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Introdution

Partial di�erential equations arise in the mathematial modelling of many physial, hemial

and biologial phenomena (e.g. dispersion of pollutants in lakes and rivers, spreading of

diseases, weather predition, et.). Very frequently the equations are so ompliated that

their solution by analytial means (e.g. by Laplae and Fourier transforms or in a form of

a series) is either impossible or impratiable, and one has to resort to numerial tehniques

instead.

These notes are devoted to the analysis of numerial methods for ellipti, paraboli and

hyperboli partial di�erential equations, by onsidering simple model problems. We onen-

trate on tehniques that are most widespread in pratie: �nite di�erene and �nite element

methods, although the analysis of �nite volume shemes is also touhed on. Preferene is

given to theoretial results onerning the stability and the auray of numerial methods

{ properties that are of key importane in pratial omputations.

The material overed in the notes had formed the basis of a 16-leture introdutory ourse

on the analysis of numerial algorithms for partial di�erential equations at the University

of Oxford given over the period 1992{1996. The bakground material from linear funtional

analysis and the theory of funtion spaes disussed herein is intentionally skethy in order

to enable the understanding of some of the key onepts, suh as stability and onvergene

of �nite di�erene and �nite element methods, with the bare minimum of analytial prereq-

uisites. Due to the time-onstraints imposed by the length of the original leture ourse,

a signi�ant portion of the theory of numerial algorithms for partial di�erential equations

is not being touhed upon; nevertheless, I hope that the notes will serve a helpful purpose

as a brief ompendium of basi theoretial information about this exiting and pratially

relevant �eld of researh. For further details, the reader is referred to the numerous exellent

books on the subjet, some of whih appear on the Reading List.

1 Elements of funtion spaes

The auray of numerial methods for the approximate solution of partial di�erential equa-

tions depends on their apabilities to represent the important qualitative features of the

(analytial) solution. One suh feature that has to be taken into aount in the onstrution

and the analysis of numerial methods is the smoothness of the solution, and this depends

on the smoothness of the data.

Preise assumptions about the smoothness of the data and of the orresponding solution an

be onveniently formulated by onsidering lasses of funtions with partiular di�erentia-

bility and integrability properties, alled funtion spaes. In this setion we present a brief

overview of de�nitions and basi results form the theory of funtion spaes whih will be used

throughout these notes, fousing, in partiular, on spaes of ontinuous funtions, spaes of
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integrable funtions, and Sobolev spaes.

1.1 Spaes of ontinuous funtions

In this setion, we desribe some simple funtion spaes that onsist of ontinuous and

ontinuously di�erentiable funtions. For the sake of notational onveniene, we introdue

the onept of a multi-index.

Let N denote the set of non-negative integers. An n-tuple � = (�

1

; : : : ; �

n

) 2 N

n

is alled

a multi{index. The non-negative integer j�j := �

1

+ : : : + �

n

is alled the length of the

multi{index � = (�

1

; : : : ; �

n

). We denote (0; : : : ; 0) by 0; learly j0j = 0.

Let

D

�

=

�

�

�x

1

�

�

1

: : :

�

�

�x

n

�

�

n

=

�

j�j

�x

�

1

1

: : : �x

�

n

n

:

EXAMPLE. Suppose that n = 3, and � = (�

1

; �

2

; �

3

), �

j

2 N , j = 1; 2; 3. Then for u, a

funtion of three variables x

1

; x

2

; x

3

,

X

j�j=3

D

�

u =

�

3

u

�x

3

1

+

�

3

u

�x

2

1

�x

2

+

�

3

u

�x

2

1

�x

3

+

�

3

u

�x

1

�x

2

2

+

�

3

u

�x

1

�x

3

2

+

�

3

u

�x

3

2

+

�

3

u

�x

1

�x

2

�x

3

+

�

3

u

�x

2

2

�x

3

+

�

3

u

�x

2

�x

2

3

+

�

3

u

�x

3

3

: �

Let 
 be an open set in R

n

, and let k 2 N . We denote by C

k

(
) the set of all ontinuous

real-valued funtions de�ned on 
 suh that D

�

u is ontinuous on 
 for all � = (�

1

; : : : ; �

n

)

with j�j � k. Assuming that 
 is a bounded open set, C

k

(

�


) will denote the set of all u in

C

k

(
) suh that D

�

u an be extended from 
 to a ontinuous funtion on

�


, the losure of

the set 
, for all � = (�

1

; : : : ; �

n

); j�j � k. C

k

(

�


) an be equipped with the norm

kuk

C

k

(

�


)

