Numerical Solution of Differential Equations: Problem Sheet 2 (of 4)

1. Consider the Runge-Kutta method $y_{n+1}=y_{n}+h\left(\alpha k_{1}+\beta k_{2}\right)$ where $k_{1}=f\left(x_{n}, y_{n}\right)$ and $k_{2}=f\left(x_{n}+\gamma h, y_{n}+\gamma h k_{1}\right)$, and where α, β, γ are real parameters.
(a) Show that there is a choice of these parameters such that the order of the method is 2 .
(b) Suppose that a second-order method of the above form is applied to the initial value problem $y^{\prime}=-\lambda y, y(0)=1$, where λ is a positive real number. Show that the sequence $\left(y_{n}\right)_{n \geq 0}$ is bounded if and only if $h \leq \frac{2}{\lambda}$.
Show further that, for such λ,

$$
\left|y\left(x_{n}\right)-y_{n}\right| \leq \frac{1}{6} \lambda^{3} h^{2} x_{n}, \quad n \geq 0
$$

2. a) What does it mean to say that a linear multistep method is zero-stable? Formulate an equivalent characterization of zero-stability of a linear multistep method in terms of the roots of its first characteristic polynomial.
b) Define the consistency error of a linear multistep method.
c) Show that there is a value of the parameter b such that the linear multistep method defined by the formula $y_{n+3}+(2 b-3)\left(y_{n+2}-y_{n+1}\right)-y_{n}=h b\left(f_{n+2}+f_{n+1}\right)$ is fourth-order accurate. Show further that the method is not zero-stable for this value of b.
3. A linear multistep method $\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{k} \beta_{j} f\left(x_{n+j}, y_{n+j}\right), n \geq 0$, for the numerical solution of the initial-value problem $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$, on the mesh $\left\{x_{j}: x_{j}=x_{0}+j h\right\}$ of uniform spacing $h>0$ is said to be absolutely stable for a certain h if, when applied to the model problem $y^{\prime}=\lambda y, y(0)=1$, with $\lambda<0$, on the interval $x \in[0, \infty)$, the sequence $\left(\left|y_{n}\right|\right)_{n \geq k}$ decays exponentially fast; i.e., $\left|y_{n}\right| \leq \mathrm{Ce}^{-\mu n}, n \geq k$, for some positive constants C and μ.
a) Show that a linear multistep method is absolutely stable for $h>0$ if, and only if, all roots z of its stability polynomial $\pi(z ; \bar{h})=\rho(z)-\bar{h} \sigma(z)$, where ρ and σ are the first and second characteristic polynomial of the linear multistep method respectively and $\bar{h}=\lambda h$, belong to the open unit disk $D=\{z:|z|<1\}$ in the complex plane.
b) For each of the following methods find the range of $h>0$ for which it is absolutely stable (when applied to $y^{\prime}=\lambda y, y(0)=1, \lambda<0, x \in[0, \infty)$):
b1) $y_{n+1}-y_{n}=h f\left(x_{n}, y_{n}\right)$;
b2) $y_{n+1}-y_{n}=h f\left(x_{n+1}, y_{n+1}\right)$;
b3) $y_{n+2}-y_{n}=\frac{1}{3} h\left(f\left(x_{n+2}, y_{n+2}\right)+4 f\left(x_{n+1}, y_{n+1}\right)+f\left(x_{n}, y_{n}\right)\right)$.
4. Which of the following would you regard a stiff initial-value problem?
a) $y^{\prime}=-\left(10^{5} \mathrm{e}^{-10^{4} x}+1\right)(y-1), y(0)=2$, on the interval $x \in[0,1]$. Note that the solution can be found in closed form:

$$
y(x)=\mathrm{e}^{10\left(\mathrm{e}^{-10^{4} x}-1\right)} \mathrm{e}^{-x}+1 .
$$

b)

$$
\begin{array}{ll}
y_{1}^{\prime}=-0.5 y_{1}+0.501 y_{2}, & y_{1}(0)=1.1 \\
y_{2}^{\prime}=0.501 y_{1}-0.5 y_{2}, & y_{2}(0)=-0.9
\end{array}
$$

on the interval $x \in[0,1]$.
5. Consider the θ-method

$$
y_{n+1}=y_{n}+h\left[(1-\theta) f_{n}+\theta f_{n+1}\right]
$$

for $\theta \in[0,1]$.
a) Show that the method is A-stable for $\theta \in[1 / 2,1]$.
b) A method is said to be $A(\alpha)$-stable, $\alpha \in(0, \pi / 2)$, if its region of absolute stability (as a set in the complex plane), contains the infinite wedge $\{\bar{h}: \pi-\alpha<\arg (\bar{h})<\pi+\alpha\}$. Find all $\theta \in[0,1]$ such that the θ-method is $A(\alpha)$-stable for some $\alpha \in(0, \pi / 2)$.

Note: In the next question you will find it helpful to exploit the following result, known as Schur's criterion. Consider the polynomial $\phi(z)=c_{k} z^{k}+\cdots+c_{1} z+c_{0}, c_{k} \neq 0, c_{0} \neq 0$, with complex coefficients. The polynomial ϕ is said to be a Schur polynomial if each of its roots z_{j} satisfies $\left|z_{j}\right|<1, j=1, \ldots, k$. Given the polynomial $\phi(z)$, as above, consider the polynomial

$$
\hat{\phi}(z)=\bar{c}_{0} z^{k}+\bar{c}_{1} z^{k-1}+\ldots+\bar{c}_{k-1} z+\bar{c}_{k}
$$

where \bar{c}_{j} denotes the complex conjugate of $c_{j}, j=1, \ldots, k$. Further, let us define

$$
\phi_{1}(z)=\frac{1}{z}[\hat{\phi}(0) \phi(z)-\phi(0) \hat{\phi}(z)] .
$$

Clearly ϕ_{1} has degree $\leq k-1$. The polynomial ϕ is a Schur polynomial if, and only if, $|\hat{\phi}(0)|>|\phi(0)|$ and ϕ_{1} is a Schur polynomial.
6. Show that the second-order backward differentiation method

$$
3 y_{n+2}-4 y_{n+1}+y_{n}=2 h f\left(x_{n+2}, y_{n+2}\right)
$$

is A-stable.

