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1 Introduction

Numerical solution of PDEs is a rich and active field of modern applied mathematics. The steady
growth of the subject is stimulated by ever-increasing demands from the natural sciences, engineering
and economics to provide accurate and reliable approximations to mathematical models involving partial
differential equations (PDEs) whose exact solutions are either too complicated to determine in closed form
or, in many cases, are not known to exist. While the history of numerical solution of ordinary differential
equations is firmly rooted in 18th and 19th century mathematics, the mathematical foundations of the
field of numerical solution of PDEs are much more recent: they were first formulated in the landmark
paper Über die partiellen Differenzengleichungen der mathematischen Physik (On the partial difference
equations of mathematical physics) by Richard Courant, Karl Friedrichs, and Hans Lewy, published
in 1928. There is a vast array of powerful numerical techniques for specific PDEs: level set and fast-
marching methods for front-tracking and interface problems; numerical methods for PDEs on, possibly
evolving, manifolds; immersed boundary methods; mesh-free methods; particle methods; vortex methods;
various numerical homogenization methods and specialized numerical techniques for multiscale problems;
wavelet-based multiresolution methods; sparse finite difference/finite element methods, greedy algorithms
and tensorial methods for high-dimensional PDEs; domain-decomposition methods for geometrically
complex problems, and numerical methods for PDEs with stochastic coefficients that feature in a number
of applications, including uncertainty quantification problems. Our brief review cannot do justice to
this huge and rapidly evolving subject. We shall therefore confine ourselves to the most standard and
well-established techniques for the numerical solution of PDEs: finite difference methods, finite element
methods, finite volume methods and spectral methods. Before embarking on our survey, it is appropriate
to take a brief excursion into the theory of PDEs in order to fix the relevant notational conventions and
to describe some typical model problems.

2 Model partial differential equations

A linear partial differential operator L of order m with real-valued coefficients aα = aα(x), |α| ≤ m, on
a domain Ω ⊂ R

d, defined by

L :=
∑

|α|≤m

aα(x)∂
α, x ∈ Ω,

is called elliptic if, for every x := (x1, . . . , xd) ∈ Ω and every nonzero ξ := (ξ1, . . . , ξd) ∈ R
d,

Qm(x, ξ) :=
∑

|α|=m

aα(x)ξ
α 6= 0.

1



Here α := (α1, . . . , αd) is a d-component vector with nonnegative integer entries, called a multi-index,
|α| := α1 + · · · + αd is the length of the multi-index α, ∂α := ∂α1

x1
. . . ∂αd

xd
, with ∂xj

:= ∂/∂xj , and
ξα := ξα1

1 · · · ξαd

d . In the case of complex-valued coefficients aα the definition above is modified by
demanding that |Qm(x, ξ)| 6= 0 for all x ∈ Ω and all nonzero ξ ∈ R

d. A typical example of a first-
order elliptic operator with complex coefficients is the Cauchy–Riemann operator ∂z̄ := 1

2

(

∂x + ı∂y
)

,

where ı :=
√
−1. With this general definition of ellipticity even-order operators can exhibit some rather

disturbing properties. For example, the Bitsadze equation ∂xxu + 2ı∂xyu − ∂yyu = 0 admits infinitely
many solutions in the unit disc Ω in R

2 centered at the origin, all of which vanish on the boundary
∂Ω of Ω. Indeed, with z = x + ıy, u(x, y) = (1 − |z|2)f(z) is a solution that vanishes on ∂Ω for any
complex analytic function f . Thus a stronger requirement, referred to as uniform ellipticity, is frequently
imposed; for real-valued coefficients aα, |α| ≤ m, and m = 2k where k is a positive integer, uniform
ellipticity demands the existence of a constant C > 0 such that (−1)kQ2k(x, ξ) ≥ C|ξ|2k for all x ∈ Ω
and all nonzero ξ ∈ R

d.
The archetypal linear second-order uniformly elliptic PDE is −∆u + c(x)u = f(x), x ∈ Ω. Here c

and f are real-valued functions defined on Ω and ∆ :=
∑d

i=1 ∂
2
xi

is the Laplace operator. When c < 0 the
equation is called the Helmholtz equation. In the special case when c(x) ≡ 0 the equation is referred to as
Poisson’s equation, and when c(x) ≡ 0 and f(x) ≡ 0 as Laplace’s equation. Elliptic PDEs arise in a range
of mathematical models in continuum mechanics, physics, chemistry, biology, economics and finance.
For example, in a two-dimensional flow of an incompressible fluid with flow-velocity u = (u1, u2, 0) the
stream-function ψ, related to u by u = ∇ × (0, 0, ψ), satisfies Laplace’s equation. The potential Φ
of a gravitational field, due to an attracting massive object of density ρ, satisfies Poisson’s equation
∆Φ = 4πGρ, where G is the universal gravitational constant.

More generally, one can consider fully nonlinear second-order PDEs:

F (x, u,∇u,D2u) = 0,

where F is a real-valued function defined on the set Υ := Ω × R × R
d × R

d×d
symm, with a typical element

υ := (x, z, p, R), where x ∈ Ω, z ∈ R, p ∈ R
d and R ∈ R

d×d
symm, Ω is an open set in R

d, D2u denotes
the Hessian matrix of u, and R

d×d
symm is the d(d + 1)/2-dimensional linear space of real symmetric d × d

matrices, d ≥ 2. An equation of this form is said to be elliptic on Υ if the d × d matrix whose entries
are ∂F/∂Rij , i, j = 1, . . . , d, is positive definite at each υ ∈ Υ. An important example, encountered in
connection with optimal transportation problems, is the Monge–Ampère equation: detD2u = f(x) with
x ∈ Ω; for the equation to be elliptic it is necessary to demand that the twice continuously differentiable
function u is uniformly convex at each point of Ω, and for such a solution to exist we must also have f
positive.

Parabolic and hyperbolic PDEs typically arise in mathematical models where one of the independent
physical variables is time, t. For example,

∂tu+ Lu = f and ∂ttu+ Lu = f,

where L is a uniformly elliptic partial differential operator of order 2m and u and f are functions of
(t, x1, . . . , xd), are uniformly parabolic and uniformly hyperbolic PDEs, respectively. The simplest exam-
ples are the (uniformly parabolic) unsteady heat equation and the (uniformly hyperbolic) second-order
wave equation, where

Lu := −
d

∑

i,j=1

∂xj
(aij(t, x)∂xi

u) ,

and aij(t, x) = aij(t, x1, . . . , xd), i, j = 1, . . . , d, are the entries of a d×d matrix, which is positive definite,
uniformly with respect to (t, x1, . . . , xd).
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Not all PDEs are of a certain fixed type. For example, the following PDEs aremixed elliptic-hyperbolic;
they are elliptic for x > 0 and hyperbolic for x < 0:

∂xx + sign(x)∂yyu = 0 (Lavrentiev equation),

∂xxu+ x∂yyu = 0 (Tricomi equation),

x∂xx + ∂yyu = 0 (Kel’dish equation).

Stochastic analysis is a fertile source of PDEs of nonnegative characteristic form, such as

∂tu−
d

∑

i,j=1

∂xj
(aij∂xi

u) +

d
∑

i=1

bi ∂xi
u+ cu = f,

where bi, c and f are real-valued functions of (t, x1, . . . , xd), and aij = aij(t, x1, . . . , xd), i, j = 1, . . . , d,
are the entries of a positive semidefinite matrix; since the aij are dependent on the temporal variable t,
the equation is, potentially, of changing type. An important special case is when the aij are all identically
equal to zero, resulting in the first-order hyperbolic equation, also referred to as advection (or transport)
equation:

∂tu+
d

∑

i=1

bi(t, x) ∂xi
u+ c(t, x)u = f(t, x).

The nonlinear counterpart of this equation,

∂tu+
d

∑

i=1

∂xi
[f(t, x, u)] = 0,

plays an important role in compressible fluid dynamics, traffic flow models and flow in porous media.
Special cases include the Burgers equation ∂tu + ∂x(

1
2
u2) = 0 and the Buckley–Leverett equation ∂tu +

∂x(u
2/(u2 + 1

4
(1− u)2)) = 0.

PDEs are rarely considered in isolation: additional information is typically supplied in the form of
boundary conditions, imposed on the boundary ∂Ω of the domain Ω ⊂ R

d in which the PDE is studied,
or, in the case of parabolic and hyperbolic equations, also as initial conditions at t = 0. The PDE
in tandem with the boundary/initial conditions is referred to as a boundary-value problem/initial-value
problem, or when both boundary and initial data are supplied, as an initial-boundary-value problem.

3 Discretization, consistency, stability and convergence

The key idea in the construction of numerical methods for the approximate solution of PDEs, is to replace
the PDE problem, posed in an infinite-dimensional function space, with a suitable sequence of finite-
dimensional problems. The aim of this section is to describe, in general terms, this procedure, usually
referred to as discretization. We shall also introduce at an abstract level the most important concepts
associated with the notion of discretization, namely those of consistency, stability and convergence. The
discussion in this section is based on the work of Stetter [16].

Given the triple P = {X, Y, F}, where X and Y are normed linear spaces and F : X → Y , with 0
(the zero element of the normed linear space Y ) contained in the range of F , we consider the following
problem:

Find z ∈ X such that Fz = 0. (1)

Typically X and Y are infinite-dimensional normed linear spaces, and the mapping F is nonlinear. In the
present context X and Y will be function spaces and F will be a (nonlinear) partial differential operator.

Equation (1) is called the original problem or continuous problem, and its solution z, which we shall
assume exists and is unique, is called the exact solution or true solution or analytical solution.
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Example 1 Consider the ordinary differential equation z′(t) = f(z(t)) for t ∈ [0, 1], subject to the initial
condition z(0) = z0 ∈ R, where f ∈ C(R → R) is assumed to be (globally) Lipschitz continuous.

We take X := C1([0, 1]), equipped with the norm ‖ · ‖X defined by ‖v‖X := maxt∈[0,1] |v(t)|, and
Y := R× C([0, 1]), equipped with the norm ‖ · ‖Y defined by

∥

∥

∥

∥

(

d0
d

)
∥

∥

∥

∥

Y

:= |d0|+ max
t∈[0,1]

|d(t)|.

Finally, we consider

Fv :=

(

v(0)− z0
v′(·)− f(v(·))

)

∈ Y, for v ∈ X.

Thanks to the classical Cauchy–Picard theorem, there exists a unique z ∈ X such that Fz = 0 ∈ Y , where
0 ∈ Y signifies the vector

(

0
0

)

;

here the top entry is 0 ∈ R and the bottom entry is the identically zero function defined on the closed
interval [0, 1] of R.