:=

X

j�j�k

sup

x2


jD

�

u(x)j :

In partiular, when k = 0, we shall write C(

�


) instead of C

0

(

�


);

kuk

C(

�


)

= sup

x2


ju(x)j = max

x2

�




ju(x)j :

Similarly, if k = 1,

kuk

C

1

(

�


)

=

X

j�j�1

sup

x2


jD

�

u(x)j
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= sup

x2


ju(x)j+

n

X

j=1

sup

x2


�

�

�

�

�u

�x

j

(x)

�

�

�

�

:

EXAMPLE. Let n = 1, and onsider the open interval 
 = (0; 1) � R

1

. The funtion

u(x) = 1=x belongs to C

k

(
) for eah k � 0. Sine

�


 = [0; 1℄, it is lear that u is not

ontinuous on

�


; the same is true of its derivatives. Therefore u 62 C

k

(

�


) for any k � 0: �

The support, supp u, of a ontinuous funtion u on 
 is de�ned as the losure in 
 of the

set fx 2 
 : u(x) 6= 0g; in other words, supp u is the smallest losed subset of 
 suh that

u = 0 in 
nsupp u.

EXAMPLE. Let w be the funtion de�ned on R

n

by

w(x) =

(

e

�

1

1�jxj

2

; jxj < 1;

0; otherwise;

here jxj = (x

2

1

+ : : :+ x

2

n

)

1=2

. Clearly supp w is the losed unit ball fx 2 R

n

: jxj � 1g: �

We denote by C

k

0

(
) the set of all u 2 C

k

(
) suh that supp u � 
 and supp u is bounded.

Let

C

1

0

(
) =

\

k�0

C

k

0

(
):

EXAMPLE. The funtion w de�ned in the previous example belongs to C

1

0

(R

n

): �

1.2 Spaes of integrable funtions

Next we de�ne a lass of spaes that onsist of (Lebesgue) integrable funtions. Let p be

a real number, p � 1; we denote by L

p

(
) the set of all real-valued funtions de�ned on 


suh that

Z




ju(x)j

p

dx <1:

Funtions whih are equal almost everywhere (i.e. equal, exept on a set of measure zero)

on 
 are identi�ed with eah other. L

p

(
) is equipped with the norm

kuk

L

p

(
)

:=

�

Z




ju(x)j

p

dx

�

1=p

:

A partiularly important ase is p = 2; then,

kuk

L

2

(
)

=

�

Z




ju(x)j

2

dx

�

1=2

:
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The spae L

2

(
) an be equipped with the inner produt

(u; v) :=

Z




u(x)v(x) dx:

Clearly kuk

L

2

(
)

= (u; u)

1=2

.

Lemma 1.1 (The Cauhy{Shwarz inequality). Let u; v 2 L

2

(
); then,

j(u; v)j � kuk

L

2

(
)

kvk

L

2

(
)

:

Proof Let � 2 R; then,

0 � ku+ �vk

2

L

2

(
)

= (u+ �v; u+ �v)

= (u; u) + (u; �v) + (�v; u) + (�v; �v)

= kuk

2

L

2

(
)

+ 2�(u; v) + �

2

kvk

2

L

2

(
)

; � 2 R:

The right-hand side is a quadrati polynomial in � with real oeÆients whih is non-negative for

all � 2 R. Therefore its disriminant is non-positive, i.e.

j2(u; v)j

2

� 4 kuk

2

L

2

(
)

kvk

2

L

2

(
)

� 0;

and hene the desired inequality. 2

Corollary (The triangle inequality) Let u, v belong to L

2

(
); then, u+ v 2 L

2

(
), and

ku+ vk

L

2

(
)

