisation of the principal part

of the differential operator, and consequently facilitated the derivation of theoretical

results. We also considered an alternative transformation of the FENE Fokker–Planck

equation due to Lozinski & Chauvière [24], in which ψ̂ := ψ/M2s/b. We showed that

the Chauvière–Lozinski-transformed Fokker–Planck equation is well-posed as long as

b ≥ 4s2/(2s − 1) and s > 1/2, and in a series of remarks in Chapter 2, we indicated

how one could extend the results that were derived for the Maxwellian-transformed

formulation to the Chauvière–Lozinski formulation.

In Section 2.6, we presented a range of computational results for the spectral method

on D based on the Maxwellian-transformed formulation. We demonstrated that this

spectral method exhibits the rapid spatial convergence characterised in the convergence

estimates in Section 2.5. We also compared this method to the method of Chauvière &

Lozinski based on numerical results reported in [24], and we showed that, at least for

138
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moderate values of b, the two methods converge at a comparable rate. In the context of

the Navier–Stokes–Fokker–Planck system, the convergence of the extra-stress tensor τ
≈

is, in fact, more important than the convergence rate of ψ and we demonstrated using

an argument based on Parseval’s identity that for our Galerkin spectral method, the

error in τ
≈

will typically be much smaller than the error in ψ. We demonstrated that

in practical computations this manifests itself as superconvergence of τ
≈
.

In Chapter 3 we introduced an alternating-direction framework for solving the

Fokker–Planck equation on Ω×D ∈ R2d. Approaches of this type have been used suc-

cessfully for this problem already, e.g. see the work of Chauvière & Lozinski [23,24,60]

or Helzel & Otto [38]. However, these authors did not consider the behaviour of their

alternating-direction schemes in detail from a theoretical point of view, whereas the

numerical analysis of our alternating-direction scheme is a priority in Chapter 3. We

proposed a hybrid alternating-direction method that combines a Douglas–Dupont-type

Galerkin alternating-direction method in the x∼-direction with a new quadrature-based

scheme in the q
∼
-direction. We were able to establish a number of theoretical results

for this algorithm and, in particular, we proved an a priori convergence estimate for

method I in the case that Quadrature Hypothesis 1 is satisfied.

We tested our computational approach on an enclosed flow problem with a fixed

velocity field. The results from these computations are shown in Section 3.9 and

we showed that the convergence rates that we observe in practice conform to the

theoretical estimates obtained in Section 3.7. We obtained these results using a parallel

implementation of the numerical method, and we also used this enclosed flow model

problem to study the parallel speedup obtained when the number of processors, Nproc,

is increased. We showed that the parallel implementation of the alternating-direction

method can scale well to a large number of processors.

Finally, in Chapter 4, we coupled the alternating-direction method from Chapter 3

to a mixed finite element method for the Navier–Stokes or Stokes equations to obtain

an algorithm for the full micro-macro model for dilute polymeric fluids. We used this

algorithm to obtain computational results for a 4–to–1 contraction flow in the d = 2

case, and also for a flow around a spherical obstacle in a channel with square cross-

section in the d = 3 case. We used parallel computation again in order to significantly

reduce the computation time that was required for these problems. To the best of our

knowledge the flow around a sphere problem considered in Section 4.3.2 is the first

time the micro-macro model has been solved in a case where Ω×D ⊂ R6.

There has already been a lot of impressive work on the development of practical de-

terministic multiscale methods for simulating dilute polymeric fluids, most notably by



140

Lozinski, Chauvière and collaborators [23, 24, 59, 60, 61]. These authors demonstrated

the feasibility of the deterministic multiscale approach for some classes of problems

and showed that it has a number of advantages over more well-established approaches

such as stochastic or fully macroscopic methods. However, the deterministic multi-

scale method has not previously been the subject of detailed numerical analysis. As

discussed above, the primary contribution of this thesis has been to advance the the-

oretical understanding of numerical methods for the Fokker–Planck equation, which,

for deterministic multiscale numerical methods, is the pivotal component of the micro-

macro model. Also, we developed practical numerical methods that conformed to the

hypotheses of our analytical results to ensure that these methods are based on rigorous

mathematical foundations.