The basic idea behind the process of discretization is to replace the original problem (1) with a sequence
of finite-dimensional problems, each of which can be solved “constructively” (in the sense of computational
mathematics). The replacement of the original problem with the sequence of finite-dimensional problems
needs to be such that the solutions to these finite-dimensional problems approximate, in a sense that will
be made precise shortly, the true solution z of the original problem, and the approximations become better
and better, again in a sense that will be made precise below, the further one proceeds in the sequence.
One can thus, in principle, obtain an arbitrarily accurate approximation by computing the solution of
a suitably chosen finite-dimensional problem in the sequence. The use of the words ‘in principle’ in the
previous sentence is not accidental: in general, it will of course not be possible to compute the solutions of
these finite-dimensional problems with arbitrary accuracy on a given computer and with a given (limited)
computational effort.

The sequence of finite-dimensional problems, which can be viewed as a finite-dimensional counterpart
of the original problem P = {X, Y, F}, is referred to as a discretization and the procedure that leads
from the continuous problem to a discretization is called a discretization method. The precise definitions
of these two concepts are given below.

Definition 1 A discretization method M, applicable to a given original problem P = {X, Y, F},
consists of an infinite sequence of quintuples

{Xn, Yn,∆
X
n ,∆

Y
n , ϕn}n∈N′,

where N
′ is an infinite subset of N,

• Xn and Yn are finite-dimensional normed linear spaces, with norms ‖ · ‖Xn
and ‖ · ‖Yn

, respectively;

• For each n ∈ N
′, ∆X

n : X → Xn and ∆Y
n : Y → Yn are linear mappings such that

lim
n→∞

‖∆X
n v‖Xn

= ‖v‖X ∀v ∈ X,

lim
n→∞

‖∆Y
n d‖Yn

= ‖d‖Y ∀d ∈ Y ;

• ϕn : (X → Y ) → (Xn → Yn), with F : X → Y contained in the domain of ϕn for each n ∈ N
′.
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Definition 2 A discretization D = {Xn, Yn, Fn}n∈N′′, where N′′ is an infinite subset of N, is an infinite
sequence of triples, where Xn and Yn are finite-dimensional normed linear spaces and Fn : Xn → Yn,
with 0, the zero element of Yn, contained in the range of Fn for each n ∈ N

′′.
A solution to a discretization D is an infinite sequence {ζn}n∈N′′, ζn ∈ Xn, such that

Fnζn = 0, n ∈ N
′′. (2)

At this point, no relationship has as yet been assumed between the sequence {Xn, Yn, Fn}, n ∈ N
′′,

and the original problem P = {X, Y, F}. The purpose of the next definition is to establish a link between
them through the application of a discretization method to problem P.

Definition 3 The discretization D = {Xn, Y n, F n}n∈N′′ is called the discretization of the original

problem P = {X, Y, F}, generated by the discretization method M = {Xn, Yn,∆
X
n ,∆

Y
n , ϕn}n∈N′,

if M is applicable to P and
N

′′ ⊂ N
′,

Xn = Xn, Y n = Yn, F n = ϕn(F ) ∀n ∈ N
′′.

In this case D is denoted by M(P).

Our reason for distinguishing between the infinite sets N′ and N
′′ is that a solution to the discretization,

defined by (2), may exist for sufficiently large n ∈ N
′ only, i.e. only for n ∈ N

′′, where N′′ is a strict subset
of N′. In what follows we shall assume without loss of generality that N

′′ = N
′ and that the sequences

{Xn} and {Yn} of M and M(P) are identical. We shall also assume that dimXn = dimYn for all n ∈ N
′,

as this is a trivial necessary condition for the existence of a unique solution sequence ζn ∈ Xn to the
equation Fnζn = 0.

Let us return to the initial-value problem considered in Example 1 in order to illustrate the abstract
ideas introduced in the last three definitions.

Example 2 Euler’s method is the simplest technique for the approximate solution of an initial-value
problem for an ordinary differential equation. It is based on dividing the range (in our case the interval
[0, 1] of the real line) of the independent variable (in our case t) into a finite number of subintervals, and
approximating the value of the first derivative z′ of the unknown solution z, appearing in the differential
equation, at the right-hand endpoint of a subinterval by a difference quotient (divided difference) involving
the values of z at the two endpoints of the subinterval. This process is then repeated for each of the
subintervals, sweeping from left to right, starting from the given initial datum z0 at t = 0, until the
right-hand end t = 1 of the interval [0, 1] is reached, resulting in a sequence of approximations to the
exact solution z at the endpoints of the subintervals. The set of endpoints of subintervals is called a
computational grid. The accuracy of the approximation can be improved by increasing the number of
points in the computational grid.

We shall now make this informal description of Euler’s method rigorous in terms of the nomenclature
introduced in Definitions 1–3. For an integer n ∈ N

′, we consider the computational grid

Gn :=

{

k

n
: k = 0, . . . , n

}

,

and the finite-dimensional normed linear spaces and associated norms

Xn := (Gn → R), ‖η‖Xn
:= max

0≤k≤n

∣

∣

∣

∣

η

(

k

n

)
∣

∣

∣

∣

,

Yn := (Gn → R), ‖δ‖Yn
:= |δ(0)|+ max

1≤k≤n

∣

∣

∣

∣

δ

(

k

n

)
∣

∣

∣

∣

.
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Let us further consider the mappings ∆X
n , ∆

Y
n and ϕn defined as follows:

(∆X
n v)

(

k

n

)

:= v

(

k

n

)

, k = 0, . . . , n, v ∈ X,

(∆Y
n d)

(

k

n

)

:=

{

d0, k = 0,
d
(

k
n

)

, k = 1, . . . , n,

where

d =

(

d0
d(·)

)

∈ Y,

and

[ϕn(F )η]

(

k

n

)

:=











η(0)− z0, k = 0,

η( k
n)−η( k−1

n )
1

n

− f
(

η
(

k−1
n

))

, k = 1, . . . , n.

Here the triple {X, Y, F} is the same as in Example 1. Let us further define Fn = ϕn(F ).
It is straightforward to prove the existence of a unique solution sequence {ζn}n∈N′, ζn ∈ Xn, satisfying

Fnζn = 0, to the discretization D = {Xn, Yn, Fn}n∈N′, generated by the discretization method (Euler’s
method) M = {Xn, Yn,∆

X
n ,∆

Y
n , ϕn}n∈N′ applicable to the initial-value problem P = {X, Y, F} stated in

Example 1.

The relationships between the spaces and mappings involved in the original problem and its discretiza-
tion can be represented by the following diagram:

X −−−−−→
F

Y

∆X
n





y
↓ ϕn





y
∆Y

n

Xn
Fn−−−−−−→ Yn

The existence and uniqueness of a true solution z ∈ X to the original problem (1) does not automat-
ically imply the existence of a unique solution ζn ∈ Xn to the equation Fnζn = 0. If however for each
n ∈ N

′ such a unique ζn ∈ Xn exists, then the sequence {ζn}n∈N′ will be considered to be an approximation
to z ∈ X .

We shall prove below that under suitable additional hypotheses (namely by assuming the consistency
and the stability of the discretization — two fundamental properties in the theory of numerical methods
for differential equations, which we shall carefully define in the sequel), the existence of a unique solution
ζn ∈ Xn to the problem Fnζn = 0, n ∈ N

′, automatically follows from the existence of a unique solution
z ∈ X to the equation Fz = 0. As a precursor to that proof, and also to motivate the definitions of
consistency and stability, we state the following intermediate result.

Lemma 1 Suppose that Xn and Yn are finite-dimensional normed linear spaces with dimXn = dimYn
for all n ∈ N

′, and Fn : Xn → Yn is defined and continuous in the open ball in BXn
(η, R) ⊂ Xn defined

by
BXn

(η, R) := {η ∈ Xn : ‖η − η‖Xn
< R}, R > 0.

Suppose further that there exists a real number S > 0, independent of n, such that for all η(i) ∈ BXn
(η, R),

i = 1, 2, satisfying

Fnη
(i) ∈ BYn

(Fnη, r) := {δ ∈ Yn : ‖δ − Fnη‖Yn
< r}, r > 0,

the following inequality holds:

‖η(1) − η(2)‖Xn
≤ S‖Fnη

(1) − Fnη
(2)‖Yn

. (3)
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Then, the mapping F−1
n : BYn

(Fnη, r0) ⊂ Yn → Xn exists and satisfies a Lipschitz condition, with
Lipschitz constant S, in the ball BYn

(Fnη, r0) of radius

r0 := min

(

r,
R

S

)

. (4)

Proof. As (3) guarantees the existence of F−1
n : BYn

(Fnη, r) ∩ Fn(BXn
(η, R)) → Xn, it suffices the prove

that BYn
(Fnη, r0) ⊂ Fn(BXn

(η, R)), with r0 as defined above.
The proof proceeds by contradiction. Suppose to this end that there exists a δ0 ∈ BYn

(Fnη, r0) such
that δ0 /∈ Fn(BXn

(η, R)). Under this assumption we consider

δ(λ) := (1− λ)Fnη + λδ0, λ ≥ 0.

Let us define

λ :=

{

sup{λ′ > 0 : δ(λ) ∈ Fn(BXn
(η, R)), for λ ∈ [0, λ′)},

0, whenever the set in the line above is empty.
(5)

In order to arrive at a contradiction it suffices to show that λ > 1, as this will then immediately imply,
with λ = 1, that δ(1) = δ0 ∈ Fn(BXn

(η, R)), contradicting the assumption that δ0 /∈ Fn(BXn
(η, R)).

To prove that λ > 1, we suppose otherwise, that 0 ≤ λ ≤ 1. We begin by showing that if 0 ≤ λ ≤ 1,
then δ := δ(λ) ∈ Fn(BXn

(η, R))∩BYn
(Fnη, r0). Indeed, if λ = 0, then δ = δ(0) = Fnη ∈ Fn(BXn

(η, R))∩
BYn

(Fnη, r0), trivially. If on the other hand 0 < λ ≤ 1, then δ(λ− ε) ∈ Fn(BXn
(η, R)) ∩BYn

(Fnη, r0) for
all ε ∈ (0, λ) thanks to the definition (5) of λ, and because

‖δ(λ− ε)− Fnη‖Yn
= (λ− ε)‖δ0 − Fnη‖Yn

≤ ‖δ0 − Fnη‖Yn
< r0 (6)

thanks to the assumption that δ0 ∈ BYn
(Fnη, r0). As δ(λ − ε) ∈ Fn(BXn

(η, R)) for all ε ∈ (0, λ], it
automatically follows that F−1

n (δ(λ − ε)) exists for all ε ∈ (0, λ]; it then follows from the inequality (3)
that the limit limε↓0 F

−1
n (δ(λ−ε)) also exists: take, for example, εj :=

1
j
λ for j = 1, 2, . . . , and notice that

by (3), (F−1
n (δ(λ − εj)))j≥1 is a Cauchy sequence in Xn, and therefore convergent in Xn. The existence

of limε↓0 F
−1
n (δ(λ− ε)) then follows from the uniqueness of the limit. We therefore define

ζ := lim
ε↓0

F−1
n (δ(λ− ε)).

