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Preface. The purpose of these lecture notes is to provide an introduction to computational methods
for the approximate solution of ordinary differential equations (ODEs) and parabolic partial differential
equations (PDEs). Only minimal prerequisites in differential and integral calculus, differential equation
theory, complex analysis and linear algebra are assumed. The notes focus on the construction of numerical
algorithms for ODEs and parabolic PDEs, and the mathematical analysis of their behaviour.

The notes begin with a study of well-posedness of initial-value problems for a first-order differential
equations and systems of such equations. The basic ideas of discretisation and error analysis are then
introduced in the case of one-step methods. This is followed by an extension of the concepts of stability and
accuracy to linear multi-step methods, including a brief excursion into numerical methods for stiff systems
of ODEs and symplectic methods. The final section is devoted to an overview of classical algorithms for
the numerical solution of initial-boundary-value problems for the simplest parabolic equation: the linear
heat equation in one space dimension.

Syllabus. Approximation of initial-value problems for ordinary differential equations: one-step methods
including the explicit and implicit Euler methods, the trapezium rule method, and Runge–Kutta methods.
Linear multi-step methods: consistency, zero-stability and convergence; absolute stability. Stiffness. Error
control and adaptive algorithms. Symplectic methods.

Numerical solution of initial-boundary-value problems for parabolic partial differential equations:
explicit and implicit methods; accuracy, stability and convergence, use of Fourier methods for analysis.

Reading List:

[1] A. Iserles, A First Course in the Numerical Analysis of Differential Equations. Cambridge Uni-
versity Press, 2nd ed., 2009. ISBN 978-0-521-73490-5 [Chapters 1–6, 16].

[2] R. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM,
2007. ISBN 978-0-898716-29-0 [Chapters 5–9].

[3] E. Süli and D.F. Mayers, An Introduction to Numerical Analysis. Cambridge University Press,
2006. ISBN 0-521-00794-1 [Chapter 12].

Further Reading:

[1] E. Hairer, S.P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff
Problems. Springer-Verlag, Berlin, 1987.

[2] P. Henrici, Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York, 1962.

[3] H.B. Keller, Numerical Methods for Two-point Boundary Value Problems. SIAM, Philadelphia,
1976.

[4] J.D. Lambert, Computational Methods in Ordinary Differential Equations. Wiley, Chichester,
1991.

[5] A.M. Stuart and A.R. Humphries, Dynamical Systems and Numerical Analysis. Cambridge
University Press, Cambridge, 1996.

Note: These lecture notes will be updated regularly during Michaelmas Term.

Note about the exercises: There will be 6 problem sheets and 6 classes, the first class being held in
Week 3 of Michaelmas Term.
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1 Picard’s Theorem

Lecture 1Ordinary differential equations frequently occur as mathematical models in many branches of science,
engineering, and economics. Unfortunately it is seldom that these equations have solutions that can be
expressed in closed form, so it is common to seek approximate solutions by means of numerical methods;
nowadays this can usually be achieved very inexpensively to high accuracy and with a reliable bound on
the error between the analytical solution and its numerical approximation. We shall be concerned with
the construction and the analysis of numerical methods for first-order differential equations of the form

y′ = f(x, y) (1)

for the real-valued function y of the real variable x, where y′ ≡ dy/dx. In order to select a particular
integral from the infinite family of solution curves that constitute the general solution to (1), the differ-
ential equation will be considered in tandem with an initial condition: given two real numbers x0 and
y0, we seek a solution to (1) for x > x0 such that

y(x0) = y0. (2)

The differential equation (1) together with the initial condition (2) is called an initial-value problem.
The motivation for this terminology is that in applications the variable x usually plays the role of time,
and the initial value, y0, of the process whose evolution is modelled by the differential equation over an
interval of time [x0,XM ] is then known at the initial time, x0.

In general, even if f(·, ·) is a continuous function, there is no guarantee that the initial-value problem
(1), (2) possesses a unique solution.1 Fortunately, under a further mild condition on the function f , the
existence and uniqueness of a solution to (1), (2) can be ensured: the result is encapsulated in the next
theorem.

Theorem 1 (Picard’s Theorem2) Suppose that f(·, ·) is a continuous function of its arguments in a
region U of the (x, y) plane which contains the rectangle

R = {(x, y) : x0 ≤ x ≤ XM , |y − y0| ≤ YM},

where XM > x0 and YM > 0 are constants. Suppose also, that there exists a positive constant L such that

|f(x, y)− f(x, z)| ≤ L|y − z| (3)

holds whenever (x, y) and (x, z) lie in the rectangle R. Finally, letting

M = max{|f(x, y)| : (x, y) ∈ R},

suppose that M(XM − x0) ≤ YM . Then, there exists a unique continuously differentiable function x 7→
y(x), defined on the closed interval [x0,XM ], which satisfies (1) and (2).

The condition (3) is called a Lipschitz condition3, and L is called a Lipschitz constant for f . We
shall not dwell on the proof of Picard’s Theorem; for details, the interested reader is referred to any good
textbook on the theory of ordinary differential equations (see, for example, P. J. Collins, Differential and
Integral Equations, Oxford University Press, 2006). The essence of the proof is to consider the sequence
of functions {yn}∞n=0, defined recursively through what is known as the Picard Iteration:

y0(x) ≡ y0,

yn(x) = y0 +

∫ x

x0

f(ξ, yn−1(ξ)) dξ, n = 1, 2, . . . ,
(4)

1Consider, for example, the initial-value problem y′ = y2/3, y(0) = 0; this has solutions: y(x) ≡ 0 and y(x) = x3/27.
2Emile Picard (1856–1941)
3Rudolf Lipschitz (1832–1903)
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and show, using the conditions of the theorem, that {yn}∞n=0, as a sequence of continuous functions,
converges uniformly on the interval [x0,XM ] to a continuous function y defined on [x0,XM ] such that

y(x) = y0 +

∫ x

x0

f(ξ, y(ξ)) dξ.

This then implies that y is continuously differentiable on [x0,XM ] and it satisfies the differential equation
(1) and the initial condition (2). The uniqueness of the solution follows from the Lipschitz condition.

Picard’s Theorem has a natural extension to an initial-value problem for a system of m differential
equations of the form

y′ = f(x,y), y(x0) = y0, (5)

where y0 ∈ R
m and f : [x0,XM ]× R

m → R
m. On introducing the Euclidean norm ‖ · ‖ on R

m by

‖v‖ =

(

m
∑

i=1

|vi|2
)1/2

, v ∈ R
m,

we can state the following result.

Theorem 2 (Picard’s Theorem) Suppose that f(·, ·) is a continuous function of its arguments in a
region U of the (x,y) space R1+m which contains the parallelepiped

R = {(x,y) : x0 ≤ x ≤ XM , ‖y − y0‖ ≤ YM},

where XM > x0 and YM > 0 are constants. Suppose also that there exists a positive constant L such that

‖f(x,y) − f(x, z)‖ ≤ L‖y − z‖ (6)

holds whenever (x,y) and (x, z) lie in R. Finally, letting

M = max{‖f(x,y)‖ : (x,y) ∈ R},

suppose that M(XM − x0) ≤ YM . Then, there exists a unique continuously differentiable function x 7→
y(x), defined on the closed interval [x0,XM ], which satisfies (5).

A sufficient condition for (6) is that f is continuous on R, differentiable at each point (x,y) in int(R),
the interior of R, and there exists an L > 0 such that

∣

∣

∣

∣

∣

∣

∣

∣

∂f

∂y
(x,y)

∣

∣

∣

∣

∣

∣

∣

∣

≤ L for all (x,y) ∈ int(R), (7)

where ∂f/∂y denotes the m×m Jacobi matrix of y ∈ Rm 7→ f(x,y) ∈ Rm, and ‖·‖ is a matrix norm sub-
ordinate to the Euclidean vector norm on R

m. Indeed, when (7) holds, the Mean-Value Theorem implies
that (6) is also valid. The converse of this statement is not true: the function f(y) = (|y1|, . . . , |ym|)T,
with x0 = 0 and y0 = 0, satisfies (6) but violates (7) because y 7→ f(y) is not differentiable at the point
y = 0.

As the counter-example in the footnote on page 1 indicates, the expression |y−z| in (3) and ‖y−z‖ in
(6) cannot be replaced by expressions of the form |y−z|α and ‖y−z‖α, respectively, where 0 < α < 1, for
otherwise the uniqueness of the solution to the corresponding initial-value problem cannot be guaranteed.

We conclude this section by introducing the notion of stability.
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Definition 1 A solution y = v(x) to (5) is said to be stable on the interval [x0,XM ] if for every ε > 0
there exists a δ > 0 such that for all z satisfying ‖v(x0)−z‖ < δ the solution y = w(x) to the differential
equation y′ = f(x,y) satisfying the initial condition w(x0) = z is defined for all x ∈ [x0,XM ] and satisfies
‖v(x) −w(x)‖ < ε for all x in [x0,XM ].

A solution which is stable on [x0,∞) (i.e. stable on [x0,XM ] for each XM and with δ independent of
XM ) is said to be stable in the sense of Lyapunov.

Moreover, if
lim
x→∞

‖v(x) −w(x)‖ = 0,

then the solution y = v(x) is called asymptotically stable.

Using this definition, we can state the following theorem.

Theorem 3 Under the hypotheses of Picard’s Theorem, the (unique) solution y = v(x) to the initial-
value problem (5) is stable on the interval [x0,XM ], (where we assume that −∞ < x0 < XM < ∞).

Proof: Since

v(x) = v(x0) +

∫ x

x0

f(ξ,v(ξ)) dξ

and

w(x) = z+

∫ x

x0

f(ξ,w(ξ)) dξ,

it follows that

‖v(x) −w(x)‖ ≤ ‖v(x0)− z‖+
∫ x

x0

‖f(ξ,v(ξ)) − f(ξ,w(ξ))‖dξ

≤ ‖v(x0)− z‖+ L

∫ x

x0

‖v(ξ) −w(ξ)‖dξ. (8)

Now put A(x) = ‖v(x) −w(x)‖ and a = ‖v(x0)− z‖; then, (8) can be written as

A(x) ≤ a+ L

∫ x

x0

A(ξ) dξ, x0 ≤ x ≤ XM . (9)

Multiplying (9) by exp(−Lx), we find that

d

dx

[

e−Lx

∫ x

x0

A(ξ) dξ

]

≤ ae−Lx. (10)

Integrating the inequality (10), we deduce that

e−Lx

∫ x

x0

A(ξ) dξ ≤ a

L

(

e−Lx0 − e−Lx
)

,

that is

L

∫ x

x0

A(ξ) dξ ≤ a
(

eL(x−x0) − 1
)

. (11)

Now substituting (11) into (9) gives

A(x) ≤ aeL(x−x0), x0 ≤ x ≤ XM . (12)

The implication “(9) ⇒ (12)” is usually referred to as the Gronwall Lemma. Returning to our original
notation, we deduce from (12) that

‖v(x) −w(x)‖ ≤ ‖v(x0)− z‖ eL(x−x0), x0 ≤ x ≤ XM . (13)
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Thus, given ε > 0 as in Definition 1, we choose δ = ε exp(−L(XM − x0)) to deduce stability. ⋄
To conclude this section, we observe that if either x0 = −∞ or XM = +∞, the statement of Theorem

3 is false. For example, the trivial solution y ≡ 0 to the differential equation y′ = y is unstable on [x0,∞)
for any x0 > −∞. More generally, given the initial-value problem

y′ = λy, y(x0) = y0,

with λ a complex number, the solution y(x) = y0 exp(λ(x− x0)) is unstable for Reλ > 0; the solution is
stable in the sense of Lyapunov for Reλ ≤ 0 and is asymptotically stable for Reλ < 0.

In the next section we shall consider numerical methods for the approximate solution of the initial-
value problem (1), (2). Since everything we shall say has a straightforward extension to the case of
the system (5), for the sake of notational simplicity we shall restrict ourselves to considering a single
ordinary differential equation corresponding to m = 1. We shall suppose throughout that the function f
satisfies the conditions of Picard’s Theorem on the rectangle R and that the initial-value problem has a
unique solution defined on the interval [x0,XM ], −∞ < x0 < XM < ∞. We begin by discussing one-step
methods; this will be followed in subsequent sections by the study of linear multi-step methods.

2 One-step methods

2.1 Euler’s method and its relatives: the θ-method

Lecture 2The simplest example of a one-step method for the numerical solution of the initial-value problem (1),
(2) is Euler’s method.4

Euler’s method. Suppose that the initial-value problem (1), (2) is to be solved on the interval
[x0,XM ]. We divide this interval by the mesh-points xn = x0 + nh, n = 0, . . . , N , where h = (XM −
x0)/N and N is a positive integer. The positive real number h is called the step size. Now let us suppose
that, for each n, we seek a numerical approximation yn to y(xn), the value of the analytical solution at
the mesh point xn. Given that y(x0) = y0 is known, let us suppose that we have already calculated yn,
up to some n, 0 ≤ n ≤ N − 1; we define

yn+1 = yn + hf(xn, yn), n = 0, . . . , N − 1.

Thus, taking in succession n = 0, 1, . . . , N − 1, one step at a time, the approximate values yn at the mesh
points xn can be easily obtained. This numerical method is known as Euler’s method.

A simple derivation of Euler’s method proceeds by first integrating the differential equation (1) be-
tween two consecutive mesh points xn and xn+1 to deduce that

y(xn+1) = y(xn) +

∫ xn+1

xn

f(x, y(x)) dx, n = 0, . . . , N − 1, (14)

and then applying the numerical integration rule
∫ xn+1

xn

g(x) dx ≈ hg(xn),

called the rectangle rule, with g(x) = f(x, y(x)), to get

y(xn+1) ≈ y(xn) + hf(xn, y(xn)), n = 0, . . . N − 1, y(x0) = y0.

This then motivates the definition of Euler’s method. The idea can be generalised by replacing the
rectangle rule in the derivation of Euler’s method with a one-parameter family of integration rules of the
form

∫ xn+1

xn

g(x) dx ≈ h [(1− θ)g(xn) + θg(xn+1)] , (15)

4Leonard Euler (1707–1783)
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with θ ∈ [0, 1] a parameter. By applying this in (14) with g(x) = f(x, y(x)) we find that

y(xn+1) ≈ y(xn) + h [(1− θ)f(xn, y(xn)) + θf(xn+1, y(xn+1))] , n = 0, . . . , N − 1,

y(x0) = y0.

This then motivates the introduction of the following one-parameter family of methods: with y0 supplied
by (2), define

yn+1 = yn + h [(1− θ)f(xn, yn) + θf(xn+1, yn+1)] , n = 0, . . . , N − 1, (16)

parametrised by θ ∈ [0, 1]; (16) is called the θ-method. Now, for θ = 0 we recover Euler’s method. For
θ = 1, and y0 specified by (2), we get

yn+1 = yn + hf(xn+1, yn+1), n = 0, . . . , N − 1, (17)

referred to as the implicit Euler method since, unlike Euler’s method considered above, (17) requires
the solution of an implicit equation in order to determine yn+1, given yn. In order to emphasise this
difference, Euler’s method is sometimes termed the explicit Euler method. The scheme which results
for the value of θ = 1/2 is also of interest: y0 is supplied by (2) and subsequent values yn+1 are computed
from

yn+1 = yn +
1

2
h [f(xn, yn) + f(xn+1, yn+1)] , n = 0, . . . , N − 1;

this is called the trapezium rule method.

Remark 1 The trapezium rule method involves the arithmetic average of f(xn, yn) and f(xn+1, yn+1).
Another possibility would have been to evaluate f at the arithmetic averages of xn and xn+1 and yn and
yn+1 respectively. The resulting implicit one-step method:

yn+1 = yn + hf

(

xn + xn+1

2
,
yn + yn+1

2

)

, n = 0, . . . , N − 1, y0 = given,

is called the implicit midpoint rule.

The θ-method is an explicit method for θ = 0 and is an implicit method for 0 < θ ≤ 1, because
in the latter case (16) requires the solution of an implicit equation for yn+1. Further, for each value of
the parameter θ ∈ [0, 1], (16) is a one-step method in the sense that to compute yn+1 we only use one
previous value yn. Methods which require more than one previously computed value are referred to as
multi-step methods, and will be discussed later on in the notes.

In order to assess the accuracy of the θ-method for various values of the parameter θ in [0, 1], we
perform a numerical experiment on a simple model problem.

Example 1 Given the initial-value problem y′ = x − y2, y(0) = 0, on the interval of x ∈ [0, 0.4], we
compute an approximate solution using the θ-method, for θ = 0, θ = 1/2 and θ = 1, using the step size
h = 0.1. The results are shown in Table 1. In the case of the two implicit methods, corresponding to
θ = 1/2 and θ = 1, the nonlinear equations have been solved by a fixed-point iteration.

For comparison, we also compute the value of the analytical solution y(x) at the mesh points xn =
0.1 ∗ n, n = 0, . . . , 4. Since the solution is not available in closed form,5 we use a Picard iteration to

5Using MAPLE, we obtain the solution in terms of Bessel functions:
> dsolve({diff(y(x),x) + y(x)*y(x) = x, y(0)=0}, y(x));

y(x) = −

√
x







√
3BesselK(

−2

3
,
2

3
x3/2)

π
− BesselI(

−2

3
,
2

3
x3/2)







√
3BesselK(

1

3
,
2

3
x3/2)

π
+ BesselI(

1

3
,
2

3
x3/2)
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k xk yk for θ = 0 yk for θ = 1/2 yk for θ = 1

0 0 0 0 0

1 0.1 0 0.00500 0.00999

2 0.2 0.01000 0.01998 0.02990

3 0.3 0.02999 0.04486 0.05955

4 0.4 0.05990 0.07944 0.09857

Table 1: The values of the numerical solution at the mesh points

k xk y(xk)

0 0 0

1 0.1 0.00500

2 0.2 0.01998

3 0.3 0.04488

4 0.4 0.07949

Table 2: Values of the “exact solution” at the mesh points

calculate an accurate approximation to the analytical solution on the interval [0, 0.4] and call this the
“exact solution”. Thus, we consider

y0(x) ≡ 0, yk(x) =

∫ x

0

(

ξ − y2k−1(ξ)
)

dξ, k = 1, 2, . . . .

Hence,

y0(x) ≡ 0,

y1(x) =
1

2
x2,

y2(x) =
1

2
x2 − 1

20
x5,

y3(x) =
1

2
x2 − 1

20
x5 +

1

160
x8 − 1

4400
x11.

It is easy to prove by induction that

y(x) =
1

2
x2 − 1

20
x5 +

1

160
x8 − 1

4400
x11 +O

(

x14
)

,

Tabulating y3(x) on the interval [0, 0.4] with step size h = 0.1, we get the values of the “exact solution”
at the mesh points shown in Table 2.

The “exact solution” is in good agreement with the results obtained with θ = 1/2: the error is ≤ 5∗10−5.
For θ = 0 and θ = 1 the discrepancy between yk and y(xk) is larger: it is ≤ 3∗10−2. We note in conclusion
that a plot of the analytical solution can be obtained, for example, by using MAPLE, by entering the
following at the command line:

> with(DEtools):

> DEplot(diff(y(x),x)+y(x)*y(x)=x, y(x), x=0..0.4, [[y(0)=0]],

y=-0.1..0.1, stepsize=0.05);

So, why is the gap between the analytical solution and its numerical approximation in this example
so much larger for θ 6= 1/2 than for θ = 1/2? The answer to this question is the subject of the next
section.
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2.2 Error analysis of the θ-method

First we have to explain what we mean by error. The exact solution of the initial-value problem (1),
(2) is a function of a continuously varying argument x ∈ [x0,XM ], while the numerical solution yn is
only defined at the mesh points xn, n = 0, . . . , N , so it is a function of a “discrete” argument. We can
compare these two functions either by extending in some fashion the approximate solution from the mesh
points to the whole of the interval [x0,XM ] (say by interpolating between the values yn), or by restricting
the function y to the mesh points and comparing y(xn) with yn for n = 0, . . . , N . Since the first of
these approaches is somewhat arbitrary because it does not correspond to any procedure performed in a
practical computation, we adopt the second approach, and we define the global error e by

en = y(xn)− yn, n = 0, . . . , N.

We wish to investigate the decay of the global error for the θ-method with respect to the reduction of
the mesh size h. We shall show in detail how this is done in the case of Euler’s method (θ = 0) and then
quote the corresponding result in the general case (0 ≤ θ ≤ 1) leaving it to the reader to fill the gap.

So let us consider Euler’s explicit method:

yn+1 = yn + hf(xn, yn), n = 0, . . . , N − 1, y0 = given.

The quantity

Tn =
y(xn+1)− y(xn)

h
− f(xn, y(xn)), (18)

obtained by inserting the analytical solution y(x) into the numerical method and dividing by the mesh
size is referred to as the consistency error (or truncation error) of Euler’s explicit method and will
play a key role in the analysis. Indeed, it measures the extent to which the analytical solution fails to
satisfy the difference equation for Euler’s method.

By noting that f(xn, y(xn)) = y′(xn) and applying Taylor’s Theorem, it follows from (18) that there
exists a ξn ∈ (xn, xn+1) such that

Tn =
1

2
hy′′(ξn), (19)

where we have assumed that that f is a sufficiently smooth function of two variables so as to ensure that
y′′ exists and is bounded on the interval [x0,XM ]. Since from the definition of Euler’s method

0 =
yn+1 − yn

h
− f(xn, yn),

By subtracting this from (18), we deduce that

en+1 = en + h[f(xn, y(xn))− f(xn, yn)] + hTn.

Thus, assuming that |yn − y0| ≤ YM from the Lipschitz condition (3) we get

|en+1| ≤ (1 + hL)|en|+ h|Tn|, n = 0, . . . , N − 1.

Now, let T = max0≤n≤N−1 |Tn| ; then,

|en+1| ≤ (1 + hL)|en|+ hT, n = 0, . . . , N − 1.

By induction, and noting that 1 + hL ≤ ehL ,

|en| ≤ T

L
[(1 + hL)n − 1] + (1 + hL)n|e0|

≤ T

L

(

eL(xn−x0) − 1
)

+ eL(xn−x0)|e0|, n = 1, . . . , N.
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This estimate, together with the bound

|T | ≤ 1

2
hM2, M2 = max

x∈[x0,XM ]
|y′′(x)|,

which follows from (19), yields

|en| ≤ eL(xn−x0)|e0|+
M2h

2L

(

eL(xn−x0) − 1
)

, n = 0, . . . , N. (20)

To conclude, we note that by an analogous argument it is possible to prove that, in the general case
of the θ-method (and assuming that h is sufficiently small, i.e. that h ∈ (0, h0] where

1
2 − θLh0 > 0)

|en| ≤ |e0| exp
(

L
xn − x0
1− θLh

)

+
h

L

{∣

∣

∣

∣

1

2
− θ

∣

∣

∣

∣

M2 +
1

6
(1 + 3θ)hM3

}[

exp

(

L
xn − x0
1− θLh

)

− 1

]

, (21)

for n = 0, . . . , N , where now M3 = maxx∈[x0,XM ] |y′′′(x)|. In the absence of rounding errors in the
imposition of the initial condition (2) we can suppose that e0 = y(x0) − y0 = 0. Assuming that this is
the case, we see from (21) that |en| = O(h2) for θ = 1/2, while for θ = 0 and θ = 1, and indeed for any
θ 6= 1/2, |en| = O(h) only. This explains why in Tables 1 and 2 the values yn of the numerical solution
computed with the trapezium-rule method (θ = 1/2) were considerably closer to the analytical solution
y(xn) at the mesh points than those which were obtained with the explicit and the implicit Euler methods
(θ = 0 and θ = 1, respectively).

In particular, we see from this analysis, that each time the mesh size h is halved, the consistency error
and the global error are reduced by a factor of 2 when θ 6= 1/2, and by a factor of 4 when θ = 1/2.

While the trapezium rule method leads to more accurate approximations than the forward Euler
method, it is less convenient from the computational point of view because it requires the solution of
implicit equations at each mesh point xn+1 to compute yn+1. An attractive compromise is to use the
forward Euler method to compute an initial crude approximation to y(xn+1) and then use this value
within the trapezium rule to obtain a more accurate approximation for y(xn+1): the resulting numerical
method is

yn+1 = yn +
1

2
h [f(xn, yn) + f(xn+1, yn + hf(xn, yn))] , n = 0, . . . , N − 1, y0 = given,

and is frequently referred to as the improved Euler method. Clearly, it is an explicit one-step scheme,
albeit of a more complicated form than the explicit Euler method. In the next section, we shall take this
idea further and consider a very general class of one-step methods.

2.3 General one-step methods

Lecture 3

Definition 2 A one-step method is a function Ψ that takes the triplet (ξ, η;h) ∈ R × R × R>0 and a
function f , and computes an approximation Ψ(ξ, η;h, f) ∈ R of y(ξ+h), which is the solution at x = ξ+h
of the initial-value problem

y′(x) = f(x, y(x)), y(ξ) = η. (22)

Here, we tacitly assume that (22) has a unique solution, and therefore y(ξ + h) exists. Additionally, the
step size h may need to be assumed to be sufficiently small for Ψ to be well-defined.

For example, in the case of the implicit Euler method the function Ψ is defined implicitly, by

Ψ(ξ, η;h, f) = η + hf(ξ + h,Ψ(ξ, η;h, f)).
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Assuming that f satisfies the Lipschitz condition with Lipschitz constant L, one can use the Contraction
Mapping Theorem to show that, given a pair (ξ, η) ∈ R

2, and h ∈ (0, 1/L), there exists a unique
Ψ(ξ, η;h, f) ∈ R satisfying this implicit relationship, and therefore for such a “sufficiently small” h the
function Ψ associated with the implicit Euler method is well-defined.

In the case of the explicit Euler method the situation is simpler:

Ψ(ξ, η;h, f) = η + hf(ξ, η),

and in the case of general explicit one-step methods, to be investigated in the next section,

Ψ(ξ, η;h, f) = η + hΦ(ξ, η;h, f),

where Φ(ξ, η;h, f) can be explicitly computed (without solving implicit equations) in terms of ξ, η, h,
and f . In what follows, for the sake of notational simplicity, we shall not indicate the dependence of
Φ(ξ, η;h, f) on f , and will write Φ(ξ, η;h) instead. For example, in the case of the explicit Euler method
Φ(ξ, η;h) = f(ξ, η), for all h.

2.4 General explicit one-step method

A general explicit one-step method may be written in the form:

yn+1 = yn + hΦ(xn, yn;h), n = 0, . . . , N − 1, y0 = y(x0) [= specified by (2)], (23)

where Φ(·, ·; ·) is a continuous function of its variables. For example, in the case of Euler’s method,
Φ(xn, yn;h) = f(xn, yn), while for the improved Euler method

Φ(xn, yn;h) =
1

2
[f(xn, yn) + f(xn + h, yn + hf(xn, yn))] .

In order to assess the accuracy of the numerical method (23), we define the global error, en, by

en = y(xn)− yn.

We define the consistency error, Tn, of the method by

Tn =
y(xn+1)− y(xn)

h
− Φ(xn, y(xn);h). (24)

The next theorem provides a bound on the global error in terms of the consistency error.

