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Lecture 1

1. Introduction. Numerous mathematical models that arise in continuum mechanics in the
form of systems of partial differential equations involve several physically disparate quantities,
which need to be approximated simultaneously. Finite element approximations of such problems
are known as mixed finite element methods. These lecture notes introduce some basic concepts
from the theory of mixed finite element methods. For further details the reader is referred to the
monographs by Boffi, Brezzi & Fortin [1], Brenner & Scott [2], Ern & Guermond [4], Gatica [6]
and Girault & Raviart [7]. For questions associated with the iterative solution of systems of linear
algebraic equations arising from mixed finite element approximations, and preconditioning these,
the reader may wish to consult the text by Elman, Silvester and Wathen [3].

In order to motivate the theoretical considerations that will follow we begin by presenting two
typical model problems that lead to mixed finite element methods.

1.1. Example 1: the Stokes equations. The Stokes equations govern the flow of a steady,
viscous, incompressible, isothermal, Newtonian fluid. They arise by simplifying the incompressible
Navier–Stokes equations through the omission of the convective derivative. This results in the
following system of linear partial differential equations:

−∆u +∇p = f in Ω, (1.1a)

∇ · u = 0 in Ω. (1.1b)

Here Ω is assumed to be a bounded open set in Rd, d = 2, 3, with a sufficiently smooth boundary
∂Ω; in what follows it will suffice to assume that ∂Ω is Lipschitz continuous. The d-component
vector function u : Ω→ Rd denotes the velocity of the fluid, p : Ω→ R is the pressure, f : Ω→ Rd

is the density of body forces acting on the fluid (e.g. gravitational force), and the constant
kinematic viscosity of the fluid that multiplies ∆u has been set to unity as its actual value plays
no role in our considerations. The equation (1.1a) is called the momentum equation, while equation
(1.1b) is referred to as the continuity equation. Vector-valued functions, such as u and f , and the
associated function spaces to which vector-valued functions belong, will be displayed throughout
in boldface.

For the sake of simplicity we shall supplement the system of partial differential equations
(1.1a), (1.1b) with the following homogeneous Dirichlet boundary condition:

u = 0 on ∂Ω. (1.1c)

By taking the dot product of the momentum equation (1.1a) with a sufficiently smooth d-
component vector function v such that v|∂Ω = 0, integrating the resulting equality over Ω, and
integrating by parts in both terms on the left-hand side, noting the assumed homogenous boundary
condition on v, yields

a(u,v) + b(v, p) = `f (v), (1.2a)
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where a(·, ·) and b(·, ·) are two bilinear functionals defined, respectively, by

a(u,v) :=

∫
Ω

d∑
i=1

∇ui · ∇vi dx, (1.2b)

b(v, q) := −
∫

Ω

(∇ · v)q dx, (1.2c)

and `f (·) is the linear functional defined by

`f (v) :=

∫
Ω

f · v dx. (1.2d)

Similarly, multiplying the continuity equation (1.1b) with a sufficiently smooth function q and
integrating over Ω yields

b(u, q) = 0. (1.2e)

Motivated by the forms of the equations (1.2a) and (1.2e), we shall now state the weak
formulation of the Stokes equations, which will represent the starting point for the construction
of mixed finite element approximations for this boundary-value problem. To this end, we define
the function spaces

X := H1
0 (Ω)d = H1

0 (Ω)× · · · ×H1
0 (Ω)︸ ︷︷ ︸

d times

and

M := L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0

}
.

The weak formulation of the Stokes equations is then as follows: find a pair of functions (u, p) ∈
X×M such that

a(u,v) + b(v, p) = `f (v) ∀v ∈ X, (1.3a)

b(u, q) = 0 ∀q ∈M. (1.3b)

We shall show later that, as long as f ∈ L2(Ω)d, the problem (1.3a), (1.3b) has a unique solution
(u, p) ∈ X×M , which we shall refer to as the weak solution of the Stokes equations. In fact, the
regularity hypothesis f ∈ L2(Ω)d on the source term can be weakened by assuming that `f ∈ X′,
where X′ denotes the dual space of X, consisting of all continuous linear functionals on X.

1.2. Example 2: flow in porous media. A simple model for fluid flow in a porous medium
occupying a bounded open set Ω ⊂ Rd has the form

d∑
i,j=1

∂

∂xi

(
aij(x)

∂p

∂xj

)
= g(x), x ∈ Ω, (1.4)

where p : Ω→ R is the pressure, and g ∈ L2(Ω) is a given source term. Again, Ω will be assumed to
have sufficiently smooth boundary ∂Ω; for example, it will suffice to assume for our considerations
that ∂Ω is Lipschitz continuous. Let us suppose that the equation is uniformly elliptic on Ω; that
is, there exists a positive constant c0 such that

d∑
i,j=1

aij(x) ξiξj ≥ c0
d∑

i=1

ξ2
i ∀ξ = (ξ1, . . . , ξd)T ∈ Rd, ∀x ∈ Ω. (1.5)
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Let us suppose further that aij ∈ L∞(Ω), i, j = 1, . . . , d. According to Darcy’s law the fluid
velocity u : Ω→ Rd and the pressure gradient are related by

−
d∑

j=1

aij(x)
∂p

∂xj
(x) = ui(x) in Ω, i = 1, . . . , d. (1.6)

Let us denote by A(x) the inverse of the matrix (aij(x))di,j=1 ∈ Rd×d. Thus we can rewrite (1.6)
in an equivalent form as

Au = −∇p in Ω. (1.7)

Thanks to (1.4) we also have that

−∇ · u = g in Ω. (1.8)

We shall supplement the system of equations (1.7), (1.8) with the following homogeneous oblique
derivative boundary condition:

d∑
i,j=1

aij(x)
∂p

∂xj
(x)ni(x) = 0 on ∂Ω, (1.9)

where n(x) = (n1(x), . . . , nd(x))T is the unit outward normal vector to ∂Ω at the point x ∈ ∂Ω.
By noting (1.6) we can rewrite the boundary condition (1.9) as

u · n = 0 on ∂Ω. (1.10)

The weak formulation of the system (1.7), (1.8) in conjunction with the boundary condition (1.10)
is then as follows: find (u, p) ∈ X×M , such that

a(u,v) + b(v, p) = 0 ∀v ∈ X, (1.11a)

b(u, q) = `g(q) ∀q ∈M, (1.11b)

where now X and M are defined by

X := H0(div; Ω) =
{
v ∈ L2(Ω)d : ∇ · v ∈ L2(Ω), v · n|∂Ω = 0

}
and

M := L2
0(Ω),

and the bilinear functionals a(·, ·) and b(·, ·) and the linear functional `g(·) are defined by

a(u,v) :=

∫
Ω

d∑
i,j=1

Aij uivj dx,

b(v, q) := −
∫

Ω

(∇ · v) q dx,

`g(q) :=

∫
Ω

g q dx.