Furthermore, we have that

‖F−1
n (δ(λ− ε))− η‖Xn

≤ S‖δ(λ− ε)− Fnη‖Yn

= S (λ− ε)‖δ0 − Fnη‖Yn
≤ S(λ− ε)r0 ≤ (λ− ε)R ≤ R.

Hence, by passing to the limit ε ↓ 0 we deduce that

‖ζ − η‖Xn
≤ R.

In other words, ζ ∈ BXn
(η, R), and

Fnζ = Fn(lim
ε↓0

F−1
n (δ(λ− ε))) = lim

ε↓0
Fn(F

−1
n (δ(λ− ε))) = lim

ε↓0
δ(λ− ε) = δ(λ) = δ,

thanks to the assumed continuity of the function Fn. We thus have that δ = δ(λ) = Fnζ ∈ Fn(BXn
(η, R)).

It remains to show that δ = δ(λ) ∈ BYn
(Fnη, r0); this follows directly by passing to the limit ε ↓ 0 in (6)

and noting that the upper bound ‖δ0 − Fnη‖Yn
< r0 is independent of ε.

To summarize, we have therefore shown that if 0 ≤ λ ≤ 1, then δ := δ(λ) = Fnζ ∈ Fn(BXn
(η, R)) ∩

BYn
(Fnη, r0).
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As ζ ∈ BXn
(η, R), we can choose a closed ball BXn

(ζ, ρ) of a sufficiently small radius ρ ∈ (0, R) such
that

BXn
(ζ, ρ) ⊂ BXn

(η, R),

and also, since Fnζ = δ ∈ BYn
(Fnη, r0), by taking a smaller value of ρ is necessary,

Fn(BXn
(ζ, ρ)) ⊂ BYn

(Fnη, r0).

By noting (3), this then implies that Fn is a bijection between BXn
(ζ, ρ) and Fn(BXn

(ζ, ρ)). Thanks to the
assumed finite-dimensionality of Xn

∼= Yn, it then follows that Fn(BXn
(ζ, ρ)) contains a neighbourhood

N of δ = Fnζ, which is open in Yn. As λ varies from 0 to λ, δ(λ) traces out a continuous path in the ball
BYn

(Fnη, r) from δ(0) = Fnη to δ = δ(λ) ∈ N ⊂ Fn(BXn
(ζ, ρ)) ⊂ Fn(BXn

(η, R)). Since N is open, this
in turn implies that there exist values of λ > λ such that δ(λ) ∈ N ⊂ Fn(BXn

(η, R)), contradicting the
definition of λ. The resulting contradiction implies that the hypothesis λ ≤ 1 is untenable. Hence λ > 1,
and, as was already explained in the sentence following (5), this then completes the proof. �

By passing to the limit r → ∞ in Lemma 1 we deduce the following result.

Corollary 1 Suppose that Xn and Yn are finite-dimensional normed linear spaces with dimXn = dimYn
for all n ∈ N

′, and Fn : Xn → Yn is defined and continuous in the open ball in BXn
(η, R) ⊂ Xn defined

by
BXn

(η, R) := {η ∈ Xn : ‖η − η‖Xn
< R}, R > 0.

Suppose further that there exists a real number S > 0, independent of n, such that for all η(i) ∈ BXn
(η, R),

i = 1, 2, the following inequality holds:

‖η(1) − η(2)‖Xn
≤ S‖Fnη

(1) − Fnη
(2)‖Yn

.

Then, the mapping F−1
n : BYn

(Fnη,
R
S
) ⊂ Yn → Xn exists and satisfies a Lipschitz condition with Lipschitz

constant S.

3.1 Consistency

A useful concept for characterizing the approximation properties of a discretization method is the notion
of consistency.

Definition 4 A discretization method M = {Xn, Yn,∆
X
n ,∆

Y
n , ϕn}n∈N′, applicable to the original problem

P = {X, Y, F}, is said to be consistent with P at v ∈ X if v belongs to the domain of both F and
ϕn(F )∆

X
n for all n ∈ N

′, and
lim
n→∞

‖ϕn(F )∆
X
n v −∆Y

nFv‖Yn
= 0.

A discretization method M is said to be consistent with P if it is consistent with P at each v ∈ X.
If a discretization method M is consistent with P, then the discretization D = M(P), resulting from the
application of the discrtization method M to P, is said to be consistent with P.

If, furthermore, p is the largest positive real number such that

‖ϕn(F )∆
X
n v −∆Y

nFv‖Yn
= O(n−p) as n→ ∞,

then M and M(P) are said to be consistent with P of order p at v.
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Thus, consistency at v ∈ X amounts to the asymptotic (as n → ∞) commutativity of the following
diagram at v ∈ X :

X −−−−−→
F

Y

∆X
n





y





y
∆Y

n

Xn
ϕn(F )−−−−−−−−→ Yn

It is worth noting here that in general ϕn(F )∆
X
n v−∆Y

nFv belongs to a different normed linear space
Yn for each n ∈ N

′. In the special case when the spaces Yn, n ∈ N
′, are nested, in the sense that

Y1 ⊂ Y2 ⊂ · · · ⊂ Yk ⊂ Yk+1 ⊂ · · · ,

then ϕn(F )∆
X
n v −∆Y

nFv ∈ Yk for all k ≥ n ≥ 1.

If we take v = z ∈ X in the expression ϕn(F )∆
X
n v−∆Y

nFv featuring in the previous definition, where
z is the solution of the original problem Fz = 0, the expression is simplified to ϕn(F )∆

X
n z, and we are

led to the following definition.

Definition 5 Let the discretization method M = {Xn, Yn,∆
X
n ,∆

Y
n , ϕn}n∈N′, applicable to the original

problem P = {X, Y, F}, be consistent with P at z ∈ X, where z is the true solution of P, i.e. Fz = 0.
The sequence {ℓn}n∈N′, with ℓn ∈ Yn defined by

ℓn := ϕn(F )∆
X
n z, n ∈ N

′,

is called the local discretization error (or truncation error) of the discretization method M and of
the discretization M(P) of problem P.

Clearly if M is consistent of order p with problem P, then the local discretization error of M for P is
O(n−p) as n→ ∞, i.e.

‖ℓn‖Yn
= O(n−p) as n→ ∞.

We then say that the discretization methodM and the discretizationD = M(P) have order of accuracy

p, or simply that they are pth order accurate.

3.2 Stability

A second key property of a discretization D = {Xn, Yn, Fn}n∈N′, is stability, which, roughly speaking,
expresses sensitivity to perturbations in the data.

Definition 6 Consider a discretization D = {Xn, Yn, Fn}n∈N′ and a sequence η = {ηn}n∈N′, ηn ∈ Xn.
The discretization D is said to be stable on the sequence η if there exist positive real numbers S and
r, such that, uniformly for all n ∈ N

′,

‖η(1)n − η(2)n ‖Xn
≤ S‖Fnη

(1)
n − Fnη

(2)
n ‖Yn

(7)

for all η
(i)
n ∈ Xn, i = 1, 2, such that

‖Fnη
(i)
n − Fnηn‖Yn

< r. (8)

The numbers S and r are called the stability constant (or stability bound) and the stability threshold,
respectively.
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We shall next show that the uniform (in n ∈ N
′) validity of (7) for all ηin, i = 1, 2, in balls with a

fixed radius in Xn implies the existence of balls with radius independent of n in Yn such that (7) holds
for all ηin, i = 1, 2, whose images under Fn are in these balls.

Theorem 1 Consider a discretization D = {Xn, Yn, Fn}n∈N′ and a sequence {ηn}n∈N′, ηn ∈ Xn. Let Fn

be defined and continuous in the open ball BXn
(ηn, R) := {η ∈ Xn : ‖η − ηn‖Xn

< R}, and suppose that

for all η
(i)
n ∈ BXn

(ηn, R), i = 1, 2, the inequality

‖η(1)n − η(2)n ‖Xn
≤ S‖Fnη

(1)
n − Fnη

(2)
n ‖Yn

,

holds, where both R and S are independent of n. Then, D is stable at {ηn}n∈N′ with stability constant S
and stability threshold R/S.

Proof. The stated result is a direct consequence of applying Corollary 1 with η = ηn ∈ Xn and η(i) =
η
(i)
n ∈ Xn, n ∈ N

′. We then deduce from Corollary 1 that the mapping F−1
n : BYn

(Fnηn,
R
S
) ⊂ Yn → Xn

exists and satisfies a Lipschitz condition with Lipschitz constant S. That is,

‖η(1)n − η(2)n ‖Xn
= ‖F−1

n Fnη
(1)
n − F−1

n Fnη
(2)
n ‖Xn

≤ S‖Fnη
(1)
n − Fnη

(2)
n ‖Yn

whenever ‖Fnη
(i)
n − Fnηn‖Yn

< R
S
, i = 1, 2. That completes the proof. �

It is important to note here that the definition of stability concerns purely the discretization at some
sequence η and makes no reference to an original problem. A particularly relevant sequence η to consider
is η = {∆X

n z}n∈N′ , where z is the true solution of a problem P. This then leads to the following definition.

Definition 7 Consider a discretization method M applicable to an original problem P with true solution
z. If the discretization D = M(P) is stable on the sequence η = {∆X

n z}n∈N′, then both M and M(P) are
called stable for P.

Having encountered the significant specific choice η = {∆X
n z}n∈N′ both here and in the previous

section (cf. Definition 5), it seems natural to consider the consequences of assuming both consistency
and stability of a discretization. As we shall see in the next subsection, this will lead to the fundamental
theorem in the theory of numerical methods for differential equations: namely, that consistency and
stability of a discretization together imply its convergence in a sense that will be made precise below.
Before stating this key theorem we need to define the notion of convergence of a discretization.

3.3 Convergence

The ultimate goal of constructing a discretization D = M(P) of a problem P = {X, Y, F} is to compute
a sequence of solutions {ζn}n∈N′, ζn ∈ Xn, n ∈ N

′, to the finite-dimensional problems Fnζn = 0 that
converges to z as n → ∞. Since ζn ∈ Xn and z ∈ X , and the spaces Xn have not been assumed to be
contained in X , one cannot directly compare ζn with z (e.g. by taking their difference and computing a
norm of the difference). The next definition will clarify how closeness of ζn to z is to be understood.