5.1 Future directions

The work in this thesis could be extended in a number of ways.

First of all, we did not consider the numerical analysis of the algorithm for the

coupled Navier–Stokes–Fokker–Planck equation in Chapter 4. It would be interesting

and useful to develop theoretical results for this scheme, especially in order to quantify

the time-step limitation introduced by the conditionally stable coupling scheme, and

perhaps to consider other schemes that avoid such a restriction. Numerical analysis

of the Navier–Stokes–Fokker–Planck system has been considered in the papers [7, 8]

by Barrett & Süli. In [7], the authors showed convergence for a general family of

Galerkin-type methods in the corotational case and this is extended, for a finite element

discretisation, to the general noncorotational case in [8].

Another possibly fruitful direction would be to develop a numerical framework

for simulating dilute polymeric fluids in which the polymer molecules are modelled as

bead-spring chains. As described in Chapter 1, this would lead to a higher-dimensional

configuration space, and is consequently much more challenging than the dumbbell

case from a computational point of view. This topic has already received a lot of

attention in the literature, although so far the emphasis has been on the Fokker–Planck

equation for homogeneous flows, i.e. in which there is no x∼-dependence. Therefore, it

is conceivable that a good method for simulating a suspension of bead-spring chains

would be to use the alternating-direction framework developed in Chapter 3, except

with a q
∼
-direction numerical method that is appropriate for the Fokker–Planck equation

in a high-dimensional configuration space (e.g. a sparse grid or reduced basis method,

see Section 1.4), rather than the q
∼
-direction spectral method that we used in this work.
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Another interesting direction of future research would be to apply the alternating-

direction methodologies that we have developed for the Fokker–Planck equation to

other equations that may also be well suited to such methods. For example, the

Vlasov–Fokker–Planck equation for modelling electrostatic plasmas [37,83] has a similar

structure to the Fokker–Planck equation for polymeric fluids in that it is also posed

on a domain that is the cartesian product of a physical space and a configuration

space domain. Indeed, operator splitting methods have already been applied to the

Vlasov–Fokker–Planck equation in [37].

Finally, we made extensive use of parallel computation in this dissertation, and

we showed that our alternating-direction schemes are very well suited to implementa-

tion on parallel architectures. It would be interesting to use the alternating-direction

methods developed in this thesis on much larger numbers of processors than we have

considered here, for example, with Nproc being on the order of 103 or 104. This would

presumably enable much larger problems than even the flow around the sphere con-

sidered in Section 4.3.2 to be solved. It is also conceivable, however, that for very

large-scale problems, each q
∼
-direction or x∼-direction subproblem may be ‘too large’

to be solved on a single processor, as we proposed in Section 3.8.4. If we sought to

solve each subproblem using multiple processors, then interesting issues related to load

balancing and mesh partitioning may arise; for example, we could presumably couple

the partitioning strategy outlined in Section 3.8.4 with standard algorithms for solv-

ing PDEs on parallel architectures, e.g. mesh partitioning or domain decomposition

strategies.



References

[1] D. J. Acheson. Elementary Fluid Dynamics. Oxford University Press, 1990.

[2] A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings. A new family of solvers for

some classes of multidimensional partial differential equations encountered in ki-

netic theory modeling of complex fluids. J. Non-Newtonian Fluid Mech., 139:153–

176, 2006.

[3] A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings. A new family of solvers

for some classes of multidimensional partial differential equations encountered in

kinetic theory modelling of complex fluids. part ii: Transient simulation using

space-time separated representations. J. Non-Newtonian Fluid Mech., 144:98–121,

2007.

[4] F. G. Avkhadiev and K.-J. Wirths. Unified Poincaré and Hardy inequalities with
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