Theorem 4 Consider the general one-step method (23) where, in addition to being a continuous function
of its arguments, Φ is assumed to satisfy a Lipschitz condition with respect to its second argument; namely,
there exists a positive constant LΦ such that, for 0 ≤ h ≤ h0 and for the same region R as in Picard’s
Theorem,

|Φ(x, y;h)− Φ(x, z;h)| ≤ LΦ|y − z|, for (x, y), (x, z) in R. (25)

Then, assuming that |yn − y0| ≤ YM , it follows that

|en| ≤ eLΦ(xn−x0)|e0|+
[

eLΦ(xn−x0) − 1

LΦ

]

T, n = 0, . . . , N, (26)

where T = max0≤n≤N−1 |Tn|.
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Proof: Subtracting (23) from (24) we obtain:

en+1 = en + h[Φ(xn, y(xn);h) − Φ(xn, yn;h)] + hTn.

Then, since (xn, y(xn)) and (xn, yn) belong to R, the Lipschitz condition (25) implies that

|en+1| ≤ |en|+ hLΦ|en|+ h|Tn|, n = 0, . . . , N − 1.

That is,
|en+1| ≤ (1 + hLΦ)|en|+ h|Tn|, n = 0, . . . , N − 1.

Hence

|e1| ≤ (1 + hLΦ)|e0|+ hT,

|e2| ≤ (1 + hLΦ)
2|e0|+ h[1 + (1 + hLΦ)]T,

|e3| ≤ (1 + hLΦ)
3|e0|+ h[1 + (1 + hLΦ) + (1 + hLΦ)

2]T,

etc.

|en| ≤ (1 + hLΦ)
n|e0|+ [(1 + hLΦ)

n − 1]T/LΦ.

Observing that 1 + hLΦ ≤ exp(hLΦ), we obtain (26). ⋄
Let us note that the error bound (20) for Euler’s explicit method is a special case of (26). We highlight

the practical relevance of the error bound (26) by focusing on a particular example.

Example 2 Consider the initial-value problem y′ = tan−1 y, y(0) = y0, and suppose that this is solved
by the explicit Euler method. The aim of the exercise is to apply (26) to quantify the size of the associated
global error; thus, we need to find L and M2. Here f(x, y) = tan−1 y, so by the Mean-Value Theorem

|f(x, y)− f(x, z)| =
∣

∣

∣

∣

∂f

∂y
(x, η) (y − z)

∣

∣

∣

∣

,

where η lies between y and z. In our case
∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

= |(1 + y2)−1| ≤ 1,

and therefore L = 1. To find M2 we need to obtain a bound on |y′′| (without actually solving the initial-
value problem!). This is easily achieved by differentiating both sides of the differential equation with
respect to x:

y′′ =
d

dx
(tan−1 y) = (1 + y2)−1 dy

dx
= (1 + y2)−1 tan−1 y.

Therefore |y′′(x)| ≤ M2 =
1
2π. Inserting the values of L and M2 into (20),

|en| ≤ exn |e0|+
1

4
π (exn − 1) h, n = 0, . . . , N.

In particular if we assume that no error has been committed initially (i.e. e0 = 0), we have that

|en| ≤
1

4
π (exn − 1) h, n = 0, . . . , N.

Thus, given a positive tolerance TOL specified beforehand, we can ensure that the error between the (un-
known) analytical solution and its numerical approximation does not exceed this tolerance by choosing a
positive step size h such that

h ≤ 4

π
(eXM − 1)−1 TOL.
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For such h we shall have |y(xn)− yn| = |en| ≤ TOL for each n = 0, . . . , N , as required. Thus, at least in
principle, we can calculate the numerical solution to arbitrarily high accuracy by choosing a sufficiently
small step size. In practice, because digital computers use finite-precision arithmetic, there will always
be small (but not infinitely small) pollution effects because of rounding errors; however, these can also
be bounded by performing an analysis similar to the one above where f(xn, yn) is replaced by its finite-
precision representation.

Returning to the general one-step method (23), we consider the choice of the function Φ. Theorem 4
suggests that if the consistency error ‘approaches zero’ as h → 0 then the global error ‘converges to zero’
also (as long as |e0| → 0 when h → 0). This observation motivates the following definition.

Definition 3 The numerical method (23) is consistent with the differential equation (1) if the consis-
tency error defined by (24) is such that for any ε > 0 there exists a positive h(ε) for which |Tn| < ε for
0 < h < h(ε) and any pair of points (xn, y(xn)), (xn+1, y(xn+1)) on any solution curve in R.

For the general one-step method (23) we have assumed that the function Φ(·, ·; ·) is continuous; also
y′ is a continuous function on [x0,XM ]. Therefore, from (24),

lim
h → 0, n → ∞

xn → x ∈ [x0, XM ]

Tn = y′(x)− Φ(x, y(x); 0) ∀x ∈ [x0,XM ].

As y′(x) = f(x, y(x)), this implies that the one-step method (23) is consistent if, and only if,

Φ(x, y; 0) ≡ f(x, y). (27)

Now we are ready to state a convergence theorem for the general one-step method (23).

Theorem 5 Suppose that the solution of the initial-value problem (1), (2) lies in R as does its approxi-
mation generated from (23) when h ≤ h0. Suppose also that the function Φ(·, ·; ·) is uniformly continuous
on R× [0, h0] and satisfies the consistency condition (27) and the Lipschitz condition

|Φ(x, y;h) −Φ(x, z;h)| ≤ LΦ|y − z| on R× [0, h0]. (28)

Then, if successive approximation sequences (yn), generated for xn = x0 + nh, n = 1, 2, . . . , N , are
obtained from (23) with successively smaller values of h, each less than h0, we have convergence of the
numerical solution to the solution of the initial-value problem in the sense that

|y(x)− yn| → 0 as h → 0, n → ∞, xn → x ∈ [x0,XM ].

Proof: Suppose that h = (XM − x0)/N where N is a positive integer. We shall assume that N is
sufficiently large so that h ≤ h0. Since y(x0) = y0 and therefore e0 = 0, Theorem 4 implies that

|y(xn)− yn| ≤
[

eLφ(XM−x0) − 1

Lφ

]

max
0≤m≤n−1

|Tm|, n = 1, . . . , N. (29)

From the consistency condition (27) we have

Tn =

[

y(xn+1)− y(xn)

h
− f(xn, y(xn))

]

+ [Φ(xn, y(xn); 0)− Φ(xn, y(xn);h)].

According to the Mean-Value Theorem the expression in the first bracket is equal to y′(ξ)−y′(xn), where
ξ ∈ [xn, xn+1]. Since y′(·) = f(·, y(·)) = Φ(·, y(·); 0) and Φ(·, ·; ·) is uniformly continuous on R× [0, h0], it
follows that y′ is uniformly continuous on [x0,XM ]. Thus, for each ε > 0 there exists an h1(ε) such that

|y′(ξ)− y′(xn)| ≤
1

2
ε for h < h1(ε), n = 0, 1, . . . , N − 1.
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Also, by the uniform continuity of Φ with respect to its third argument, there exists an h2(ε) such that

|Φ(xn, y(xn); 0) − Φ(xn, y(xn);h)| ≤
1

2
ε for h < h2(ε), n = 0, 1, . . . , N − 1.

Thus, defining h(ε) = min(h1(ε), h2(ε)), we have

|Tn| ≤ ε for h < h(ε), n = 0, 1, . . . , N − 1.

Inserting this into (29) we deduce that |y(xn)− yn| → 0 as h → 0 and n → ∞. Since

|y(x)− yn| ≤ |y(x)− y(xn)|+ |y(xn)− yn|,

and the first term on the right also converges to zero as n → ∞ and xn → x, by the uniform continuity
of y on the interval [x0,XM ] the proof is complete. ⋄

We saw earlier that for Euler’s method the absolute value of the consistency error Tn is bounded
above by a constant multiple of the step size h, that is

|Tn| ≤ Kh for 0 < h ≤ h0,

where K is a positive constant, independent of h. However there are other one-step methods (a class
of which, called Runge–Kutta methods, will be considered below) for which we can do better. More
generally, in order to quantify the asymptotic rate of decay of the consistency error as the step size h
converges to zero, we introduce the following definition.

Definition 4 The numerical method (23) is said to have order of accuracy p (or order of consistency
p), if p is the largest positive integer such that, for any sufficiently smooth solution curve (x, y(x)) in R

of the initial-value problem (1), (2), there exist constants K and h0 such that

|Tn| ≤ Khp for 0 < h ≤ h0

for any pair of points (xn, y(xn)), (xn+1, y(xn+1)) on the solution curve.

Having introduced the general class of explicit one-step methods and the associated concepts of
consistency and order of accuracy (or order of consistency), we now focus on a specific family: explicit
Runge–Kutta methods.

2.5 Explicit Runge–Kutta methods

Lecture 4In the sense of Definition 4 Euler’s method is only first-order accurate; nevertheless, it is simple and
cheap to implement because to obtain yn+1 from yn we only require a single evaluation of the function f
at (xn, yn). Runge–Kutta methods aim to achieve higher accuracy by sacrificing the efficiency of Euler’s
method through re-evaluating f(·, ·) at points intermediate between (xn, y(xn)) and (xn+1, y(xn+1)). The
general form of the R-stage explicit Runge–Kutta family is as follows:

yn+1 = yn + hΦ(xn, yn;h),

Φ(x, y;h) =

R
∑

r=1

crkr,

k1 = f(x, y),

kr = f

(

x+ har, y + h

r−1
∑

s=1

brsks

)

, r = 2, . . . , R, (30)

ar =

r−1
∑

s=1

brs, r = 2, . . . , R.
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a = Be B

cT
where e = (1, . . . , 1)T ∈ R

R−1.

Figure 1: Butcher tableau of a Runge–Kutta method: a ∈ R
R−1, B ∈ R

(R−1)×(R−1), c ∈ R
R. In the

case of an explicit Runge–Kutta method B ∈ R
(R−1)×(R−1) is a strictly lower-triangular matrix, i.e. the

diagonal and superdiagonal entries of B are all equal to zero. For the sake of simplicity we focus on
explicit Runge–Kutta methods only.

In compressed form, the information about the coefficients of a Runge–Kutta method is usually displayed
in the so-called Butcher tableau shown in Fig. 1.

One-stage explicit Runge–Kutta methods. Suppose that R = 1. Then, the resulting one-stage
explicit Runge–Kutta method is simply Euler’s explicit method:

yn+1 = yn + hf(xn, yn). (31)

Thus, in the language of Runge–Kutta methods, yn+1 = yn + hΦ(xn, yn;h) with Φ(x, y;h) =
∑1

r=1 crkr,
c1 = 1 and k1 = f(x, y).

Remark 2 The implicit Euler method yn+1 = yn + hf(xn+1, yn+1) is an example of a one-stage implicit
Runge-Kutta method: it can be written as yn+1 = yn + hΦ(xn, yn;h), where Φ(x, y;h) = k1 and k1 =
f(x+ h, y + hk1) (note that, unsurprisingly, k1 is now defined through an implicit relationship). For the
sake of simplicity we shall continue to concentrate here on explicit Runge–Kutta methods only.

Two-stage explicit Runge–Kutta methods. Next, consider the case of R = 2, corresponding to the
following family of methods:

yn+1 = yn + h(c1k1 + c2k2), (32)

where

k1 = f(xn, yn), (33)

k2 = f(xn + a2h, yn + b21hk1), (34)

and where the parameters c1, c2, a2 and b21 are to be determined.6 Clearly (32)–(34) can be rewritten
in the form (23) and therefore it is a family of one step methods. By the condition (27), a method from
this family will be consistent if, and only if,

c1 + c2 = 1.

Further conditions on the parameters are obtained by attempting to maximise the order of accuracy of
the method. Indeed, expanding the consistency error of (32)–(34) in powers of h, after some algebra we
obtain

Tn =
1

2
hy′′(xn) +

1

6
h2y′′′(xn)

−c2h[a2fx + b21fyf ]− c2h
2

[

1

2
a22fxx + a2b21fxyf +

1

2
b221fyyf

2

]

+O(h3).

6We note in passing that Euler’s explicit method is a member of this family of methods, corresponding to c1 = 1 and
c2 = 0. However we are now seeking methods that are at least second-order accurate.
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Here we have used the abbreviations f = f(xn, y(xn)), fx = ∂f
∂x(xn, y(xn)), etc. On noting that y′′ =

fx + fyf , it follows that Tn = O(h2) for any f provided that

a2c2 = b21c2 =
1

2
,

which implies that if b21 = a2, c2 = 1/(2a2) and c1 = 1 − 1/(2a2) then the method is second-order
accurate; while this still leaves one free parameter, a2, it is easy to see that no choice of the parameters
will make the method generally third-order accurate. There are two well-known examples of second-order
explicit Runge–Kutta methods of the form (32), (34):

a) The modified Euler method: In this case we take a2 =
1
2 to obtain

yn+1 = yn + h f

(

xn +
1

2
h, yn +

1

2
hf(xn, yn)

)

;

b) The improved Euler method: This is arrived at by choosing a2 = 1 which gives

yn+1 = yn +
1

2
h [f(xn, yn) + f(xn + h, yn + hf(xn, yn))] .

For these two methods it is easily verified by Taylor series expansion that the consistency error is of the
form, respectively,

Tn =
1

6
h2
[

fyF1 +
1

4
F2

]

+O(h3),

Tn =
1

6
h2
[

fyF1 −
1

2
F2

]

+O(h3),

where
F1 = fx + ffy and F2 = fxx + 2ffxy + f2fyy.

The family (32)–(34) is referred to as the class of explicit two-stage explicit Runge–Kutta methods.

Exercise 1 Let α be a nonzero real number and let xn = a + nh, n = 0, . . . , N , be a uniform mesh on
the interval [a, b] of step size h = (b − a)/N . Consider the explicit one-step method for the numerical
solution of the initial-value problem y′ = f(x, y), y(a) = y0, which determines approximations yn to the
values y(xn) from the recurrence relation

yn+1 = yn + h(1− α)f(xn, yn) + hαf

(

xn +
h

2α
, yn +

h

2α
f(xn, yn)

)

.

Show that this method is consistent and that its consistency error, Tn(h, α), can be expressed as

Tn(h, α) =
h2

8α

[(

4

3
α− 1

)

y′′′(xn) + y′′(xn)
∂f

∂y
(xn, y(xn))

]

+O(h3).

This numerical method is applied to the initial-value problem y′ = −yp, y(0) = 1, where p is a positive
integer. Show that if p = 1 then Tn(h, α) = O(h2) for every nonzero real number α. Show also that if
p ≥ 2 then there exists a nonzero real number α0 such that Tn(h, α0) = O(h3).

Solution: Let us define

Φ(x, y;h) = (1 − α)f(x, y) + αf

(

x+
h

2α
, y +

h

2α
f(x, y)

)

.
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Then the numerical method can be rewritten as

yn+1 = yn + hΦ(xn, yn;h).

Since
Φ(x, y; 0) = f(x, y),

the method is consistent. By definition, the consistency error is

Tn(h, α) =
y(xn+1)− y(xn)

h
− Φ(xn, y(xn);h).

We shall perform a Taylor expansion of Tn(h, α) to show that it can be expressed in the desired form. Indeed,

Tn(h, α) = y′(xn) +
h

2
y′′(xn) +

h2

6
y′′′(xn)

−(1− α)y′(xn)− αf(xn +
h

2α
, y(xn) +

h

2α
y′(xn)) +O(h3)

= y′(xn) +
h

2
y′′(xn) +

h2

6
y′′′(xn)− (1− α)y′(xn)

−α

[

f(xn, y(xn)) +
h

2α
fx(xn, y(xn)) +

h

2α
fy(xn, y(xn))y

′(xn)

]

−α

2

[

(

h

2α

)2

fxx(xn, y(xn)) + 2

(

h

2α

)2

fxy(xn, y(xn))y
′(xn)

+

(

h

2α

)2

fyy(xn, y(xn))[y
′(xn)]

2

]

+O(h3)

= y′(xn)− (1 − α)y′(xn)− αy′(xn)

+
h

2
y′′(xn)−

h

2
[fx(xn, y(xn)) + fy(xn, y(xn))y

′(xn)]

+
h2

6
y′′′(xn)−

h2

8α
[fxx(xn, y(xn)) + 2fxy(xn, y(xn))y

′(xn)

+ fyy(xn, y(xn))[y
′(xn)]

2
]

+O(h3)

=
h2

6
y′′′(xn)−

h2

8α
[y′′′(xn)− y′′(xn)fy(xn, y(xn))] +O(h3)

=
h2

8α

[(

4

3
α− 1

)

y′′′(xn) + y′′(xn)
∂f

∂y
(xn, y(xn))

]

+O(h3),

as required.
Now let us apply the method to y′ = −yp, with p ≥ 1. If p = 1, then y′′′ = −y′′ = y′ = −y, so that

Tn(h, α) = −h2

6
y(xn) +O(h3).

As y(xn) = e−xn 6= 0, it follows that
Tn(h, α) = O(h2)

for all (nonzero) α.
Finally, suppose that p ≥ 2. Then,

y′′ = −pyp−1y′ = py2p−1

and
y′′′ = p(2p− 1)y2p−2y′ = −p(2p− 1)y3p−2,

and therefore

Tn(h, α) = − h2

8α

[(

4

3
α− 1

)

p(2p− 1) + p2
]

y3p−2(xn) +O(h3).

Choosing α such that
(

4

3
α− 1

)

p(2p− 1) + p2 = 0,
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namely

α = α0 =
3p− 3

8p− 4
,

gives
Tn(h, α0) = O(h3).

We note in passing that for p > 1 the exact solution of the initial-value problem y′ = −yp, y(0) = 1, is

y(x) = [(p− 1)x+ 1]
1/(1−p)

. ⋄

Three-stage explicit Runge–Kutta methods. Let us now suppose that R = 3 to illustrate the
general idea. Thus, we consider the family of methods:

yn+1 = yn + h [c1k1 + c2k2 + c3k3] ,

where

k1 = f(x, y),

k2 = f(x+ ha2, y + hb21k1),

k3 = f(x+ ha3, y + hb31k1 + hb32k2),

a2 = b21, a3 = b31 + b32.

Writing b21 = a2 and b31 = a3 − b32 in the definitions of k2 and k3 respectively and expanding k2 and k3
into Taylor series about the point (x, y) yields:

k2 = f + ha2(fx + k1fy) +
1

2
h2a22(fxx + 2k1fxy + k21fyy) +O(h3)

= f + ha2(fx + ffy) +
1

2
h2a22(fxx + 2ffxy + f2fyy) +O(h3)

= f + ha2F1 +
1

2
h2a22F2 +O(h3),

where
F1 = fx + ffy and F2 = fxx + 2ffxy + f2fyy,

and

k3 = f + h {a3fx + [(a3 − b32)k1 + b32k2] fy}

+
1

2
h2
{

a23fxx + 2a3 [(a3 − b32)k1 + b32k2] fxy

+ [(a3 − b32)k1 + b32k2]
2 fyy

}

+O(h3)

= f + ha3F1 + h2
(

a2b32F1fy +
1

2
a23F2

)

+O(h3).

Substituting these expressions for k2 and k3 into (30) with R = 3 we find that

Φ(x, y, h) = (c1 + c2 + c3)f + h(c2a2 + c3a3)F1

+
1

2
h2
[

2c3a2b32F1fy +
(

c2a
2
2 + c3a

2
3

)

F2

]

+O(h3). (35)

We match this with the Taylor series expansion:

y(x+ h)− y(x)

h
= y′(x) +

1

2
hy′′(x) +

1

6
h2y′′′(x) +O(h3)

= f +
1

2
hF1 +

1

6
h2 (F1fy + F2) +O(h3).
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This yields:

c1 + c2 + c3 = 1,

c2a2 + c3a3 =
1

2
,

c2a
2
2 + c3a

2
3 =

1

3
,

c3a2b32 =
1

6
.

Solving this system of four equations for the six unknowns: c1, c2, c3, a2, a3, b32, we obtain a two-parameter
family of 3-stage explicit Runge–Kutta methods. We shall only highlight two notable examples from this
family:

(i) Heun’s method corresponds to

c1 =
1

4
, c2 = 0, c3 =

3

4
, a2 =

1

3
, a3 =

2

3
, b32 =

2

3
,

yielding

yn+1 = yn +
1

4
h (k1 + 3k3) ,

k1 = f(xn, yn),

k2 = f

(

xn +
1

3
h, yn +

1

3
hk1

)

,

k3 = f

(

xn +
2

3
h, yn +

2

3
hk2

)

.

(ii) Standard third-order explicit Runge–Kutta method. This is arrived at by selecting

c1 =
1

6
, c2 =

2

3
, c3 =

1

6
, a2 =

1

2
, a3 = 1, b32 = 2,

yielding

yn+1 = yn +
1

6
h (k1 + 4k2 + k3) ,

k1 = f(xn, yn),

k2 = f

(

xn +
1

2
h, yn +

1

2
hk1

)

,

k3 = f (xn + h, yn − hk1 + 2hk2) .

Four-stage explicit Runge–Kutta methods. For R = 4, an analogous argument leads to a two-
parameter family of four-stage Runge–Kutta methods of order four. A particularly popular example
from this family is:

yn+1 = yn +
1

6
h (k1 + 2k2 + 2k3 + k4) ,

where

k1 = f(xn, yn),

k2 = f

(

xn +
1

2
h, yn +

1

2
hk1

)

,

k3 = f

(

xn +
1

2
h, yn +

1

2
hk2

)

,

k4 = f(xn + h, yn + hk3).
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Here k2 and k3 represent approximations to the derivative y′(·) at points on the solution curve, in-
termediate between (xn, y(xn)) and (xn+1, y(xn+1)), and Φ(xn, yn;h) is a weighted average of the ki,
i = 1, . . . , 4, the weights corresponding to those of the Simpson rule method (to which the fourth-order
explicit Runge–Kutta method reduces when ∂f

∂y ≡ 0).
In this section, we have constructed R-stage explicit Runge–Kutta methods of order of accuracy

O(hR), R = 1, 2, 3, 4. It is natural to ask whether there exists an R stage method of order R for R ≥ 5.
The answer to this question is negative: in a series of papers John Butcher showed that for R = 5, 6, 7, 8, 9,
the highest order that can be attained by an R-stage Runge–Kutta method is, respectively, 4, 5, 6, 6, 7,
and that for R ≥ 10 the highest order is ≤ R− 2.

2.6 Absolute stability of explicit Runge–Kutta methods

Lecture 5It is instructive to consider the model problem

y′ = λy, y(0) = y0 (6= 0), (36)

with λ real and negative. Trivially, the analytical solution to this initial value problem, y(x) = y0 exp(λx),
converges to 0 at an exponential rate as x → +∞. The question that we wish to investigate here is
under what conditions on the step size h does a Runge–Kutta method reproduce this behaviour. The
understanding of this matter will provide useful information about the adequate selection of h in the
numerical approximation of an initial-value problem by an explicit Runge–Kutta method over an interval
[x0,XM ] with XM ≫ x0. For the sake of simplicity, we shall restrict our attention to the case of R-stage
methods of order of accuracy R, with 1 ≤ R ≤ 4.

Let us begin with R = 1. The only explicit one-stage Runge–Kutta method is Euler’s explicit method.
Applying (31) to (36) yields:

yn+1 = (1 + h̄)yn, n ≥ 0,

where h̄ := λh. Thus,
yn = (1 + h̄)ny0.

Consequently, the sequence {yn}∞n=0 will converge to 0 if, and only if, |1 + h̄| < 1, yielding h̄ ∈ (−2, 0);
for such h the explicit Euler method is said to be absolutely stable and the interval (−2, 0) is referred
to as the interval of absolute stability of the method.

Now consider R = 2 corresponding to two-stage second-order explicit Runge–Kutta methods:

yn+1 = yn + h(c1k1 + c2k2),

where
k1 = f(xn, yn), k2 = f(xn + a2h, yn + b21hk1)

with

c1 + c2 = 1, a2c2 = b21c2 =
1

2
.

Applying this to (36) yields,

yn+1 =

(

1 + h̄+
1

2
h̄2
)

yn, n ≥ 0,

and therefore

yn =

(

1 + h̄+
1

2
h̄2
)n

y0.

Hence the method is absolutely stable if, and only if,

∣

∣

∣

∣

1 + h̄+
1

2
h̄2
∣

∣

∣

∣

< 1,
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namely when h̄ ∈ (−2, 0).
In the case of R = 3 an analogous argument shows that

yn+1 =

(

1 + h̄+
1

2
h̄2 +

1

6
h̄3
)

yn.

Demanding that
∣

∣

∣

∣

1 + h̄+
1

2
h̄2 +

1

6
h̄3
∣

∣

∣

∣

< 1

then yields the interval of absolute stability: h̄ ∈ (−2.51, 0).
When R = 4, we have that

yn+1 =

(

1 + h̄+
1

2
h̄2 +

1

6
h̄3 +

1

24
h̄4
)

yn,

and the associated interval of absolute stability is h̄ ∈ (−2.78, 0).
For R ≥ 5 on applying the explicit Runge–Kutta method to the model problem (36) still results in a

recursion of the form
yn+1 = AR(h̄)yn, n ≥ 0,

however, unlike the case when R = 1, 2, 3, 4, in addition to h̄ the expression AR(h̄) also depends on
the coefficients of the explicit Runge–Kutta method; by a convenient choice of the free parameters the
associated interval of absolute stability may be maximised. For further results in this direction, the reader
is referred to the book of J.D. Lambert.

3 Linear multi-step methods

While explicit Runge–Kutta methods present an improvement over Euler’s method in terms of accuracy,
this is achieved by investing additional computational effort; in fact, Runge–Kutta methods require
more evaluations of f(·, ·) than would seem necessary. For example, the fourth-order method involves
four function evaluations per step. For comparison, by considering three consecutive points xn−1, xn =
xn−1 + h, xn+1 = xn−1 + 2h, integrating the differential equation between xn−1 and xn+1, and applying
Simpson’s rule to approximate the resulting integral yields

y(xn+1) = y(xn−1) +

∫ xn+1

xn−1

f(x, y(x)) dx

≈ y(xn−1) +
1

3
h [f(xn−1, y(xn−1)) + 4f(xn, y(xn)) + f(xn+1, y(xn+1))] ,

which leads to the method

yn+1 = yn−1 +
1

3
h [f(xn−1, yn−1) + 4f(xn, yn) + f(xn+1, yn+1)] . (37)

In contrast with the one-step methods considered in the previous section where only a single value yn
was required to compute the next approximation yn+1, here we need two preceding values, yn and yn−1

to be able to calculate yn+1, and therefore (37) is not a one-step method.
In this section we consider a class of methods of the type (37) for the numerical solution of the

initial-value problem (1), (2), called linear multi-step methods.
Given a sequence of equally spaced mesh points (xn) with step size h, we consider the general linear

k-step method
k
∑

j=0

αjyn+j = h

k
∑

j=0

βjf(xn+j, yn+j), (38)
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where the coefficients α0, . . . , αk and β0, . . . , βk are real constants. In order to avoid degenerate cases, we
shall assume that αk 6= 0 and that α0 and β0 are not both equal to zero. If βk = 0 then yn+k is obtained
explicitly from previous values of yj and f(xj, yj), and the k-step method is then said to be explicit.
On the other hand, if βk 6= 0 then yn+k appears not only on the left-hand side but also on the right,
within f(xn+k, yn+k); because of this implicit dependence on yn+k the method is then called implicit.
The numerical method (38) is called linear because it involves only linear combinations of the {yn} and
the {f(xn, yn)}; for the sake of notational simplicity, henceforth we shall write fn instead of f(xn, yn).