Definition 8 Consider a discretization method M = {Xn, Yn,∆
X
n ,∆

Y
n , ϕ}n∈N′, applicable to the original

problem P = {X, Y, F} with true solution z ∈ X. Let the discretization D = M(P) possess a unique
solution sequence {ζn}n∈N′. The sequence {εn}n∈N′ defined by

εn := ζn −∆X
n z ∈ Xn, n ∈ N

′,

is called the global discretization error of the discretization method M for problem P (and of
the discretization D = M(P) of P).
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Definition 9 In the setting of Definition 8 both M and M(P) are called convergent for problem P if

lim
n→∞

‖εn‖Xn
= 0. (9)

We say that M and M(P) are convergent of order p for problem P if p is the largest positive real
number such that

‖εn‖Xn
= O(n−p) as n→ ∞.

Since
εn = F−1

n ∆Y
n 0−∆X

n F
−10,

convergence of the discretization {Xn, Yn, Fn}n∈N′ for problem {X, Y, F} can be seen as consistency at
0 ∈ Y of {Yn, Xn, F

−1
n }n∈N′ for the problem {Y,X, F−1} (cf. Definition 4).

We are now ready to prove the result that is at the heart of numerical approximation of differential
equations, expressing the fact that consistency and stability of a discretization imply its convergence.

Theorem 2 For the original problem P = {X, Y, F} with true solution z ∈ X let the discretization
method M = {Xn, Yn,∆

X
n ,∆

Y
n , ϕn}n∈N′ applicable to P satisfy the following three assumptions:

(i) Fn = ϕn(F ) : Xn → Yn is defined and continuous in the ball

BXn
(∆X

n z, R) := {ηn ∈ Xn : ‖ηn −∆X
n z‖Xn

< R},

where R > 0 is independent of n;

(ii) M is consistent with P at z ∈ X;

(iii) M is stable for P.

Then, the following statements hold:

(a) The discretization M(P) possesses a unique solution sequence {ζn}n∈N′, ζn ∈ Xn, for all sufficiently
large n ∈ N

′;

(b) M is convergent for P;

(c) If M is consistent with P of order p, p > 0, then it is convergent for P of order p.

Proof. (a) It follows from hypotheses (i) and (iii) that the assumptions of Lemma 1 are satisfied with
η = ∆X

n z ∈ Xn. We therefore deduce from Lemma 1 that the mapping F−1
n : BYn

(Fn∆
X
n z, r0) ⊂

Yn → Xn, with r0 as in Lemma 1, exists and satisfies a Lipschitz condition, with Lipschitz constant S
in the ball BYn

(Fn∆
X
n z, r0). In order to prove (a) it suffices to show that, for n ∈ N

′ sufficiently large,
0 ∈ BYn

(Fn∆
X
n z, r0). Thanks to (ii), and noting that ϕn(F ) = Fn, it follows from Definition 4 that

lim
n→∞

‖Fn∆
X
n z −∆Y

nFz‖Yn
= 0.

Equivalently,
lim
n→∞

‖Fn∆
X
n z‖Yn

= 0.

Consequently, there exists an n0 = n0(r0) ∈ N
′ such that ‖Fn∆

X
n z‖Yn

< r0 for all n ≥ n0; i.e. 0 ∈
BYn

(Fn∆
X
n z, r0) for all n ≥ n0.

(b) For n ≥ n0, with n0 ∈ N
′ as in the proof of part (a), we have that

Fnζn − Fn∆
X
n z = Fn(∆

X
n z + εn)− Fn∆nz = −ℓn,
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where εn and ℓn are as in Definitions 8 and 5, respectively. Thanks to the assumed stability (cf. (iii)),
we deduce that

‖εn‖Xn
= ‖ζn −∆X

n z‖Xn
≤ S‖Fnζn − Fn∆

X
n z‖Yn

= S‖ℓn‖Yn
, n ≥ n0, (10)

provided that ‖Fnζn−Fn∆
X
n z‖Yn

= ‖ℓn‖Yn
< r, where S and r are the stability constant and the stability

threshold, respectively. Thanks to the assumed consistency with problem P (cf. (ii)), it follows that
limn→∞ ‖ℓn‖Yn

= 0, whereby ‖ℓn‖Yn
< r for a sufficiently large integer n, and therefore (10) implies that

lim
n→∞

‖εn‖Xn
= 0.

(c) Analogously as in the proof of part (b), if ‖ℓn‖Yn
= O(n−p) as n→ ∞, with p > 0, then

‖εn‖Xn
≤ S‖ℓn‖Yn

for all sufficiently large n ∈ N
′, and therefore ‖εn‖Yn

= O(n−p) as n → ∞. That completes the proof of
the theorem. �

The purpose of the remaining sections is to illustrate these abstract ideas through specific discretiza-
tion methods: finite difference methods, finite element methods, finite volume methods and spectral
methods for the numerical solution of partial differential equations.

4 Finite difference methods

We begin by considering finite difference methods for elliptic boundary-value problems. The basic idea
behind the construction of finite difference methods is to discretize the closure, Ω, of the (bounded) domain
of definition Ω ⊂ R

d of the solution (the, so-called, analytical solution) to the PDE by approximating it
with a finite set of points in R

d, called the mesh points or grid points, and replacing the partial derivatives
of the analytical solution appearing in the equation by divided differences (difference quotients) of a grid-
function, i.e. a function that is defined at all points of the finite difference grid. The process results in
a finite set of equations with a finite number of unknowns: the values of the grid-function representing
the finite difference approximation to the analytical solution over the finite difference grid (cf. [8], [14]).
We illustrate the construction by considering a simple second-order uniformly elliptic PDE subject to a
homogeneous Dirichlet boundary condition:

−∆u + c(x, y)u = f(x, y) in Ω, (11)

u = 0 on ∂Ω, (12)

on the unit square Ω := (0, 1)2; here c and f are real-valued functions that are defined and continuous
on Ω, and c ≥ 0 on Ω. Let us suppose for simplicity that the grid-points are equally spaced. Thus
we take h := 1/N , where N ≥ 2 is an integer. The corresponding finite difference grid is then Ωh :=
{(xi, yj) : i, j = 0, . . . , N}, where xi := ih and yj := jh, i, j = 0, . . . , N . We also define Ωh := Ωh ∩Ω and
∂Ωh := Ωh \ Ωh.

It is helpful to introduce the following notation for first-order divided differences :

D+
x u(xi, yj) :=

u(xi+1, yj)− u(xi, yj)

h

and

D−
x u(xi, yj) :=

u(xi, yj)− u(xi−1, yj)

h
,

12



withD+
y u(xi, yj) andD

−
y (xi, yj) defined analogously. Then, D2

xu(xi, yj) := D−
xD

+
x u(xi, yj) andD

2
yu(xi, yj) :=

D−
y D

+
y u(xi, yj) are referred to as the second-order divided difference of u in the x- and y-direction, re-

spectively, at (xi, yj) ∈ Ωh.
Assuming that u ∈ C4(Ω) (i.e. that u and all of its partial derivatives up to and including those of

fourth order are defined and continuous on Ω), we have that, at any (xi, yj) ∈ Ωh,

D2
xu(xi, yj) =

∂2u

∂x2
(xi, yj) +O(h2) (13)

and

D2
yu(xi, yj) =

∂2u

∂y2
(xi, yj) +O(h2), (14)

as h→ 0. Omission of the O(h2) terms in (13) and (14) above yields that

D2
xu(xi, yj) ≈ ∂2u

∂x2 (xi, yj), D
2
yu(xi, yj) ≈ ∂2u

∂y2
(xi, yj),

where the symbol ≈ signifies approximate equality in the sense that as h → 0 the expression to the left
of ≈ converges to the expression to the right of ≈. Hence,

−
(

D2
xu(xi, yj) +D2

yu(xi, yj)
)

+ c(xi, yj)u(xi, yj) ≈ f(xi, yj) for all (xi, yj) ∈ Ωh, (15)

u(xi, yj) = 0 for all (xi, yj) in ∂Ωh. (16)

It is instructive to note the similarity between (11) and (15), and (12) and (16), respectively. Motivated
by the form of (15) and (16), we seek a grid-function U , whose value at the grid-point (xi, yj) ∈ Ωh,
denoted by Uij , approximates u(xi, yj), the unknown exact solution to the boundary-value problem (11),
(12) evaluated at (xi, yj), i, j = 0, . . . , N . We define U as the solution to the following system of linear
algebraic equations:

−(D2
xUij +D2

yUij) + c(xi, yj)Uij = f(xi, yj) for all (xi, yj) ∈ Ωh, (17)

Uij = 0 for all (xi, yj) ∈ ∂Ωh. (18)

As each equation in (17) involves five values of the grid-function U (namely, Uij , Ui−1,j , Ui+1,j, Ui,j−1,
Ui,j+1), the finite difference method (17) is called the five-point difference scheme. The matrix of the
linear system (17), (18) is sparse, symmetric and positive definite, and for given functions c and f it
can be efficiently solved by iterative techniques from numerical linear algebra, including Krylov subspace
type methods (e.g. the conjugate gradient method) and multigrid methods. Multigrid methods were
developed in the 1970s and 1980s, and are widely used as the iterative solver of choice for large systems
of linear algebraic equations that arise from finite difference and finite element approximations in many
industrial applications. The key objective of a multigrid method is to accelerate the convergence of
standard iterative methods (such as Jacobi iteration and successive over-relaxation (SOR)) by using a
hierarchy of coarser-to-finer grids (cf. [6] and [10]). A multigrid method with an intentionally reduced
convergence tolerance can also be used as an efficient preconditioner for a Krylov subspace iteration. The
preconditioner P for a nonsingular matrix A is an approximation of A−1, whose purpose is to ensure that
PA is a good approximation of the identity matrix, and therefore iterative algorithms for the solution of
the preconditioned version, PAx = Pb, of the system of linear algebraic equations Ax = b exhibit rapid
convergence.

One of the central questions in the numerical analysis of PDEs is the mathematical study of the
approximation properties of numerical methods. We shall illustrate this by considering the finite difference
method (17), (18). The grid-function T defined on Ωh by

Tij :=−
(

D2
xu(xi, yj) +D2

yu(xi, yj)
)

+ c(xi, yj)u(xi, yj)− f(xi, yj) (19)

13



is called the truncation error of the finite difference method (17), (18). Assuming that u ∈ C4(Ω), it
follows from (13)–(15) that, at each grid point (xi, yj) ∈ Ωh, Tij = O(h2) as h → 0. The exponent of h
in the statement Tij = O(h2) (which, in this case, is equal to 2) is called the order of accuracy (or order
of consistency) of the method.