The space X := H0(div; Ω) is equipped with the norm

‖v‖H(div;Ω) :=
(
‖v‖2L2(Ω)d + ‖∇ · v‖2L2(Ω)

) 1
2

.

After stating some standard results from functional analysis in the next section, we shall develop
the elements of a mathematical theory, which, under suitable assumptions on the data, guarantees
the existence a unique solution to variational problems such as (1.3) and (1.11).
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Lecture 2
2. Three preliminary results. The analysis presented in the next section requires three

classical theorems from linear functional analysis, which we state here without proofs; for further
details we refer the reader to Yosida [10].

Theorem 2.1 (Lax–Milgram theorem). Suppose that H is a Hilbert space over the field of
real numbers, with inner product (·, ·)H and induced norm ‖ · ‖H defined by ‖v‖2H := (v, v)H .
Suppose further that a(·, ·) is a bilinear functional on H ×H, ` is a linear functional on H, and
the following additional properties hold:

(a) The bilinear functional a is coercive; i.e., there exists a positive real number ca such that

a(v, v) ≥ ca‖v‖2H ∀v ∈ H;

(b) The bilinear functional a is bounded; i.e., there exists a positive real number Ca such that

|a(w, v)| ≤ Ca‖w‖H‖v‖H ∀w, v ∈ H;

(c) The linear functional ` is bounded; i.e., there exists a positive real number C` such that

|`(v)| ≤ C`‖v‖H ∀v ∈ H.

Then, there exists a unique u ∈ H such that a(u, v) = `(v) for all v ∈ H.

The proof of the Lax–Milgram theorem is based on the following result, known as the Riesz
representation theorem.

Theorem 2.2 (Riesz representation theorem). Suppose that H is a Hilbert space over the field
of real numbers, with inner product (·, ·)H and induced norm ‖·‖H defined by ‖v‖2H := (v, v)H , and
let ` : H → R be a bounded linear functional on H. Then, there exists a unique element z ∈ H,
known as the Riesz representer of `, such that `(v) = (z, v)H for all v ∈ H.

We shall require one further result, which concerns closed linear operators in Banach spaces.
Let X and Y be two Banach spaces. A linear operator T : D(T ) ⊂ X → Y , with domain
D(T ), is said to be closed if for every sequence (xn)n∈N in D(T ) converging to x ∈ X such that
Txn → y ∈ Y as n→∞ one has x ∈ D(T ) and Tx = y.

Theorem 2.3 (Banach’s closed range theorem). Suppose that X and Y are Banach spaces,
and T : D(T )→ Y is a closed linear operator, whose domain D(T ) is dense in X. Let Ker(T ) :=
{x ∈ D(T ) : Tx = 0} denote the kernel of T and let T ′ : Y ′ → X ′ be the transpose of T , defined
by 〈T ′y′, x〉 = 〈y′, Tx〉, where X ′ and Y ′ denote the dual spaces of X and Y , respectively, and 〈·, ·〉
is the duality pairing between Y ′ and Y , or X ′ and X, as the case may be. Then, the following
properties are equivalent:

(a) R(T ), the range of T , is closed in Y ;
(b) R(T ′), the range of T ′, is closed in X ′;
(c) R(T ) = [Ker(T ′)]o := {y ∈ Y : 〈y′, y〉 = 0 ∀y′ ∈ Ker(T ′)};
(d) R(T ′) = [Ker(T )]o := {x′ ∈ X ′ : 〈x′, x〉 = 0 ∀x ∈ Ker(T )}.
An important remark is in order regarding Banach’s closed range theorem, Theorem 2.3, in

the context of the discussion herein.

Remark 1. We shall apply this theorem to bounded linear operators T : X → Y , whose
domain, D(T ), is the entire space X; any such linear operator is both closed and, trivially, densely
defined in X. Therefore the hypotheses of Theorem 2.3 are automatically satisfied in such cases.
In particular, for a bounded linear operator T : X → Y , the properties (a) to (d) above are
equivalent.

It would have been more precise to write 〈T ′y′, x〉X′,X = 〈y′, Tx〉Y ′,Y in the statement of
the theorem, to highlight the fact that in the duality pairing on the left-hand side the first entry
belongs to X ′ and the second to X, and in the duality-pairing on the right the first entry belongs
to Y ′ and the second to Y . In the interest of simplicity of notation we have however refrained
from doing so, as the actual choice of the spaces in duality pairings will always be clear from the
context; the second entry in a duality pairing will always belong to a Banach or Hilbert space,
and the first entry will belong to the dual space of the Banach or Hilbert space in question.
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3. Abstract mixed formulation. Before embarking on the study the abstract mixed for-
mulation in (infinite-dimensional) Hilbert spaces, we shall attempt to develop some intuition for a
particular condition, usually referred to as the inf-sup condition, which arises in connection with
mixed systems. We shall do so by first focusing on finite-dimensional problems of this type.

3.1. The inf-sup condition in finite dimensions. Let us therefore consider the following
system of linear algebraic equations for a vector of unknowns (uT, pT)T ∈ Rn × Rm with n > m:

Au+BTp = f, (3.1)

Bu = 0, (3.2)

where A ∈ Rn×n, B ∈ Rm×n and f ∈ Rn. Clearly, because of (3.2), the component u of the
unknown solution vector (uT, pT)T must belong to the following (closed) linear subspace of Rn:

V := Ker(B) = {v ∈ Rn : Bv = 0}.

The set V is certainly nonempty, since the zero vector of Rn is contained in V . If V = {0}, the
component u must be equal to 0 and the equation (3.1) collapses to BTp = f , whose solvability we
shall study below, under suitable assumptions on B. Let us therefore assume that V is nontrivial,
in the sense that {0} is a strict subset of V and therefore V contains a nonzero element of Rn.

As vTBT = (Bv)T = 0T for all v ∈ V , by premultiplying (3.1) with vT, we deduce that,
because vTBTp = 0 for all v ∈ V , the vector u ∈ V , if it exists, must satisfy:

vTAu = vTf ∀v ∈ V.

In order to ensure that such a u ∈ V exists, we shall assume that A is positive definite on
V = Ker(B) is the sense that

vTAv > 0 ∀v ∈ V \ {0}.

An equivalent assumption to this is that vTAv > 0 for all v ∈ V with ‖v‖Rn = 1, where ‖ · ‖Rn is
the Euclidean norm on Rn; and therefore, since the unit sphere in Rn is compact and the mapping
v 7→ vTAv is continuous, a further equivalent restatement of this assumption is that

∃ca > 0 s.t.: vTAv ≥ ca‖v‖2Rn ∀v ∈ V, (3.3)

which is usually referred to as coercivity of A on the kernel of B. By defining a(w, v) := vTAw,
with v, w ∈ V , it directly follows from the Lax–Milgram theorem (cf. Theorem 2.1 above) that
there exists a unique u ∈ V such that vTAu = vTf for all v ∈ V . To summarize, we have shown
that, if A is coercive on the kernel of B, then there exists a unique u ∈ V such that vTAu = vTf .