Example 3 We have already seen an example of a linear 2-step method in (37); here we present further
examples of linear multi-step methods.

a) Euler’s method is a trivial case: it is an explicit linear one-step method. The implicit Euler

method

yn+1 = yn + hf(xn+1, yn+1)

is an implicit linear one-step method.

b) The trapezium method, given by

yn+1 = yn +
1

2
h[fn+1 + fn]

is also an implicit linear one-step method.

c) The four-step Adams7–Bashforth method

yn+4 = yn+3 +
1

24
h[55fn+3 − 59fn+2 + 37fn+1 − 9fn]

is an example of an explicit linear four-step method; the four-step Adams–Moulton method

yn+4 = yn+3 +
1

24
h[9fn+4 + 19fn+3 − 5fn+2 − 9fn+1]

is an implicit linear four-step method.

The construction of general classes of linear multi-step methods, such as the (implicit) Adams–Bashforth
family and the (explicit) Adams–Moulton family will be discussed in the next section.

3.1 Construction of linear multi-step methods

Start of
optional
material

Let us suppose that un, n = 0, 1, . . . , is a sequence of real numbers. We introduce the shift operator E,
the forward difference operator ∆+ and the backward difference operator ∆− by

E : un 7→ un+1, ∆+ : un 7→ (un+1 − un), ∆− : un 7→ (un − un−1).

Further, we note that E−1 exists and is given by E−1 : un+1 7→ un. Since

∆+ = E − I = E∆−, ∆− = I − E−1 and E = (I −∆−)
−1,

where I signifies the identity operator, it follows that, for any positive integer k,

∆k
+un = (E − I)kun =

k
∑

j=0

(−1)j
(

k
j

)

un+k−j

7J. C. Adams (1819–1892)
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and

∆k
−un = (I − E−1)kun =

k
∑

j=0

(−1)j
(

k
j

)

un−j.

Now suppose that u is a real-valued function defined on R whose derivative exists and is integrable on
[x0, xn] for each n ≥ 0, and let un denote u(xn) where xn = x0 + nh, n = 0, 1, . . . , are equally spaced
points on the real line. Letting D denote d/dx, by applying a Taylor series expansion we find that

(Esu)n = u(xn + sh) = un + sh(Du)n +
1

2!
(sh)2(D2u)n + · · ·

=

∞
∑

k=0

1

k!
((shD)ku)n = (eshDu)n,

and hence
Es = eshD.

Thus, formally,
hD = lnE = −ln(I −∆−),

and therefore, again by Taylor series expansion,

hu′(xn) =

(

∆− +
1

2
∆2

− +
1

3
∆3

− + · · ·
)

un.

Now letting u(x) = y(x) where y is the solution of the initial-value problem (1), (2) and noting that
u′(x) = y′(x) = f(x, y(x)), we find that

hf(xn, y(xn)) =

(

∆− +
1

2
∆2

− +
1

3
∆3

− + · · ·
)

y(xn).

By successive truncations of the infinite series on the right, we find that

y(xn)− y(xn−1) ≈ hf(xn, y(xn)),

3

2
y(xn)− 2y(xn−1) +

1

2
y(xn−2) ≈ hf(xn, y(xn)),

11

6
y(xn)− 3y(xn−1) +

3

2
y(xn−2)−

1

3
y(xn−3) ≈ hf(xn, y(xn)),

and so on. These approximate equalities give rise to a class of implicit linear multi-step methods called
backward differentiation formulae, the simplest of which is Euler’s implicit method.

Similarly,

E−1(hD) = hDE−1 = (I −∆−)(−ln(I −∆−)) = −(I −∆−)ln(I −∆−),

and therefore

hu′(xn) =

(

∆− − 1

2
∆2

− − 1

6
∆3

− + · · ·
)

un+1.

Letting, again, u(x) = y(x) where y is the solution of the initial-value problem (1), (2) and noting that
u′(x) = y′(x) = f(x, y(x)), successive truncations of the infinite series on the right result in

y(xn+1)− y(xn) ≈ hf(xn, y(xn)),

1

2
y(xn+1)−

1

2
y(xn−1) ≈ hf(xn, y(xn)),

1

3
y(xn+1) +

1

2
y(xn)− y(xn−1) +

1

6
y(xn−2) ≈ hf(xn, y(xn)),
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and so on. The first of these yields Euler’s explicit method, the second the so-called explicit midpoint
rule, and so on.

Next we derive additional identities which will allow us to construct further classes of linear multi-step
methods. Let us define

D−1u(xn) = u(x0) +

∫ xn

x0

u(ξ) dξ,

and observe that

(E − I)D−1u(xn) =

∫ xn+1

xn

u(ξ) dξ.

Now,

(E − I)D−1 = ∆+D
−1 = E∆−D

−1 = hE∆−(hD)−1

= −hE∆− [ln(I −∆−)]
−1 . (39)

Furthermore,

(E − I)D−1 = E∆−D
−1 = ∆−ED−1 = ∆−(DE−1)−1 = h∆−(hDE−1)−1

= −h∆− [(I −∆−)ln(I −∆−)]
−1 . (40)

Letting, again, u(x) = y(x) where y is the solution of the initial-value problem (1), (2), noting that
u′(x) = y′(x) = f(x, y(x)) and using (39) and (40) we deduce that

y(xn+1)− y(xn) =

∫ xn+1

xn

y′(ξ) dξ = (E − I)D−1y′(xn) = (E − I)D−1f(xn, y(xn))

=

{

−hE∆− [ln(I −∆−)]
−1 f(xn, y(xn)),

−h∆− [(I −∆−)ln(I −∆−)]
−1 f(xn, y(xn)).

(41)

By expanding ln(I −∆−) into a Taylor series on the right-hand side of (41) we find that

y(xn+1)− y(xn) ≈ h

[

I − 1

2
∆− − 1

12
∆2

− − 1

24
∆3

− − 19

720
∆4

− − · · ·
]

f(xn, y(xn)) (42)

and

y(xn+1)− y(xn) ≈ h

[

I +
1

2
∆− +

5

12
∆2

− +
3

8
∆3

− +
251

720
∆4

− + · · ·
]

f(xn, y(xn)). (43)

Successive truncations of (42) yield the family of Adams–Moulton methods, while similar successive
truncations of (43) gives rise to the family of Adams–Bashforth methods. End of

optional
material

Next, we turn our attention
to the analysis of linear multi-step methods and introduce the concepts of stability, consistency and
convergence.

3.2 Zero-stability

Lecture 6As is clear from (38) we need k starting values, y0, . . . , yk−1, before we can apply a linear k-step method
to the initial-value problem (1), (2): of these, y0 is given by the initial condition (2), but the others,
y1, . . . , yk−1, have to be computed by other means: say, by using a suitable Runge–Kutta method. At
any rate, the starting values will contain numerical errors and it is important to know how these will
affect further approximations yn, n ≥ k, which are calculated by means of (38). Thus, we wish to consider
the ‘stability’ of the numerical method with respect to ‘small perturbations’ in the starting conditions.

Definition 5 A linear k-step method for the ordinary differential equation y′ = f(x, y) is said to be
zero-stable if there exists a constant K such that, for any two sequences (yn) and (ŷn), which have
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been generated by the same formulae but with different initial data y0, y1, . . . , yk−1 and ŷ0, ŷ1, . . . , ŷk−1,
respectively, we have

|yn − ŷn| ≤ Kmax{|y0 − ŷ0|, |y1 − ŷ1|, . . . , |yk−1 − ŷk−1|} (44)

for xn ≤ XM , and as h tends to 0.

We shall prove later (cf. the first line of the proof of Theorem 6) that whether or not a method is
zero-stable can be determined by merely considering its behaviour when applied to the trivial differential
equation y′ = 0, corresponding to (1) with f(x, y) ≡ 0; it is for this reason that the kind of stability
expressed in Definition 5 is called zero stability. While Definition 5 is expressive in the sense that it
conforms with the intuitive notion of stability whereby “small perturbations at input give rise to small
perturbations at output”, it would be a very tedious exercise to verify the zero-stability of a linear multi-
step method using Definition 5 only; thus we shall next formulate an algebraic equivalent of zero-stability,
known as the root condition, which will simplify this task. Before doing so we introduce some notation.

Given the linear k-step method (38) we consider its first and second characteristic polynomial,
respectively

ρ(z) =

k
∑

j=0

αjz
j ,

σ(z) =
k
∑

j=0

βjz
j ,

where, as before, we assume that
αk 6= 0, α2

0 + β2
0 6= 0.

Now we are ready to state the main result of this section.

Theorem 6 A linear multi-step method is zero-stable for any ordinary differential equation of the form
(1) where f satisfies the Lipschitz condition (3), if, and only if, its first characteristic polynomial has
zeros inside the closed unit disc, with any which lie on the unit circle being simple.

The algebraic stability condition contained in this theorem, namely that the roots of the first charac-
teristic polynomial lie in the closed unit disc and those on the unit circle are simple, is often called the
root condition.

Proof: Necessity. Consider the linear k-step method, applied to y′ = 0:

αkyn+k + αk−1yn+k−1 + · · ·+ α1yn+1 + α0yn = 0. (45)

The general solution of this kth order linear difference equation has the form

yn =
∑

s

ps(n)z
n
s , (46)

where zs is a zero of the first characteristic polynomial ρ(z) and the polynomial ps(·) has degree one
less than the multiplicity of the zero. Clearly, if |zs| > 1 then there are starting values for which the
corresponding solutions grow like |zs|n and if |zs| = 1 and its multiplicity is ms > 1 then there are
solutions growing like nms−1. In either case there are solutions that grow unbounded as n → ∞, i.e. as
h → 0 with nh fixed. Considering starting data y0, y1, . . . , yk−1 which give rise to such an unbounded
solution (yn), and starting data ŷ0 = ŷ1 = · · · = ŷk−1 = 0 for which the corresponding solution of (45) is
(ŷn) with ŷn = 0 for all n, we see that (44) cannot hold. To summarise, if the root condition is violated
then the method is not zero-stable.

Sufficiency. The proof that the root condition is sufficient for zero-stability is long and technical, and
will be omitted here. For details, see, for example, P. Henrici, Discrete Variable Methods in Ordinary
Differential Equations, Wiley, New York, 1962. ⋄
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Example 4 We shall consider the methods from Example 3.

a) The explicit and implicit Euler methods have first characteristic polynomial ρ(z) = z−1 with simple
root z = 1, so both methods are zero-stable. The same is true of the trapezium method.

b) The Adams–Bashforth and Adams–Moulton methods considered in Example 3 have the same first
characteristic polynomial, ρ(z) = z3(z − 1), and therefore both methods are zero-stable.

c) The three-step (sixth order accurate) linear multi-step method

11yn+3 + 27yn+2 − 27yn+1 − 11yn = 3h[fn+3 + 9fn+2 + 9fn+1 + fn]

is not zero-stable. Indeed, the associated first characteristic polynomial ρ(z) = 11z3+27z2−27z−11
has roots at z1 = 1, z2 ≈ −0.3189, z3 ≈ −3.1356, so |z3| > 1.

3.3 Consistency

In this section we consider the accuracy of the linear k-step method (38). For this purpose, as in the case
of one-step methods, we introduce the notion of consistency error. Thus, suppose that y(x) is a solution
of the ordinary differential equation (1). Then the consistency error of (38) is defined as follows:

Tn =

∑k
j=0 [αjy(xn+j)− hβjy

′(xn+j)]

h
∑k

j=0 βj
. (47)

Of course, the definition requires implicitly that σ(1) =
∑k

j=0 βj 6= 0. Again, as in the case of one-step
methods, the consistency error can be thought of as the residual that is obtained by inserting the solution
of the differential equation into the formula (38) and scaling this residual appropriately (in this case
dividing through by h

∑k
j=0 βj) so that Tn resembles y′ − f(x, y(x)).

Definition 6 The numerical scheme (38) is said to be consistent with the differential equation (1) if
the consistency error defined by (47) is such that for any ε > 0 there exists an h(ε) for which

|Tn| < ε for 0 < h < h(ε),

and for any (k+1) points (xn, y(xn)), . . . , (xn+k, y(xn+k)) on any solution curve in R of the initial-value
problem (1), (2).

Now let us suppose that the solution to the differential equation is sufficiently smooth, and let us
expand y(xn+j) and y′(xn+j) into a Taylor series about the point xn and substitute these expansions into
the numerator in (47) to obtain

Tn =
1

hσ(1)
[C0y(xn) + C1hy

′(xn) + C2h
2y′′(xn) + · · · ], (48)

where σ(1) 6= 0,

C0 =

k
∑

j=0

αj ,

C1 =
k
∑

j=1

jαj −
k
∑

j=0

βj ,

C2 =
k
∑

j=1

j2

2!
αj −

k
∑

j=1

jβj ,

etc.

Cq =

k
∑

j=1

jq

q!
αj −

k
∑

j=1

jq−1

(q − 1)!
βj .
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For consistency we need that Tn → 0 as h → 0 and this requires that C0 = 0 and C1 = 0; as C0 = ρ(1)
and C1 = ρ′(1) − σ(1), in terms of the characteristic polynomials ρ and σ this consistency requirement
can be restated in compact form as

ρ(1) = 0 and ρ′(1) = σ(1) 6= 0.

Let us observe that, according to this condition, if a linear multi-step method is consistent then it has a
simple root on the unit circle at z = 1; thus the root condition is not violated by this zero.

Definition 7 The numerical method (38) is said to have order of accuracy p (or order of consis-

tency p) if p is the largest positive integer such that, for any sufficiently smooth solution curve in R of
the initial-value problem (1), (2), there exist constants K and h0 such that

|Tn| ≤ Khp for 0 < h ≤ h0

for any (k + 1) points (xn, y(xn)), . . . , (xn+k, y(xn+k)) on the solution curve.

Thus we deduce from (48) that the method is of order of accuracy (or order of consistency) p if, and
only if,

C0 = C1 = · · · = Cp = 0 and Cp+1 6= 0.

In this case,

Tn =
Cp+1

σ(1)
hpy(p+1)(xn) +O(hp+1);

the number Cp+1 (6= 0) is called the error constant of the method.

Exercise 2 Construct an implicit linear two-step method of maximum order of accuracy, containing one
free parameter. Determine the order of accuracy and the error constant of the method.

Solution: Taking α0 = a as parameter, the method has the form

yn+2 + α1yn+1 + ayn = h(β2fn+2 + β1fn+1 + β0fn),

with α2 = 1, α0 = a, β2 6= 0. We have to determine four unknowns: α1, β2, β1, β0, so we require four equations;
these will be arrived at by demanding that the constants

C0 = α0 + α1 + α2,

C1 = α1 + 2− (β0 + β1 + β2),

Cq =
1

q!
(α1 + 2qα2)−

1

(q − 1)!
(β1 + 2q−1β2), q = 2, 3,

appearing in (48) are all equal to zero, because we wish to maximise the order of accuracy of the method. Thus,

C0 = a+ α1 + 1 = 0,

C1 = α1 + 2− (β0 + β1 + β2) = 0,

C2 =
1

2!
(α1 + 4)− (β1 + 2β2) = 0,

C3 =
1

3!
(α1 + 8)− 1

2!
(β1 + 4β2) = 0.

Hence,

α1 = −1− a,

β0 = − 1

12
(1 + 5a), β1 =

2

3
(1− a), β2 =

1

12
(5 + a),
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and the resulting method is

yn+2 − (1 + a)yn+1 + ayn =
1

12
h [(5 + a)fn+2 + 8(1− a)fn+1 − (1 + 5a)fn] . (49)

Further,

C4 =
1

4!
(α1 + 16)− 1

3!
(β1 + 8β2) = − 1

4!
(1 + a),

C5 =
1

5!
(α1 + 32)− 1

4!
(β1 + 16β2) = − 1

3 · 5!(17 + 13a).

If a 6= −1 then C4 6= 0, and the method (49) is third order accurate. If, on the other hand, a = −1, then C4 = 0
and C5 6= 0 and the method (49) becomes the Simpson rule method: a fourth-order accurate two-step method.
The error constant is:

C4 = − 1

4!
(1 + a), a 6= −1, (50)

C5 = − 4

3 · 5! , a = −1. (51)

⋄

Exercise 3 Determine all values of the real parameter b, b 6= 0, for which the linear multi-step method

yn+3 + (2b− 3)(yn+2 − yn+1)− yn = hb(fn+2 + fn+1)

is zero-stable. Show that there exists a value of b for which the order of accuracy of the method is 4. Is
the method convergent for this value of b? Show further that if the method is zero-stable then its order of
accuracy is 2.

Solution: According to the root condition, this linear multi-step method is zero-stable if, and only if, all roots of
its first characteristic polynomial

ρ(z) = z3 + (2b− 3)(z2 − z)− 1

belong to the closed unit disc, and those on the unit circle are simple.
Clearly, ρ(1) = 0; upon dividing ρ(z) by z − 1 we see that ρ(z) can be written in the following factorised form:

ρ(z) = (z − 1)
(

z2 − 2(1− b)z + 1
)

≡ (z − 1)ρ1(z).

Thus the method is zero-stable if, and only if, all roots of the polynomial ρ1(z) belong to the closed unit disc, and
those on the unit circle are simple and differ from 1. Suppose that the method is zero-stable. Then, it follows that
b 6= 0 and b 6= 2, since these values of b correspond to double roots of ρ1(z) on the unit circle, respectively, z = 1
and z = −1. Since the product of the two roots of ρ1(z) is equal to 1 and neither of them is equal to ±1, it follows
that they are strictly complex; hence the discriminant of the quadratic polynomial ρ1(z) is negative. Namely,

4(1− b)2 − 4 < 0.

In other words, b ∈ (0, 2).
Conversely, suppose that b ∈ (0, 2). Then the roots of ρ(z) are

z1 = 1, z2/3 = 1− b+ ı
√

1− (b− 1)2.

Since |z2/3| = 1, z2/3 6= 1 and z2 6= z3, all roots of ρ(z) lie on the unit circle and they are simple. Hence the method
is zero-stable.

To summarise, the method is zero-stable if, and only if, b ∈ (0, 2).
In order to analyse the order of accuracy of the method we note that upon Taylor series expansion its consistency

error can be written in the form

Tn =
1

2b

[(

1− b

6

)

h2y′′′(xn) +
1

4
(6− b)h3yIV (xn) +

1

120
(150− 23b)h4yV (xn) +O(h5)

]

.

If b = 6, then Tn = O(h4) and so the method is 4th order accurate. As b = 6 does not belong to the interval
(0, 2), we deduce that the method is not zero-stable for b = 6.

Since zero-stability requires b ∈ (0, 2), in which case 1− b
6 6= 0, it follows that if the method is zero-stable then

Tn = O(h2). ⋄
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3.4 Convergence

Lecture 7The concepts of zero-stability and consistency are of great theoretical importance. However, what matters
most from the practical point of view is that the numerically computed approximations yn at the mesh-
points xn, n = 0, . . . , N , are close to those of the analytical solution y(xn) at these point, and that the
global error en = y(xn) − yn between the numerical approximation yn and the exact solution-value
y(xn) decays when the step size h is reduced. In order to formalise the desired behaviour, we introduce
the following definition.

Definition 8 The linear multistep method (38) is said to be convergent if, for all initial-value problems
(1), (2) subject to the hypotheses of Theorem 1, we have that

lim
h→0

nh=x−x0

yn = y(x) (52)

holds for all x ∈ [x0,XM ] and for all solutions {yn}Nn=0 of the difference equation (38) with consis-

tent starting conditions, i.e. with starting conditions ys = ηs(h), s = 0, 1, . . . , k − 1, for which
limh→0 ηs(h) = y0, s = 0, 1, . . . , k − 1.

We emphasise here that Definition 8 requires that (52) holds not only for those sequences {yn}Nn=0 which
have been generated from (38) using exact starting values ys = y(xs), s = 0, 1, . . . , k − 1, but also for
all sequences {yn}Nn=0 whose starting values ηs(h) tend to the correct value, y0, as the h → 0. This
assumption is made because in practice exact starting values are usually not available and have to be
computed numerically.

In the remainder of this section we shall investigate the interplay between zero-stability, consistency
and convergence; the section culminates in Dahlquist’s Equivalence Theorem which, under some technical
assumptions, states that for a consistent linear multi-step method zero-stability is necessary and sufficient
for convergence.

3.4.1 Necessary conditions for convergence

In this section we show that both zero-stability and consistency are necessary for convergence.

Theorem 7 A necessary condition for the convergence of the linear multi-step method (38) is that it be
zero-stable.

Proof: Let us suppose that the linear multi-step method (38) is convergent; we wish to show that it is
then zero-stable.

We consider the initial-value problem y′ = 0, y(0) = 0, on the interval [0,XM ], XM > 0, whose
solution is, trivially, y(x) ≡ 0. Applying (38) to this problem yields the difference equation

αkyn+k + αk−1yn+k−1 + · · ·+ α0yn = 0. (53)

Since the method is assumed to be convergent, for any x > 0, we have that

lim
h→0
nh=x

yn = 0, (54)

for all solutions of (53) satisfying ys = ηs(h), s = 0, . . . , k − 1, where

lim
h→0

ηs(h) = 0, s = 0, 1, . . . , k − 1. (55)

Let z = reiφ, be a root of the first characteristic polynomial ρ(z); r ≥ 0, 0 ≤ φ < 2π. It is an easy matter
to verify then that the numbers

yn = hrn cosnφ
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define a solution to (53) satisfying (55). If φ 6= 0 and φ 6= π, then

y2n − yn+1yn−1

sin2 φ
= h2r2n.

Since the left-hand side of this identity converges to 0 as h → 0, n → ∞, nh = x, the same must be true
of the right-hand side; therefore,

lim
n→∞

(x

n

)2
r2n = 0.

This implies that r ≤ 1. In other words, we have proved that any root of the first characteristic polynomial
of (38) lies in the closed unit disc.

Next we prove that any root of the first characteristic polynomial of (38) that lies on the unit circle
must be simple. Assume, instead, that z = reiφ, is a multiple root of ρ(z), with |z| = 1 (and therefore
r = 1) and 0 ≤ φ < 2π. We shall prove below that this contradicts our assumption that the method (53)
is convergent. It is easy to check that the numbers

yn = h1/2nrn cos(nφ) (56)

define a solution to (53), which satisfies (55) for

|ηs(h)| = |ys| ≤ h1/2s ≤ h1/2(k − 1), s = 0, . . . k − 1.

If φ = 0 or φ = π, it follows from (56) with h = x/n that

|yn| = x1/2n1/2rn. (57)

Since, by assumption, |z| = 1 (and therefore r = 1), we deduce from (57) that limn→∞ |yn| = ∞, which
contradicts (54).

If, on the other hand, φ 6= 0 and φ 6= π, then

z2n − zn+1zn−1

sin2 φ
= r2n, (58)

where zn = n−1h−1/2yn = h1/2x−1yn. Since, by (54), limn→∞ zn = 0, it follows that the left-hand side of
(58) converges to 0 as n → ∞. But then the same must be true of the right-hand side of (58); however,
the right-hand side of (58) cannot converge to 0 as n → ∞, since |r| = 1 (and hence r = 1). Thus, again,
we have reached a contradiction.

To summarise, we have proved that all roots of the first characteristic polynomial ρ(z) of the linear
multi-step method (38) lie in the unit disc |z| ≤ 1, and those which belong to the unit circle |z| = 1 are
simple. By virtue of Theorem 6 the linear multi-step method is zero-stable. ⋄

Theorem 8 A necessary condition for the convergence of the linear multi-step method (38) is that it be
consistent.

Proof: Let us suppose that the linear multi-step method (38) is convergent; we wish to show that it is
then consistent.

Let us first show that C0 = 0. We consider the initial-value problem y′ = 0, y(0) = 1, on the interval
[0,XM ], XM > 0, whose solution is, trivially, y(x) ≡ 1. Applying (38) to this problem yields the difference
equation

αkyn+k + αk−1yn+k−1 + · · ·+ α0yn = 0. (59)

We supply “exact” starting values for the numerical method; namely, we choose ys = 1, s = 0, . . . , k − 1.
Given that by hypothesis the method is convergent, we deduce that

lim
h→0
nh=x

yn = 1. (60)
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Since in the present case yn is independent of the choice of h, (60) is equivalent to saying that

lim
n→∞

yn = 1. (61)

Passing to the limit n → ∞ in (59), we deduce that

αk + αk−1 + · · ·+ α0 = 0. (62)

Recalling the definition of C0, (62) is equivalent to C0 = 0 (i.e. ρ(1) = 0).
In order to show that C1 = 0, we now consider the initial-value problem y′ = 1, y(0) = 0, on the

interval [0,XM ], XM > 0, whose solution is y(x) = x. The difference equation (38) now becomes

αkyn+k + αk−1yn+k−1 + · · ·+ α0yn = h(βk + βk−1 + · · ·+ β0), (63)

where XM − x0 = XM − 0 = Nh and 1 ≤ n ≤ N − k. For a convergent method every solution of (63)
satisfying

lim
h→0

ηs(h) = 0, s = 0, 1, . . . k − 1, (64)

where ys = ηs(h), s = 0, 1, . . . , k − 1, must also satisfy

lim
h→0
nh=x

yn = x. (65)

Since according to the previous theorem zero-stability is necessary for convergence, we may take it for
granted that the first characteristic polynomial ρ(z) of the method does not have a multiple root on the
unit circle |z| = 1; therefore

ρ′(1) = kαk + · · · + 2α2 + α1 6= 0.

Let the sequence {yn}Nn=0 be defined by yn = Knh, where

K =
βk + · · · + β1 + β0

kαk + · · · + 2α2 + α1
; (66)

this sequence clearly satisfies (64) and is the solution of (63). Furthermore, (65) implies that

x = y(x) = lim
h→0
nh=x

yn = lim
h→0
nh=x

Knh = Kx,

and therefore K = 1. Hence, from (66),

C1 = (kαk + · · ·+ 2α2 + α1)− (βk + · · ·+ β1 + β0) = 0;

equivalently, ρ′(1) = σ(1). ⋄

3.4.2 Sufficient conditions for convergence

Start of
optional
material

We begin by establishing some preliminary results.

Lemma 1 Suppose that all roots of the polynomial ρ(z) = αkz
k + · · · + α1z + α0 lie in the closed unit

disk |z| ≤ 1 and those which lie on the unit circle |z| = 1 are simple. Assume further that the numbers
γl, l = 0, 1, 2, . . . , are defined by

1

αk + · · ·+ α1zk−1 + α0zk
= γ0 + γ1z + γ2z

2 + · · · .

Then, Γ ≡ supl≥0 |γl| < ∞.
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Proof: Let us define ρ̂(z) = zkρ(1/z) and note that, by virtue of our assumptions about the roots of
ρ(z), the function 1/ρ̂(z) is holomorphic in the open unit disc |z| < 1. As the roots z1, z2, . . . , zm of ρ(z)
on |z| = 1 are simple, the same is true of the poles of 1/ρ̂(z), and there exist constants A1, . . . , Am such
that the function

f(z) =
1

ρ̂(z)
− A1

z − 1
z1

− · · · − Am

z − 1
zm

(67)

is holomorphic for |z| < 1 and |f(z)| ≤ M for all |z| ≤ 1. Thus by Cauchy’s estimate8 the coefficients of
the Taylor expansion of f at z = 0 also form a bounded sequence. As

− Ai

z − 1
zi

= Ai

∞
∑

l=0

zliz
l, i = 1, . . . ,m,

and |zi| ≤ 1, we deduce from (67) that the coefficients in the Taylor series expansion of 1/ρ̂(z) form a
bounded sequence, which completes the proof. ⋄

Now we shall apply Lemma 1 to estimate the solution of the linear difference equation

αkem+k + αk−1em+k−1 + · · ·+ α0e0 = h(βk,mem+k + βk−1,mem+k−1 + · · ·+ β0,mem) + λm. (68)

The result is stated in the next Lemma.