It can be shown (cf. [12]) that there exists a positive constant c0, independent of h, U and f , such
that

(

h2
N
∑

i=1

N−1
∑

j=1

|D−
x Uij|2 + h2

N−1
∑

i=1

N
∑

j=1

|D−
y Uij|2 + h2

N−1
∑

i=1

N−1
∑

j=1

|Uij|2
)

1

2

≤ c0

(

h2
N−1
∑

i=1

N−1
∑

j=1

|f(xi, yj)|2
)

1

2

. (20)

Such an inequality, expressing the fact that the numerical solution U ∈ Sh,0, is bounded by the data (in
this case f ∈ Sh), uniformly with respect to the grid size h, where Sh,0 denotes the linear space of all
grid-functions defined on Ωh that vanish on ∂Ωh and Sh is the linear space of all grid functions defined
on Ωh, is called a stability inequality. The smallest real number c0 > 0 for which (20) holds is called the
stability constant of the method. It follows in particular from (20) that if fij = 0 for all i, j = 1, . . . , N−1,
then Uij = 0 for all i, j = 0, . . . , N . Therefore the matrix of the system of linear equations (17), (18)
is nonsingular, which then implies the existence of a unique solution U to (17), (18) for any h = 1/N ,
N ≥ 2. Consider the difference operator Lh : U ∈ Sh,0 7→ f = LhU ∈ Sh defined by (17), (18). The left-
hand side of (20) is sometimes denoted by ‖U‖1,h and the right-hand side by ‖f‖0,h; hence, the stability
inequality (20) can be rewritten as

‖U‖1,h ≤ c0‖f‖0,h
with f = LhU , and stability can then be seen to be demanding the existence of the inverse to the linear
finite difference operator Lh : Sh,0 → Sh, and its boundedness, uniformly with respect to the discretization
parameter h. The mapping U ∈ Sh,0 7→ ‖U‖1,h ∈ R is a norm on Sh,0, called the discrete (Sobolev) H1(Ω)
norm, and the mapping f ∈ Sh 7→ ‖f‖0,h ∈ R is a norm on Sh, called the discrete L2(Ω) norm. It should
be noted that the stability properties of finite difference methods depend on the choice of norm for the
data and for the associated solution.

In order to quantify the closeness of the approximate solution U to the analytical solution u at the
grid-points, we define the global error e of the method (17), (18) by eij := u(xi, yj) − Uij. Clearly, the
grid-function e = u − U satisfies (17), (18) if f(xi, yj) on the right-hand side of (17) is replaced by Tij .
Hence, by the stability inequality, ‖u−U‖1,h = ‖e‖1,h ≤ c0‖T‖0,h. Under the assumption that u ∈ C4(Ω)
we thus deduce that ‖u− U‖1,h ≤ c1h

2, where c1 is a positive constant, independent of h. The exponent
of h on the right-hand side (which is 2 is this case) is referred to as the order of convergence of the finite
difference method and is equal to the order of accuracy. Indeed, the fundamental idea that stability and
consistency together imply convergence is a recurring theme in the analysis of numerical methods for
differential equations.

The five-point difference scheme can be generalized in various ways. For example, instead of using
the same grid-size h in both co-ordinate directions, one could have used a grid-size ∆x = 1/M in the
x-direction and a possibly different grid-size ∆y = 1/N in the y-direction, where M,N ≥ 2 are integers.
One can also consider boundary-value problems on more complicated polygonal domains Ω in R

2 such
that each edge of Ω is parallel with one of the co-ordinate axes: for example, the L-shaped domain
(−1, 1)2 \ [0, 1]2. The construction above can be extended to domains with curved boundaries in any
number of dimensions; at grid-points that are on (or next to) the boundary, divided differences with
unequally spaced grid-points are then used.

In the case of nonlinear elliptic boundary-value problems, such as the Monge–Ampère equation on a
bounded open set Ω ⊂ R

d, subject to the nonhomogeneous Dirichlet boundary condition u = g on ∂Ω, a
finite difference approximation is easily constructed by replacing at each grid-point (xi, yj) ∈ Ω the value
u(xi, yj) of the analytical solution u (and its partial derivatives) in the PDE with the numerical solution
Uij (and its divided differences), and imposing the numerical boundary condition Uij = g(xi, yj) for all
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(xi, yj) ∈ ∂Ωh. Unfortunately, such a simple-minded method does not explicitly demand the convexity
of U in any sense, and this can lead to instabilities. In fact, there is no reason why the sequence of finite
difference solutions should converge to the (convex) analytical solution of the Monge–Ampère equation
as h → 0. Even in two space dimensions the resulting method may have multiple solutions, and special
iterative solvers need to be used to select the convex solution. Enforcing convexity of the finite difference
solution in higher dimensions is much more difficult. A recent successful development in this field has
been the construction of so-called wide-angle finite difference methods, which are monotone, and the
convergence theory of Barles and Souganidis therefore ensures convergence of the sequence of numerical
solutions, as h→ 0, to the unique viscosity solution of the Monge–Ampère equation.

We close this section on finite difference methods with a brief discussion about their application to
time-dependent problems. A key result is the Lax equivalence theorem, which states that, for a finite
difference method that is consistent with a well-posed initial-value problem for a linear PDE, stability of
the method implies convergence of the sequence of grid-functions defined by the method on the grid to the
analytical solution as the grid-size converges to zero, and vice versa. Consider the unsteady heat equation
ut − ∆u + u = 0 for t ∈ (0, T ], with T > 0 given, and x in the unit square Ω = (0, 1)2, subject to the
homogeneous Dirichlet boundary condition u = 0 on (0, T ]×∂Ω and the initial condition u(0, x) = u0(x),
x ∈ Ω, where u0 and f are given real-valued continuous functions. The computational domain [0, T ]×Ω
is discretized by the grid {tm = m∆t : m = 0, . . . ,M} × Ωh, where ∆t = T/M , M ≥ 1, and h = 1/N ,
N ≥ 2. We consider the θ-method

U
m+1
ij − U

m
ij

∆t
− (D2

xU
m+θ
ij +D

2
yU

m+θ
ij ) + U

m+θ
ij = 0

for all i, j = 1, . . . , N−1 and m = 0, . . . ,M−1, supplemented with the initial condition U0
ij = u0(xi, yj),

i, j = 0, . . . , N , and the boundary condition Um+1
ij = 0, m = 0, . . . ,M − 1, for all (i, j) such that

(xi, yj) ∈ ∂Ωh. Here θ ∈ [0, 1] and Um+θ
ij := (1 − θ)Um

ij + θUm+1
ij , with Um

ij and Um+1
ij representing the

approximations to u(tm, xi, yj) and u(tm+1, xi, yj), respectively. The values θ = 0, 1
2
, 1 are particularly

relevant; the corresponding finite difference methods are called the forward (or explicit) Euler method,
the Crank–Nicolson method, and the backward (or implicit) Euler method, respectively; their truncation
errors are defined by:

Tm+1
ij :=

u(tm+1, xi, yj)− u(tm, xi, yj)

∆t
− (1− θ)(D2

xu(t
m, xi, yj) +D2

yu(t
m, xi, yj))

− θ(D2
xu(t

m+1, xi, yj) +D2
yu(t

m+1, xi, yj)) + (1− θ)u(tm, xi, yj) + θu(tm+1, xi, yj),

for i, j = 1, . . . , N −1, m = 0, . . . ,M −1. Assuming that u is sufficiently smooth, Taylor series expansion
yields that Tij = O(∆t + h2) for θ 6= 1/2 and Tij = O((∆t)2 + h2) for θ = 1/2. Thus in particular
the forward and backward Euler methods are first-order accurate with respect to the temporal variable
t and second-order accurate with respect to the spatial variables x and y, whereas the Crank–Nicolson
method is second-order accurate with respect to both the temporal variable and the spatial variables.
The stability properties of the θ-method are also influenced by the choice of θ ∈ [0, 1]: we have that

max
1≤m≤M

‖Um‖20,h +∆t
M−1
∑

m=0

‖Um+θ‖21,h ≤ ‖U0‖20,h

for θ ∈ [0, 1
2
), provided that 2d(1 − 2θ)∆t ≤ h2, with d = 2 (space dimensions) in our case; and for

θ ∈ [1
2
, 1], irrespective of the choice of ∆t and h. Thus in particular the forward (explicit) Euler method

is conditionally stable, the condition being that 2d∆t ≤ h2, with d = 2 here, while the Crank–Nicolson
and backward (implicit) Euler methods are unconditionally stable.

A finite difference method approximates the analytical solution by a grid-function that is defined over
a finite difference grid contained in the computational domain. We shall next consider finite element
methods, which involve piecewise polynomial approximations of the analytical solution, defined over the
computational domain.
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5 Finite element methods

Finite element methods (FEMs) are a powerful and general class of techniques for the numerical solution of
PDEs. Their historical roots can be traced back to a paper by Richard Courant published in 1943, which
proposed the use of continuous piecewise affine approximations for the numerical solution of variational
problems. This represented a significant advance from the practical point of view over earlier techniques
by Ritz and Galerkin from the early 1900s, which were based on the use of linear combinations of
smooth functions (e.g. eigenfunctions of the differential operator under consideration). The importance
of Courant’s contribution was, unfortunately, not recognized at the time and the idea was forgotten, until
the early 1950s, when it was rediscovered by engineers. FEMs have been since developed into an effective
and flexible computational tool with a firm mathematical foundation cf. [2, 5, 11, 15].

5.1 FEMs for elliptic PDEs

Suppose that Ω ⊂ R
d is a bounded open set in R

d with a Lipschitz-continuous boundary ∂Ω. We shall
denote by L2(Ω) the space of square-integrable functions (in the sense of Lebesgue), equipped with the

norm ‖v‖0 :=
(∫

Ω
|v|2 dx

)1/2
. Let Hm(Ω) denote the Sobolev space consisting of all functions v ∈ L2(Ω)

whose (weak) partial derivatives ∂αv belong to L2(Ω) for all α such that |α| ≤ m. Hm(Ω) is equipped

with the norm ‖v‖m :=
(
∑

|α|≤m ‖∂αv‖20
)1/2

. We denote by H1
0(Ω) the set of all functions v ∈ H1(Ω) that

vanish on ∂Ω.
Let a and c be real-valued functions, defined and continuous on Ω, and suppose that there exists

a positive constant c0 such that a(x) ≥ c0 for all x ∈ Ω. Assume further that bi, i = 1, . . . , d, are
continuously differentiable real-valued functions defined on Ω, such that c − 1

2
∇ · b ≥ c0 on Ω, where

b := (b1, . . . , bd), and let f ∈ L2(Ω). Consider the boundary-value problem:

−∇ · (a(x)∇u) + b(x) · ∇u+ c(x)u = f(x),

for x ∈ Ω, with u|∂Ω = 0. The construction of the finite element approximation of this boundary-value
problem commences by considering the following weak formulation of the problem: find u ∈ H1

0(Ω) such
that

B(u, v) = ℓ(v) ∀v ∈ H1
0(Ω), (21)

where the bilinear form B(·, ·) is defined by

B(w, v) :=

∫

Ω

[a(x)∇w · ∇v + b(x) · ∇w v + c(x)wv] dx

and ℓ(v) :=
∫

Ω
fv dx, with w, v ∈ H1

0(Ω). If u is sufficiently smooth, for example, u ∈ H2(Ω) ∩ H1
0(Ω),

then integration by parts in (21) implies that u is a strong solution of the boundary-value problem; i.e.
−∇ · (a(x)∇u) + b(x) · ∇u+ c(x)u = f(x) almost everywhere in Ω, and u|∂Ω = 0. More generally, in the
absence of such an additional assumption about smoothness, the function u ∈ H1

0(Ω) satisfying (21) is
called a weak solution of this elliptic boundary-value problem. Under our assumptions on a, b, c and f ,
the existence of a unique weak solution follows from the Lax–Milgram theorem.