Having found u, we now return to (3.1) to find a p ∈ Rm such that

BTp = f −Au. (3.4)

As by the Fundamental Theorem of Linear Algebra, R(BT) = [Ker(B)]⊥ = V ⊥, and f−Au ∈ V ⊥,
it follows that there exists a p ∈ Rm such that BTp = f −Au. In order to show the uniqueness of
p we require a condition on B, similar in spirit to the coercivity condition for A, which will ensure
the injectivity of the mapping BT : Rm → V ⊥. It is worth noting at this point though that,
unlike A, which was assumed to be a square matrix, B is a rectangular matrix, so the relevant
condition for B will be slightly more complicated than the coercivity condition for A.

In order to eliminate the possibility of the existence of a p∗ 6= 0 such that BTp∗ = 0, we shall
suppose that:

∀q ∈ Rm \ {0} ∃v ∈ Rn \ {0} s.t.: vTBTq > 0. (3.5)

Indeed, if (3.5) holds, then, for p∗ ∈ Rm \ {0} there exists a v∗ ∈ Rn \ {0} such that 0 < vT
∗ B

Tp∗,
which rules out the possibility that BTp∗ = 0 for a nonzero vector p∗ ∈ Rm. Consequently, if (3.5)
holds, then there exists a unique p ∈ Rm such that (3.4) holds.
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In summary, we have shown that, if (3.3) and (3.5) hold, then the system of linear algebraic
equations (3.1), (3.2) has a unique solution (uT, pT)T ∈ Rn × Rm for any choice of f ∈ Rn.

An equivalent form of writing (3.5) would be to assume that

∀q ∈ Rm \ {0} ∃v ∈ Rn \ {0} s.t.:
vTBTq

‖v‖Rn ‖q‖Rm

> 0. (3.6)

A slightly stronger requirement, usually referred to as the inf-sup condition, would be to assume
that

∃cb > 0 s.t.: inf
q∈Rm\{0}

sup
v∈Rn\{0}

vTBTq

‖v‖Rn ‖q‖Rm

≥ cb, (3.7)

where cb a positive constant, independent of the dimensions n and m of the finite-dimensional
spaces Rn and Rm. Assuming that B satisfies the inf-sup condition (3.7), it follows that

∀q ∈ Rm ‖BTq‖Rn ≥ cb‖q‖Rm ,

and therefore BT : Rm → [Ker(B)]⊥ = V ⊥ := {g ∈ Rn : gTv = 0 ∀v ∈ V } is an isomorphism.
Consequently, by transposition, B : V ⊥ → Rm is an isomorphism.

3.2. The inf-sup condition in infinite dimensions. Let us suppose that X and M are
two Hilbert spaces over the field of real numbers and consider two bilinear functionals a(·, ·) :
X ×X → R and b(·, ·) : X ×M → R. We shall assume that each of these bilinear functionals is
bounded; i.e., there exist positive constants Ca and Cb such that

|a(u, v)| ≤ Ca‖u‖X‖v‖X ∀u, v ∈ X, (3.8a)

|b(v, q)| ≤ Cb‖v‖X‖q‖M ∀v ∈ X, ∀q ∈M, (3.8b)

where ‖ ·‖X and ‖ ·‖M denote the norm in X and M , respectively, induced by the respective inner
products, (·, ·)X and (·, ·)M , of these two Hilbert spaces.

With these assumptions in mind, we consider the following variational problem: find the pair
(u, p) ∈ X ×M such that

a(u, v) + b(v, p) = `f (v) ∀v ∈ X, (3.9a)

b(u, q) = `g(q) ∀q ∈M, (3.9b)

where `f ∈ X ′ and `g ∈ M ′; i.e., `f and `g are bounded linear functionals on the Hilbert spaces
X and M , respectively.

We begin by studying problem (3.9) in the simplified setting when `g = 0 (i.e., `g(q) = 0 for
all q ∈ M). We shall then show how the general case, when `g 6= 0, can be reduced to the case
when `g = 0.

Case 1: `g = 0. The problem under consideration is then the following:

a(u, v) + b(v, p) = `f (v) ∀v ∈ X, (3.10a)

b(u, q) = 0 ∀q ∈M. (3.10b)

Let us consider the closed linear subspace V of the Hilbert space X, defined by

V := {v ∈ X : b(v, q) = 0 ∀q ∈M}. (3.11)

By choosing a test function v ∈ V (⊂ X) in (3.10a) we then have that

a(u, v) = `f (v) ∀v ∈ V. (3.12)

Since V is a Hilbert space when equipped with the inner product and norm of X, our assumptions
that a(·, ·) is a bounded bilinear functional on X ×X and `f is a bounded linear functional on X
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imply that the same is true with X replaced by V . Thus, if we now additionally assume that the
bilinear functional a(·, ·) is coercive on V × V , i.e., that

∃ca > 0 s.t. ∀v ∈ V : a(v, v) ≥ ca‖v‖2X , (3.13)

then by applying the Lax–Milgram theorem we deduce the existence of a unique u ∈ V such that
a(u, v) = `f (v) for all v ∈ V . In particular, it then follows that the element u ∈ V thus found
automatically satisfies (3.10b).

It remains to prove the existence of a unique p ∈M such that (3.10a) also holds; i.e., we wish
to show the existence of a unique p ∈ M such that b(v, p) = `f (v) − a(u, v) for all v ∈ X, with
u ∈ V as determined above (and considered fixed). Since b(·, ·) is a bounded bilinear functional
on X ×M , and v 7→ `f (v) − a(u, v) is a bounded linear functional on X (for u ∈ V fixed), the
assumptions of the Lax–Milgram theorem motivate us to seek a generalization of the coercivity
assumption (a) to a wider setting when, instead of having a bilinear functional on the cartesian
product of a Hilbert space with itself, we have a bilinear functional on the cartesian product of
two different Hilbert spaces, X and M .

In order to identify the appropriate form of such a generalized coercivity condition, let us
re-examine condition (a) of the Lax–Milgram theorem, as stated in (3.13); it clearly implies that

∃ca > 0 s.t. ∀v ∈ X: ca‖v‖X ≤
a(v, v)

‖v‖X
≤ sup

w∈X\{0}

a(w, v)

‖w‖X
.

Motivated by the form of the right-most expression, we shall assume that the bilinear functional
b satisfies the following generalized coercivity condition:

∃cb > 0 s.t. ∀q ∈M : cb‖q‖M ≤ sup
w∈X\{0}

b(w, q)

‖w‖X
. (3.14)

Equivalently, we can rewrite (3.14) as follows:

∃cb > 0 s.t.: cb ≤ inf
q∈M\{0}

sup
w∈X\{0}

b(w, q)

‖w‖X ‖q‖M
. (3.15)

The condition (3.15) (or, equivalently, (3.14)) is referred to as the inf-sup condition. Lecture 3
Assuming that the bilinear functional b satisfies the inf-sup condition (3.15) (or, equivalently

(3.14)), let us return to the problem of finding a unique p ∈M such that

b(v, p) = L(v) ∀v ∈ X, (3.16)

where L(v) := `f (v) − a(u, v), with u ∈ V as identified above (i.e., a(u, v) = `f (v) for all v ∈ V ;
and hence L(v) = 0 for all v ∈ V ). As both `f (·) and a(u, ·) are bounded linear functionals on X
the same is true of L(·). We have the following crucial result.