Lemma 2 Suppose that all roots of the polynomial ρ(z) = αkz
k + · · · + α1z + α0 lie in the closed unit

disk |z| ≤ 1 and those which lie on the unit circle |z| = 1 are simple. Let B∗ and Λ denote nonnegative
constants and β a positive constant such that

|βk,n|+ |βk−1,n|+ · · ·+ |β0,n| ≤ B∗,

|βk,n| ≤ β, |λn| ≤ Λ, n = 0, 1, . . . , N,

and let 0 ≤ h < |αk|β−1. Then every solution of (68) for which

|es| ≤ E, s = 0, 1, . . . , k − 1,

satisfies
|en| ≤ K∗ exp(nhL∗), n = 0, 1, . . . , N,

where
L∗ = Γ∗B∗, K∗ = Γ∗(NΛ+AEk), Γ∗ = Γ/(1− h|αk|−1β),

Γ is as in Lemma 1, and
A = |αk|+ |αk−1|+ · · ·+ |α0|.

Proof: For a fixed k we consider the numbers γl, l = 0, 1, . . . , n − k, defined in Lemma 1. After
multiplying both sides of the equation (68) for m = n− k − l by γl, l = 0, 1, . . . , n− k and summing the
resulting equations, on denoting by Sn the sum, we find by manipulating the left-hand side in the sum
that

Sn = (αken + αk−1en−1 + · · · + α0en−k)γ0

+(αken−1 + αk−1en−2 + · · · + α0en−k−1)γ1 + · · ·
+(αkek + αk−1ek−1 + · · ·+ α0e0)γn−k

= αkγ0en + (αkγ1 + αk−1γ0)en−1 + · · ·
+(αkγn−k + αk−1γn−k−1 + · · · + α0γn−2k)ek

+(αk−1γn−k + · · ·+ α0γn−2k+1)ek−1 + · · ·
+α0γn−ke0.

8Theorem (Cauchy’s Estimate) If f is a holomorphic function in the open disc D(a,R), centre a and radius R, and
|f(z)| ≤ M for all z ∈ D(a,R), then |f (n)(a)| ≤ M(n!/Rn), n = 0, 1, 2, . . . . [For a proof of this result see, for example,
Walter Rudin: Real and Complex Analysis. 3rd edition. McGraw-Hill, New York, 1986.]
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Defining γl = 0 for l < 0 and noting that

αkγl + αk−1γl−1 + · · ·+ α0γl−k =

{

1 for l = 0,
0 for l > 0,

(69)

we have that
Sn = en + (αk−1γn−k + · · · + α0γn−2k+1)ek−1 + · · ·+ α0γn−ke0.

By manipulating similarly the right-hand side in the sum, we find that

en + (αk−1γn−k + · · ·+ α0γn−2k+1)ek−1 + · · ·+ α0γn−ke0

= h [βk,n−kγ0en + (βk−1,n−kγ0 + βk,n−k−1γ1)en−1 + · · ·
+ (β0,n−kγ0 + · · ·+ βk,n−2kγk)en−k + · · ·+ β0,0γn−ke0]

+(λn−kγ0 + λn−k−1γ1 + · · ·+ λ0γn−k).

Thus, by our assumptions and noting that by (69) γ0 = α−1
k , we have that

|en| ≤ hβ|α−1
k | |en|+ hΓB∗

n−1
∑

m=0

|em|+NΓΛ +AΓEk.

Hence,

(1− hβ|α−1
k |)|en| ≤ hΓB∗

n−1
∑

m=0

|em|+NΓΛ +AΓEk.

Recalling the definitions of L∗ and K∗ we can rewrite the last inequality as follows:

|en| ≤ K∗ + hL∗
n−1
∑

m=0

|em|, n = 0, 1, . . . , N. (70)

The final estimate is deduced from (70) by induction. First, we note that by virtue of (69), AΓ ≥ 1.
Consequently, K∗ ≥ ΓAEk ≥ Ek ≥ E. Now, letting n = 1 in (70),

|e1| ≤ K∗ + hL∗|e0| ≤ K∗ + hL∗E ≤ K∗(1 + hL∗).

Repeating this argument, we find that

|em| ≤ K∗(1 + hL∗)m, m = 0, . . . , k − 1.

Now suppose that this inequality has already been shown to hold for m = 0, 1, . . . , n − 1, where n ≥ k;
we shall prove that it then also holds for m = n, which will complete the induction. Indeed, we have
from (70) that

|en| ≤ K∗ + hL∗K∗ (1 + hL∗)n − 1

hL∗
= K∗(1 + hL∗)n. (71)

Further, as 1 + hL∗ ≤ ehL
∗
we have from (71) that

|en| ≤ K∗ehL
∗n, n = 0, 1, . . . , N. (72)

That completes the proof of the lemma. We remark that the implication (70) ⇒ (72) is usually referred
to as the Discrete Gronwall Lemma. ⋄

Using Lemma 2 we can now show that zero-stability and consistency, which have been shown to be
necessary are also sufficient conditions for convergence.
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Theorem 9 For a linear multi-step method that is consistent with the ordinary differential equation (1)
where f is assumed to satisfy a Lipschitz condition, and starting with consistent starting conditions,
zero-stability is sufficient for convergence.

Proof: Let us define
δ = δ(h) = max

0≤s≤k−1
|ηs(h) − y(a+ sh)|;

because the starting conditions ys = ηs(h), s = 0, . . . , k − 1, are assumed to be consistent, we have that
limh→0 δ(h) = 0. We have to prove that

lim
n→∞

nh=x−x0

yn = y(x)

for all x in the interval [x0,XM ]. We begin the proof by estimating the consistency error of (38):

Tn =
1

hσ(1)





k
∑

j=0

αjy(xn+j)− hβjy
′(xn+j)



 . (73)

As y′ ∈ C[x0,XM ], it makes sense to define, for ε ≥ 0, the function

χ(ε) = max
|x∗−x|≤ε

x, x∗∈[x0,XM ]

|y′(x∗)− y′(x)|.

For s = 0, 1, . . . , k − 1, we can then write

y′(xn+s) = y′(xn) + θsχ(sh),

where |θs| ≤ 1. Further, by the Mean-Value Theorem, there exists a ξs ∈ (xn, xn+s) such that

y(xn+s) = y(xn) + shy′(ξs).

Thus,
y(xm+s) = y(xm) + sh

[

y′(xm) + θ′sχ(sh)
]

,

where |θ′s| ≤ 1.
Now we can write

|σ(1)Tn| ≤
∣

∣h−1(α1 + α2 + · · ·+ αk)y(xn) + (α1 + 2α2 + · · ·+ kαk)y
′(xn)

− (β0 + β1 + · · ·+ βk)y
′(xn)

∣

∣

+(|α1|+ 2|α2|+ · · ·+ k|αk|)|χ(kh)| + (|β0|+ |β1|+ · · ·+ |βk|)|χ(kh)|.

Since the method has been assumed consistent, the first, second, and third terms on the right-had side
cancel, giving

|σ(1)Tn| ≤ (|α1|+ 2|α2|+ · · ·+ k|αk|)|χ(kh)| + (|β0|+ |β1|+ · · ·+ |βk|)|χ(kh)|.

Thus,
|σ(1)Tn| ≤ Kχ(kh), (74)

where
K = |α1|+ 2|α2|+ · · ·+ k|αk|+ |β0|+ |β1|+ · · · + |βk|.

Comparing (38) with (73), we deduce that the global error em = y(xm)− ym satisfies

αkem+k + · · ·+ α0e0 = h (βkgm+kem+k + · · ·+ β0gmem) + σ(1)Tnh,
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where

gm =

{

[f(xm, y(xm))− f(xm, ym)]/em, em 6= 0,
0, em = 0.

By virtue of (74), we then have that

αkem+k + · · · + α0e0 = h (βkgm+kem+k + · · ·+ β0gmem) + θKχ(kh)h.

As f is assumed to satisfy the Lipschitz condition (3) we have that |gm| ≤ L, m = 0, 1, . . . . By applying
Lemma 2 with E = δ(h), Λ = Kχ(kh)h, N = (XM −x0)/h, B

∗ = BL, where B = |β0|+ |β1|+ · · ·+ |βk|,
we find that

|en| ≤ Γ∗ [Akδ(h) + (XM − x0)Kχ(kh)] exp[(xn − x0)LΓ
∗B], (75)

where

A = |α0|+ |α1|+ · · ·+ |αk|, Γ∗ =
Γ

1− h|α−1
k βk|L

.

Now, y′ is a continuous function on the closed interval [x0,XM ]; therefore it is uniformly continuous
on [x0,XM ]. Thus, χ(kh) → 0 as h → 0; also, by virtue of the assumed consistency of the starting values,
δ(h) → 0 as h → 0. Passing to the limit h → 0 in (75), we deduce that

lim
n→∞

x−x0=nh

|en| = 0;

equivalently,
lim
n→∞

x−x0=nh

|y(x)− yn| = 0

so the method is convergent. ⋄ End of
optional
material

By combining Theorems 7, 8 and 9, we arrive at the following important result.

Theorem 10 (Dahlquist) For a linear multi-step method that is consistent with the ordinary differential
equation (1) where f is assumed to satisfy a Lipschitz condition, and starting with consistent initial data,
zero-stability is necessary and sufficient for convergence. Moreover if the solution y(x) has continuous
derivative of order (p + 1) and consistency error O(hp), then the global error en = y(xn) − yn is also
O(hp), i.e. the method is p-th order convergent.

According to Dahlquist’s theorem, if a linear multi-step method is not zero-stable its global error
cannot be made arbitrarily small by taking the mesh size h sufficiently small for any sufficiently accurate
initial data. In fact, if the root condition is violated then there exists a solution to the linear multi-step
method which will grow by an arbitrarily large factor in a fixed interval of x, however accurate the starting
conditions are. This result highlights the importance of the concept of zero-stability and indicates its
relevance in practical computations.

3.5 Maximum order of accuracy of a zero-stable linear multi-step method

Start of
optional
material

Let us suppose that we have already chosen the coefficients αj , j = 0, . . . , k, of the k-step method (38).
The question we shall be concerned with in this section is how to choose the coefficients βj , j = 0, . . . , k,
so that the order of accuracy of the resulting method (38) is as high as possible.

In view of Theorem 10 we shall only be interested in consistent methods, so it is natural to assume
that the first and second characteristic polynomials ρ(z) and σ(z) associated with (38) satisfy ρ(1) = 0,
ρ′(1) − σ(1) = 0, with σ(1) 6= 0 (the last condition being required for the sake of correctness of the
definition of the consistency error (47)).
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Consider the function φ of the complex variable z, defined by

φ(z) =
ρ(z)

log z
− σ(z); (76)

the function log z appearing in the denominator is made single-valued by cutting the complex plane along
the half-line Re z ≤ 0. We begin our analysis with the following fundamental lemma.

Lemma 3 Suppose that p is a positive integer. The linear multistep method (38), with stability polyno-
mials ρ(z) and σ(z), is of order of accuracy p if, and only if, the function φ(z) defined by (76) has a zero
of multiplicity p at z = 1.

Proof: Let us suppose that the k-step method (38) for the numerical approximation of the initial-value
problem (1), (2) is of order p. Then, for any sufficiently smooth function f(x, y), the resulting solution
to (1), (2) yields a consistency error of the form:

Tn =
Cp+1

σ(1)
hpy(p+1)(xn) +O(hp+1),

as h → 0, Cp+1 6= 0, xn = x0 + nh. In particular, for the initial-value problem

y′ = y, y(0) = 1,

we get

Tn ≡ enh

hσ(1)

[

ρ(eh)− hσ(eh)
]

= enh
Cp+1

σ(1)
hp +O(hp+1), (77)

as h → 0, Cp+1 6= 0. Thus, the function

f(h) =
1

h

[

ρ(eh)− hσ(eh)
]

is holomorphic in a neighbourhood of h = 0 and has a zero of order p at h = 0. The function z = eh

is a bijective mapping of a neighbourhood of h = 0 onto a neighbourhood of z = 1. Therefore φ(z) is
holomorphic in a neighbourhood of z = 1 and has a zero of multiplicity p at z = 1.

Conversely, suppose that φ(z) has a zero of multiplicity p at z = 1. Then f(h) = φ(eh) is a holomorphic
function in the vicinity of h = 0 and has a zero of multiplicity p at h = 0. Therefore,

g(h) =

k
∑

j=0

(αj − hβj)e
jh

has a zero of multiplicity (p+1) at h = 0, implying that g(0) = g′(0) = · · · = g(p)(0) = 0, but g(p+1)(0) 6= 0.
First,

g(0) = 0 =

k
∑

j=0

αj = C0.
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Now, by successive differentiation of g with respect to h,

g′(0) = 0 =
k
∑

j=0

(jαj − βj) = C1,

g′′(0) = 0 =

k
∑

j=0

(j2αj − 2jβj) = 2C2,

g′′′(0) = 0 =

k
∑

j=0

(j3αj − 3j2βj) = 6C3,

etc.

g(p)(0) = 0 =

k
∑

j=0

(jpαj − pjp−1βj) = p!Cp.

We deduce that C0 = C1 = C2 = · · · = Cp = 0; since g(p+1)(0) 6= 0 we have that Cp+1 6= 0. Consequently
(38) is of order of accuracy p. ⋄

We shall use this lemma in the next theorem to supply a lower bound for the maximum order of a
linear multistep method with prescribed first stability polynomial ρ(z).

Theorem 11 Suppose that ρ(z) is a polynomial of degree k such that ρ(1) = 0 and ρ′(1) 6= 0, and let
k̂ be an integer such that 0 ≤ k̂ ≤ k. Then, there exists a unique polynomial σ(z) of degree k̂ such that
ρ′(1) − σ(1) = 0 and the order of the linear multi-step method associated with ρ(z) and σ(z) is ≥ k̂ + 1.

Proof: Since the function ρ(z)/ log(z) is holomorphic in the neighbourhood of z = 1 it can be expanded
into a convergent Taylor series:

ρ(z)

log z
= c0 + c1(z − 1) + c2(z − 1)2 + · · · .

By multiplying both sides by log z and differentiating we deduce that c0 = ρ′(1) (6= 0). Let us define

σ(z) = c0 + c1(z − 1) + · · ·+ ck̂(z − 1)k̂.

Clearly σ(1) = c0 = ρ′(1) (6= 0). With this definition,

φ(z) =
ρ(z)

log z
− σ(z) = ck̂+1(z − 1)k̂+1 + · · · ,

and therefore φ(z) has a zero at z = 1 of multiplicity not less than k̂ + 1. By Lemma 3 the linear k-step
method associated with ρ(z) and σ(z) is of order ≥ k̂ + 1.

The uniqueness of σ(z) possessing the desired properties follows from the uniqueness of the Taylor
series expansion of φ(z) about the point z = 1. ⋄

We note in connection with this theorem that for most methods of practical interest either k̂ = k− 1
resulting in an explicit method or k̂ = k corresponding to an implicit method. In the next example we
shall encounter the latter situation.

Example 5 Consider a linear two-step method with ρ(z) = (z−1)(z−λ). The method will be zero-stable
as long as λ ∈ [−1, 1). Consider the Taylor series expansion of the function ρ(z)/ log(z) about the point
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z = 1:

ρ(z)

log z
=

(z − 1)(1 − λ+ (z − 1))

log[1 + (z − 1)]

= [1− λ+ (z − 1)]×
{

1− z − 1

2
+

(z − 1)2

3
− (z − 1)3

4
+O((z − 1)4)

}−1

= [1− λ+ (z − 1)]×
{

1 +
z − 1

2
− (z − 1)2

12
+

(z − 1)3

24
+O((z − 1)4)

}

= 1− λ+
3− λ

2
(z − 1) +

5 + λ

12
(z − 1)2 − 1 + λ

24
(z − 1)3 +O((z − 1)4).

A two-step method of maximum order is obtained by selecting

σ(z) = 1− λ+
3− λ

2
(z − 1) +

5 + λ

12
(z − 1)2

= −1 + 5λ

12
+

2− 2λ

3
z +

5 + λ

12
z2.

If λ 6= −1, the resulting method is of third order, with error constant

C4 = −1 + λ

24
,

whereas if λ = −1 the method is of fourth order.
In the former case the method is

yn+2 − (1 + λ)yn+1 + λyn = h

(

5 + λ

12
fn+2 +

2− 2λ

3
fn+1 −

1 + 5λ

12
fn

)

with λ a parameter contained in the interval (−1, 1). In the latter case, the method has the form

yn+2 − yn =
h

3
(fn+2 + 4fn+1 + fn),

and is referred to as the Simpson rule method.

By inspection, the linear k-step method (38) has 2k+ 2 coefficients: αj , βj , j = 0, . . . , k, of which αk

is taken to be 1 by normalisation. This leaves us with 2k + 1 free parameters if the method is implicit
and 2k free parameters if the method is explicit (because in the latter case βk is fixed to have value 0).
According to (48), if the method is required to have order p, p+1 linear relationships C0 = 0, . . . , Cp = 0
involving αj , βj , j = 0, . . . , k, must be satisfied. Thus, in the case of the implicit method, we can impose
p + 1 = 2k + 1 linear constraints C0 = 0, . . . , C2k+1 = 0 to determine the unknown constants, yielding
a method of order p = 2k. Similarly, in the case of an explicit method, the highest order we can expect
is p = 2k − 1. Unfortunately, there is no guarantee that such methods will be zero-stable. Indeed, in a
paper published in 1956 Dahlquist proved that there is no consistent, zero-stable k-step method which is
of order > (k + 2). Therefore the maximum orders 2k and 2k − 1 cannot be attained without violating
the condition of zero-stability. We formalise these facts in the next theorem.

Theorem 12 There is no zero-stable linear k-step method whose order exceeds k+1 if k is odd or k+2
if k is even.

Proof: Consider a linear k-step method (38) with associated first and second stability polynomials ρ
and σ. Further, consider the transformation

ζ ∈ C 7→ ζ − 1

ζ + 1
∈ C,
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which maps the open unit disc |ζ| < 1 of the ζ-plane onto the left open complex half-plane Re z < 0 of
the z-plane; the circle |ζ| = 1 is mapped onto the imaginary axis Re z = 0, the point ζ = 1 onto z = 0,
and the point ζ = −1 onto ζ = ∞.

It is clear that the functions r and s defined by

r(z) =

(

1− z

2

)k

ρ

(

1 + z

1− z

)

, s(z) =

(

1− z

2

)k

ρ

(

1 + z

1− z

)

,

are in fact polynomials, deg(r) ≤ k and deg(s) ≤ k.
If ρ(ζ) has a root of multiplicity p, 0 ≤ p ≤ k, at ζ = ζ0 6= −1, then r(z) has a root of the same

multiplicity at z = (ζ0 − 1)/(ζ0 + 1); if ρ(ζ) has a root of multiplicity p ≥ 1, 0 ≤ p ≤ k, at ζ = −1, then
r(z) is of degree k − p.

Since, by assumption, the method is zero-stable, ζ = 1 is a simple root of ρ(ζ); consequently, z = 0 is
a simple root of r(z). Thus,

r(z) = a1z + a2z
2 + · · ·+ akz

k, a1 6= 0, aj ∈ R.

It can be assumed, without loss of generality, that a1 > 0. Since by zero stability all roots of ρ(ζ) are
contained in the closed unit disc, we deduce that all roots of r(z) have real parts ≤ 0. Therefore, all
coefficients aj , j = 1, . . . , k, of r(z) are nonnegative.

Now let us consider the function

q(z) =

(

1− z

2

)k

φ

(

1 + z

1− z

)

=
1

log 1+z
1−z

r(z)− s(z).

The function q(z) has a zero of multiplicity p at z = 0 if, and only if, φ(ζ) defined by (76) has a zero of
multiplicity p at ζ = 1; according to Lemma 3 this is equivalent to the linear k-step method associated
with ρ(ζ) and σ(ζ) having order p. Thus if the linear k-step method associated with ρ(z) and σ(z) has
order p then

s(z) = b0 + b1z + b2z
2 + · · ·+ bp−1z

p−1,

where
z

log 1+z
1−z

r(z)

z
= b0 + b1z + b2z

2 + · · · .

As the degree of s(z) is ≤ k, the existence of a consistent zero-stable k-step linear multistep method of
order p > k + 1 (or p > k + 2) now hinges on the possibility that

bk+1 = · · · = bp−1 = 0, (or bk+2 = · · · = bp−1 = 0).

Let us consider whether this is possible.
We denote by c0, c1, c2, . . . , the coefficients in the Taylor series expansion of the function

z

log 1+z
1−z

,

namely,
z

log 1+z
1−z

= c0 + c2z
2 + c4z

4 + · · · .

Then, adopting the notational convention that aν = 0 for ν > k, we have that

b0 = c0a0,

b1 = c0a2,

etc.

b2ν = c0a2ν+1 + c2a2ν−1 + · · ·+ c2νa1,

b2ν+1 = c0a2ν+2 + c2a2ν + · · ·+ c2νa2, ν = 1, 2, . . . .
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It is a straightforward matter to prove that c2ν < 0, ν = 1, 2, . . . (see also Lemma 5.4 on page p.233 of
Henrici’s book).

(i) If k is an odd number, then, since aν = 0 for ν > k, we have that

bk+1 = c2ak + c4ak−2 + · · ·+ ck+1a1.

Since a1 > 0 and no aν is negative, it follows that bk+1 < 0.

(ii) If k is an even number, then

bk+1 = c2ak + c4ak−2 + · · ·+ cka2.

Since c2ν < 0, ν = 1, 2, . . . , and aµ ≥ 0, µ = 2, 3, . . . , k, we deduce that bk+1 = 0 if, and only if,
a2 = a4 = · · · = ak = 0, i.e. when r(z) is an odd function of z. This, together with the fact that
all roots of r(z) have real part ≤ 0, implies that all roots of r(z) mush have real part equal to zero.
Consequently, all roots of ρ(ζ) lie on |ζ| = 1. Since ak = 0, the degree of r(z) is k−1, and therefore
−1 is a (simple) root of ρ(ζ).

As c2ν < 0, aµ ≥ 0 and a1 > 0, it follows that

bk+2 = c4ak−1 + c6ak−3 + · · ·+ ck+2a1 < 0,

showing that bk+2 6= 0.

Thus if a k-step method is zero-stable and k is odd then bk+1 6= 0, whereas if k is even then bk+2. This
proves that there is no zero-stable k-step method whose order exceeds k + 1 if k is odd or k + 2 if k is
even. ⋄

Definition 9 A zero-stable linear k-step method of order k + 2 is said to be an optimal method.

According to the proof of the previous theorem, all roots of the first characteristic polynomial ρ
associated with an optimal linear multistep method have modulus 1.

Example 6 As k + 2 = 2k if an only if k = 2 and the Simpson rule method is the zero-stable linear
2-step method of maximum order, we deduce that the Simpson rule method is the only zero-stable linear
multistep method which is both of maximum order (2k = 4) and optimal (k + 2 = 4).

Optimal methods have certain disadvantages in terms of their stability properties; we shall return to
this question later on in the notes.

Linear k-step methods for which the first characteristic polynomial has the form ρ(z) = zk − zk−1 are
called Adams methods. Explicit Adams methods are referred to as Adams–Bashforth methods,
while implicit Adams methods are termed Adams–Moulton methods. Linear k-step methods for
which ρ(z) = zk − zk−2 are called Nyström methods if explicit and Milne–Simpson methods if
implicit. End of

optional
material

All these methods are zero-stable.

3.6 Absolute stability of linear multistep methods

Lecture 8Up to now we have been concerned with the stability and accuracy properties of linear multistep methods
in the asymptotic limit of h → 0, n → ∞, nh fixed. However, it is of practical significance to investigate
the performance of methods in the case of h > 0 fixed and n → ∞. Specifically, we would like to
ensure that when applied to an initial-value problem whose solution decays to zero as x → ∞, the linear
multistep method exhibits a similar behaviour, for h > 0 fixed and xn = x0 + nh → ∞.
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The canonical model problem with exponentially decaying solution is

y′ = λy, x > 0, y(0) = y0 (6= 0), (78)

where Reλ < 0. Indeed,
y(x) = y0e

ıx ImλexReλ,

and therefore,
|y(x)| ≤ |y0| exp(−x|Reλ|), x ≥ 0,

yielding limx→∞ y(x) = 0 . Thus, using the terminology introduced in the last paragraph of Section 1,
the solution is asymptotically stable.

In the rest of the section we shall assume, for simplicity, that λ is a negative real number, but
everything we shall say extends straightforwardly to the general case of λ complex, with Reλ < 0.

Now consider the linear k-step method (38) and apply it to the model problem (78) with λ real and
negative. This yields the linear difference equation

k
∑

j=0

(αj − hλβj) yn+j = 0.

Since the general solution yn to this homogeneous difference equation can be expressed as a linear com-
bination of powers of roots of the associated characteristic polynomial

π(z; h̄) = ρ(z)− h̄σ(z), (h̄ = hλ), (79)

it follows that yn will converge to zero for h > 0 fixed and n → ∞ if, and only if, all roots of π(z; h̄) have
modulus < 1. The kth degree polynomial π(z; h̄) defined by (79) is called the stability polynomial
of the linear k-step method with first and second characteristic polynomials ρ(z) and σ(z), respectively.
This motivates the following definition.

Definition 10 The linear multistep method (38) is called absolutely stable for a given h̄ if, and only
if, for that h̄ all the roots rs = rs(h̄) of the stability polynomial π(z, h̄) defined by (79) satisfy |rs| < 1,
s = 1, . . . , k. Otherwise, the method is said to be absolutely unstable. An interval (α, β) of the real
line is called the interval of absolute stability if the method is absolutely stable for all h̄ ∈ (α, β). If
the method is absolutely unstable for all h̄, it is said to have no interval of absolute stability.

Since for λ > 0 the solution of (78) exhibits exponential growth, it is reasonable to expect that
a consistent and zero-stable (and, therefore, convergent) linear multistep method will have a similar
behaviour for h > 0 sufficiently small, and will be therefore absolutely unstable for small h̄ = λh.
According to the next theorem, this is indeed the case.

Theorem 13 Every consistent and zero-stable linear multistep method is absolutely unstable for small
positive h̄.

Proof: Because the method is consistent, there exists an integer p ≥ 1 such that C0 = C1 = · · · = Cp = 0

40



and Cp+1 6= 0. Let us consider

π(eh̄; h̄) = ρ(eh̄)− h̄σ(eh̄) =
k
∑

j=0

[

αje
h̄j − h̄βje

h̄j
]

=

k
∑

j=0



αj

∞
∑

q=0

(h̄j)q

q!
− βj

∞
∑

q=0

h̄q+1jq

q!





=
k
∑

j=0



αj

∞
∑

q=0

(h̄j)q

q!
− βj

∞
∑

q=1

h̄qjq−1

(q − 1)!