We shall consider the finite element approximation of (21) in the special case when Ω is a bounded
open polygonal domain in R

2. The first step in the construction of the FEM is to define a triangulation
of Ω. A triangulation of Ω is a tessellation of Ω into a finite number of closed triangles Ti, i = 1, . . . ,M ,
whose interiors are pairwise disjoint, and for each i, j ∈ {1, . . . ,M}, i 6= j, for which Ti ∩ Tj is nonempty,
Ti ∩ Tj is either a common vertex or a common edge of Ti and Tj (see Fig. 1). The vertices in the
triangulation are also referred to as nodes.

Let hT denote the longest edge of a triangle T in the triangulation, and let h be the largest among
the hT . Let, further, Sh denote the linear space of all real-valued continuous functions vh defined on
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Figure 1: Finite element triangulation of the computational domain Ω, a polygonal region of R2. Vertices
on ∂Ω are denoted by solids dots, and vertices internal to Ω by circled solid dots.

Figure 2: Piecewise linear nodal basis function. The basis function is identically zero outside a patch of
triangles surrounding the central node, at which the height of the function is equal to 1.

Ω such that the restriction of vh to any triangle in the triangulation is an affine function, and define
Sh,0 := Sh∩H1

0(Ω). The finite element approximation of the problem (21) is: find uh in the finite element
space Sh,0 such that

B(uh, vh) = ℓ(vh) ∀vh ∈ Sh,0. (22)

Let us denote by xi, i = 1, . . . , L, the set of all vertices (nodes) in the triangulation (see Fig. 1), and
let N = N(h) denote the dimension of the finite element space Sh,0. We shall assume that the vertices
xi, i = 1, . . . , L, are numbered so that xi, i = 1, . . . , N , are within Ω and the remaining L − N vertices
are on ∂Ω. Let further {ϕj : j = 1, . . . , N} ⊂ Sh,0, denote the so-called nodal basis for Sh,0, where the
basis functions are defined by ϕj(xi) = δij, i = 1, . . . , L, j = 1, . . . , N . A typical piecewise linear nodal
basis function is shown in Fig. 2. Thus, there exists a vector U = (U1, . . . , UN)

T ∈ R
N such that

uh(x) =

N
∑

j=1

Ujϕj(x). (23)

Substitution of this expansion into (22) and taking vh = ϕk, k = 1, . . . , N , yields the following system of
N linear algebraic equations in the N unknowns, U1, . . . , UN :

N
∑

j=1

B(ϕj, ϕk)Uj = ℓ(ϕk), k = 1, . . . , N. (24)

By recalling the definition of B(·, ·), we see that the matrix A := ([B(ϕj, ϕk)]
N
j,k=1)

T of this system of
linear equations is sparse, positive definite
(and if b is identically zero then also symmetric). The unique solution U = (U1, . . . , UN)

T ∈ R
N of

the linear system, upon substitution into (23), yields the computed approximation uh to the analytical
solution u on the given triangulation of the computational domain Ω, using numerical algorithms for
sparse linear systems
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As Sh,0 is a (finite-dimensional) linear subspace of H1
0(Ω), v = vh is a legitimate choice in (21). By

subtracting (22) from (21), with v = vh, we deduce that

B(u− uh, vh) = 0 ∀vh ∈ Sh,0, (25)

which is referred to as the Galerkin orthogonality property of the FEM. Hence, for any vh ∈ Sh,0,

c0‖u− uh‖21 ≤ B(u− uh, u− uh)

= B(u− uh, u− vh)

≤ c1‖u− uh‖1‖u− vh‖1,

where c1 := (M2
a +M2

b +M2
c )

1/2, with Mv := maxx∈Ω |v(x)|, v ∈ {a, b, c}. We thus have that

‖u− uh‖1 ≤
c1
c0

min
vh∈Sh,0

‖u− vh‖1. (26)

This result is known as Céa’s lemma, and is an important tool in the analysis of FEMs. Suppose, for
example, that u ∈ H2(Ω) ∩H1

0(Ω) and denote by Ih the finite element interpolant of u defined by

Ihu(x) :=

N
∑

j=1

u(xj)ϕj(x).

It follows from (26) that ‖u − uh‖1 ≤ c1
c0
‖u − Ihu‖1. Assuming further that the triangulation is shape-

regular in the sense that there exists a positive constant c∗, independent of h, such that for each triangle in
the triangulation the ratio of the longest edge to the radius of the circumscribed circle is bounded below
by c∗, arguments from approximation theory imply the existence of a positive constant ĉ, independent of
h, such that ‖u− Ihu‖1 ≤ ĉh‖u‖2. Hence, the following a priori error bound holds in the H1 norm:

‖u− uh‖1 ≤ (c1/c0)ĉh‖u‖2.

We deduce from this inequality that, as the triangulation is refined by letting h→ 0, the sequence of finite
element approximations uh computed on successively refined triangulations converges to the analytical
solution u in the H1 norm. It is also possible to derive a priori error bounds in other norms, such as the
L2 norm (cf. [2] and [5]).

The inequality (26) of Céa’s lemma can be seen to express the fact that the approximation uh ∈ Sh,0

to the solution u ∈ H1
0(Ω) of (21) delivered by the FEM (22) is the near-best approximation to u from the

linear subspace Sh,0 of H1
0(Ω). Clearly, c1/c0 ≥ 1. When the constant c1/c0 ≫ 1, the numerical solution

uh supplied by the FEM is typically a poor approximation to u in the ‖ · ‖1 norm, unless h is very small;
for example, if a(x) = c(x) ≡ ε and b(x) = (1, 1)T, then c1/c0 =

√
2(1 + ε2)1/2/ε ≫ 1 if 0 < ε ≪ 1.

Such nonselfadjoint elliptic boundary-value problems arise in mathematical models of diffusion-advection-
reaction, where advection dominates diffusion and reaction in the sense that |b(x)| ≫ a(x) > 0 and
|b(x)| ≫ c(x) > 0 for all x ∈ Ω. The stability and approximation properties of the classical FEM (22) for
such advection-dominated problems can be improved by modifying, in a consistent manner, the definitions
of B(·, ·) and ℓ(·) through the addition of ‘stabilization terms’, or by enriching the finite element space
with special basis functions that are designed so as to capture sharp boundary and interior layers exhibited
by typical solutions of advection-dominated problems. The resulting FEMs are generally referred to as
stabilized finite element methods. A typical example is the streamline-diffusion finite element method,
in which the bilinear form of the standard FEM is supplemented with an additional numerical diffusion
term, which acts in the stream-wise direction only, i.e. in the direction of the vector b, in which classical
FEMs tend to exhibit undesirable numerical oscillations (cf. [11]).
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If, on the other hand, b is identically zero on Ω, then B(·, ·) is a symmetric bilinear form, in the sense
that B(w, v) = B(v, w) for all w, v ∈ H1

0(Ω). The norm ‖ · ‖B defined by ‖v‖B := [B(v, v)]1/2 is called the
energy norm on H1

0(Ω) associated with the elliptic boundary-value problem (21). In fact, (21) can then
be restated as the following, equivalent, variational problem: find u ∈ H1

0(Ω) such that

J(u) ≤ J(v) ∀v ∈ H1
0(Ω),

where

J(v) :=
1

2
B(v, v)− ℓ(v).

Analogously, the FEM (22) can then be restated equivalently as follows: find uh ∈ Sh,0 such that J(uh) ≤
J(vh) for all vh ∈ Sh,0. Furthermore, Céa’s lemma, in terms of the energy norm, ‖ · ‖B, becomes
‖u−uh‖B = minvh∈Sh,0

‖u− vh‖B. Thus, in the case when the function b is identically zero the numerical
solution uh ∈ Sh,0 delivered by the FEM is the best approximation to the analytical solution u ∈ H1

0(Ω)
in the energy norm ‖ · ‖B.

We illustrate the extension of these ideas to nonlinear elliptic PDEs through a simple model problem.
For a real number p ∈ (1,∞), let Lp(Ω) := {v :

∫

Ω
|v|p dx < ∞} and W1,p(Ω) := {v ∈ Lp(Ω) : |∇v| ∈

Lp(Ω)}. Let further W1,p
0 (Ω) denote the set of all v ∈ W1,p(Ω) such that v|∂Ω = 0. For f ∈ Lq(Ω), where

1/p+ 1/q = 1, p ∈ (1,∞), consider the problem of finding the minimizer u ∈ W1,p
0 (Ω) of the functional

J(v) :=
1

p

∫

Ω

|∇v|p dx−
∫

Ω

fv dx, v ∈ W1,p
0 (Ω).

With Sh,0 as above, the finite element approximation of the problem then consists of finding uh ∈ Sh,0

that minimizes J(vh) over all vh ∈ Sh,0. The existence and uniqueness of the minimizers u ∈ W1,p
0 (Ω)

and uh ∈ Sh,0 in the respective problems is a direct consequence of the convexity of the functional J .
Moreover as h→ 0, uh converges to u in the norm of the Sobolev space W1,p(Ω).

Problems in electromagnetism and continuum mechanics are typically modeled by systems of PDEs
involving several dependent variables, which may need to be approximated from different finite element
spaces because of the disparate physical nature of the variables and the different boundary conditions
that they may be required to satisfy. The resulting finite element methods are called mixed finite element
methods. In order for a mixed FEM to possess a unique solution and for the method to be stable, the finite
element spaces from which the approximations to the various components of the vector of unknowns are
sought cannot be chosen arbitrarily, but need to satisfy a certain compatibility condition, usually referred
to as the inf-sup condition; cf. [2, 3].