Lemma 3.1. Suppose that b(·, ·) is a bilinear functional on the cartesian product X ×M of
two Hilbert spaces X and M over the field of real numbers, such that b is bounded in the sense
that (3.8b) holds, and b satisfies the inf-sup condition in the sense that (3.14) holds. Let V be the
closed linear subspace of X defined by (3.11) and suppose that L is a bounded linear functional on
X such that L(v) = 0 for all v ∈ V . Then, there exists a unique p ∈M such that

b(v, p) = L(v) ∀v ∈ X. (3.17)

We need to make some preparations before embarking on the proof of this lemma, including
the statement of an auxiliary result, Lemma 3.2, which we shall prove below. Having done so, we
shall be ready to prove Lemma 3.1.

Let B : X →M ′ be the linear operator defined by

〈Bv, q〉 = b(v, q) ∀v ∈ X, ∀q ∈M,
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where M ′ denotes the dual space of M , and, on the left-hand side, 〈·, ·〉 = 〈·, ·〉M ′,M . Analogously,
let B′ : M → X ′ denote the transpose of the operator B, where X ′ denotes the dual space of X;
i.e.,

〈B′q, v〉 = b(v, q) ∀v ∈ X, ∀q ∈M,

where now on the left-hand side 〈·, ·〉 = 〈·, ·〉X′,X . As b(·, ·) : X ×M → R is a bounded bilinear
functional, it follows that B and B′ are bounded linear operators.

Remark 2. Note that V = Ker(B). The coercivity assumption (3.13) is therefore frequently
referred to as coercivity on the kernel (of the operator B, that is).

We are now ready to state and prove the auxiliary result alluded to above, which we require
in our proof of Lemma 3.1.

Lemma 3.2. Let V be defined by (3.11) and let V ◦ := {g ∈ X ′ : 〈g, v〉 = 0 ∀v ∈ V }. The
following three properties are equivalent:

(a) There exists a positive constant cb such that

inf
q∈M\{0}

sup
v∈X\{0}

b(v, q)

‖v‖X‖q‖M
≥ cb; (3.18)

(b) The operator B′ is an isomorphism from M onto V ◦ and

‖B′q‖X′ ≥ cb‖q‖M ∀q ∈M ; (3.19)

(c) The operator B is an isomorphism from V ⊥ onto M ′ and

‖Bv‖M ′ ≥ cb‖v‖X ∀v ∈ V ⊥. (3.20)

Here, V ⊥ denotes the orthogonal complement of the closed linear space V of the Hilbert
space X, where orthogonality is understood with respect to the inner product of X.

Proof.

1) Let us show that (a) ⇔ (b). Thanks to the definition of the operator B′ : M → X ′, (a)
is equivalent to demanding the existence of a positive constant cb such that

sup
v∈X\{0}

〈B′q, v〉
‖v‖X

≥ cb‖q‖M ,

which, in turn, is equivalent to (3.19). It remains to prove that B′ : M → V ◦ is an
isomorphism. It follows from (3.19) that B′ is a one-to-one operator from M onto its
range R(B′). Moreover since B′ is a bounded linear operator, which, by (3.19), has a
bounded inverse (B′)−1 : R(B′)→M , we deduce that B′ is an isomorphism from M onto
R(B′). Thus, in particular, R(B′) is a closed subspace1 in X ′. The closed range theorem
then implies that

R(B′) = [Ker(B)]◦ = V ◦.

Thus we have shown that (a) ⇔ (b).

1The proof of this is simple: suppose that (qn)n∈N is a sequence in M such that B′qn → w in X′ as n → ∞.
Then (B′qn)n∈N is also a Cauchy sequence in X′. By (3.19), (qn)n∈N is then a Cauchy sequence in M . As M is
a Hilbert space, and therefore every Cauchy sequence in M converges, it follows that there exists a q ∈ M such
that qn → q as n → ∞. As B′ is a bounded linear operator, it then follows that B′qn → B′q in X′ as n → ∞.
However, by the uniqueness of the limit B′q must coincide with w; thus we have shown that the limit w of the
sequence (B′qn)n∈N ⊂ R(B′) is also contained in R(B′). Consequently, R(B′) is closed in X′.
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(ii) Next we show that (b) ⇔ (c). To this end it suffices to prove that V ◦ can be identified
isometrically with (V ⊥)′. We prove this as follows. For v ∈ X, let v⊥ denote the orthogo-
nal projection of v onto V ⊥ (in the inner product of the Hilbert space X). Then, to each
g ∈ (V ⊥)′ we associate an element g̃ ∈ X ′ defined by

〈g̃, v〉 = 〈g, v⊥〉 ∀v ∈ X.

As v⊥ = 0 for each v ∈ V , it follows that 〈g̃, v〉 = 0 for all v ∈ V ; i.e., g̃ ∈ V ◦. Furthermore,
the correspondence g 7→ g̃ maps isometrically (V ⊥)′ onto V ◦. Thus we have shown that
(V ⊥)′ and V ◦ can be identified. Hence (c) follows from (b) by transposition, and vice
versa. Therefore (b) and (c) are equivalent.

That completes the proof of the auxiliary lemma.

We are now ready to prove Lemma 3.1.

Proof. [of Lemma 3.1.] Thanks to the assumptions of the lemma, L ∈ V ◦. As the inf-sup
condition is also assumed, we deduce from the equivalence of (a) and (b) in Lemma 3.2 that B′ is
an isomorphism from M onto V ◦. Thus, there exists a unique element p ∈M such that B′p = L;
equivalently, b(v, p) = 〈B′p, v〉 = 〈L, v〉 = L(v) for all v ∈ V . That completes the proof.

We now move on to the general case, when `g 6= 0.

Case 2: `g 6= 0. Suppose that there is an element u0 ∈ V ⊥ such that b(u0, q) = `g(q) for all

q ∈ M . Then, by replacing u in (3.9) with u − u0, problem (3.9) is transformed into (3.10) and
the existence of a solution to (3.9) thus follows. Uniqueness of the solution to (3.9) follows from
the fact that (0, 0) is the unique solution to (3.10) with `f = 0.

It remains to show that there does indeed exist an element u0 ∈ V ⊥ such that b(u0, q) = `g(q)
for all q ∈M . In fact, we shall show that there exists a unique such element u0. It follows from the
equivalence of (a) and (c) stated in Lemma 3.2 that the inf-sup condition (3.14) is equivalent to
B being an isomorphism from V ⊥ onto M ′. Hence, the assumption of Lemma 3.1 that the inf-sup
condition (3.14) holds implies that for each `g ∈ M ′ there is a unique element u0 ∈ V ⊥(⊂ X)
such that Bu0 = `g. Thus we have shown the existence of a unique u0 ∈ V ⊥(⊂ X) such that
b(u0, q) = `g(q).