=

k
∑

j=0

αj +

k
∑

j=0



αj

∞
∑

q=1

(h̄j)q

q!
− βj

∞
∑

q=1

h̄qjq−1

(q − 1)!





=
k
∑

j=0

αj +
∞
∑

q=1

h̄q





k
∑

j=0

αj
jq

q!
−

k
∑

j=0

βj
jq−1

(q − 1)!





= C0 +

∞
∑

q=1

h̄qCq

=
∞
∑

q=p+1

Cqh̄
q = O(h̄p+1). (80)

On the other hand, noting that the polynomial π(z; h̄) can be written in the factorised form

π(z, h̄) = (αk − h̄βk)(z − r1) · · · (z − rk)

where rs = rs(h̄), s = 1, . . . , k, signify the roots of π(·; h̄), we deduce that

π(eh̄; h̄) = (αk − h̄βk)(e
h̄ − r1(h̄)) · · · (eh̄ − rk(h̄)). (81)

As h̄ → 0, αk − h̄βk → αk 6= 0 and rs(h̄) → ζs, s = 1, . . . , k, where ζs, s = 1, . . . , k, are the roots of
the first stability polynomial ρ(z). Since, by assumption, the method is consistent, 1 is a root of ρ(z);
furthermore, by zero-stability 1 is a simple root of ρ(z). Let us suppose, for the sake of definiteness that
it is ζ1 that is equal to 1. Then, ζs 6= 1 for s 6= 1 and therefore

lim
h̄→0

(eh̄ − rs(h̄)) = (1− ζs) 6= 0, s 6= 1.

We deduce from (81) that the only factor of π(eh̄; h̄) that converges to 0 as h̄ → 0 is eh̄− r1(h̄) (the other
factors converge to nonzero constants). Now, by (80), π(eh̄; h̄) = O(h̄p+1), so it follows that

eh̄ − r1(h̄) = O(h̄p+1).

Thus we have shown that
r1(h̄) = eh̄ +O(h̄p+1).

This implies that

r1(h̄) > 1 +
1

2
h̄

for small positive h̄. That completes the proof. ⋄
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According to the definition adopted in the previous section, an optimal k-step method is a zero-stable
linear k-step method of order k + 2. We have also seen in the proof of Theorem 12 that all roots of the
first characteristic polynomial of an optimal k-step method lie on the unit circle. By refining the proof of
Theorem 13 it can be shown that an optimal linear multistep method has no interval of absolute stability.

It also follows from Theorem 13 that whenever a consistent zero-stable linear multistep method is
used for the numerical solution of the initial-value problem (1), (2) where ∂f

∂y > 0, the error of the method
will increase as the computation proceeds.

3.7 General methods for locating the interval of absolute stability

In this section we shall describe two methods for identifying the endpoints of the interval of absolute
stability. The first of these is based on the Schur criterion, the second on the Routh–Hurwitz criterion.

3.7.1 The Schur criterion

Consider the polynomial

φ(r) = ckr
k + · · · + c1r + c0, ck 6= 0, c0 6= 0,

with complex coefficients. The polynomial φ is said to be a Schur polynomial if each of its roots rs
satisfies |rs| < 1, s = 1, . . . , k.

Let us consider the polynomial

φ̂(r) = c̄0r
k + c̄1r

k−1 + · · · + c̄k−1r + c̄k,

where c̄j denotes the complex conjugate of cj, j = 1, . . . , k. Further, let us define

φ1(r) =
1

r

[

φ̂(0)φ(r) − φ(0)φ̂(r)
]

.

Clearly φ1 has degree ≤ k − 1.
The following key result is stated without proof.

Theorem 14 (Schur’s Criterion) The polynomial φ is a Schur polynomial if, and only if, |φ̂(0)| >
|φ(0)| and φ1 is a Schur polynomial.

We illustrate Schur’s criterion by a simple example.

Exercise 4 Use Schur’s criterion to determine the interval of absolute stability of the linear multistep
method

yn+2 − yn =
h

2
(fn+1 + 3fn) .

Solution: The first and second characteristic polynomials of the method are

ρ(z) = z2 − 1, σ(z) =
1

2
(z + 3).

Therefore the stability polynomial is

π(r; h̄) = ρ(r) − h̄σ(r) = r2 − 1

2
h̄r −

(

1 +
3

2
h̄

)

.

Let us restrict ourselves to the case when λ ∈ R with λ < 0, and therefore h̄ := hλ is also a (negative) real number.
Now,

π̂(r; h̄) = −
(

1 +
3

2
h̄

)

r2 − 1

2
h̄r + 1.
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Clearly, |π̂(0; h̄)| > |π(0, h̄)| if, and only if, h̄ ∈ (− 4
3 , 0). As

π1(r, ĥ) = −1

2
h̄

(

2 +
3

2
h̄

)

(3r + 1)

has the unique root − 1
3 and is, therefore, a Schur polynomial, we deduce from Schur’s criterion that π(r; h̄) is a

Schur polynomial if, and only if, h̄ ∈ (− 4
3 , 0). Therefore the interval of absolute stability is (− 4

3 , 0). ⋄

3.7.2 The Routh–Hurwitz criterion

Consider the mapping

z =
r − 1

r + 1

of the open unit disc |r| < 1 of the complex r-plane to the left open complex half-plane Re z < 0 of the
complex z-plane. The inverse of this mapping is given by

r =
1 + z

1− z
.

Under this transformation the function

π(r, h̄) = ρ(r)− h̄σ(r)

becomes

ρ

(

1 + z

1− z

)

− h̄σ

(

1 + z

1− z

)

.

By multiplying this with (1− z)k, we obtain a polynomial of the form

a0z
k + a1z

k−1 + · · ·+ ak. (82)

The roots of the stability polynomial π(r, h̄) lie inside the open unit disk |r| < 1 if, and only if, the roots
of the polynomial (82) lie in the left open complex half-plane Re z < 0.

Theorem 15 (Routh–Hurwitz Criterion) Suppose that a0 > 0. The roots of (82) lie in the left open
complex half-plane if, and only if, all the leading principal minors of the k × k matrix

Q =

















a1 a3 a5 · · · a2k−1

a0 a2 a4 · · · a2k−2

0 a1 a3 · · · a2k−3

0 a0 a2 · · · a2k−4

· · · · · · · · · · · · · · ·
0 0 0 · · · ak

















are positive; we assume that aj = 0 if j > k. In particular:

a) for k = 2: a0 > 0, a1 > 0, a2 > 0;

b) for k = 3: a0 > 0, a1 > 0, a2 > 0, a3 > 0, a1a2 − a3a0 > 0;

c) for k = 4: a0 > 0, a1 > 0, a2 > 0, a3 > 0, a4 > 0, a1a2a3 − a0a
2
3 − a4a

2
1 > 0;

represent the necessary and sufficient conditions for ensuring that all roots of (82) lie in the left open
complex half-plane.

We illustrate this result by a simple exercise.
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Exercise 5 Use the Routh–Hurwitz criterion to determine the interval of absolute stability of the linear
multistep method from the previous exercise.

Solution: By applying the substitution

r =
1 + z

1− z

in the stability polynomial

π(r, h̄) = r2 − 1

2
h̄r −

(

1 +
3

2
h̄

)

and multiplying the resulting function by (1− z)2, we get

(1 − z)2

[

(

1 + z

1− z

)2

− 1

2
h̄

(

1 + z

1− z

)

−
(

1 +
3

2
h̄

)

]

= a0z
2 + a1z + a2

with
a0 = −h̄, a1 = 4 + 3h̄, a2 = −2h̄.

Applying part a) of Theorem 15 we deduce that the method is zero-stable if, and only if, h̄ ∈ (− 4
3 , 0); hence the

interval of absolute stability is (− 4
3 , 0). ⋄

We conclude this section by listing the intervals of absolute stability (α, 0) of k-step Adams–Bashforth
and Adams–Moulton methods, for k = 1, 2, 3, 4. We shall also supply the orders p∗ and p and error
constants Cp∗+1 and Cp+1, respectively, of these methods. The verification of the stated properties is left
to the reader as exercise.

k-step Adams–Bashforth (explicit) methods:

(1) k = 1, p∗ = 1, Cp∗+1 =
1
2 , α = −2,

y1 − y0 = hf0;

(2) k = 2, p∗ = 2, Cp∗+1 =
5
12 , α = −1,

y2 − y1 =
h

2
(3f1 − f0);

(3) k = 3, p∗ = 3, Cp∗+1 =
3
8 , α = − 6

11 ,

y3 − y2 =
h

12
(23f2 − 16f1 + 5f0);

(4) k = 4, p∗ = 4, Cp∗+1 =
251
720 , α = − 3

10 ,

y4 − y3 =
h

24
(55f3 − 59f2 + 37f1 − 9f0).

k-step Adams–Moulton (implicit) methods:

(1) k = 1, p = 2, Cp+1 = − 1
12 , α = −∞,

y1 − y0 =
h

2
(f1 + f0);

(2) k = 2, p = 3, Cp+1 = − 1
24 , α = −6,

y2 − y1 =
h

12
(5f2 + 8f1 − f0);
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(3) k = 3, p = 4, Cp+1 = − 19
720 , α = −3,

y3 − y2 =
h

24
(9f3 + 19f2 − 5f1 + f0);

(4) k = 4, p = 5, Cp+1 = − 27
1440 , α = −90

49 ,

y4 − y3 =
h

720
(251f4 + 646f3 − 264f2 + 106f1 − 19f0).

We notice that the k-step Adams–Moulton (implicit) method has larger interval of absolute stability and
smaller error constant than the k-step Adams–Bashforth (explicit) method.

3.8 Predictor-corrector methods

Start of
optional
material

Let us suppose that we wish to use the implicit linear k-step method

k
∑

j=0

αjyn+j = h

k
∑

j=0

βjfn+j, αk, βk 6= 0.

Then, at each step we have to solve for yn+k the equation

αkyn+k − hβkf(xn+k, yn+k) =
k−1
∑

j=0

(hβjfn+j − αjyn+j) .

If h < |αk|/(L|βk|), where L is the Lipschitz constant of f with respect to y (as in Picard’s Theorem
1), then this equation has a unique solution, yn+k; moreover, yn+k can be computed by the fixed-point
iteration

αky
[s+1]
n+k +

k−1
∑

j+0

αjyn+j = hβkf(xn+k, y
[s]
n+k) + h

k−1
∑

j=0

βjfn+j, s = 0, 1, 2, . . . ,

with y
[0]
n+k a suitably chosen starting value.

Theoretically, we would iterate until the iterates y
[s]
n+k have converged (in practice, until some stopping

criterion such as |y[s+1]
n+k − y

[s]
n+k| < ε is satisfied, where ε is some preassigned tolerance). We would then

regard the converged value as an acceptable approximation yn+k to the unknown analytical solution-value
y(xn+k). This procedure is usually referred to as correcting to convergence.

Unfortunately, in practice, such an approach is usually unacceptable because of the amount of work

involved: each step of the iteration involves an evaluation of f(xn+k, y
[s]
n+k), which may be quite time-

consuming. In order to keep to a minimum the number of times f(xn+k, y
[s]
n+k) is evaluated, the initial

guess y
[0]
n+k must be chosen accurately. This is achieved by evaluating y

[0]
n+k by a separate explicit method

called the predictor, and taking this as the initial guess for the iteration based on the implicit method.
The implicit method is called the corrector.

For the sake of simplicity we shall suppose that the predictor and the corrector have the same number
of steps, say k, but in the case of the corrector we shall allow that both α0 and β0 vanish. Let the linear
multistep method used as predictor have the characteristic polynomials

ρ∗(z) =
k
∑

j=0

α∗
jz

j , α∗
k = 1, σ∗(z) =

k−1
∑

j=0

β∗
j z

j , (83)
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and suppose that the corrector has characteristic polynomials

ρ(z) =
k
∑

j=0

αjz
j , αk = 1, σ(z) =

k
∑

j=0

βjz
j . (84)

Suppose that m is a positive integer: it will denote the number of times the corrector is applied; in
practice m ≤ 2. If P indicates the application of the predictor, C a single application of the corrector,
and E an evaluation of f in terms of the known values of its arguments, then P (EC)mE and P (EC)m

denote the following procedures.

a) P (EC)mE

y
[0]
n+k +

k−1
∑

j=0

α∗
jy

[m]
n+j = h

k−1
∑

j=0

β∗
j f

[m]
n+j,

f
[s]
n+k = f(xn+k, y

[s]
n+k),

y
[s+1]
n+k +

k−1
∑

j=0

αjy
[m]
n+j = hβkf

[s]
n+k + h

k−1
∑

j=0

βjf
[m]
n+j, s = 0, . . . ,m− 1,

f
[m]
n+k = f(xn+k, y

[m]
n+k),

for n = 0, 1, 2, . . . .

b) P (EC)m

y
[0]
n+k +

k−1
∑

j=0

α∗
jy

[m]
n+j = h

k−1
∑

j=0

β∗
j f

[m−1]
n+j ,

f
[s]
n+k = f(xn+k, y

[s]
n+k),

y
[s+1]
n+k +

k−1
∑

j=0

αjy
[m]
n+j = hβkf

[s]
n+k + h

k−1
∑

j=0

βjf
[m−1]
n+j , s = 0, . . . ,m− 1,

for n = 0, 1, 2, . . . .

3.8.1 Absolute stability of predictor-corrector methods

Let us apply the predictor-corrector method P (EC)mE to the model problem

y′ = λy, y(0) = y0 (6= 0), (85)

where λ < 0, whose solution is, trivially, the decaying exponential y(x) = y0 exp(λx), x ≥ 0. Our aim
is to identify the values of the step size h for which the numerical solution computed by the P (EC)mE
method exhibits a similar exponential decay. The resulting recursion is

y
[0]
n+k +

k−1
∑

j=0

α∗
jy

[m]
n+j = h̄

k−1
∑

j=0

β∗
j y

[m]
n+j,

y
[s+1]
n+k +

k−1
∑

j=0

αjy
[m]
n+j = h̄βky

[s]
n+k + h̄

k−1
∑

j=0

βjy
[m]
n+j, s = 0, . . . ,m− 1,
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for n = 0, 1, 2, . . . , where h̄ = λh. In order to rewrite this set of equations as a single difference equation

involving y
[m]
n , y

[m]
n+1, . . . y

[m]
n+k only, we have to eliminate the intermediate stages involving y

[0]
n+k, . . . , y

[m−1]
n+k

from the above recursion.
Let us first take s = 0 and eliminate y

[0]
n+k form the resulting pair of equations to obtain

y
[1]
n+k +

k−1
∑

j=0

αjy
[m]
n+j = h̄βk



h̄

k−1
∑

j=0

β∗
j y

[m]
n+j −

k−1
∑

j=0

α∗
jy

[m]
n+j



+ h̄

k−1
∑

j=0

βjy
[m]
n+j.

Now take s = 1 and use the last equation to eliminate y
[1]
n+k; this gives,

y
[2]
n+k +

k−1
∑

j=0

αjy
[m]
n+j = h̄βk



h̄βk



h̄

k−1
∑

j=0

β∗
j y

[m]
n+j −

k−1
∑

j=0

α∗
jy

[m]
n+j





+h̄
k−1
∑

j=0

βjy
[m]
n+j −

k−1
∑

j=0

αjy
[m]
n+j



+ h̄
k−1
∑

j=0

βjy
[m]
n+j.

Equivalently,

y
[2]
n+k +

(

1 + h̄βk
)

k−1
∑

j=0

αjy
[m]
n+j

= (h̄βk)
2



h̄
k−1
∑

j=0

β∗
j y

[m]
n+j −

k−1
∑

j=0

α∗
jy

[m]
n+j



+ (1 + h̄βk)h̄
k−1
∑

j=0

βjy
[m]
n+j.

By induction,

y
[m]
n+k +

(

1 + h̄βk + · · ·+ (h̄βk)
m−1

)

k−1
∑

j=0

αjy
[m]
n+j

= (h̄βk)
m



h̄
k−1
∑

j=0

β∗
j y

[m]
n+j −

k−1
∑

j=0

α∗
jy

[m]
n+j



+
(

1 + h̄βk + · · ·+ (h̄βk)
m−1

)

h̄
k−1
∑

j=0

βjy
[m]
n+j.

For m fixed, this is a kth order difference equation involving y
[m]
n , . . . , y

[m]
n+k. In order to ensure that the

solution to this exhibits exponential decay as n → ∞, we have to assume that all roots to the associated
characteristic equation

zk +
(

1 + h̄βk + · · ·+ (h̄βk)
m−1

)

k−1
∑

j=0

αjz
j

= (h̄βk)
m



h̄

k−1
∑

j=0

β∗
j z

j −
k−1
∑

j=0

α∗
jz

j



+
(

1 + h̄βk + · · ·+ (h̄βk)
m−1

)

h̄

k−1
∑

j=0

βjz
j

have modulus < 1. This can be rewritten in the equivalent form

Azk +
(

1 + h̄βk + · · ·+ (h̄βk)
m−1

)

(ρ(z)− h̄σ(z)) + (h̄βk)
m
(

ρ∗(z) − h̄σ∗(z)
)

= 0,

where
A = 1 +

(

1 + h̄βk + · · ·+ (h̄βk)
m−1

)

(h̄βk − αk) + (h̄βk)
m(h̄β∗

k − α∗
k),
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Now, since αk = α∗
k = 1 and β∗

k = 0, we deduce that A = 0, and therefore the characteristic equation of
the P (EC)mE method is

πP (EC)mE(z; h̄) ≡ ρ(z)− h̄σ(z) +Mm(h̄)(ρ∗(z)− h̄σ∗(z)) = 0,

where

Mm(h̄) =
(h̄βk)

m

1 + h̄βk + · · ·+ (h̄βk)m−1
, m ≥ 1;

πP (EC)mE(z; h̄) is referred to as the stability polynomial of the predictor-corrector method P (EC)mE.
By pursuing a similar argument we can also deduce that the characteristic equation of the predictor

corrector method P (EC)m is

πP (EC)m(z; h̄) ≡ ρ(z) − h̄σ(z) +
Mm(h̄)

h̄βk
(ρ∗(z)σ(z) − ρ(z)σ∗(z)) = 0.

Here, πP (EC)m(z; h̄) is referred to as the stability polynomial of the predictor-corrector method P (EC)m.
With the predictor and corrector specified, one can now check using the Schur criterion or the Routh–

Hurwitz criterion, just as in the case of a single multi-step method, whether the roots of πP (EC)mE(z; h̄)
and πP (EC)m(z; h̄) all lie in the open unit disk |z| < 1 thereby ensuring the absolute stability of the
P (EC)mE and P (EC)m method, respectively.

Let us suppose, for example, that |h̄βk| < 1, i.e. that 0 < h < 1/|λβk|; then, limm→∞Mm(h̄) = 0,
and consequently,

lim
m→∞

πP (EC)mE(z; h̄) = π(z, h̄), lim
m→∞

πP (EC)m(z; h̄) = π(z, h̄),

where π(z; h̄) = ρ(z) − h̄σ(z) is the stability polynomial of the corrector. This implies that in the mode
of correcting to convergence the absolute stability properties of the predictor-corrector method are those
of the corrector alone, provided that |h̄βk| < 1.

3.8.2 The accuracy of predictor-corrector methods

Let us suppose that the predictor P has order of accuracy p∗ and the corrector has order of accuracy p.
The question we would like to investigate here is: What is the overall accuracy of the predictor-corrector
method?

Let us consider the P (EC)mE method applied to the model problem (85) with m ≥ 1. We have that

πP (EC)mE(e
h̄; h̄) = ρ(eh̄)− h̄σ(eh̄) +Mm(h̄)(ρ∗(eh̄)− h̄σ∗(eh̄))

= O(h̄p+1) +Mm(h̄)O(h̄p
∗+1)

= O(h̄p+1 + h̄p
∗+m+1)

=







O(h̄p+1 + h̄p+2) if p∗ ≥ p
O(h̄p+1) if p∗ = p− q, 0 < q ≤ p and m ≥ q
O(h̄p+1 + h̄p−q+m+1) if p∗ = p− q, 0 < q ≤ p and m ≤ q − 1.

Consequently, denoting by T
P (EC)mE
n the consistency error of the method P (EC)mE, we have that

TP (EC)mE
n =







O(h̄p) if p∗ ≥ p
O(h̄p) if p∗ = p− q, 0 < q ≤ p and m ≥ q
O(h̄p−q+m) if p∗ = p− q, 0 < q ≤ p and m ≤ q − 1.

This implies that from the point of view of overall accuracy there is no particular advantage in using a
predictor of order p∗ ≥ p. Indeed, as long as p∗ +m ≥ p, the predictor-corrector method P (EC)mE will
have order of accuracy p.
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Similar statements can be made about P (EC)m type predictor-corrector methods with m ≥ 1. On
writing

ρ∗(z)σ(z) − σ∗(z)ρ(z) = (ρ∗(z)− h̄σ∗(z))σ(z) − σ∗(z)(ρ(z) − h̄σ(z)),

we deduce that
πP (EC)m(e

h̄; h̄) = O(h̄p+1 + h̄p
∗+m + h̄p+m).

End of
optional
material

Consequently, as long as p∗ + m ≥ p + 1 the predictor-corrector method P (EC)m will have order of
accuracy p.

4 Stiff problems

Lecture 9Let us consider an initial-value problem for a system of m ordinary differential equations of the form:

y′ = f(x,y), y(a) = y0, (86)

where y = (y1, . . . ,ym)T. A linear k-step method for the numerical solution of (86) has the form

k
∑

j=0

αjyn+j = h

k
∑

j=0

βjfn+j, (87)

where fn+j = f(xn+j, yn+j). Let us suppose, for simplicity, that f(x,y) = Ay + b where A is a constant
matrix of size m×m and b is a constant (column) vector of size m; then (87) becomes

k
∑

j=0

(αjI − hβjA)yn+j = hσ(1)b, (88)

where σ(1) =
∑k

j=0 βj (6= 0) and I is the m×m identity matrix. Let us suppose that the eigenvalues λi,
i = 1, . . . ,m, of the matrix A are distinct. Then, there exists a nonsingular matrix H such that

HAH−1 = Λ =









λ1 0 · · · 0
0 λ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · λm









. (89)

Let us define z = Hy and c = hσ(1)Hb. Thus, (88) can be rewritten as

k
∑

j=0

(αjI − hβjΛ)zn+j = c, (90)

or, in component-wise form,
k
∑

j=0

(αj − hβjλi)zn+j,i = ci,

where zn+j,i and ci, i = 1, . . . ,m, are the components of zn+j and c respectively. Each of these m
equations is completely decoupled from the other m − 1 equations. Thus we are now in the framework
of Section 3 where we considered linear multistep methods for a single differential equation. However,
there is a new feature here: because the numbers λi, i = 1, . . . ,m, are eigenvalues of the matrix A, they
need not be real numbers. As a consequence the parameter h̄ = hλ, where λ is any of the m eigenvalues,
can be a complex number. This leads to the following modification of our earlier definition of absolute
stability (cf. Section 2.6 and Definition 10).
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Definition 11 A linear k-step method is said to be absolutely stable in an open set RA of the complex
plane if, for all h̄ ∈ RA, all roots rs, s = 1, . . . , k, of the stability polynomial π(r, h̄) associated with the
method, and defined by (79), satisfy |rs| < 1. The set RA is called the region of absolute stability of
the method.

Clearly, the interval of absolute stability of a linear multistep method is a subset of its region of
absolute stability.

Exercise 6 a) Find the region of absolute stability of Euler’s explicit method when applied to y′ = λy,
y(x0) = y0, λ ∈ C, Re λ < 0.

b) Suppose that Euler’s explicit method is applied to the second-order differential equation

y′′ + (1− λ)y′ − λy = 0, y(0) = 1, y′(0) = −λ− 2,

rewritten as a first-order system in the vector (u, v)T, with u = y and v = y′, λ ∈ C, Re λ < 0, and
let |λ| ≫ 1. What choice of the step size h ∈ (0, 1) will guarantee absolute stability in the sense of
the last definition?

Solution: a) For Euler’s explicit method ρ(z) = z − 1 and σ(z) = 1, so that

π(z; h̄) = ρ(z)− h̄σ(z) = (z − 1)− h̄ = z − (1 + h̄), h̄ := hλ.

This has the root r = 1 + h̄. Hence the region of absolute stability is

RA = {h̄ ∈ C : |1 + h̄| < 1},

which is an open unit disc centred at −1.
b) Now writing u = y and v = y′ and y = (u, v)T, the initial-value problem for the given second-order

differential equation can be recast as
y′ = Ay, y(0) = y0,

where

A =

(

0 1
λ λ− 1

)

and y0 =

(

1
−λ− 2

)

.

The eigenvalues of A are the roots of the characteristic polynomial of A,

det(A− zI) = z2 + (1− λ)z − λ,

whose roots are −1 and λ, and we deduce that the method is absolutely stable provided that |1+ hλ| < 1. Indeed,
Euler’s explicit method for this system has the form yn+1 = (I + hA)yn, n = 0, 1, 2, . . . , with y0 given, where
I denotes the (in this particular case 2 × 2) identity matrix. By diagonalising the matrix I + hA, we have that
(I + hA) = S−1DS , where D is a diagonal matrix containing the eigenvalues of the matrix I + hA on its diagonal,
and S is a nonsingular (in this particular case 2×2) matrix. Hence, Syn+1 = D(Syn) for n = 0, 1, . . . , and therefore
Syn = Dn(Sy0). Now, limn→∞ yn = 0 if, and only if, limn→∞ Syn = 0; on the other hand, limn→∞ Syn = 0 if,
and only if, the sequence of matrices (Dn)∞n=1 converges to the zero matrix. Since D is diagonal, the same is true
of Dn for each n = 1, 2, . . . , and the diagonal entries of Dn are (1− h)n and (1 + hλ)n, which will converge to 0 as
n → ∞ if, and only if, |1−h| < 1 and |1+hλ| < 1. Since we are interested in the case when Re λ < 0 and |λ| ≫ 1,
the first of these two requirements automatically follows from the second requirement. Hence we deduce the stated
requirement for absolute stability, that |1 + hλ| < 1.

We note in passing that it is an easy matter to show that

u(x) = 2e−x − eλx, v(x) = −2e−x + λeλx.

The graphs of the functions u and v are depicted in Figure 2 for λ = −45. Note that (if x ∈ [0,∞) is thought
of as time), v exhibits a fast transition near x = 0 while u is slowly varying for x > 0 and v is slowly varying for
x > 1/45. Despite the fact that over the interval (1/45,∞) both u and v are ‘slowly varying’, we are forced to use
a small step size of h < 2/45 in order to ensure that the method is absolutely stable. ⋄
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Figure 2: The functions u and v plotted against x for x ∈ [0, 1].

In the example the v component of the solution exhibited two vastly different time scales; in addition,
the fast transition (which occurs between x = 0 and x ≈ 1/(−λ) for λ ∈ R<0) has negligible effect on
the solution so its accurate resolution does not appear to be important for obtaining an overall accurate
solution. Nevertheless, in order to ensure the stability of the numerical method under consideration, the
mesh size h is forced to be exceedingly small, h < −2Re λ/|λ|2, smaller than an accurate approximation
of the solution for x ≫ 1/|λ| would necessitate. Systems of differential equations which exhibit this
behaviour are generally referred to as stiff systems. We refrain from formulating a rigorous definition
of stiffness. Indeed, stiffness of an ODE is a concept that lacks a rigorous definition.9 A historic and
pragmatic ‘definition’ by Curtis and Hirschfelder10 (adapted to our setting) reads: stiff equations are
equations where the implicit Euler method works significantly better than the explicit Euler method.
The idea behind this definition is that for a ‘stiff system’ stability of the explicit Euler method requires
the choice of a very small step size, much smaller than the one required by accuracy.