FEMs of the kind described in this section, where the finite element space containing the approximate
solution is a subset of the function space in which the weak solution to the problem is sought, are
called conforming finite element methods. Otherwise, the FEM is called nonconforming. Discontinuous
Galerkin finite element methods (DGFEM) are an extreme instance of a nonconforming FEM, in the
sense that pointwise inter-element continuity requirements in the piecewise polynomial approximation are
completely abandoned, and the analytical solution is approximated by discontinuous piecewise polynomial
functions. DGFEMs have several advantages over finite difference methods: the concept of higher-order
discretization is inherent to DGFEMs; it is, in addition, particularly convenient from the point of view of
adaptivity that DGFEMs can easily accommodate very general tessellations of the computational domain,
with local polynomial degrees in the approximation that may vary from element to element. Indeed, the
notion of adaptivity is a powerful and important idea in the field of numerical approximation of PDEs,
which we shall now further elaborate on in the context of finite element methods.

5.2 A posteriori error analysis and adaptivity

Provided that the analytical solution is sufficiently smooth, a priori error bounds guarantee that, as the
grid size h tends to 0, the corresponding sequence of numerical approximations converges to the exact
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Figure 3: An hp-adaptive finite element grid, using polynomials with degrees 1, . . . , 7 (indicated by
the colour-coding), in a discontinuous Galerkin finite element approximation of the compressible Euler
equations of gas dynamics (top) and the colour contours of the approximate density on the grid (bottom).
(By courtesy of Paul Houston).

solution of the boundary-value problem. In practice one may unfortunately only afford to compute on
a small number of grids/triangulations, the minimum grid size attainable being limited by the compu-
tational resources available. A further practical consideration is that the regularity of the analytical
solution may exhibit large variations over the computational domain, with singularities localized at par-
ticular points (e.g. corners and edges of the domain) or low-dimensional manifolds in the interior of the
domain (e.g. shocks and contact discontinuities in nonlinear conservation laws, or steep internal layers
in advection-dominated diffusion equations). The error between the unknown analytical solution and
numerical solutions computed on locally refined grids, which are best suited for such problems, cannot be
accurately quantified by typical a priori error bounds and asymptotic convergence results that presuppose
uniform refinement of the computational grid as the grid-size tends to 0. The alternative is to perform a
computation on a chosen computational grid/triangulation and use the computed approximation to the
exact solution to quantify the approximation error a posteriori, and also to identify parts of the com-
putational domain where the grid-size was inadequately chosen, necessitating local, so called, adaptive,
refinement or coarsening of the computational grid/triangulation (h-adaptivity); cf. [1, 19]. In FEMs
it is also possible to locally vary the degree of the piecewise polynomial function in the finite element
space (p-adaptivity). Finally, one may also make adjustments to the computational grid/triangulation,
by moving/relocating the grid points (r-adaptivity). The adaptive loop for an h-adaptive FEM has the
form:

SOLVE → ESTIMATE → MARK → REFINE.

Thus, a finite element approximation is first computed on a certain fixed, typically coarse, triangulation
of the computational domain. Then, in the second step, an a posteriori error bound is used to estimate
the error in the computed solution: a typical a posteriori error bound for an elliptic boundary-value
problem Lu = f , where L is a second-order uniformly elliptic operator and f is a given right-hand side,
is of the form ‖u − uh‖1 ≤ C∗||R(uh)||∗, where C∗ is a (computable) constant, || · ||∗ is a certain norm,
depending on the problem, and R(uh) = f−Luh is the (computable) residual, which measures the extent
to which the computed numerical solution uh fails to satisfy the PDE Lu = f . In the third step, on the
basis of the a posteriori error bound, selected triangles in the triangulation are marked as those whose
size is inadequate (i.e. too large or too small, relative to a fixed local tolerance, which is usually chosen as
a suitable fraction of the prescribed overall tolerance TOL), and finally the marked triangles are refined or
coarsened, as the case may be. This four-step adaptive loop is repeated either until a certain termination
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criterion is reached (e.g. C∗||R(uh)||∗ < TOL) or until the computational resources are exhausted. A
similar adaptive loop can be used in p-adaptive FEMs, except that the step REFINE is then interpreted as
adjustment (i.e. increase or decrease) of the local polynomial degree, which then, instead of being a fixed
integer over the entire triangulation, may vary from triangle to triangle. It is also possible to combine
different adaptive strategies: for example, simultaneous h and p adaptivity is referred to as hp-adaptivity ;
thanks to the simple communication at the boundaries of adjacent elements in the subdivision of the
computational domain, hp-adaptivity is particularly easy to incorporate into DGFEMs; see Fig. 3.

6 Finite volume methods

Finite volume methods have been developed for the numerical solution of PDEs in divergence form, such
as conservation laws that arise from continuum mechanics. Consider, for example, the following system
of nonlinear PDEs:

∂u

∂t
+∇ · f(u) = 0, (27)

where u := (u1, . . . , un)
T is an n-component vector-function of the variables t and x1, . . . , xd; the vector-

function f(u) := (f1(u), . . . , fd(u))
T is the corresponding flux function. The PDE (27) is supplemented

with the initial condition u(0, x) = u0(x), x ∈ R
d. Suppose that R

d has been tessellated into disjoint
closed simplices κ (intervals if d = 1, triangles if d = 2, and tetrahedra if d = 3), whose union is the whole
of Rd and such that each pair of distinct simplices from the tessellation is either disjoint, or has only
closed simplices of dimension ≤ d − 1 in common. In the theory of finite volume methods the simplices
κ are usually referred to as cells (rather than elements). For each particular cell κ in the tessellation of
R

d the PDE (27) is integrated over κ, which gives

∫

κ

∂u

∂t
dx+

∫

κ

∇ · f (u) dx = 0. (28)

By defining the volume-average

ūκ(t) :=
1

|κ|

∫

κ

u(t, x) dx, t ≥ 0,

where |κ| is the measure of κ, and applying the divergence theorem, we deduce that

dūκ
dt

+
1

|κ|

∮

∂κ

f (u) · ν dS = 0,

where ∂κ is the boundary of κ and ν is the unit outward normal vector to ∂κ. In the present construction
the constant volume-average is assigned to the barycenter of a cell, and the resulting finite volume method
is therefore referred to as a cell-centre finite volume method. In the theory of finite volume methods the
local region κ over which the PDE is integrated is called a control volume. Thus in the case of cell-centre
finite volume methods the control volumes coincide with the cells in the tessellation. An alternative
choice, resulting in vertex-centred finite volume methods, is that for each vertex in the computational
grid one considers the patch of cells surrounding the vertex, and assigns to the vertex a control volume
contained in the patch of elements (e.g., in the case of d = 2, the polygonal domain defined by connecting
the barycenters of cells that surround a vertex).

Thus far no approximation has taken place. In order to construct a practical numerical method, the
integral over ∂κ is rewritten as a sum of integrals over all (d − 1)-dimensional open faces contained in
∂κ, and the integral over each face is approximated by replacing the normal flux f(u) · ν over the face,
appearing as integrand, by interpolation or extrapolation of control volume averages. This procedure can
be seen as a replacement of the exact normal flux over a face of a control volume with a numerical flux
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function. Thus, for example, denoting by eκλ the (d − 1)-dimensional face of the control volume κ that
is shared with a neighboring control volume λ, we have that

∮

∂κ

f(u) · ν dS ≈
∑

λ : eκλ⊂∂κ

gκλ(ūκ, ūλ),

where the numerical flux function gκλ is required to possess the following two crucial properties:

• Conservation ensures that fluxes from adjacent control volumes sharing a mutual interface exactly
cancel when summed. This is achieved by demanding that the numerical flux satisfies the identity

gκλ(u, v) = −gλκ(v, u),

for each pair of neighboring control volumes κ and λ.

• Consistency ensures that, for each face of each control volume, the numerical flux with identical
state arguments reduces to the true total flux of that same state passing through the face, i.e.,

gκλ(u, u) =

∫

eκλ

f(u) · ν dS,

for each pair of neighboring control volumes κ and λ with common face eκλ := κ ∩ λ.
The resulting spatial discretization of the nonlinear conservation law is then further discretized with
respect to the temporal variable t by time stepping, in steps of ∆t, starting from the given initial datum
u0, the simplest choice being to use the explicit Euler method; cf. [13].

The historical roots of this construction date back to the work of Sergei Godunov in 1959 on the gas
dynamics equations; Godunov used piecewise constant solution representations in each control volume
with value equal to the average over the control volume and calculated a single numerical flux from the
local solution of the Riemann problem posed at the interfaces. Additional resolution beyond the first-
order accuracy of the Godunov scheme can be attained by reconstruction/recovery from the computed
cell-averages (as in the MUSCL scheme of Van Leer based on piecewise linear reconstruction, or by piece-
wise quadratic reconstruction as in the piecewise parabolic method (PPM) of Colella and Woodward),
by exactly evolving discontinuous piecewise linear states instead of piecewise constant states, or by com-
pletely avoiding the use of Riemann solvers (as in the Nessyahu–Tadmor and Kurganov–Tadmor central
difference methods).

Thanks to their in-built conservation properties, finite volume methods have been widely and success-
fully used for the numerical solution of both scalar nonlinear conservation laws and systems of nonlinear
conservation laws, including the compressible Euler equations of gas dynamics. There is a satisfactory
convergence theory of finite volume methods for scalar multidimensional conservation laws (cf. [7], for
example); efforts to develop a similar body of theory for multidimensional systems of nonlinear conser-
vation laws are however hampered by the incompleteness of the theory of well-posedness for such PDE
systems.

7 Spectral methods

While finite difference methods provide approximate solutions to PDEs at the points of the chosen
computational grid, and finite element and finite volume methods supply continuous or discontinuous
piecewise polynomial approximations on tessellations of the computational domain, spectral methods
deliver approximate solutions in the form of polynomials of a certain fixed degree, which are, by definition,
smooth functions over the entire computational domain. If the solution to the underlying PDE is a smooth
function, a spectral method will provide a highly accurate numerical approximation to it.
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Spectral approximations are typically sought as linear combinations of orthogonal polynomials over
the computational domain. Consider a nonempty open interval (a, b) of the real line and a nonnegative
weight-function w, which is positive on (a, b), except perhaps at countably many points in (a, b), and
such that

∫ b

a

w(x)|x|k dx <∞ ∀k ∈ {0, 1, 2, . . .}.

Let, further, L2
w(a, b) denote the set of all real-valued functions v defined on (a, b) such that

‖v‖w :=

(
∫ b

a

w(x)|v(x)|2dx
)1/2

<∞.