Having dealt with both Case 1 and Case 2, we summarize our findings in the following result.

Theorem 3.3. Suppose that X and M are two Hilbert spaces over the field of real numbers,
with norms ‖ ·‖X and ‖ ·‖M induced by the inner products (·, ·)X and (·, ·)M , respectively. Suppose
further that a(·, ·) : X × X → R and b(·, ·) : X ×M → R are two bounded bilinear functionals
(i.e., (3.8) holds) and `f : X → R and `g : M → R are bounded linear functionals on X and
M , respectively. Suppose further that V is defined by (3.11), that a is coercive on V (i.e., (3.13)
holds), and b satisfies the inf-sup condition (3.14). Then, there exists a unique pair (u, p) ∈ X×M
that solves the variational problem (3.9).

Let us illustrate the relevance of this abstract result by applying it to a specific example, the
Stokes equations, to deduce the existence of a unique weak solution to these equations.

Example 1. Consider the bilinear functionals a(·, ·) and b(·, ·) defined by (1.2b) and (1.2c),
and the linear functional `f defined by (1.2d), with f ∈ L2(Ω)d. We note that X and M , as
defined in Section 1.1, are Hilbert spaces, when equipped with the Sobolev seminorm |·|H1(Ω)d :=
‖∇·‖L2(Ω)d×d and the L2(Ω) norm ‖·‖L2(Ω), respectively. By the Cauchy–Schwarz inequality a(·, ·)
and b(·, ·) are bounded bilinear functionals, and, by Poincaré’s inequality, `f is a bounded linear
functional on X; i.e., `f ∈ X′. Further, we have that

a(v,v) = |v|2H1(Ω)d = ‖v‖2X

for all v ∈ X, and therefore, in particular,

a(v,v) = ‖v‖2X
9



for all v ∈ V = {v ∈ X : ∇ · v = 0} = {v ∈ X : b(v, q) = 0 ∀q ∈M}. Finally, one also has the
following inf-sup condition

cb‖q‖L2(Ω) ≤ sup
v∈H1

0 (Ω)d\{0}

(∇ · v, q)L2(Ω)

|v|H1(Ω)d
∀q ∈ L2

0(Ω),

with a positive constant cb = cb(Ω), proved by Ladyzhenskaya [8] (see also [9]), which implies the
validity of (3.14). Thus we deduce the existence of a unique weak solution (u, p) ∈ H1

0 (Ω)d×L2
0(Ω)

to the Stokes equations (1.1).
Lecture 4

4. Discrete mixed formulation. Suppose that Xh ⊂ X and Mh ⊂ M are (in practice,
finite-dimensional) linear subspaces of the Hilbert spaces X and M , respectively, parametrized by
a positive parameter h ∈ (0, 1). Let us consider the following approximation of problem (3.10):
find uh ∈ Xh and ph ∈Mh such that

a(uh, vh) + b(vh, ph) = `f (vh) ∀vh ∈ Xh, (4.1a)

b(uh, qh) = 0 ∀qh ∈Mh. (4.1b)

Let us consider the closed linear subspace Vh of the linear space Xh, defined by

Vh := {vh ∈ Xh : b(vh, qh) = 0 ∀qh ∈Mh}. (4.2)

As 0 ∈ Vh, the set Vh is nonempty.
It is important to note at this point that since Mh is a proper subspace of M the fact that

b(vh, qh) = 0 for all qh ∈Mh does not imply that b(vh, q) = 0 for all q ∈M ; hence if vh ∈ Vh it does
not follow that vh ∈ V . For the same reason, if the bilinear functional b(·, ·) featuring in (3.10)
satisfies the inf-sup condition (3.14) it does not automatically follow that an analogous inf-sup
condition will hold with X and M replaced by Xh and Mh and w ∈ X and q ∈ M replaced by
wh ∈ Xh and qh ∈Mh in (3.14). This, in turn, will be a source of difficulties in the construction of
finite element approximations to mixed variational problems, since the validity of a discrete inf-sup
condition is not inherited from the continuous problem, but has to be independently verified for
each particular choice of spaces (Xh,Mh). We shall return to this point later. First however we
shall derive a bound on the error between u and uh in terms of the best approximation errors

inf
vh∈Vh

‖u− vh‖X and inf
qh∈Mh

‖p− qh‖M ,

which can be seen as an extension of Céa’s lemma from classical finite element theory to finite
element approximations of mixed variational problems.

Theorem 4.1. Suppose, in addition to the assumptions of Theorem 3.3 that the bilinear
functional a is coercive on Vh, i.e.,

∃ca > 0 s.t. ∀vh ∈ Vh : a(vh, vh) ≥ ca‖vh‖2X . (4.3)

Then, there exists a unique function uh ∈ Vh that satisfies (4.1a) for all vh ∈ Vh. Furthermore,
for such a uh ∈ Vh, we have that

‖u− uh‖X ≤
(

1 +
Ca

ca

)
inf

vh∈Vh

‖u− vh‖X +
Cb

ca
inf

qh∈Mh

‖p− qh‖M . (4.4)

Proof. As a(uh, vh) = `f (vh) for all vh ∈ Vh, the existence of a unique uh ∈ Vh satisfying
(4.1a) for all vh ∈ Vh follows from the Lax–Milgram theorem.

By taking v = wh ∈ Vh ⊂ X in (3.10a) and subtracting the resulting equation from (4.1a)
with vh = wh ∈ Vh, we have that

a(u−uh, wh) = a(u,wh)−a(uh, wh) = `f (wh)−b(wh, p)−a(uh, wh) = −b(wh, p) = −b(wh, p−qh)
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for all qh ∈Mh. Therefore,

a(u− uh, wh) + b(wh, p− qh) = 0 ∀wh ∈ Vh and ∀qh ∈Mh. (4.5)

Let us consider any vh ∈ Vh. Then, by noting that uh ∈ Vh, and therefore uh − vh ∈ Vh, and by
applying (4.3) followed by (4.5) with wh = uh − vh, we have that

ca‖uh − vh‖2X ≤ a(uh − vh, uh − vh)

= a(u− vh, uh − vh) + a(uh − u, uh − vh)

= a(u− vh, uh − vh) + b(uh − vh, p− qh) ∀qh ∈Mh.

Hence, by (3.8), and dividing the resulting inequality by ca‖uh − vh‖X , we deduce that

‖uh − vh‖X ≤
Ca

ca
‖u− vh‖X +

Cb

ca
‖p− qh‖M ∀qh ∈Mh.

The proof is then completed by inserting this inequality into the second term on the right-hand
side of the following triangle inequality

‖u− uh‖X ≤ ‖u− vh‖X + ‖uh − vh‖X ,

and taking the infimum over all vh ∈ Vh and all qh ∈Mh.