4.1 Stability of numerical methods for stiff systems

In order to motivate the various definitions of stability which occur in this section, we begin with a simple
example. Consider Euler’s implicit method for the initial-value problem

y′ = λy, y(0) = y0,

where λ is a complex number. The stability polynomial of the method is π(z, h̄) = ρ(z) − h̄σ(z) where
h̄ = hλ, ρ(z) = z − 1 and σ(z) = z. Since the only root of the stability polynomial is z = 1/(1 − h̄), we

9See G. Söderlind, L. Jay, and M. Calvo, Stiffness 1952–2012: Sixty years in search of a definition. BIT Numerical
Mathematics, June 2015 55(2), 531–558.

10Integration of stiff equations. Proceedings of the National Academy of Sciences, March 1, 1952 38 (3) 235–243.
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deduce that the method has the region of absolute stability

RA = {h̄ ∈ C : |1− h̄| > 1}.

In particular RA includes the whole of the left open complex half-plane. The next definition is due to
Dahlquist (1963).

Definition 12 A linear multistep method is said to be A-stable if its region of absolute stability, RA,
contains the whole of the left open complex half-plane Re(hλ) < 0.

Thus, for example, according to the discussion preceding Definition 12, the implicit Euler method
is A-stable. As the next theorem by Dahlquist (1963) shows, Definition 12 is unfortunately far too
restrictive.

Theorem 16

(i) No explicit linear multistep method is A-stable.

(ii) The order of accuracy an A-stable implicit linear multistep method cannot exceed 2.

(iii) The second-order accurate A-stable linear multistep method with smallest error constant is the
trapezium rule.

This motivates us to consider the following, less restrictive notion of stability, due to Widlund (1967).

Definition 13 A linear multistep method is said to be A(α)-stable, α ∈ (0, π/2), if its region of absolute
stability RA contains the infinite open wedge in the complex plane

Wα = {h̄ ∈ C |π − α < arg(h̄) < π + α}.

A linear multistep method is said to be A(0)-stable if it is A(α)-stable for some α ∈ (0, π/2). A linear
multistep method is A0 stable if RA includes the negative real axis in the complex plane.

Let us note in connection with this definition that if Reλ < 0 for a given λ then h̄ = hλ either lies
inside the wedge Wα or outside Wα for all positive h. Consequently, if all eigenvalues λ of the matrix
A (cf. the sentence starting two lines above equation (89)) happen to lie in some wedge Wα then an
A(α)-stable method can be used for the numerical solution of the initial-value problem (86) without any
restrictions on the step size h. In particular, if all eigenvalues of A are real and negative, then an A(0)
stable method can be used. The next theorem (stated here without proof) can be regarded the analogue
of Theorem 16 for the case of A(α) and A(0) stability.

Theorem 17

(i) No explicit linear multistep method is A(0)-stable.

(ii) The only A(0)-stable linear k-step method whose order exceeds k is the trapezium rule.

(iii) For each α ∈ [0, π/2) there exist A(α)-stable linear k-step methods of order p for which k = p = 3
and k = p = 4.

A different way of loosening the concept of A-stability was proposed by Gear (1969). The motivation
behind it is the fact that for a typical stiff problem the eigenvalues of the matrix A which produce the
fast transients all lie to the left of a line Re h̄ = −a, a > 0, in the complex plane, while those that are
responsible for the slow transients are clustered around zero.
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Definition 14 A linear multistep method is said to be stiffly stable if there exist positive real numbers
a and c such that RA ⊃ R1 ∪R2 where

R1 = {h̄ ∈ C : Re h̄ < −a} and R2 = {h̄ ∈ C : −a ≤ Re h̄ < 0, −c ≤ Im ĥ ≤ c}.

It is clear that stiff stability implies A(α)-stability with α = arctan(c/a). More generally, we have the
following chain of implications:

A-stability ⇒ stiff-stability ⇒ A(α)-stability ⇒ A(0)-stability ⇒ A0-stability.

In the next two sections we shall consider linear multistep methods which are particularly well suited
for the numerical solution of stiff systems of ordinary differential equations.

4.2 Backward differentiation methods for stiff systems

Start of
optional
material

Consider a linear multistep method with stability polynomial π(z, h̄) = ρ(z) − h̄σ(z). If the method
is A(α)-stable or stiffly stable, the roots r(h̄) of π(·, h̄) lie in the closed unit disk when h̄ is real and
h̄ → −∞. Hence,

0 = lim
h̄→−∞

ρ(r(h̄))

h̄
= lim

h̄→−∞
σ(r(h̄)) = σ( lim

h̄→−∞
r(h̄));

in other words, the roots of π(·, h̄) approach those of σ(·). Thus it is natural to choose σ(·) in such a way
that its roots lie within the unit disk. Indeed, a particularly simple choice would be to take σ(z) = βkz

k;
the resulting class of, so-called, backward differentiation methods has the general form:

k
∑

j=0

αjyn+j = hβkfn+k,

where the coefficients αj and βk are given in Table 3 which also displays the value of a in the definition
of stiff stability and the angle α from the definition of A(α) stability, the order p of the method and the
corresponding error constant Cp+1 for p = 1, . . . , 6. For p ≥ 7 backward differentiation methods of order
p of the kind considered here are not zero-stable and are therefore irrelevant from the practical point of
view.

4.3 Gear’s method

Since backward differentiation methods are implicit, they have to be used in conjunction with a predictor.
Instead of iterating the corrector to convergence via a fixed point iteration, Newton’s method can be used
to accelerate the iterative convergence of the corrector. Rewriting the resulting predictor-corrector multi-
step pair as a one step method gives rise to Gear’s method which allows the local alteration of the
order of the method as well as of the mesh size. We elaborate on this below.

As we have seen in Section 4.1, in the numerical solution of stiff systems of ordinary differential
equations, the stability considerations highlighted in parts (i) of Theorems 16 and 17 necessitate the
use of implicit methods. Indeed, if a predictor-corrector method is used with a backward differentiation
formula as corrector, a system of nonlinear equations of the form

yn+k − hβkf(xn+k,yn+k) = gn+k

will have to be solved at each step, where

gn+k = −
k−1
∑

j=0

αjyn+j
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k α6 α5 α4 α3 α2 α1 α0 βk p Cp+1 amin αmax

1 1 −1 1 1 −1
2 0 90o

2 1 −4
3

1
3

2
3 2 −2

9 0 90o

3 1 −18
11

9
11 − 2

11
6
11 3 − 3

22 0.1 88o

4 1 −48
25

36
25 −16

25
3
25

12
25 4 − 12

125 0.7 73o

5 1 −300
137

300
137 −200

137
75
137 − 12

137
60
137 5 − 10

137 2.4 52o

6 1 −360
147

450
147 −400

147
225
147 − 72

147
10
147

60
147 6 − 20

343 6.1 19o

Table 3: Coefficients, order, error constant and stability parameters for backward differentiation methods

is a term that involves information which has already been computed at previous steps and can be
considered known. If this equation is solved by a fixed-point iteration, the Contraction Mapping Theorem
will require that

Lh|βk| < 1 (91)

in order to ensure convergence of the iteration; here L is the Lipschitz constant of the function f(x, ·). In
fact, since the function f(x, ·) is assumed to be continuously differentiable,

L = max
(x,y)∈R

∣

∣

∣

∣

∣

∣

∣

∣

∂f

∂x
(x,y)

∣

∣

∣

∣

∣

∣

∣

∣

.

For a stiff system L is typically very large, thus the restriction on the steplength h expressed by (91) is
just as severe as the condition on h that one encounters when using an explicit method with a bounded
region of absolute stability. In order to overcome this difficulty, Gear proposed to use Newton’s method:

y
[s+1]
n+k = y

[s]
n+k −

[

I − hβk
∂f

∂y
(xn+k,y

[s]
n+k)

]−1
[

y
[s]
n+k − hβkf(xn+k,y

[s]
n+k)− gn+k

]

, (92)

for s = 0, 1, . . . , with a suitable initial guess y
[0]
n+k. Even when applied to a stiff system, convergence of

the Newton iteration (92) can be attained without further restrictions on the mesh size h provided that

we can supply a sufficiently accurate initial guess y
[0]
n+k (by using an appropriately accurate predictor, for

example).
On the other hand, the use of Newton’s method in this context has the disadvantage that the Jacobi

matrix ∂f/∂y has to be reevaluated and the matrix I − hβk
∂f
∂y (xn+k, y

[s]
n+k) inverted at each step of the

iteration and at each mesh point xn+k.

One aspect of Gear’s method is that the matrix I−hβk
∂f
∂y (xn+k, y

[s]
n+k) involved in the Newton iteration

described above is only calculated occasionally (i.e. at the start of the iteration, for s = 0, and thereafter
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only if the Newton iteration exhibits slow convergence); the inversion of this matrix is performed by an
LU decomposition.

A further aspect of Gear’s method is a strategy for varying the order of the backward differentiation
formula and the step size according to the intermediate results in the computation. This is achieved by
rewriting the multistep predictor-corrector pair as a one-step method (in the so-called Nordsieck form).
For further details, we refer to Chapter III.6 in the book of Hairer, Norsett and Wanner. End of

optional
material

We shall
therefore confine ourselves here to a brief discussion of adaptive one-step methods for stiff systems.
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5 Adaptivity for stiff problems

Lecture 10Ideally, we would like to compute an approximate solution of the following initial-value problem for a
system of first-order ordinary differential equations:

y′ = f(x,y), y(x0) = y0, (93)

for all x ∈ [x0,XM ], and make sure that this approximation is accurate up to a certain (absolute/relative)
precision. In addition, we would like to achieve such a precision in the fastest/cheapest way possible.
How should this be done? We shall describe two attempts, the first attempt being conceptually simpler,
while the second attempt being the one preferred in practice for reasons which we shall explain.

First attempt: A simple strategy could be to:

1. choose a one-step method of order p;

2. choose a natural number N ∈ N and compute the approximate solution {yn}Nn=0 using the step size
h = (XM − x0)/N ;

3. choose a large natural number Ñ ∈ N with Ñ > N and compute the approximate solution {ỹn}Ñn=0

using the step size h̃ = (XM − x0)/Ñ .

This way, we obtain two approximations yN and ỹÑ of y(XM ), which we may use to estimate the error.
To be more precise, we may use the (computable) difference ‖ỹÑ −yN‖ to estimate the (noncomputable)
error ‖y(XM ) − yN‖. If ‖ỹÑ − yN‖ is smaller than a target absolute tolerance TOL, then we finish the
computation. Otherwise, we

1. increase N so that N > Ñ ;

2. compute the approximate solution {yn}Nn=0 using h = (XM − x0)/N ;

3. check whether ‖ỹÑ − yN‖ < TOL.

If ‖ỹÑ−yN‖ is smaller than the target absolute tolerance TOL, then we finish the computation. Otherwise,

we select a new Ñ such that Ñ > N , and compute {ỹn}Ñn=0 using the step size h̃ = (XM − x0)/Ñ . This
procedure is repeated until convergence (alternating N and Ñ). The following argument suggests that
the (computable) difference ‖ỹÑ − yN‖ can be used to estimate the error ‖y(XM )− yN‖.

The idea to use ‖ỹÑ − yN‖ to estimate ‖y(XM )− yN‖ is based on the following calculations. Let us

assume that Ñ > N , and define α := h̃/h = N/Ñ < 1. For h sufficiently small,

‖ỹÑ − yN‖ = ‖ỹÑ − y(XM ) + y(XM )− yN‖ ≤ C(h̃p + hp) = (1 + αp)Chp,

and thus,

‖y(XM )− yN‖ = ‖y(XM )− ỹÑ + ỹÑ − yN‖
≤ ‖y(XM )− ỹÑ‖+ ‖yÑ − yN‖
≤ Ch̃p + (1 + αp)Chp

≤ αp
(

Chp
)

+ (1 + αp)
(

Chp
)

,

For α < 1, αp ≪ 1+αp (in relative terms). Therefore, the term ‖y(XM )− ỹÑ‖ has a minor contribution,
and ‖ỹÑ − yN‖ may be used to estimate ‖y(XM )− yN‖.

This first adaptive strategy could deliver an accurate solution, but it is likely to be computationally
inefficient, because whenever the target tolerance is not met we need to compute another solution from
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scratch on a finer computational mesh over the entire interval [x0,XM ] (i.e. a global mesh-refinement
needs to be performed, and a new numerical approximation has to be computed on such a globally refined
mesh).

Second attempt: To improve efficiency, we can try to control the consistency error for each mesh point
xn. Indeed, Theorem 4 states that the global error is bounded by the maximum of the consistency error
up to a constant factor (however, note the exponential term in the constant factor!). Therefore, the
hope is that we may compute a sufficiently accurate solution by choosing a suitable h or, better still, by
adapting the step size locally, that is, by selecting a suitable hn for every xn to control the local size of
the consistency error.

To estimate the consistency error at x = xn, in addition to the one step method

yn+1 = yn + hΦ(xn,yn;h) =: Ψ(xn,yn;h), n = 0, 1, . . . ;

of order p being used, we consider an additional one-step method

ỹn+1 = ỹn + hΦ̃(xn, ỹn;h) =: Ψ̃(xn, ỹn;h), n = 0, 1, . . . ,

of order p̃, with p̃ > p, and we compute

ERR(xn;h) := ‖Ψ̃(xn,yn;h)−Ψ(xn,yn;h)‖. (94)

The idea behind using (94) to estimate the consistency error Tn is that, if the error has been controlled
from x0 up until xn, for some n ≥ 1, then the difference between y(xn) and yn is “negligible”, and
therefore yn can be assumed to be equal to ỹn (both being “equal” to y(xn)). Hence,

hTn = y(xn+1)−Ψ(xn,y(xn);h)

= y(xn+1)− Ψ̃(xn,y(xn);h) + Ψ̃(xn,y(xn);h) −Ψ(xn,y(xn);h)

≈ y(xn+1)− Ψ̃(xn,y(xn);h) + Ψ̃(xn,yn;h)−Ψ(xn,yn;h)

≈ Chp̃+1 + Ψ̃(xn,yn;h) −Ψ(xn,yn;h). (95)

Since the left-hand side of (95) is of the order O(h × hp) = O(hp+1) and p̃ > p, it follows that the term
≈ Chp̃+1 on the right-hand side is “negligible” compared to the “leading term” Ψ̃(xn,yn;h)−Ψ(xn,yn;h).
Hence, hTn ≈ Ψ̃(xn,yn;h) −Ψ(xn,yn;h).

Summing up, the locally adaptive strategy proceeds as follows: at every step xn

1. select an initial local step size hn;

2. compute ERR(xn;hn);

3. if this is smaller than a target tolerance, we set yn+1 = Ψ(xn,yn;hn);
otherwise, we choose a smaller hn and return to step 2.

To make this algorithm more efficient, it is common to increase the step hn every time this step has
been accepted, that is, to select βhn for a suitable β > 1.

Remark 3 Let TOL be a target absolute error tolerance and let ERR(xn;hn) < TOL. Then, the “optimal”
β is

β = βn = (p+1)
√

TOL/ERR(xn;hn). (96)

Indeed, if ERR(xn;hn) < TOL, we could have chosen a larger hn and still satisfied the tolerance criterion.
Let βn be such that ERR(xn, βnhn) = TOL, so that βnhn is the ideal step size. Then, we deduce (96),
because

ERR(xn;βnhn) ≈ C(βnhn)
p+1 = βp+1

n Chp+1
n ≈ βp+1

n ERR(xn;hn).
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To further improve the efficiency of this adaptive algorithm, it is convenient to use embedded Runge–
Kutta methods, which limit the number of function evaluations.

Definition 15 Two Runge–Kutta methods are embedded if they use the same stages. The Butcher
tableau of two embedded Runge–Kutta methods can be written as

a B
[

cT2
[

cT1

, where
a B

[

cT2
and

a B
[

cT1

are the Butcher tableaux of the two Runge–Kutta methods, respectively.

Example 7 The Heun–Euler method has the Butcher tableau:

0 0 0
1 1 0

1/2 1/2
1 0

, where

0 0 0
1 1 0

1/2 1/2

and

0 0 0
1 1 0

1 0

are the Butcher tableaux of Heun’s method yn+1 = yn +
h
2 (f(xn, yn) + f(xn + h, yn + hf(xn, yn))) and the

explicit Euler method yn+1 = yn + hf(xn, yn), respectively.

Example 8 Matlab integrators for ODEs (such as the functions ode45, ode23, etc.) are based on
embedded Runge–Kutta methods.11

6 Structure-preserving integrators

Lecture 11Many physical phenomena are modelled by initial-value problems and, by analysing these, one can show
that certain relevant physical quantities, such as energy, mass, volume, etc., are preserved during the
course of evolution, that is, they are constant in time. The goal of this section is to study numerical
methods that preserve some of these quantities also at the discrete level.12 To begin with, we clarify the
concept of solution to an ODE to allow generic initial values. For simplicity, we restrict ourselves to the
autonomous ODE

y′ = f(y), where f : D → R
d, (97)

(where now y is considered to be a function of t ∈ [0,∞), and y′ := dy/dt), subject to the initial
condition

y(0) = x,

where x ∈ D, and D is a nonempty open subset of Rd.

Definition 16 For t ≥ 0, let Φt : D → R
d denote the function that maps an initial datum x ∈ D into

y(t) ∈ R
d, where y(t) is the solution at time t to y′ = f(y), y(0) = x (tacitly assuming that the solution

t ∈ [0,∞) 7→ y(t) ∈ R
d to this initial-value problem, for each x ∈ D, exists and that it is unique). The

family {Φt}t≥0 is called the flow of (97) (defined on D ⊂ R
d).

Remark 4 The function t 7→ Φt(x) is the solution to y′ = f(y), y(0) = x.

11See L. F. Shampine and M. W. Reichelt, The MATLAB ODE suite (1997).
12We could have named this section Geometric numerical integration, a term introduced by J.M. Sanz-Serna; see his

article Geometric integration in the proceedings The State of the Art in Numerical Analysis, I.S. Duff and G.A. Watson,
eds., Clarendon Press, Oxford, 1997, pp. 121–143.

58



Using the concept of flow, we can clarify what is a “preserved quantity”.

Definition 17 Suppose that Φt(D) ⊆ D for every admissible t ≥ 0. A first integral of (97) is a function
I : D → R that satisfies I(Φt(x)) = I(x) for every x ∈ D and every admissible t ≥ 0.

Lemma 4 Suppose that Φt(D) ⊆ D for every admissible t ≥ 0. I is a first integral of (97) if, and only
if, d

dtI(Φ
t(x)) = 0 for every x ∈ D and every admissible t ≥ 0. This is equivalent to: DI(x) · f(x) = 0

for every x ∈ D, where DI := grad I.

Proof. The first part of the lemma is trivial. Indeed, if I is a first integral then if follows from Definition
17 that d

dtI(Φ
t(x)) = d

dtI(x) = 0. Conversely, if d
dtI(Φ

t(x)) = 0, then by integration with respect to t,
we have I(Φt(x)) = C for some constant C for every admissible t ≥ 0. By taking t = 0 in particular, we
deduce that C = I(Φ0(x)) = I(x), and therefore, by Definition 17, I is a first integral.

The second part follows by applying the chain rule on the left-hand side of the equality d
dtI(Φ

t(x)) = 0.
Indeed,

0 =
d

dt
I(Φt(x)) =

d

dt
I(y(t)) = DI(y(t)) · y′(t) = DI(y(t)) · f(y(t))

for every admissible t ≥ 0, where y is the solution of the initial-value problem y′(t) = f(y(t)), y(0) =
x ∈ D. Thus in particular 0 = DI(y(0)) · f(y(0)), and the assertion follows, because y(0) = x ∈ D; i.e.,
DI(x) · f(x) = 0 for every x ∈ D. Conversely, if DI(x) · f(x) = 0 for every x ∈ D, then in particular
because Φt(D) ⊆ D for every admissible t ≥ 0, we have that DI(Φt(x)) · f(Φt(x)) = 0 for every x ∈ D
and every admissible t ≥ 0; in other words, DI(y(t)) · f(y(t)) = 0 for every admissible t ≥ 0. Hence, by
reversing the chain of equalities displayed above,

0 = DI(y(t)) · f(y(t)) = DI(y(t)) · y′(t) =
d

dt
I(y(t)) =

d

dt
I(Φt(x))

for every x ∈ D and every admissible t ≥ 0. That completes the proof. ⋄
For a systematic investigation, we consider first integrals that can be expressed as polynomials. Note

that, according to Lemma 4, for such first integrals the solution y(t) remains on the zero level-surface of
the first integral (which could be a plane, or a sphere, or an ellipsoid, etc.) for all t > 0 provided that
the initial datum x = y(0) belongs to the zero level-surface of the first integral.

Definition 18 We shall say that a first integral I of an autonomous system is a polynomial of degree
n ∈ N if

I(x) =
∑

α∈Nd
0, |α|≤n

βαx
α, (98)

where βα ∈ R, α = (α1, . . . , αd) ∈ N
d
0, |α| = ∑d

i=1 αi, and xα = xα1
1 · · · xαd

d ; in other words, I is a
multivariate polynomial of degree n in x ∈ R

d. Here, N0 denotes the set of all nonnegative integers, and
N
d
0 signifies the d-fold Cartesian product N0 × · · · × N0.

Example 9 Linear first integrals are of the form I(x) = bTx+ c (with b ∈ R
d, and c ∈ R).

Example 10 Quadratic first integrals are of the form I(x) = xTMx+ bTx+ c (with M = MT ∈ R
d×d,

b ∈ R
d, and c ∈ R).

The following theorems summarize a few key facts about structure-preserving Runge–Kutta methods.

Theorem 18 Every Runge–Kutta method preserves linear first integrals.

Theorem 19 Gauss-collocation methods (i.e. Runge–Kutta methods based on function-evaluations at
points of Gaussian quadrature rules) preserve quadratic first integrals.

59



Proof: (of Theorem 18) Clearly, using the same notation as in Example 9, the equality I(x) = bTx+ c
implies that DI(x) ≡ b; thus, by applying Lemma 4, we have that 0 = DI(x) · f(x) = b · f(x) for
all x ∈ D. Hence, for all n ≥ 0, and yn+1 computed from yn using an R-stage Runge–Kutta method
yn+1 = yn + h(c1k1 + · · ·+ cRkR), we have that

I(yn+1)− I(yn) = bT(yn+1 − yn)

= hbT(c1k1 + · · ·+ cRkR) = 0 + · · ·+ 0 = 0,

because each of the functions ki, i = 1, . . . , R, is defined by evaluating f at a certain point x ∈ D, whereby
bTki = b · ki = 0 for i = 1, . . . , R. Therefore I(yn) = I(y0) = I(x) for all all n ≥ 0, all x ∈ D, and
y0 = x. That completes the proof. ⋄

Simple examples of Gauss-collocation methods are the Gauss–Legendre–Runge–Kutta methods, based
on function-evaluations at points of Gauss–Legendre quadrature rules. The Gauss–Legendre method of
order two is the implicit midpoint rule,

yn+1 = yn + h f

(

1

2
yn +

1

2
yn+1

)

,

which has Butcher tableau

1/2 1/2

1
.

The Gauss–Legendre method of order four:

yn+1 = yn + h

(

1

2
k1 +

1

2
k2

)

, where

k1 = f

(

t+

(

1

2
− 1

6

√
3

)

h,yn +
1

4
k1 +

(

1

4
− 1

6

√
3

)

k2

)

,

k2 = f

(

t+

(

1

2
+

1

6

√
3

)

h,yn +

(

1

4
+

1

6

√
3

)

k1 +
1

4
k2

)

.

has Butcher tableau

1
2 − 1

6

√
3 1

4
1
4 − 1

6

√
3

1
2 + 1

6

√
3 1

4 +
1
6

√
3 1

4

1
2

1
2

.

Unfortunately, there is no consistent Runge–Kutta method that preserves polynomial first integrals
of degree higher than 2; more precisely, the following negative result holds.

Theorem 20 If n ≥ 3, then there is no consistent Runge–Kutta method that preserves every polynomial
first integral of degree n for every autonomous ODE.

We conclude this section with a few results concerning the conservation of a structure that is at
the heart of classical mechanics: conservation of the symplectic product. First, we recall the notion of
Hamiltonian differential equation from classical mechanics.

Definition 19 A Hamiltonian differential equation is an ODE of the form

p′ = −DqH(p,q), q′ = DpH(p,q), (99)

where p(t) := (p1(t), . . . , pd(t))
T, q(t) := (q1(t), . . . , qd(t))

T, Dp := ( ∂
∂p1

, . . . , ∂
∂pd

)T, Dq := ( ∂
∂q1

, . . . , ∂
∂qd

)T.

The function H : Rd × R
d → R is called the Hamiltonian.
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Theorem 21 The Hamiltonian H is a first integral of (99).

Proof. By applying the chain rule and noting (99), we have

d

dt
H(p(t),q(t)) = DpH(p(t),q(t)) · p′(t) +DqH(p(t),q(t)) · q′

= −DpH(p(t),q(t)) ·DqH(p(t),q(t)) +DqH(p(t),q(t)) ·DpH(p(t),q(t)) = 0,

which implies the assertion by recalling the definition of first integral. ⋄

Lemma 5 The ODE (99) is equivalent to

y′ = J−1DH(y), where J =

(

0 I

−I 0

)

∈ R
2d×2d and y :=

(

p

q

)

∈ R
2d. (100)

Proof. The ODE system (99) is equivalent to Jy′ = gradH(y). Indeed,

Jy′ =

(

0 I

−I 0

)(

p′

q′

)

=

(

q′

−p′

)

=

(

DpH(p,q)
DqH(p,q)

)

= DH(p,q),

which directly implies the assertion of the lemma. ⋄
The next definition is inspired by the previous lemma.

Definition 20 The bilinear map

ω : R2d × R
2d → R, (a,b) 7→ ω(a,b) := aTJb

is called the symplectic product of a and b.

Definition 21 A continuously differentiable map Φ : D ⊂ R
2d → R

2d is called symplectic if

ω(DΦ(x)a,DΦ(x)b) = ω(a,b)

for every x ∈ D and every pair (a,b) ∈ R
2d × R

2d. Here DΦ(x) denotes the Jacobian matrix of Φ
evaluated at x ∈ D, i.e. the 2d× 2d matrix whose (i, j) entry is ∂Φi/∂xj , i, j = 1, . . . , 2d.

Remark 5 A map is symplectic if its Jacobian matrix DΦ(x) (evaluated at a generic point x) preserves
the symplectic product. This concept is similar to the property of orthogonal matrices that they preserve
the Euclidean inner product, i.e. if O ∈ R

d×d is an orthogonal matrix then 〈Oa,Ob〉 = 〈a,b〉 for every
pair (a,b) ∈ R

d × R
d, where 〈·, ·〉 is the Euclidean inner product in R

d.

The following result, due to Poincaré, asserts that a Hamiltonian flow is a symplectic map, which
explains why the concept of symplectic map is so relevant.