Then, ‖ · ‖w is a norm on L2
w(a, b), induced by the inner product (u, v)w :=

∫ b

a
w(x)u(x)v(x) dx. We

say that {Pk}∞k=0 is a system of orthogonal polynomials on (a, b) if Pk is a polynomial of exact degree k
and (Pm, Pn)w = 0 when m 6= n. For example, if (a, b) = (−1, 1) and w(x) = (1 − x)α(1 + x)β , with
α, β ∈ (−1, 1) fixed, then the resulting system of orthogonal polynomials are the Jacobi polynomials,
special cases of which are the Gegenbauer (or ultraspherical) polynomials (α = β ∈ (−1, 1)), Chebyshev
polynomials of the first kind (α = β = −1/2), Chebyshev polynomials of the second kind (α = β = 1/2)
and Legendre polynomials (α = β = 0). On a multidimensional domain Ω ⊂ R

d, d ≥ 2, that is the
cartesian product of nonempty open intervals (ak, bk), k = 1, . . . , d, of the real line and a multivariate
weight-function w of the form w(x) = w1(x1) · · ·wd(xd), where x = (x1, . . . , xd) and wk is a univariate
weight-function of the variable xk ∈ (ak, bk), k = 1, . . . , d, orthogonal polynomials with respect to the
inner product (·, ·)w defined by (u, v)w =

∫

Ω
w(x)u(x)v(x) dx are simply products of univariate orthogonal

polynomials with respect to the weights wk, defined on the intervals (ak, bk), k = 1, . . . , d, respectively.
Spectral Galerkin methods for PDEs are based on transforming the PDE problem under consideration

into a suitable weak form by multiplication with a test function, integration of the resulting expression
over the computational domain Ω, and integration by parts, if necessary, in order to incorporate boundary
conditions. Similarly as in the case of finite element methods, an approximate solution uN to the analytical
solution u is sought from a finite-dimensional linear space SN ⊂ L2

w(Ω), which is now, however, spanned
by the first (N + 1)d elements of a certain system of orthogonal polynomials with respect to the weight-
function w, and satisfying the associated Dirichlet boundary condition (if any); uN is required to satisfy
the same weak formulation as the analytical solution, except that the test functions are confined to the
finite-dimensional linear space SN . In order to exploit the orthogonality properties of the chosen system
of orthogonal polynomials, the weight-function w has to be incorporated into the weak formulation of
the problem, which is not always easy, unless of course the weight-function w already appears as a
coefficient in the differential equation, or if the orthogonal polynomials in question are the Legendre
polynomials (since then w(x) ≡ 1). We describe the construction for a uniformly elliptic PDE subject to
a homogeneous Neumann boundary condition:

−∆u+ u = f(x), x ∈ Ω := (−1, 1)d, (29)

∂u

∂ν
= 0, on ∂Ω, (30)

where f ∈ L2(Ω) and ν denotes the unit outward normal vector to ∂Ω (or, more precisely, to the (d− 1)-
dimensional open faces contained in ∂Ω). Let us consider the finite-dimensional linear space

SN := span{Lα := Lα1
· · ·Lαd

: 0 ≤ αk ≤ N, k = 1, . . . , d},

where Lαk
is the univariate Legendre polynomial of degree αk of the variable xk ∈ (−1, 1), k = 1, . . . , d.

The Legendre–Galerkin spectral approximation of the boundary value problem is defined as follows: find
uN ∈ SN such that

B(uN , vN) = ℓ(vN ) ∀vN ∈ SN , (31)
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where the linear functional ℓ(·) and the bilinear form B(·, ·) are defined by ℓ(v) :=
∫

Ω
fv dx and B(w, v) :=

∫

Ω
(∇w · ∇v + wv) dx, respectively, with w, v ∈ H1(Ω). As B(·, ·) is a symmetric bilinear form and SN is

a finite-dimensional linear space, the task of determining uN is equivalent to solving a system of linear
algebraic equations with a symmetric square matrix A ∈ R

K×K with K := dim(SN) = (N + 1)d. Since
B(V, V ) = ‖V ‖21 > 0 for all V ∈ SN \ {0}, where, as before, ‖ · ‖1 denotes the H1(Ω) norm, the matrix A
is positive definite, and therefore invertible. Thus we deduce the existence and uniqueness of a solution
to (31). Céa’s lemma (see (26)) for (31) takes the form

‖u− uN‖1 = min
vN∈SN

‖u− vN‖1. (32)

Assuming that u ∈ Hs(Ω), s > 1, results from approximation theory imply that the right-hand side of
(32) is bounded by a constant multiple of N1−s‖u‖s, and we thus deduce the error bound

‖u− uN‖1 ≤ CN1−s‖u‖s, s > 1.

Furthermore, if u ∈ C∞(Ω) (i.e. all partial derivatives of u of any order are continuous on Ω), then
‖u − uN‖1 will converge to zero at a rate that is faster than any algebraic rate of convergence; such
a superalgebraic convergence rate is usually referred to as spectral convergence and is the hallmark of
spectral methods.

Since uN ∈ SN , there exist Uα ∈ R, with multi-indices α = (α1, . . . , αd) ∈ {0, . . . , N}d, such that

uN(x) =
∑

α∈{0,...,N}d

UαLα(x).

Substituting this expansion into (31) and taking vN = Lβ, with β = (β1, . . . , βd) ∈ {0, . . . , N}d, we obtain
the system of linear algebraic equations

∑

α∈{0,...,N}d

B(Lα, Lβ)Uα = ℓ(Lβ), β ∈ {0, . . . , N}d (33)

for the unknowns Uα, α ∈ {0, . . . , N}d, which is reminiscent of the system of linear equations (24)
encountered in connection with finite element methods. There is, however, a fundamental difference:
whereas the matrix of the linear system (24) was symmetric, positive definite and sparse, the one appearing
in (33) is symmetric, positive definite and full. It has to be noted that because

B(Lα, Lβ) =

∫

Ω

∇Lα · ∇Lβ dx+

∫

Ω

LαLβ dx,

in order for the matrix of the system to become diagonal, instead of Legendre polynomials one would
need to use a system of polynomials that are orthogonal in the energy inner product (u, v)B := B(u, v),
induced by B.

If the homogeneous Neumann boundary condition considered above is replaced with a 1-periodic
boundary condition in each of the d co-ordinate directions and the function f appearing on the right-
hand side of the PDE −∆u + u = f(x) on Ω = (0, 1)d is a 1-periodic function in each co-ordinate
direction, then one can use trigonometric polynomials instead of Legendre polynomials in the expansion
of the numerical solution. This will then result in what is known as a Fourier–Galerkin spectral method.
Because trigonometric polynomials are orthogonal in both the L2(Ω) and the H1(Ω) inner product, the
matrix of the resulting system of linear equations will be diagonal, which greatly simplifies the solution
process. Having said this, the presence of (periodic) nonconstant coefficients in the PDE will still destroy
orthogonality in the associated energy inner product (·, ·)B, and the matrix of the resulting system of
linear equations will then, again, become full. Nevertheless, significant savings can be made in spectral
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computations through the use of fast transform methods, such as the fast Fourier transform (FFT) or the
fast Chebyshev transform, and this has contributed to the popularity of Fourier and Chebyshev spectral
methods.

Spectral collocation methods seek a numerical solution uN from a certain finite-dimensional space SN ,
spanned by orthogonal polynomials, just as spectral Galerkin methods, except that after expressing uN
as a finite linear combination of orthogonal polynomials and substituting this linear combination into
the differential equation, rather than requiring that the difference between the left-hand side and the
right-hand side of the resulting expression is orthogonal to SN , one demands instead that this difference
vanishes at certain carefully chosen points, called the collocation points. Boundary and initial conditions
are enforced analogously. A trivial requirement in selecting the collocation points is that one ends up
with as many equations as the number of unknowns, which is, in turn, equal to the dimension of the
linear space SN .

We illustrate the procedure by considering the parabolic equation

∂tu− ∂2xxu = 0, (t, x) ∈ (0,∞)× (−1, 1),

subject to the initial condition u(0, x) = u0(x) with x ∈ [−1, 1] and the homogeneous Dirichlet boundary
conditions u(t,−1) = 0, u(t, 1) = 0, t ∈ (0,∞). A numerical approximation uN is sought in the form of
the finite linear combination

uN(t, x) =
N
∑

k=0

ak(t)Tk(x)

with (t, x) ∈ [0,∞)×[−1, 1], where Tk(x) := cos(k arccos(x)), x ∈ [−1, 1], is the Chebyshev polynomial (of
the first kind) of degree k ≥ 0. Note that there are N+1 unknowns: the coefficients ak(t), k = 0, 1, . . . , N .
We thus require the same number of equations. The function uN is substituted into the PDE and it is
demanded that, for t ∈ (0,∞) and k = 1, . . . , N − 1,

∂tuN(t, xk)− ∂2xxuN(t, xk) = 0;

and uN(t,−1) = 0 and uN(t, 1) = 0 for t ∈ (0,∞), supplemented by the initial condition uN(0, xk) =
u0(xk) for k = 0, . . . , N , where the (N + 1) collocation points are defined by xk := cos (kπ/N) , k =
0, . . . , N ; these are the (N + 1) points of extrema of TN on the interval [−1, 1]. By writing uk(t) :=
uN(t, xk), after some calculation based on properties of Chebyshev polynomials one arrives at the following
set of ordinary differential equations:

duk(t)

dt
=

N−1
∑

l=1

(D2
N)klu

l(t), k = 1, . . . , N − 1,

where D2
N is the spectral differentiation matrix of second order, whose entries (D2

N)kl can be explicitly
calculated. One can then use any standard numerical method for a system of ordinary differential
equations to evolve the values uk(t) = uN(t, xk) of the approximate solution uN at the collocations points
xk, k = 1, . . . , N − 1, contained in (−1, 1), from the values of the initial datum u0 at the same points; cf.
[4, 18].

8 Concluding remarks

We have concentrated on four general and widely applicable families of numerical methods — finite
difference, finite element, finite volume and spectral methods. For additional details the reader is referred
to the books in the list of references, and to the rich literature on numerical methods for PDEs for the
construction and analysis of other important techniques for specialized PDE problems.
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[17] Süli, E., 2015. Numerical solution of partial differential equations. In: Princeton Companion to
Applied Mathematics. Edited by Nicholas J. Higham, and Mark R. Dennis, Paul Glendinning, Paul
A. Martin, Fadil Santosa and Jared Tanner, associate editors. Princeton University Press.

[18] Trefethen, L. N., 2000. Spectral Methods in Matlab. SIAM, Philadelphia, PA.

[19] Verfürth, R., 2013. A posteriori error estimation techniques for finite element methods. The Claren-
don Press, Oxford University Press, Oxford.

26