The main point of Theorem 4.1 is that the error u− uh can be bounded in terms of the best
approximation errors infvh∈Vh

‖u−vh‖X and infqh∈Mh
‖p− qh‖M by assuming boundedness of the

bilinear functionals a and b on X ×X and X ×M respectively, and the coercivity of a on V ∪ Vh.
As Vh may be a rather small set (without a further assumption on b, at least, which we shall
next make in Definition 4.2), the approximation properties of Vh may be quite poor. Nevertheless,
Theorem 4.1 guarantees that, under its hypotheses, uh is at least stably determined. Bounds
on p − ph on the other hand require additional assumptions; in fact, under the assumptions of
Theorem 4.1 alone, the function ph may not even be stably determined, and, as a matter of fact,
there is no reason why ph should even be unique.

Definition 4.2. We shall say that the family of spaces {(Xh,Mh)}h>0 satisfies the (discrete)
inf-sup condition, if there exists a constant cb > 0, independent of h, such that

cb ≤ inf
qh∈Mh\{0}

sup
vh∈Xh\{0}

b(vh, qh)

‖vh‖X‖qh‖M
. (4.6)

A remark is in order at this point: we have used the same symbols ca and cb for the discrete
coercivity and inf-sup constants in (4.3) and (4.6), respectively, as for their counterparts appearing
in the coercivity and inf-sup conditions (3.13) and (3.14), respectively, for the continuous problem.
This was done purely for the sake of notational simplicity: there is no reason of course why the
constants ca and cb in the ‘continuous’ coercivity and inf-sup conditions should coincide with those
in their discrete counterparts. Of course, if a(·, ·) happens to be coercive on the whole of X, then
it is automatically coercive on both V and Vh, with the same coercivity constant; this will be the
case with the Stokes equations (our Example 1.1), but not with the porous media equations (our
Example 1.2).

We are now in a position to show that if the discrete inf-sup condition (4.6) also holds, then
the function ph ∈Mh is uniquely determined and the error p− ph is, much like, u− uh, bounded
in terms of the best approximation errors infvh∈Vh

‖u− vh‖X and infqh∈Mh
‖p− qh‖M .

Theorem 4.3. Suppose, in addition to the assumptions of Theorem 4.1 that the bilinear
functional b satisfies the discrete inf-sup condition (4.6). Then, there exists a unique solution
pair (uh, ph) ∈ Xh ×Mh to the problem (4.1). Furthermore, in addition to the bound (4.4) on
‖u− uh‖X , the following bound holds:

‖p− ph‖M ≤
Ca

cb

(
1 +

Ca

ca

)
inf

vh∈Vh

‖u− vh‖X +

(
1 +

Cb

cb

(
1 +

Ca

ca

))
inf

qh∈Mh

‖p− qh‖M . (4.7)
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Proof. The existence of a unique solution pair (uh, ph) follows from Theorem (3.3), with X
and M replaced by Xh and Mh. By noting the discrete inf-sup condition (4.6), the identity (4.5),
and the bounds (3.8), we have that, for any qh ∈Mh,

cb‖qh − ph‖M ≤ sup
wh∈Xh\{0}

b(wh, qh − ph)

‖wh‖X

= sup
wh∈Xh\{0}

b(wh, p− ph) + b(wh, qh − p)
‖wh‖X

≤ sup
wh∈Xh\{0}

|b(wh, p− ph)|+ |b(wh, qh − p)|
‖wh‖X

= sup
wh∈Xh\{0}

|a(u− uh, wh)|+ |b(wh, qh − p)|
‖wh‖X

≤ Ca‖u− uh‖X + Cb‖p− qh‖M .

Hence, by the triangle inequality,

‖p− ph‖M ≤
Ca

cb
‖u− uh‖X +

(
1 +

Cb

cb

)
‖p− qh‖M .

Taking the infimum over all qh ∈ Mh and substituting (4.4) into the resulting inequality then
completes the proof.

The aim of the next result is to show that, by virtue of the discrete inf-sup condition (4.6), the
term infvh∈Vh

‖u− vh‖X appearing in (4.4) and (4.7) can be replaced by infvh∈Xh
‖u− vh‖X . As

Xh is typically a strict superset of Vh, it is expected that infvh∈Xh
‖u−vh‖X � infvh∈Vh

‖u−vh‖X .

Theorem 4.4. Under the hypotheses of Theorem 4.3, the unique solution pair (uh, ph) ∈
Xh ×Mh to the problem (4.1) satisfies the following error bound:

‖u− uh‖X + ‖p− ph‖M ≤ C
(

inf
vh∈Xh

‖u− vh‖X + inf
qh∈Mh

‖p− qh‖M
)
, (4.8)

where C = C(ca, cb, Ca, Cb) is a positive constant, independent of h.
Proof. Let vh ∈ Xh and choose wh ∈ Vh such that vh − wh ∈ V ⊥h . Thanks to the discrete

inf-sup condition (4.6) and part (c) of Lemma 3.2, with X, M and V replaced by Xh, Mh and Vh,
respectively, we have that

cb‖wh − vh‖X ≤ sup
qh∈Mh\{0}

b(wh − vh, qh)

‖qh‖M
.

As b(wh, qh) = 0 and b(u, qh) = 0 for all qh ∈Mh ⊂M , it follows that

cb‖wh − vh‖X ≤ sup
qh∈Mh\{0}

b(u− vh, qh)

‖qh‖M
≤ Cb‖u− vh‖X .

Hence, by the triangle inequality,

‖u− wh‖X ≤ ‖u− vh‖X + ‖vh − wh‖X ≤
(

1 +
Cb

cb

)
‖u− vh‖X .

Thus, in particular,

inf
wh∈Vh

‖u− wh‖X ≤
(

1 +
Cb

cb

)
‖u− vh‖X ∀vh ∈ Xh.

As the left-hand side of this inequality is independent of vh, it follows that

inf
wh∈Vh

‖u− wh‖X ≤
(

1 +
Cb

cb

)
inf

vh∈Xh

‖u− vh‖X .

Substituting the last inequality into the right-hand sides of (4.4) and (4.7) and summing the
resulting inequalities we obtain (4.8). That completes the proof.
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Lecture 55. Checking the discrete inf-sup condition. A helpful device for verifying the discrete
inf-sup condition in instances when the (continuous) inf-sup condition is already known to hold
is the following result, due to Fortin [5]. Fortin’s criterion is stated here in the case of Hilbert
spaces; a more general version, formulated in Banach spaces, and one which also shows that the
criterion is not just sufficient but also necessary for the validity of the discrete inf-sup condition,
can be found in [4].

Theorem 5.1. Let X and M be two Hilbert spaces and suppose that b : X ×M → R is a
bounded bilinear functional such that the inf-sup condition (3.14) holds. Let Xh ⊂ X and Mh ⊂M .
Suppose that:

• There exists a constant Cf > 0 such that for each v ∈ X there is an element Πh(v) ∈ Xh

such that b(v, qh) = b(Πh(v), qh) for all qh ∈Mh and ‖Πh(v)‖X ≤ Cf‖v‖X .
Then, the discrete inf-sup condition (4.6) also holds.