Theorem 22 (Poincaré) Suppose that H is a twice continuously differentiable Hamiltonian. Then, the
flow Φt of (100) satisfies the following property: for each x ∈ D there exists a δ > 0 such that

ω(DΦt(x)a,DΦt(x)b) = ω(a,b) for every (a,b) ∈ R
2d × R

2d and all t ∈ [0, δ),

where DΦt(x) denotes the Jacobian matrix of Φt evaluated at x ∈ D.
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Proof. Let y be the solution of the initial-value problem y′(t) = J−1DH(y(t)), y(0) = x ∈ D for
t ∈ [0, δ), and let Φt(x) := y(t), with y(0) = x ∈ D. Thanks to Lemma 5 and the chain rule, we have
that

d

dt
DΦt(x) =

d

dt
Dy(t) = D

dy

dt
= DJ−1 gradH(y(t)) = J−1D(gradH(y(t)))

= J−1 D2H(y(t))Dy(t) = J−1 (D2H(Φt(x))) (DΦt(x)),

where D2H denotes the Hessian of H, i.e. the 2d × 2d matrix whose (i, j) entry is the second partial
derivative of H with respect to its ith and jth arguments, for i, j = 1, . . . , 2d. Thanks to the assump-
tion that H is twice continuously differentiable, the matrix D2H is symmetric, i.e. (D2H)T = D2H.
Therefore, by the product rule and because J is a constant matrix, for any x ∈ D, we have

d

dt
((DΦt(x))TJ(DΦt(x))) =

(

d

dt
DΦt(x)

)T

J(DΦt(x)) + (DΦt(x))TJ

(

d

dt
DΦt(x)

)

= (DΦt(x))T (D2H(Φt(x)))J−TJ (DΦt(x)) + (DΦt(x))TJJ−1 (D2H(Φt(x))) (DΦt(x))

= −(DΦt(x))T (D2H(Φt(x))) (DΦt(x)) + (DΦt(x))T (D2H(Φt(x))) (DΦt(x)) = 0,

where we have used that J−TJ = −I and JJ−1 = I. This implies that for any x ∈ D and any t ∈ [0, δ),

(DΦt(x))TJ(DΦt(x)) = (DΦ0(x))TJ(DΦ0(x)) = J

as an equality between 2d × 2d matrices, where in the last equality we have used that Φ0x = x (and
therefore DΦ0(x) = I). Hence, for any a,b ∈ R

2d we have that

ω(DΦt(x)a,DΦt(x)b) = aT(DΦt(x))TJ(DΦt(x))b = aTJb = ω(a,b),

and that completes the proof. ⋄
Since Hamiltonian flows are symplectic, we are interested in symplectic one-step methods, in the sense

of the following definition.

Definition 22 Consider (100) subject to the initial condition y(0) = x, for x ∈ D, and let x 7→ Ψ(0,x;h)
be a one-step method for (100), which maps the initial datum x ∈ D into a numerical approximation
Ψ(0,x;h) ∈ R

d of y(h) ∈ R
d over a single time step of length h > 0. The one-step method x 7→ Ψ(0,x;h)

is said to be symplectic if x 7→ Ψ(0,x;h) defines a symplectic map on every compact subset K ⊂ D,
whenever H is twice continuously differentiable and h > 0 is sufficiently small.

The following theorem provides a convenient sufficient condition for a Runge–Kutta being symplectic,
although for an arbitrary one-step method one would still need to appeal to Definition 22 to verify that
the method in question is symplectic.

Theorem 23 Every Runge–Kutta method that preserves quadratic first integrals is symplectic.

We conclude by mentioning that there exist also explicit numerical methods that are symplectic. The
most important example for an ODEs with a “separated” right-hand side is the Störmer–Verlet method.
For further details, we refer to E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration,
Springer Series in Computational Mathematics, (2006).
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7 Finite difference approximation of parabolic equations

Lecture 12The final section of these lecture notes is concerned with the construction and mathematical analysis of
finite difference methods for the numerical solution of parabolic equations. As a simple yet representative
model problem we shall focus on the unsteady diffusion equation (heat equation) in one space dimension:

∂u

∂t
=

∂2u

∂x2
, (101)

which we shall consider for x ∈ (−∞,∞) and t ≥ 0, subject to the initial condition

u(x, 0) = u0(x), x ∈ (−∞,∞),

where u0 is a given function.
The solution of this initial-value problem can be expressed explicitly in terms of the initial datum u0.

As the expression for the solution of the initial-value problem provides helpful insight into the behaviour
of solutions of parabolic partial differential equations, which we shall try to mimic in the course of their
numerical approximation, we shall summarize here briefly the derivation of this expression.

We recall that the Fourier transform of a function v is defined by

v̂(ξ) = F [v](ξ) =

∫ ∞

−∞
v(x) e−ıxξ dx.

We shall assume henceforth that the functions under consideration are sufficiently smooth and that they
decay to 0 as x → ±∞ sufficiently quickly in order to ensure that our manipulations make sense.

By Fourier-transforming the partial differential equation (101) we obtain

∫ ∞

−∞

∂u

∂t
(x, t) e−ıxξ dx =

∫ ∞

−∞

∂2u

∂x2
(x, t) e−ıxξ dx.

After (formal) integration by parts on the right-hand side and ignoring boundary terms at ±∞, we obtain

∂

∂t
û(ξ, t) = (ıξ)2û(ξ, t),

whereby
û(ξ, t) = e−tξ2 û(ξ, 0),

and therefore
u(x, t) = F−1

(

e−tξ2 û0

)

.

The inverse Fourier transform of a function is defined by

v(x) = F−1[v̂](x) =
1

2π

∫ ∞

−∞
v̂(ξ)eıxξ dξ.

Thus, after some lengthy calculations whose details we omit, we find that

u(x, t) = F−1
(

e−tξ2 û0(ξ)
)

=

∫ ∞

−∞
w(x− y, t)u0(y) dy,

where the function w, defined by

w(x, t) =
1√
4πt

e−x2/(4t),

is called the heat kernel. So, finally,

u(x, t) =
1√
4πt

∫ ∞

−∞
e−(x−y)2/(4t)u0(y) dy. (102)
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This formula gives an explicit expression of the solution of the heat equation (101) in terms of the
initial datum u0. Because w(x, t) > 0 for all x ∈ (−∞,∞) and all t > 0, and

∫ ∞

−∞
w(y, t) dy = 1 for all t > 0,

we deduce from (102) that if u0 is a bounded continuous function, then

supx∈(−∞,+∞)|u(x, t)| ≤ supx∈(−∞,∞)|u0(x)|, t > 0. (103)

In other words, the ‘largest’ and ‘smallest’ values of u(·, t) at t > 0 cannot exceed those of u0(·). Similar
bounds on the ‘magnitude’ of the solution at future times in terms of the ‘magnitude’ of the initial datum
can be obtained in other norms as well, and we shall focus here on the L2 norm in particular. We will
show, using Parseval’s identity, that the L2 norm of the solution, at any time t > 0, is bounded by the
L2 norm of the initial datum. We shall then try to mimic this property when using various numerical
approximations of the initial-value problem for the heat equation.

Lemma 6 (Parseval’s identity) Let L2(−∞,∞) denote the set of all complex-valued square-integrable
functions defined on the real line. Suppose that u ∈ L2(−∞,∞). Then, û ∈ L2(−∞,∞), and the
following equality holds:

‖u‖L2(−∞,∞) =
1√
2π

‖û‖L2(−∞,∞),

where

‖u‖L2(−∞,∞) =

(∫ ∞

−∞
|u(x)|2 dx

)1/2

.

Proof. We begin by observing that

∫ ∞

−∞
û(ξ) v(ξ) dξ =

∫ ∞

−∞

(
∫ ∞

−∞
u(x) e−ıxξ dx

)

v(ξ) dξ

=

∫ ∞

−∞

(
∫ ∞

−∞
v(ξ) e−ıxξ dξ

)

u(x) dx

=

∫ ∞

−∞
u(x) v̂(x) dx.

We then take (where, for a complex-valued function w, we denote by w the complex conjugate of w)

v(ξ) = û(ξ) = 2πF−1[u](ξ), ξ ∈ (−∞,∞),

and substitute this into the identity above to complete the proof. ⋄

Returning to the equation (101), we thus have by Parseval’s identity that

‖u(·, t)‖L2(−∞,∞) =
1√
2π

‖û(·, t)‖L2(−∞,∞), t > 0,

and therefore

‖u(·, t)‖L2(−∞,∞) =
1√
2π

‖e−tξ2 û0(·)‖L2(−∞,∞)

≤ 1√
2π

‖û0‖L2(−∞,∞)

= ‖u0‖L2(−∞,∞), t > 0.
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Thus we have shown that

‖u(·, t)‖L2(−∞,∞) ≤ ‖u0‖L2(−∞,∞) for all t > 0. (104)

This is a useful result as it can be used to deduce stability of the solution of the equation (101) with
respect to perturbations of the initial datum in a sense which we shall now explain. Suppose that u0
and ũ0 are two functions contained in L2(−∞,∞) and denote by u and ũ the solutions to (101) resulting
from the initial functions u0 and ũ0, respectively. Then u− ũ solves the heat equation with initial datum
u0 − ũ0, and therefore, by (104), we have that

‖u(·, t) − ũ(·, t)‖L2(−∞,∞) ≤ ‖u0 − ũ0‖L2(−∞,∞) for all t > 0. (105)

This inequality implies continuous dependence of the solution on the initial function: small perturbations
in u0 in the L2(−∞,∞) norm will result in small perturbations in the associated analytical solution u(·, t)
in the L2(−∞,∞) norm for all t > 0.

The inequality (104) is therefore a relevant property, which we shall try to mimic with our numerical
approximations of the equation (101).

7.1 Finite difference approximation of the heat equation

Lecture 13We take our computational domain to be

{(x, t) ∈ (−∞,∞)× [0, T ]},

where T > 0 is a given final time. We then consider a finite difference mesh with spacing ∆x > 0 in
the x-direction and spacing ∆t = T/M in the t-direction, with M ≥ 1, and we approximate the partial
derivatives appearing in the differential equation using divided differences as follows. Let xj = j∆x and
tm = m∆t, and note that

∂u

∂t
(xj , tm) ≈ u(xj , tm+1)− u(xj , tm)

∆t

and
∂2u

∂x2
(xj , tm) ≈ u(xj+1, tm)− 2u(xj , tm) + u(xj−1, tm)

(∆x)2
.

This then motivates us to approximate the heat equation (101) at the point (xj , tm) by the following
numerical method, called the explicit Euler scheme:

Um+1
j − Um

j

∆t
=

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
, j = 0,±1,±2, . . .

U0
j = u0(xj), j = 0,±1,±2, . . .

Equivalently, we can write this as

Um+1
j = Um

j + µ(Um
j+1 − 2Um

j + Um
j−1),

U0
j = u0(xj), j = 0,±1,±2, . . .

where µ = ∆t
(∆x)2

. Thus, Um+1
j can be explicitly calculated, for all j = 0,±1,±2, . . . , from the values

Um
j+1, U

m
j , and Um

j−1 from the previous time level.
Alternatively, if instead of time level m the expression on the right-hand side of the explicit Euler

scheme is evaluated on the time level m+ 1, we arrive at the implicit Euler scheme:

Um+1
j − Um

j

∆t
=

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
, j = 0,±1,±2, . . .
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U0
j = u0(xj), j = 0,±1,±2, . . . .

The explicit and implicit Euler schemes are special cases of a more general one-parameter family of
numerical methods for the heat equation, called the θ-method, which is a convex combination of the
two Euler schemes, with a parameter θ ∈ [0, 1]. The θ-method is defined as follows:

Um+1
j − Um

j

∆t
= (1− θ)

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
+ θ

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
,

U0
j = u0(xj), j = 0,±1,±2, . . . ,

where θ ∈ [0, 1] is a parameter. For θ = 0 it coincides with the explicit Euler scheme, for θ = 1 it is the
implicit Euler scheme, and for θ = 1/2 it is the arithmetic average of the two Euler schemes, and is called
the Crank–Nicolson scheme.

7.1.1 Accuracy of the θ-method

Our aim in this section is to assess the accuracy of the θ-method for the Dirichlet initial-boundary-value
problem for the heat equation. The consistency error of the θ-method is defined by

Tm
j =

um+1
j − umj

∆t
− (1− θ)

umj+1 − 2umj + umj−1

(∆x)2
− θ

um+1
j+1 − 2um+1

j + um+1
j−1

(∆x)2
,

where
umj ≡ u(xj , tm).

We shall explore the size of the consistency error by performing a Taylor series expansion about a suitable
point. We begin by noting that

um+1
j =

[

u+
1

2
∆tut +

1

2

(

1

2
∆t

)2

utt +
1

6

(

1

2
∆t

)3

uttt + · · ·
]m+1/2

j

,

umj =

[

u− 1

2
∆tut +

1

2

(

1

2
∆t

)2

utt −
1

6

(

1

2
∆t

)3

uttt + · · ·
]m+1/2

j

.

Therefore,
um+1
j − umj

∆t
=

[

ut +
1

24
(∆t)2 uttt + · · ·

]m+1/2

j

.

Similarly,

(1− θ)
umj+1 − 2umj + umj−1

(∆x)2
+ θ

um+1
j+1 − 2um+1

j + um+1
j−1

(∆x)2

=

[

uxx +
1

12
(∆x)2 uxxxx +

2

6!
(∆x)4 uxxxxxx + · · ·

]m+1/2

j

+

(

θ − 1

2

)

∆t

[

uxxt +
1

12
(∆x)2 uxxxxt + · · ·

]m+1/2

j

+
1

8
(∆t)2 [uxxtt + · · · ]m+1/2

j .
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Combining these, we deduce that

Tm
j = [ut − uxx]

m+1/2
j

+

[(

1

2
− θ

)

∆t uxxt −
1

12
(∆x)2 uxxxx

]m+1/2

j

+

[

1

24
(∆t)2 uttt −

1

8
(∆t)2 uxxtt

]m+1/2

j

+

[

1

12

(

1

2
− θ

)

∆t (∆x)2 uxxxxt −
2

6!
(∆x)4 uxxxxxx

]m+1/2

j

+ · · · .

Note however that the term contained in the box vanishes, as u is a solution to the heat equation. Hence,

Tm
j =

{

O
(

(∆x)2 + (∆t)2
)

for θ = 1/2,
O
(

(∆x)2 +∆t
)

for θ 6= 1/2.

Thus, in particular, the explicit and implicit Euler schemes have consistency error

Tm
j = O

(

(∆x)2 +∆t
)

,

while the Crank–Nicolson scheme has consistency error

Tm
j = O

(

(∆x)2 + (∆t)2
)

.

7.2 Stability of finite difference schemes

Lecture 14In order to be able to replicate the stability property (104) at the discrete level, we require an appro-
priate notion of stability. We shall say that a finite difference scheme for the unsteady heat equation is
(practically) stable in the ℓ2 norm, if

‖Um‖ℓ2 ≤ ‖U0‖ℓ2 , m = 1, . . . ,M,

where

‖Um‖ℓ2 =



∆x

∞
∑

j=−∞

|Um
j |2




1/2

.

We shall use the semidiscrete Fourier transform to explore the stability of finite difference schemes.

Definition 23 The semidiscrete Fourier transform of a function U defined on the infinite mesh xj =
j∆x, j = 0,±1,±2, . . ., is:

Û(k) = ∆x

∞
∑

j=−∞

Uj e
−ıkxj , k ∈ [−π/∆x, π/∆x].

We shall also require the inverse semidiscrete Fourier transform, as well the discrete counterpart of
Parseval’s identity that connect these transforms, analogously as in the case of the Fourier transform and
its inverse considered earlier.

Definition 24 Let Û be defined on the interval [−π/∆x, π/∆x]. The inverse semidiscrete Fourier trans-
form of Û is defined by

Uj :=
1

2π

∫ π/∆x

−π/∆x
Û(k) eıkj∆x dk.
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We then have the following result.

Lemma 7 (Discrete Parseval’s identity) Let

‖U‖ℓ2 =



∆x

∞
∑

j=−∞

|Uj |2




1/2

and ‖Û‖L2 =

(

∫ π/∆x

−π/∆x
|Û(k)|2 dk

)1/2

.

If ‖U‖ℓ2 is finite, then also ‖Û‖L2 is finite, and

‖U‖ℓ2 =
1√
2π

‖Û‖L2 .

The proof of this result is very similar to the proof of Lemma 6, and we shall therefore leave it to the
reader as an exercise.

7.2.1 Stability analysis of the explicit Euler scheme

We are now ready to embark on the stability analysis of the explicit Euler scheme. By inserting

Um
j =

1

2π

∫ π/∆x

−π/∆x
eıkj∆xÛm(k) dk

into the Euler scheme we deduce that

1

2π

∫ π/∆x

−π/∆x
eıkj∆x Ûm+1(k)− Ûm(k)

∆t
dk =

1

2π

∫ π/∆x

−π/∆x

eık(j+1)∆x − 2eıkj∆x + eık(j−1)∆x

(∆x)2
Ûm(k) dk.

Therefore, we have that

1

2π

∫ π/∆x

−π/∆x
eıkj∆x Ûm+1(k)− Ûm(k)

∆t
dk =

1

2π

∫ π/∆x

−π/∆x
eıkj∆x eık∆x − 2 + e−ık∆x

(∆x)2
Ûm(k) dk.

By comparing the left-hand side with the right-hand side we deduce that

Ûm+1(k) = Ûm(k) + µ(eık∆x − 2 + e−ık∆x)Ûm(k)

for all wave numbers k ∈ [−π/∆x, π/∆x], and we thus deduce that

Ûm+1(k) = λ(k)Ûm(k),

where
λ(k) = 1 + µ(eık∆x − 2 + e−ık∆x)

is the amplification factor and

µ :=
∆t

(∆x)2

is called the CFL number (after Richard Courant, Kurt Friedrichs, and Hans Levy, who first performed
an analysis of this kind).13 By the discrete Parseval identity stated in Lemma 7 we have that

‖Um+1‖ℓ2 =
1√
2π

‖Ûm+1‖L2

=
1√
2π

‖λÛm‖L2

≤ 1√
2π

max
k

|λ(k)| ‖Ûm‖L2

= max
k

|λ(k)| ‖Um‖ℓ2 .

13Richard Courant, Kurt Friedrichs, and Hans Lewy (Über die partiellen Differenzengleichungen der mathematischen

Physik. Mathematische Annalen, 100:32–74, 1928).
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In order to mimic the bound (104) we would like to ensure that

‖Um+1‖ℓ2 ≤ ‖Um‖ℓ2 , m = 0, 1, . . . ,M − 1.

Thus we demand that
max
k

|λ(k)| ≤ 1,

i.e., that
max
k

|1 + µ(eık∆x − 2 + e−ık∆x)| ≤ 1.

Using Euler’s formula
eıϕ = cosϕ+ ı sinϕ

and the trigonometric identity

1− cosϕ = 2 sin2
ϕ

2

we can restate this as follows:

max
k

∣

∣

∣

∣

1− 4µ sin2
(

k∆x

2

)∣

∣

∣

∣

≤ 1.

Equivalently, we need to ensure that

−1 ≤ 1− 4µ sin2
(

k∆x

2

)

≤ 1 ∀k ∈ [−π/∆x, π/∆x].

This holds if, and only if, µ = ∆t
(∆x)2 ≤ 1

2 . Thus we have shown the following result.

Theorem 24 Suppose that Um
j is the solution of the explicit Euler scheme

Um+1
j − Um

j

∆t
=

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
, j = 0,±1,±2, . . . ,

U0
j = u0(xj), j = 0,±1,±2, . . . ,

and µ = ∆t
(∆x)2

≤ 1
2 . Then,

‖Um‖ℓ2 ≤ ‖U0‖ℓ2 , m = 1, 2, . . . ,M. (106)

In other words the explicit Euler scheme is conditionally practically stable, the condition for
stability being that µ = ∆t/∆x2 ≤ 1/2. One can also show that if µ > 1/2, then (106) will fail. In other
words, once ∆x has been chosen, one must choose ∆t so that ∆t/∆x2 ≤ 1/2 in order to ensure that the
bound (106) holds.

7.2.2 Stability analysis of the implicit Euler scheme

We shall now perform a similar analysis for the implicit Euler scheme for the heat equation (101),
which is defined as follows:

Um+1
j − Um

j

∆t
=

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
, j = 0,±1,±2, . . .

U0
j = u0(xj), j = 0,±1,±2, . . . .

Equivalently,
Um+1
j − µ(Um+1

j+1 − 2Um+1
j + Um+1

j−1 ) = Um
j
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U0
j = u0(xj), j = 0,±1,±2, . . . ,

where, again,

µ =
∆t

(∆x)2
.

Using an identical argument as for the explicit Euler scheme, we find that the amplification factor is
now

λ(k) =
1

1 + 4µ sin2
(

k∆x
2

) .

Clearly,
max
k

|λ(k)| ≤ 1

for all values of

µ =
∆t

(∆x)2
.

Thus we have the following result.

Theorem 25 Suppose that Um
j is the solution of the implicit Euler scheme

Um+1
j − Um

j

∆t
=

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
, j = 0,±1,±2, . . . ,

U0
j = u0(xj), j = 0,±1,±2, . . . .

Then, for all ∆t > 0 and ∆x > 0,

‖Um‖ℓ2 ≤ ‖U0‖ℓ2 , m = 1, 2, . . . ,M. (107)

In other words, the implicit Euler scheme is unconditionally practically stable, meaning that the
bound (107) holds without any restrictions on ∆x and ∆t.

7.3 Von Neumann stability

Start of
optional
material

In certain situations, practical stability is too restrictive and we need a less demanding notion of stability.
The one below, due to John von Neumann, is called von Neumann stability.

Definition 25 We shall say that a finite difference scheme for the unsteady heat equation on the time
interval [0, T ] is von Neumann stable in the ℓ2 norm, if there exists a positive constant C = C(T )
such that

‖Um‖ℓ2 ≤ C‖U0‖ℓ2 , m = 1, . . . ,M =
T

∆t
,

where

‖Um‖ℓ2 =



∆x

∞
∑

j=−∞

|Um
j |2




1/2

.

Clearly, practical stability implies von Neumann stability, with stability constant C = 1. As the
stability constant C in the definition of von Neumann stability may dependent on T , and when it does
then, typically, C(T ) → +∞ as T → +∞, it follows that, unlike practical stability which is meaningful
for m = 1, 2, . . . , von Neumann stability makes sense on finite time intervals [0, T ] (with T < ∞) and for
the limited range of 0 ≤ m ≤ T/∆t, only.

Von Neumann stability of a finite difference scheme can be easily verified by using the following result.
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Lemma 8 Suppose that the semidiscrete Fourier transform of the solution {Um
j }∞j=1, m = 0, 1, . . . , T

∆t ,
of a finite difference scheme for the heat equation satisfies

Ûm+1(k) = λ(k)Ûm(k)

and
|λ(k)| ≤ 1 + C0∆t ∀k ∈ [−π/∆x, π/∆x].

Then the scheme is von Neumann stable. In particular, if C0 = 0 then the scheme is practically stable.

Proof: By Parseval’s identity for the semidiscrete Fourier transform we have that

‖Um+1‖ℓ2 =
1√
2π

‖Ûm+1‖L2

=
1√
2π

‖λÛm‖L2

≤ 1√
2π

max
k

|λ(k)| ‖Ûm‖L2

= max
k

|λ(k)| ‖Um‖ℓ2 .

Hence,
‖Um+1‖ℓ2 ≤ (1 + C0∆t)‖Um‖ℓ2 , m = 0, 1, . . . ,M − 1.

Therefore,
‖Um‖ℓ2 ≤ (1 + C0∆t)m‖U0‖ℓ2 , m = 1, . . . ,M.

As 1 + C0∆t ≤ eC0∆t and (1 + C0∆t)m ≤ eC0m∆t ≤ eC0T for all M = 1, . . . ,M , it follows that

‖Um‖ℓ2 ≤ eC0T ‖U0‖ℓ2 , m = 1, 2, . . . ,M,

meaning that von Neumann stability holds, with stability constant C = eC0T . ⋄
End of
optional
material

7.4 Stability of the θ-scheme

The explicit and implicit Euler schemes are special cases of a more general one-parameter family of
numerical methods for the heat equation, called the θ-scheme, which is a convex combination of the two
Euler schemes, with a parameter θ ∈ [0, 1]. The θ-scheme is defined as follows:

Um+1
j − Um

j

∆t
= (1− θ)

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
+ θ

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
,

U0
j = u0(xj), j = 0,±1,±2, . . . ,

where θ ∈ [0, 1] is a parameter. For θ = 0 it coincides with the explicit Euler scheme, for θ = 1 it is the
implicit Euler scheme, and for θ = 1/2 it is the arithmetic average of the two Euler schemes, and is called
the Crank–Nicolson scheme.

To analyse the practical stability of the θ-scheme in the ℓ2 norm, we shall use Lemma 8 with C0 = 0.
Suppose that

Um
j = [λ(k)]m eıkxj .
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Substitution of this ‘Fourier mode’ into the θ-scheme gives the equality

λ(k)− 1 = −4(1− θ)µ sin2
(

k∆x

2

)

− 4θ µ λ(k) sin2
(

k∆x

2

)

.

Therefore,

λ(k) =
1− 4(1 − θ)µ sin2

(

k∆x
2

)

1 + 4θµ sin2
(

k∆x
2

) .

For practical stability, we demand that

|λ(k)| ≤ 1 ∀k ∈ [−π/∆x, π/∆x],

which holds if, and only if,
2(1− 2θ)µ ≤ 1.

Thus we have shown that:

• For θ ∈ [1/2, 1] the θ-scheme is unconditionally practically stable;

• For θ ∈ [0, 1/2) the θ-scheme is conditionally practically stable, the stability condition being
that

µ ≤ 1

2(1 − 2θ)
.

7.5 Boundary-value problems for parabolic problems

Lecture 15When a parabolic partial differential equation is considered on a bounded spatial domain, one needs to
impose boundary conditions on the boundary of the domain. Here we shall concentrate on the simplest
case, when a Dirichlet boundary is imposed at both endpoints of the spatial domain, which we take
to be the nonempty bounded open interval (a, b). We shall therefore consider the following Dirichlet
initial–boundary value problem for the heat equation:

∂u

∂t
=

∂2u

∂x2
, a < x < b, 0 < t ≤ T,

subject to the initial condition
u(x, 0) = u0(x), x ∈ [a, b],

and the following Dirichlet boundary conditions at x = a and x = b:

u(a, t) = A(t), u(b, t) = B(t), t ∈ (0, T ].

Remark 6 We note in passing that the Neumann initial-boundary-value problem for the heat equation
is:

∂u

∂t
=

∂2u

∂x2
, a < x < b, 0 < t ≤ T,

subject to the initial condition
u(x, 0) = u0(x), x ∈ [a, b],

and the Neumann boundary conditions

∂u

∂x
(a, t) = A(t),

∂u

∂x
(b, t) = B(t), t ∈ (0, T ].

An example of a mixed Dirichlet–Neumann initial-boundary-value problem for the heat equation is

∂u

∂t
=

∂2u

∂x2
, a < x < b, 0 < t ≤ T,
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subject to the initial condition
u(x, 0) = u0(x), x ∈ [a, b],

and the mixed Dirichlet–Neumann boundary conditions

u(a, t) = A(t),
∂u

∂x
(b, t) = B(t), t ∈ (0, T ].

