Numerical Solution of Differential Equations: Problem Sheet 3 (of 4)

1. We consider the system of scalar ODEs

$$
\begin{equation*}
y^{\prime}=v, \quad v^{\prime}=f(y), \tag{1}
\end{equation*}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuously differentiable function.
(a) Let F be a primitive function of f. Show that $H(v, y)=v^{2} / 2-F(y)$ is a Hamiltonian of (1) and verify that it is indeed a first integral.
(b) Let $\boldsymbol{z}=\binom{y}{v}$ and $\boldsymbol{g}(\boldsymbol{z})=\binom{v}{f(y)}$, and let $\boldsymbol{\Psi}$ be the discrete evolution operator of the implicit midpoint rule associated with (1). Show that

$$
\boldsymbol{D}_{\boldsymbol{z}_{0}}\left(\boldsymbol{\Psi}\left(0, \boldsymbol{z}_{0}, h, \boldsymbol{g}\right)\right)=\frac{1}{1-\frac{h^{2}}{4} f^{\prime}(*)}\left(\begin{array}{cc}
1+\frac{h^{2}}{4} f^{\prime}(*) & h \\
h f^{\prime}(*) & 1+\frac{h^{2}}{4} f^{\prime}(*)
\end{array}\right)
$$

where $f^{\prime}(*):=f^{\prime}\left(\frac{y_{0}+y_{1}}{2}\right)$.
(c) Hence deduce that the implicit midpoint rule is symplectic.

Suppose that we have discrete data $\left\{U_{j}\right\}$ defined on an infinite grid $x_{j}=j \Delta x, j=0, \pm 1, \pm 2, \ldots$ Let δ and μ be the discrete differentiation and smoothing operators defined by

$$
(\delta U)_{j}=\left(U_{j+1}-U_{j-1}\right) /(2 \Delta x), \quad(\mu U)_{j}=\left(U_{j+1}+U_{j-1}\right) / 2
$$

2. Determine the functions $\delta U, \delta V, \mu U, \mu V$ for $U=(\ldots, 1,-1,1,-1,1,-1,1, \ldots)$ and $V=$ $(\ldots, 1,0,-1,0,1,0,-1,0, \ldots)$.
3. Determine what effect δ and μ have on the function U defined by $U_{j}=\mathrm{e}^{\imath k x_{j}}, j=0, \pm 1, \pm 2, \ldots$, where k is a real constant (the wave number).
4. The semidiscrete Fourier transform of a function U defined on the infinite grid $x_{j}=j \Delta x$, $j=0, \pm 1, \pm 2, \ldots$, is the function $k \mapsto \hat{U}(k), k \in[-\pi / \Delta x, \pi / \Delta x]$, defined by

$$
\hat{U}(k)=\Delta x \sum_{j=-\infty}^{\infty} \mathrm{e}^{-\imath k x_{j}} U_{j}
$$

[The reason for the restriction on k is that the wave numbers $|k|>\pi / \Delta x$ are not resolvable on a grid of spacing Δx; this is the phenomenon of aliasing.]
Show that the inverse of the semidiscrete Fourier transform is given by the formula

$$
U_{j}=\frac{1}{2 \pi} \int_{-\pi / \Delta x}^{\pi / \Delta x} \mathrm{e}^{\imath k j \Delta x} \hat{U}(k) \mathrm{d} k
$$

Describe the relationship between $\hat{U}(k)$, and $\widehat{\delta U}(k)$ and $\widehat{\mu U}(k)$. [Note that this is a restatement of Question 3.]

The ratios $\widehat{\delta U} / \hat{U}$ and $\widehat{\mu U} / \hat{U}$ are referred to as Fourier multipliers. Sketch the graphs of these Fourier multipliers as functions of $k \in[-\pi / \Delta x, \pi / \Delta x]$.
One would think that applying μ repeatedly to U should lead to a function that is much smoother than U. Explain this effect by considering a sketch of the multiplier function $\widehat{\mu^{m} U} / \hat{U}$ for $m \gg 1$. Your analysis should reveal that taking successive powers of μ is not a perfect smoothing procedure. Explain.
5. The $\ell_{2}(-\infty, \infty)$ norm of U and the $L_{2}(-\pi / \Delta x, \pi / \Delta x)$ norm of \hat{U} are defined, respectively, by

$$
\|U\|_{\ell_{2}}=\left(\Delta x \sum_{j=-\infty}^{\infty}\left|U_{j}\right|^{2}\right)^{1 / 2}, \quad\|\hat{U}\|_{L_{2}}=\left(\int_{-\pi / \Delta x}^{\pi / \Delta x}|\hat{U}(k)|^{2} \mathrm{~d} k\right)^{1 / 2}
$$

Prove Parseval's identity:

$$
\|U\|_{\ell_{2}}=\frac{1}{\sqrt{2 \pi}}\|\hat{U}\|_{L_{2}}
$$

6. In the lectures we considered the simplest finite difference approximation of the heat equation $u_{t}=u_{x x}$, given by

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{\Delta t}=\frac{U_{j+1}^{n}-2 U_{j}^{n}+U_{j-1}^{n}}{(\Delta x)^{2}}, \quad j=\ldots,-2,-1,0,1,2, \ldots ; \quad n=0,1,2, \ldots
$$

What would the analogous difference approximation be based on values of U at just every other point in the x direction, i.e., U_{j+2}^{n}, U_{j}^{n} and U_{j-2}^{n} ? Now suppose that you create a new difference approximation from these two schemes by adding $1 / 2$ of the first difference approximation to $1 / 2$ of the second difference approximation. Using Fourier analysis, explore how large Δt can be in relation to Δx if this last scheme is to be stable in the norm of $\ell_{2}=\ell_{2}(-\infty, \infty)$.