Proof. Let qh ∈Mh; then,

sup
vh∈Xh\{0}

b(vh, qh)

‖vh‖X
≥ sup

v∈X\{0}

b(Πh(v), qh)

‖Πh(v)‖X
= sup

v∈X\{0}

b(v, qh)

‖Πh(v)‖X
≥ 1

Cf
sup

v∈X\{0}

b(v, qh)

‖v‖X
.

Since the right-most expression is bounded below by (cb/Cf )‖qh‖M thanks to (3.14), we deduce
that the discrete inf-sup condition (4.6) also holds, with the discrete inf-sup constant defined as
the ratio of the continuous inf-sup constant and Cf .

6. Examples of inf-sup stable and inf-sup unstable finite element spaces for the
Stokes equations. We close our exposition with examples of finite element spaces that satisfy
the discrete inf-sup condition, and we also list examples of finite element spaces that violate it.
We start with the latter. Our exposition here is based on Sections 4.2.3–4.2.5 of [4].

6.1. Counterexamples.
1. The [Q1]2/P0 pair. The most well-known example of a pair of finite element spaces that

violates the discrete inf-sup condition for the Stokes equations in two space dimensions is
that of continuous piecewise bilinear finite elements for the velocity and piecewise constant
finite elements for the pressure. Suppose that Ω := (0, 1)2 and consider a uniform square
mesh on Ω of spacing h := 1/N , where N is an even integer ≥ 2. Denote by aij the point
in the mesh whose co-ordinates are (ih, jh), and let Kij denote the closed square in the
mesh whose bottom left corner is aij . We then define Th as a collection of mesh cells Kij ,
i, j = 0, . . . , N − 1.
For a mesh cell Kij ∈ Th we denote by TKij

: K̂ → Kij the C1-diffeomorphism that maps

the canonical (or master, or reference) element K̂ := [0, 1]2 onto K. Let

Xh := {vh ∈ [C(Ω)]2 : ∀Kij ∈ Th, vh ◦ TKij
∈ [Q1]2, vh|∂Ω = 0},

Mh := {qh ∈ L2
0(Ω) : ∀Kij ∈ Th, ph ◦ TKij

∈ P0}.

In order to demonstrate failure of the discrete inf-sup condition it suffices to show the
existence of a nonzero ph ∈ Mh such that b(vh, ph) = −

∫
Ω

(∇ · vh) ph dx = 0 for all
vh ∈ Xh.
To this end, we consider any function ph ∈ Mh and denote its (constant) value over the
interior of the mesh cell Kij by pi+ 1

2 ,j+ 1
2
. Then, by the divergence theorem and noting

that the trapezium rule integrates univariate affine functions exactly, we have that∫
Kij

(∇ · vh) ph dx = pi+ 1
2 ,j+ 1

2

∫
∂Kij

vh · n ds

= 1
2hpi+ 1

2 ,j+ 1
2

(ui+1,j + ui+1,j+1 + vi+1,j+1 + vi,j+1 − ui,j − ui,j+1 − vi,j − vi+1,j) ,

where u and v denote the two components of the vector function vh, and ui,j := u(ih, jh),
vi,j := v(ih, jh), and so on. Integrating over the entire domain followed by summation by
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parts yields

b(vh, ph) = −
∫

Ω

(∇ · vh) ph dx = −
N−1∑
i,j=0

∫
Kij

(∇ · vh) ph dx

= h2
N−1∑
i,j=1

(
ui,j(∂

h
1 p)ij + vi,j(∂

h
2 p)ij

)
,

where

(∂h1 p)ij := 1
2h

(
pi+ 1

2 ,j+ 1
2

+ pi+ 1
2 ,j−

1
2
− pi− 1

2 ,j+ 1
2
− pi− 1

2 ,j−
1
2

)
,

(∂h2 p)ij := 1
2h

(
pi+ 1

2 ,j+ 1
2

+ pi− 1
2 ,j+ 1

2
− pi+ 1

2 ,j−
1
2
− pi− 1

2 ,j−
1
2

)
.

We deduce that b(vh, ph) = 0 for all vh ∈ Xh if, and only if, for all i, j = 1, . . . , N − 1, we
have that

pi+ 1
2 ,j+ 1

2
= pi− 1

2 ,j−
1
2

and pi− 1
2 ,j+ 1

2
= pi+ 1

2 ,j−
1
2
.

The set of solutions to this system of linear algebraic equations, with N2 unknowns, is a
two-dimensional linear subspace of RN2

. One basis vector of this linear space is the N2-
component vector (1, 1, . . . , 1)T, corresponding to the constant field ph ≡ 1; however our
assumption that Mh ⊂ L2

0(Ω) demands that
∫

Ω
ph dx = 0, and therefore the possibility

that ph ≡ 1 (or any nonzero multiple of this function) is excluded as a solution. The
second basis vector of this two-dimensional linear space is an N2-component vector with
alternating entries +1 and −1, which corresponds to the piecewise constant, checker-board
like, field ph such that ph|Kij = (−1)i+j , which is usually referred to as a spurious mode.
As the integral of such a checker-board pressure over Ω is equal to zero (recall that N was
assumed to be an even integer and note that there are 1

2N
2 mesh cells over which ph = 1

and the same number of mesh cells over which ph = −1), it follows that ph ∈ Mh \ {0}
and b(vh, ph) = 0 for all vh ∈ Xh. Hence,

sup
vh∈Xh\{0}

b(vh, ph)

‖vh‖X
= sup

vh∈Xh\{0}

b(vh, ph)

|vh|H1(Ω)2
= 0 and ‖ph‖L2(Ω) = 1.

Thus we have shown that the inf-sup condition is violated by the pair of finite element
spaces (Xh,Mh).

2. The [P1]2/P1 pair. Once again, we consider the open unit square Ω = (0, 1)2, and sub-
divide Ω into a square mesh of spacing h = 1/N , where N + 1 is a multiple of 3, but
we now further split each mesh square into two triangles with the diagonal of positive
slope. Let Th denote the resulting triangulation of Ω. Let K̂ denote the canonical (or
master, or reference) element defined as the right-angle triangle, with its right angle at the
point (0, 0) and its other two vertices at (1, 0) and (0, 1). Let further TK denote the C1

diffeomorphism that maps K̂ onto K. We define the finite element spaces for the velocity
and the pressure as follows:

Xh := {vh ∈ [C(Ω)]2 : ∀K ∈ Th, vh ◦ TK ∈ [P1]2, vh|∂Ω = 0},
Mh := {qh ∈ L2

0(Ω) : ∀K ∈ Th, ph ◦ TK ∈ P1}.