7.5.1 θ-scheme for the Dirichlet initial-boundary-value problem

Our aim in this section is to construct a numerical approximation of the Dirichlet initial-boundary-value
problem based on the θ-scheme. Let ∆x = (b− a)/J and ∆t = T/M , and define

xj := a+ j∆x, j = 0, . . . , J, tm := m∆t, m = 0, . . . ,M.

We approximate the Dirichlet initial-boundary-value problem with the following θ-scheme:

Um+1
j − Um

j

∆t
= (1− θ)

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
+ θ

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
,

for j = 1, . . . , J − 1, m = 0, 1, . . . ,M − 1,

U0
j = u0(xj), j = 1, . . . , J − 1,

Um+1
0 = A(tm+1), Um+1

J = B(tm+1), m = 0, . . . ,M − 1.

In order to implement this scheme it is helpful to rewrite it as a system of linear algebraic equations to
compute the values of the approximate solution on time-level m+1 from those on time-level m. We have
that

[1− θµδ2]Um+1
j = [1 + (1− θ)µδ2]Um

j ,

U0
j = u0(xj), 1 ≤ j ≤ J − 1,

Um+1
0 = A(tm+1), Um+1

J = B(tm+1), 0 ≤ m ≤ M − 1,

where
δ2Uj := Uj+1 − 2Uj + Uj−1.

The matrix form of this system of linear equations is therefore the following. We consider the sym-
metric tridiagonal (J − 1)× (J − 1) matrix:

A =

















−2 1 0 0 0 . . . 0 0 0
1 −2 1 0 0 . . . 0 0 0
0 1 −2 1 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . 1 −2 1
0 0 0 0 0 . . . 0 1 −2

















.

Let I be the (J − 1) × (J − 1) identity matrix I = diag(1, 1, 1, . . . , 1, 1). Then, the θ-scheme can be
written as

(I − θµA)Um+1 = (I + (1− θ)µA)Um + θµFm+1 + (1− θ)µFm

for m = 0, 1, . . . ,M − 1, where

Um = (Um
1 , Um

2 , . . . , Um
J−2, U

m
J−1)

T

and
Fm = (A(tm), 0, . . . , 0, B(tm))T.
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Matlab code for the Crank–Nicolson scheme

% cn.m - Crank--Nicolson scheme for the heat equation.

% Save this file as cn.m

% Run this by typing cn at the Matlab command line, and choose the value of N when prompted.

%

N = input(’N? ’);

dx = 1/N; x = dx:dx:1-dx; N1 = N-1;

dt = dx/2; mu = dt/dx^2;

% u = max([1-2.*abs(0.5-x); 0*x])’;

u = (sin(pi*x).*exp(3*x))’;

x1 = [0, x, 1];

u1 = [0, u’, 0];

hold off; plot(x1,u1,’linewidth’,2)

text(0.71,0.75,’t = 0’,’fontsize’,15)

A = (-2.) * eye(N1);

for i = 1:N1-1

A(i,i+1) = 1; A(i+1,i) = 1;

end

A1 = eye(N1) - (1/2) * mu * A;

A2 = eye(N1) + (1/2) * mu * A;

grid;

hold on;

pause;

for i = 1:50

u = A1\(A2 * u);

u1 = [0, u’, 0];

plot(x1,u1,’b’,’linewidth’,2);

text(.41,0.45,’t=20*dt’,’fontsize’,15)

end

7.5.2 The discrete maximum principle

Lecture 16We shall now try to prove a bound, analogous to (103), for the θ-scheme

Theorem 26 (Discrete maximum principle for the θ-scheme)
The θ-scheme for the Dirichlet initial-boundary-value problem for the heat equation, with 0 ≤ θ ≤ 1 and
µ(1− θ) ≤ 1

2 , yields a sequence of numerical approximations {Um
j }j=0,...,J ; m=0,...,M satisfying

Umin ≤ Um
j ≤ Umax

where
Umin = min

{

min{Um
0 }Mm=0, min{U0

j }Jj=0, min{Um
J }Mm=0

}

and
Umax = max

{

max{Um
0 }Mm=0, max{U0

j }Jj=0, max{Um
J }Mm=0

}

.

Proof: We rewrite the θ-scheme as

(1 + 2θµ)Um+1
j = θµ

(

Um+1
j+1 + Um+1

j−1

)

+ (1− θ)µ
(

Um
j+1 + Um

j−1

)

+ [1− 2(1− θ)µ]Um
j , (108)

and recall that, by hypothesis,

θµ ≥ 0 (1− θ)µ ≥ 0, 1− 2(1− θ)µ ≥ 0.

Suppose that U attains its maximum value at an internal mesh point Um+1
j , 1 ≤ j ≤ J−1, 0 ≤ m ≤ M−1.

If this is not the case, the proof is complete. We define

U⋆ = max{Um+1
j+1 , Um+1

j−1 , Um
j+1, U

m
j−1, U

m
j }.
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Then,

(1 + 2θµ)Um+1
j ≤ 2θµU⋆ + 2(1− θ)µU⋆+ [1− 2(1− θ)µ]U⋆ = (1 + 2θµ)U⋆, (109)

and therefore
Um+1
j ≤ U⋆.

However, also,

U⋆ ≤ Um+1
j ,

as Um+1
j is assumed to be the overall maximum value. Hence,

Um+1
j = U⋆.

Thus the maximum value is also attained at the points neighbouring (xj , tm+1) present in the scheme.14

The same argument applies to these neighbouring points, and we can then repeat this process until
the boundary at x = a or x = b or at t = 0 is reached, and this will happen in a finite number of
steps. The maximum is therefore attained at a boundary point. Similarly, the minimum is attained at a
boundary point. ⋄

In summary then, for

µ(1− θ) ≤ 1

2

the θ-scheme satisfies the discrete maximum principle. This is clearly more demanding than the ℓ2-
stability condition:

µ(1− 2θ) ≤ 1

2
for 0 ≤ θ ≤ 1

2 .

For example, the Crank-Nicolson scheme is unconditionally stable in the ℓ2 norm, yet it only satisfies the
discrete maximum principle when µ := ∆t

(∆x)2
≤ 1.

7.5.3 Convergence analysis of the θ-scheme in the maximum norm

We close our discussion of finite difference schemes for the heat equation (101) in one space-dimension
with the convergence analysis of the θ-scheme for the Dirichlet initial-boundary-value problem. We begin
by rewriting the scheme as follows:

(1 + 2θµ)Um+1
j = θµ

(

Um+1
j+1 + Um+1

j−1

)

+ (1− θ)µ
(

Um
j+1 + Um

j−1

)

+ [1− 2(1− θ)µ]Um
j .

The scheme is considered subject to the initial condition

U0
j = u0(xj), j = 1, . . . , J − 1,

and the boundary conditions

Um+1
0 = A(tm+1), Um+1

J = B(tm+1), m = 0, . . . ,M − 1.

14To see that the maximum value Um+1
j = U∗ is attained at each of points neighbouring (xj , tm+1) present in the scheme,

first observe that if: (a) θ = 0, then Um+1
j+1 and Um+1

j−1 are absent from the right-hand side of (108); (b) if θ = 1 then Um
j+1

and Um
j−1 are absent from the right-hand side of (108); (c) if 2(1 − θ)µ = 1, then Um

j is absent from the right-hand side of
(108), and (d) if θ /∈ {0, 1, 1− 1

2µ
}, then Um+1

j+1 , Um+1
j−1 , Um

j+1, U
m
j−1, and Um

j are all present on the right-hand side of (108).
There are therefore four different cases to be discussed: (a), (b), (c) and (d). Suppose that we are in case (d) (the cases (a),
(b) and (c) being dealt with identically); if one of Um+1

j+1 , Um+1
j−1 , Um

j+1, U
m
j−1, and Um

j were strictly smaller than Um+1
j = U∗,

then, by returning to the transition from (108) to (109), we would deduce (109) from (108), but now with the ≤ symbol in
(109) replaced by <, which would then imply that Um+1

j < U∗. This would, however, contradict the equality Um+1
j = U∗

we have already proved. Thus the value Um+1 = U∗ is attained at each of the five point neighbouring (xj , tm+1).
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The consistency error for the θ-scheme is defined by

Tm
j =

um+1
j − umj

∆t
− (1− θ)

umj+1 − 2umj + umj−1

(∆x)2
− θ

um+1
j+1 − 2um+1

j + um+1
j−1

(∆x)2
,

where umj ≡ u(xj , tm), and therefore

(1 + 2θµ)um+1
j = θµ

(

um+1
j+1 + um+1

j−1

)

+ (1− θ)µ
(

umj+1 + umj−1

)

+ [1− 2(1− θ)µ]umj +∆tTm
j .

Let us define the global error, that is the discrepancy at a mesh-point between the exact solution
and its numerical approximation, by

emj := u(xj , tm)− Um
j .

It then follows that
em+1
0 = 0, em+1

J = 0, e0j = 0, j = 0, . . . , J ,

and

(1 + 2θµ) em+1
j = θµ

(

em+1
j+1 + em+1

j−1

)

+ (1− θ)µ
(

emj+1 + emj−1

)

+ [1− 2(1 − θ)µ] emj +∆tTm
j .

We define,
Em = max

0≤j≤J
|emj | and Tm = max

0≤j≤J
|Tm

j |.

As, by hypothesis,
θµ ≥ 0, (1− θ)µ ≥ 0, 1− 2(1 − θ)µ ≥ 0,

we have that
(1 + 2θµ)Em+1 ≤ 2θµEm+1 + Em +∆tTm.

Hence,
Em+1 ≤ Em +∆t Tm.

As E0 = 0, upon summation,

Em ≤ ∆t

m−1
∑

n=0

T n

≤ m∆t max
0≤n≤m−1

T n

≤ T max
0≤m≤M

max
1≤j≤J−1

|Tm
j |,

which then implies that

max
0≤j≤J

max
0≤m≤M

|u(xj , tm)− Um
j | ≤ T max

1≤j≤J−1
max

0≤m≤M
|Tm

j |.

Recall that the consistency error of the θ-scheme is

Tm
j =

{

O
(

(∆x)2 + (∆t)2
)

for θ = 1/2,
O
(

(∆x)2 +∆t
)

for θ 6= 1/2.

It therefore follows that for the explicit and implicit Euler schemes, which have consistency error

Tm
j = O

(

(∆x)2 +∆t
)

,
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one has the following bound on the global error:

max
0≤j≤J

max
0≤m≤M

|u(xj , tm)− Um
j | ≤ Const.

(

(∆x)2 +∆t
)

,

while for the Crank–Nicolson scheme, which has consistency error

Tm
j = O

(

(∆x)2 + (∆t)2
)

,

one has
max
0≤j≤J

max
0≤m≤M

|u(xj , tm)− Um
j | ≤ Const.

(

(∆x)2 + (∆t)2
)

.

The results developed in this section can be easily extended to multidimensional axiparallel domains,
such as rectangular or L-shaped domains in two space-dimensions whose edges are parallel with the x and
y, axes, or cuboid-shaped domains in three space-dimensions whose faces are parallel with the co-ordinate
planes. For more complicated computational domains, such as those with nonaxiparallel or curved faces,
finite difference meshes with uneven spacing need to be used for points inside the computational domain
that are closest to the boundary of the domain, or if a mesh with even spacing is used, then ‘ghost-points’,
which lie outside the computational domains, need to be introduced. For further details, we refer, for
example, to R. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations.
SIAM, 2007. ISBN: 978-0-898716-29-0; or to K.W. Morton and D.F. Mayers, Numerical Solution of
Partial Differential Equations: An Introduction, 2nd Edition, CUP, 2005. ISBN: 978-0-521607-93-3.

In the next section we shall confine ourselves to discussing the construction of finite difference schemes
for the unsteady heat-equation in two space-dimensions on a rectangular spatial domain.

8 Finite difference approximation in two space-dimensions

Start of
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material

Consider the heat equation

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
, (x, y) ∈ Ω := (a, b)× (c, d), t ∈ (0, T ],

subject to the initial condition

u(x, y, 0) = u0(x, y), (x, y) ∈ [a, b] × [c, d],

and the Dirichlet boundary condition

u|∂Ω = B(x, y, t), (x, y) ∈ ∂Ω, t ∈ (0, T ],

where ∂Ω is the boundary of Ω. We begin by considering the explicit Euler finite difference approximation
of this problem.

8.1 The explicit Euler scheme

Let
δ2xUij := Ui+1,j − 2Uij + Ui−1,j ,

and
δ2yUij := Ui,j+1 − 2Uij + Ui,j−1.
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Let, further, ∆x := (b− a)/Jx, ∆y := (d− c)/Jy , ∆t := T/M , and define

xi = a+ i∆x, i = 0, . . . , Jx,

yj = c+ j∆y, j = 0, . . . , Jy ,

tm = m∆t, m = 0, . . . ,M.

The explicit Euler finite difference approximation of the unsteady heat equation on the space-time domain
Ω× [0, T ] is then the following:

Um+1
ij − Um

ij

∆t
=

δ2xU
m
ij

(∆x)2
+

δ2yU
m
ij

(∆y)2
,

for i = 1, . . . , Jx − 1, j = 1, . . . , Jy − 1, m = 0, 1, . . . ,M − 1, subject to the initial condition

U0
ij = u0(xi, yj), i = 0, . . . , Jx, j = 0, . . . , Jy,

and the boundary condition

Um
ij = B(xi, yj, tm), at the boundary mesh points, for m = 1, . . . ,M .

8.2 The implicit Euler scheme

The implicit Euler scheme is defined analogously. Let ∆x := (b− a)/Jx, ∆y := (d− c)/Jy , ∆t := T/M ,
and define

xi = a+ i∆x, i = 0, . . . , Jx,

yj = b+ j∆y, j = 0, . . . , Jy ,

tm = m∆t, m = 0, . . . ,M.

The implicit Euler finite difference scheme for the problem under consideration is then

Um+1
ij − Um

ij

∆t
=

δ2xU
m+1
ij

(∆x)2
+

δ2yU
m+1
ij

(∆y)2
,

for i = 1, . . . , Jx − 1, j = 1, . . . , Jy − 1, m = 0, 1, . . . ,M − 1, subject to the initial condition

U0
ij = u0(xi, yj), i = 0, . . . , Jx, j = 0, . . . , Jy,

and the boundary condition

Um+1
ij = B(xi, yj, tm+1), at the boundary mesh points, for m = 0, . . . ,M − 1.

8.3 The θ-scheme

By taking the convex combination of the explicit and implicit Euler schemes, with a parameter θ ∈ [0, 1],
with θ = 0 corresponding to the explicit Euler scheme and θ = 1 to the implicit Euler scheme, we obtain
a one-parameter family of schemes, called the θ-scheme. It is defined as follows.

Let ∆x := (b− a)/Jx, ∆y := (d− c)/Jy , ∆t := T/M , and, for θ ∈ [0, 1], consider the finite difference
scheme

Um+1
ij − Um

ij

∆t
= (1− θ)

(

δ2xU
m
ij

(∆x)2
+

δ2yU
m
ij

(∆y)2

)

+ θ

(

δ2xU
m+1
ij

(∆x)2
+

δ2yU
m+1
ij

(∆y)2

)

,
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for i = 1, . . . , Jx − 1, j = 1, . . . , Jy − 1, m = 0, 1, . . . ,M − 1, subject to the initial condition

U0
ij = u0(xi, yj), i = 0, . . . , Jx, j = 0, . . . , Jy,

and the boundary condition

Um+1
ij = B(xi, yj, tm+1), at the boundary mesh points, for m = 0, . . . ,M − 1.

The practical stability of the θ-scheme (in the absence of boundary conditions now, i.e. for the pure
initial-value problem rather than the initial-boundary-value problem) in the ℓ2 norm is easily assessed by
inserting the Fourier mode

Um
ij = [λ(kx, ky)]

m eı(kxxi+kyyj)

into the scheme. This gives

λ− 1 = −4(1− θ)

[

µx sin
2

(

kx∆x

2

)

+ µy sin
2

(

ky∆y

2

)]

− 4θλ

[

µx sin
2

(

kx∆x

2

)

+ µy sin
2

(

ky∆y

2

)]

,

where

µx =
∆t

(∆x)2
, µy =

∆t

(∆y)2
.

Hence,

λ =
1− 4(1− θ)

[

µx sin
2
(

kx∆x
2

)

+ µy sin
2
(

ky∆y
2

)]

1 + 4θ
[

µx sin
2
(

kx∆x
2

)

+ µy sin
2
(

ky∆y
2

)] .

For practical stability in the ℓ2 norm, we require that

|λ(kx, ky)| ≤ 1 ∀(kx, ky) ∈
[

− π

∆x
,
π

∆x

]

×
[

− π

∆y
,
π

∆y

]

.

Thus, we demand that

−1 ≤ 1− 4(1 − θ) [µx + µy]

1 + 4θ [µx + µy]
≤ 1,

which can be restated in the following equivalent form:

2(1− 2θ)(µx + µy) ≤ 1.

For example, the implicit Euler scheme (θ = 1) and the Crank–Nicolson scheme (θ = 1/2) are
unconditionally stable, while the explicit Euler scheme (θ = 0) is only conditionally stable, the stability
condition being that ∆x, ∆y, and ∆t satisfy the following inequality:

µx + µy ≡ ∆t

(

1

(∆x)2
+

1

(∆y)2

)

≤ 1

2
.

Under a suitable condition the θ-scheme for the initial-boundary-value problem also satisfies a discrete
maximum principle. To see this, we rewrite the θ-scheme as

(1 + 2θ(µx + µy))U
m+1
ij = (1− 2(1− θ)(µx + µy))U

m
ij

+ (1− θ)µx(U
m
i+1,j + Um

i−1,j)

+ (1− θ)µy(U
m
i,j+1 + Um

i,j−1)

+ θµx(U
m+1
i+1,j + Um+1

i−1,j)

+ θµy(U
m+1
i,j+1 + Um+1

i,j−1),
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for i = 1, . . . , Jx − 1, j = 1, . . . , Jy − 1, m = 0, 1, . . . ,M − 1, subject to the initial condition

U0
ij = u0(xi, yj), i = 0, . . . , Jx, j = 0, . . . , Jy,

and the boundary condition

Um
ij = B(xi, yj, tm), at the boundary mesh points, for m = 1, . . . ,M.

Theorem 27 Suppose that

(µx + µy)(1− θ) ≤ 1

2
, θ ∈ [0, 1].

Then, the θ-scheme satisfies the following discrete maximum principle:

Umin ≤ Um
ij ≤ Umax,

where
Umin = min

{

min{U0
ij}

Jx,Jy
i,j=0 , min{Um

ij }Mm=0|(xi,yj)∈∂Ω

}

and
Umax = max

{

max{U0
ij}

Jx,Jy
i,j=0 , max{Um

ij }Mm=0|(xi,yj)∈∂Ω

}

.

Proof: The proof proceeds by an obvious modification of the proof of the discrete maximum principle
for the θ-scheme in one space-dimension. �

In summary, then, for

(µx + µy)(1 − θ) ≤ 1

2

the θ-scheme satisfies the discrete maximum principle. This condition is more demanding than the one
for the ℓ2-stability of the scheme, which requires that

(µx + µy)(1− 2θ) ≤ 1

2
for 0 ≤ θ ≤ 1

2 .

For example, the Crank–Nicolson scheme is unconditionally stable in the ℓ2 norm, but for the discrete
maximum principle to hold we had to assume that

µx + µy =
∆t

(∆x)2
+

∆t

(∆y)2
≤ 1.

We close our discussion of the θ-scheme with its error analysis. The starting point is to rewrite the
scheme as follows:

(1 + 2θ(µx + µy))U
m+1
ij = (1− 2(1− θ)(µx + µy))U

m
ij

+ (1− θ)µx(U
m
i+1,j + Um

i−1,j)

+ (1− θ)µy(U
m
i,j+1 + Um

i,j−1)

+ θµx(U
m+1
i+1,j + Um+1

i−1,j)

+ θµy(U
m+1
i,j+1 + Um+1

i,j−1),

for i = 1, . . . , Jx − 1, j = 1, . . . , Jy − 1, m = 0, 1, . . . ,M − 1, subject to the initial condition

U0
ij = u0(xi, yj), i = 0, . . . , Jx, j = 0, . . . , Jy,

and the boundary condition

Um
ij = B(xi, yj, tm), at the boundary mesh points, for m = 1, . . . ,M.
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Suppose further that

(µx + µy)(1− θ) ≤ 1

2
, θ ∈ [0, 1].

The consistency error of the θ-scheme is defined as follows:

Tm
ij :=

um+1
ij − umij

∆t
− (1− θ)

(

δ2xu
m
ij

(∆x)2
+

δ2yu
m
ij

(∆y)2

)

− θ

(

δ2xu
m+1
ij

(∆x)2
+

δ2yu
m+1
ij

(∆y)2

)

,

where
umij ≡ u(xi, yj, tm).

By performing some elementary but tedious Taylor series expansions, one can deduce that

Tm
ij =

{

O
(

(∆x)2 + (∆y)2 + (∆t)2
)

θ = 1/2,
O
(

(∆x)2 + (∆y)2 +∆t
)

θ 6= 1/2.

It follows from the definition of the consistency error Tm
ij for the θ-scheme that

(1 + 2θ(µx + µy))u
m+1
ij = (1− 2(1− θ)(µx + µy))u

m
ij

+ (1− θ)µx(u
m
i+1,j + umi−1,j)

+ (1− θ)µy(u
m
i,j+1 + umi,j−1)

+ θµx(u
m+1
i+1,j + um+1

i−1,j)

+ θµy(u
m+1
i,j+1 + um+1

i,j−1)

+ ∆t Tm
ij ,

for i = 1, . . . , Jx − 1, j = 1, . . . , Jy − 1, m = 0, 1, . . . ,M − 1. We define the global error as

emij := u(xi, yj, tm)− Um
ij .

Then, e0ij = 0 and emij = 0 for (xi, yj) ∈ ∂Ω, and

(1 + 2θ(µx + µy))e
m+1
ij = (1− 2(1− θ)(µx + µy))e

m
ij

+ (1− θ)µx(e
m
i+1,j + emi−1,j)

+ (1− θ)µy(e
m
i,j+1 + emi,j−1)

+ θµx(e
m+1
i+1,j + em+1

i−1,j)

+ θµy(e
m+1
i,j+1 + em+1

i,j−1)

+ ∆t Tm
ij .

We further define,
Em := max

i,j
|emij | and Tm := max

i,j
|Tm

ij |.

As, by hypothesis,
1− 2(1− θ)(µx + µy) ≥ 0,

we have
(1 + 2θ(µx + µy))E

m+1 ≤ 2θ(µx + µy)E
m+1 + Em +∆tTm.

Hence,
Em+1 ≤ Em +∆t Tm, m = 0, 1, . . . ,M − 1.
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As E0 = 0, upon summation we deduce that

Em ≤ ∆t

m−1
∑

n=0

T n

≤ m∆t max
0≤n≤m−1

T n

≤ T max
0≤m≤M

max
1≤j≤J−1

|Tm
ij |,

and we have that
max
i,j

max
0≤m≤M

|u(xi, yj , tm)− Um
ij | ≤ T max

i,j
max

0≤m≤M
|Tm

ij |.

The explicit and implicit Euler schemes therefore satisfy:

max
i,j

max
0≤m≤M

|u(xi, yj, tm)− Um
i,j | ≤ Const.

(

(∆x)2 + (∆y)2 +∆t
)

,

where in the case of the explicit Euler scheme we are assuming that µx + µy ≤ 1
2 , while for the Crank–

Nicolson scheme we have that

max
i,j

max
0≤m≤M

|u(xi, yj , tm)− Um
ij | ≤ Const.

(

(∆x)2 + (∆y)2 + (∆t)2
)

,

assuming that µx + µy ≤ 1.

8.4 The alternating direction (ADI) method

Except for θ = 0 corresponding to the explicit Euler scheme, for all other values of θ ∈ (0, 1] the θ-scheme
is an implicit scheme, and its implementation therefore involves the solution of large systems of linear
algebraic equations. This is true, in particular, for the Crank–Nicolson scheme corresponding to θ = 1

2 .
Our objective here is to propose a more economical scheme, which replaces the tedious task of solving
such large systems of algebraic equations with the successive solution of smaller linear systems in the x
and y co-ordinate directions respectively, alternating between solves in the x and y co-ordinate directions.
The resulting finite difference scheme is called the alternating direction (or ADI) scheme. We describe
its construction starting from the Crank–Nicolson scheme, which has the form:

(

1− 1

2
µxδ

2
x − µy

1

2
δ2y

)

Um+1
ij =

(

1 +
1

2
µxδ

2
x + µy

1

2
δ2y

)

Um
ij ,

for i = 1, . . . , Jx − 1, j = 1, . . . , Jy − 1, m = 0, 1, . . . ,M − 1, subject to the initial condition

U0
ij = u0(xi, yj), i = 0, . . . , Jx, j = 0, . . . , Jy,

and the boundary condition

Um
ij = B(xi, yj, tm), at the boundary mesh points, for m = 1, . . . ,M.

Let us modify this scheme (subject to the same initial and boundary conditions) to:
(

1− 1

2
µxδ

2
x

)(

1− µy
1

2
δ2y

)

Um+1
ij =

(

1 +
1

2
µxδ

2
x

)(

1 + µy
1

2
δ2y

)

Um
ij .

By introducing the intermediate level Um+1/2, we can rewrite the last equality in the following equivalent
form:

(

1− 1

2
µxδ

2
x

)

U
m+1/2
ij =

(

1 +
1

2
µyδ

2
y

)

Um
ij , (1)

(

1− 1

2
µyδ

2
y

)

Um+1
ij =

(

1 +
1

2
µxδ

2
x

)

U
m+1/2
ij . (2)
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The equivalence is seen by applying

(

1 +
1

2
µxδ

2
x

)

to eq. (1) and

(

1− 1

2
µxδ

2
x

)

to eq. (2).

The stability in the ℓ2 norm of the ADI scheme (for the pure initial-value problem now, i.e. with no
boundary conditions assumed) is easily seen by substituting the Fourier mode

Um
ij = [λ(kx, ky)]

meı(kxxi+kyyj)

into the scheme. Hence,

λ(kx, ky) =

(

1− 2µx sin
2 1
2kx∆x

) (

1− 2µy sin
2 1
2kx∆y

)

(

1 + 2µx sin
2 1
2kx∆x

) (

1 + 2µy sin
2 1
2kx∆y

) .

Clearly,

|λ(kx, ky)| ≤ 1 ∀(kx, ky) ∈
[

− π

∆x
,
π

∆x

]

×
[

− π

∆y
,
π

∆y

]

.

Consequently, the ADI scheme is unconditionally stable in the ℓ2 norm. The consistency error of the ADI
scheme can be shown (again, after tedious Taylor series expansions) to be

Tm
ij = O

(

(∆x)2 + (∆y)2 + (∆t)2
)

.

The ADI scheme satisfies a discrete maximum principle for µx ≤ 1 and µy ≤ 1. The proof of this is
similar to the case of the θ-scheme in one space-dimension (cf. the textbook by K.W. Morton and D.F.
Mayers, Numerical Solution of Partial Differential Equations: An Introduction, 2nd Edition, CUP, 2005.
ISBN: 978-0-521607-93-3. pp. 64–65).

End of
optional
material
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