Given a certain triangle K ∈ Th let us denote its three vertices by a1,K , a2,K , a3,K and
consider a continuous piecewise affine pressure ph such that on each triangle K ∈ Th one
has

∑3
m=1 ph(am,K) = 0. This can be achieved, for example, by defining

ph(0, jh) for j = 0, 1, . . . , N as 0,+1,−1, 0,+1,−1, . . . , 0,+1,−1;

ph(h, jh) for j = 0, 1, . . . , N as +1,−1, 0,+1,−1, 0, . . . ,+1,−1, 0;

etc.,

ph(1, jh) for j = 0, 1, . . . , N as −1, 0,+1,−1, 0,+1, . . . ,−1, 0,+1.
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We have that, for each vh ∈ Xh, the function (∇ ·vh)|K is constant for each K ∈ Th, and
therefore

b(vh, ph) = −
∫

Ω

(∇ · vh)ph dx = −
∑

K∈Th

(∇vh)|K
∫
K

ph dx

= −
∑

K∈Th

(∇ · vh)|K
|K|
3

3∑
m=1

ph(am,K) = 0.

By construction
∫

Ω
ph dx = 0, ph 6≡ 0, while b(vh, ph) = 0 for all vh ∈ Xh. Thus we have

constructed an example of a ‘spurious pressure mode’ ph ∈ Mh \ {0} that leads to the
violation of the inf-sup condition for this pair of finite element spaces. Lecture 6

After these two counterexamples, let us now present some examples of finite element spaces
that do satisfy the inf-sup condition. The proofs are omitted; the interested reader is referred to
sections 4.2.4–4.2.8 of [4] for further details.

6.2. Examples.
1. The [P1-bubble]2/P1 pair. The reason for the failure of the [P1]2/P1 pair is that the finite

element space for the velocity is not rich enough to control the spurious pressure mode.
The idea behind the [P1-bubble]2/P1 pair is therefore to enrich the velocity space. The
simplest way of achieving this is to add just one additional degree of freedom per element,
associated with the barycenter (center of mass) of the element.
Let us suppose that Ω is a bounded open polyhedron in Rd, d = 2, 3, whose closure Ω
has been subdivided into simplices K that form a finite element mesh Th. Let K̂ denote
the reference right-angle simplex, with barycenter Ĉ, and consider the bubble function
b̂ ∈ H1

0 (K̂), such that 0 ≤ b̂ ≤ 1, b̂(Ĉ) = 1. A simple choice of such a function b̂ is to take

b̂ = (d+ 1)d+1
d+1∏
i=1

λ̂i,

where λ1, . . . , λd+1 are the barycentric co-ordinates on the simplex K̂. We then define

P̂1+b := P1(K̂)⊕ span(̂b)

and we introduce the finite element spaces

Xh := {vh ∈ [C(Ω)]d : ∀K ∈ Th, vh ◦ TK ∈ [P1+b]
d, vh|∂Ω = 0},

Mh := {qh ∈ L2
0(Ω) : ∀K ∈ Th, qh ◦ TK ∈ P1}.

This pair of spaces then satisfies the discrete inf-sup condition (4.6). The proof, based
on Fortin’s criterion, can be found in Lemma 4.20 in [4]. It is also known (cf. Theorem
4.21 in [4]) that, on shape-regular families of finite element meshes {Th}h>0, one has the
approximation properties

inf
vh∈Xh

|u− vh|H1(Ω)d ≤ Const. h‖u‖H2(Ω)d

and

inf
qh∈Mh

‖p− qh‖L2(Ω) ≤ Const. h‖p‖H1(Ω),

and therefore, by (4.8) one arrives at the error bound

|u− uh|H1(Ω)d + ‖p− ph‖L2(Ω) ≤ Const. h
(
‖u‖H2(Ω)d + ‖p‖H1(Ω)

)
,

assuming that the exact solution (u, p) ∈ (H2(Ω)d ∩H1
0 (Ω)d)× (H1(Ω) ∩ L2

0(Ω)).
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2. Taylor–Hood element and its generalizations. Suppose, again, that Ω is a bounded open
polyhedron in Rd, d = 2, 3. We shall retain the P1 finite element space for the pressure,
but instead of enriching the space of piecewise linear functions with a bubble function on
each element for the velocity, we shall replace it with the space of continuous piecewise
quadratic polynomials. The resulting pair of finite element spaces

Xh := {vh ∈ [C(Ω)]d : ∀K ∈ Th, vh ◦ TK ∈ [P2]d, vh|∂Ω = 0},
Mh := {qh ∈ C(Ω) : ∀K ∈ Th, qh ◦ TK ∈ P1},

is called the Taylor–Hood element. The pair of spaces (Xh,Mh) satisfies the inf-sup
condition (cf. Lemma 4.24 in [4]); furthermore, on shape-regular families of finite element
meshes {Th}h>0, one has the approximation properties

inf
vh∈Xh

|u− vh|H1(Ω)d ≤ Const. h2‖u‖H3(Ω)d

and

inf
qh∈Mh

‖p− qh‖L2(Ω) ≤ Const. h2‖p‖H2(Ω),

and therefore, by (4.8) one arrives at the error bound

|u− uh|H1(Ω)d + ‖p− ph‖L2(Ω) ≤ Const. h2
(
‖u‖H3(Ω)d + ‖p‖H2(Ω)

)
,

assuming that the exact solution (u, p) ∈ (H3(Ω)d ∩H1
0 (Ω)d)× (H2(Ω) ∩ L2

0(Ω)).
Higher order generalizations of the Taylor–Hood elements also exist: it is known that the
pairs of velocity/pressure finite element spaces [Pk]d/Pk−1 on simplices, and [Qk]d/Qk−1

on quadrilaterals (d = 2) or hexahedra (d = 3) satisfy the inf-sup condition for all k ≥ 2.
The associated bound on the approximation errors for the velocity and the pressure is
then of the form

|u− uh|H1(Ω)d + ‖p− ph‖L2(Ω) ≤ Const. hk
(
‖u‖Hk+1(Ω)d + ‖p‖Hk(Ω)

)
,

assuming that the exact solution (u, p) ∈ (Hk+1(Ω)d ∩H1
0 (Ω)d)× (Hk(Ω) ∩ L2

0(Ω)).

3. Q2/P1-discontinuous finite element. The continuity requirement on the elements of the
pressure space Mh in the basic Taylor–Hood finite element method can be relaxed. The
resulting finite element spaces, defined by

Xh := {vh ∈ [C(Ω)]d : ∀K ∈ Th, vh ◦ TK ∈ [Q2]d, vh|∂Ω = 0},
Mh := {qh ∈ L2

0(Ω) : ∀K ∈ Th, qh ◦ TK ∈ P1},

satisfy the discrete inf-sup condition and exhibit the same asymptotic error bound as the
basic Taylor–Hood element (corresponding to k = 2 in the previous example).
It may be tempting to consider the pair of finite element spaces Q2/Q1-discontinuous.
This pair however does not satisfy the inf-sup condition: once again, the velocity space is
not rich enough to control spurious pressure modes.

There is an extensive library of inf-sup stable finite element spaces on both simplicial and
quadrilateral/hexahedral meshes in both two and three space dimensions. The interested reader
is referred to the references [1, 2, 4, 5, 6, 7], for example, for further details.
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