� kuk

L

2

(
)

+ kvk

L

2

(
)

:

Remark The spae L

2

(
) equipped with the inner produt (�; �) (and the assoiated norm

kuk

L

2

(
)

= (u; u)

1=2

) is an example of a Hilbert spae. In general, a vetor spae X, equipped

with an inner produt (�; �)

X

(and the assoiated norm kuk

X

= (u; u)

1=2

X

) is alled a Hilbert

spae if, whenever fu

m

g

1

m=1

is a sequene of elements of X suh that

lim

n;m!1

ku

n

� u

m

k

X

= 0;

then, there exists u 2 X suh that lim

m!1

ku� u

m

k

X

= 0 (i.e. the sequene fu

m

g

1

m=1

onverges to u in X).
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1.3 Sobolev spaes

In this setion we introdue a lass of funtion spaes that play an important role in modern

di�erential equation theory. These spaes, alled Sobolev spaes (after the Russian mathe-

matiian S.L. Sobolev), onsist of funtions u 2 L

2

(
) whose weak derivatives D

�

u are also

elements of L

2

(
). To give a preise de�nition of a Sobolev spae, we shall �rst explain the

meaning of weak derivative.

Suppose u is a smooth funtion, say u 2 C

k

(
), and let v 2 C

1

0

(
); then, we have the

following integration-by-parts formula:

Z




D

�

u(x) � v(x) dx = (�1)

j�j

Z




u(x) �D

�

v(x) dx; j�j � k;

8v 2 C

1

0

(
):

However, in the theory of partial di�erential equations one often has to onsider funtions u

that do not possess the smoothness hypothesised above, yet they have to be di�erentiated

(in some sense). It is for this purpose that we introdue the idea of a weak derivative.

Suppose that u is loally integrable on 
 (i.e. u 2 L

1

(!) for eah bounded open set !; with

�! � 
:) Suppose also that there exists a funtion w

�

, loally integrable on 
, and suh that

Z




w

�

(x) � v(x) dx = (�1)

j�j

Z




u(x) �D

�

v(x) 8v 2 C

1

0

(
):

We then say that w

�

is the weak derivative of u (of order j�j = �

1

+ : : : + �

n

) and write

w

�

= D

�

u. Clearly, if u is a smooth funtion then its weak derivatives oinide with those in

the lassial (pointwise) sense. To simplify the notation, we shall use the letter D to denote

both a lassial and a weak derivative.

EXAMPLE Let 
 = R

1

, and suppose that we wish to determine the weak �rst derivative

of the funtion u(x) = (1� jxj)

+

de�ned on 
. Clearly u is not di�erentiable at the points

0 and �1. However, beause u is loally integrable on 
, it may have a weak derivative.

Indeed, for any v 2 C

1

0

(
),

Z

+1

�1

u(x)v

0

(x) dx =

Z

+1

�1

(1� jxj)

+

v

0

(x) dx =

Z

1

�1

(1� jxj)v

0

(x) dx

=

Z

0

�1

(1 + x)v

0

(x) dx +

Z

1

0

(1� x)v

0

(x) dx

= �

Z

0

�1

v(x) dx + (1 + x)v(x)j

0

�1

+

Z

1

0

v(x) dx+ (1� x)v(x)j

1

x=0

=

Z

0

�1

(�1)v(x) dx+

Z

1

0

1 � v(x) dx

= �

Z

+1

�1

w(x)v(x) dx;
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where

w(x) =

8

>

>

<

>

>

:

0; x < �1;

1; x 2 (�1; 0);

�1; x 2 (0; 1);

0; x > 1:

Thus, the pieewise onstant funtion w is the �rst (weak) derivative of the ontinuous

pieewise linear funtion u, i.e. w = u

0

= Du: �

Now we are ready to give a preise de�nition of a Sobolev spae. Let k be a non-negative

integer. We de�ne (with D

�

denoting a weak derivative of order j�j )

H

k

(
) = fu 2 L

2

(
) : D

�

u 2 L

2

(
); j�j � kg:

H

k

(
) is alled a Sobolev spae of order k; it is equipped with the (Sobolev) norm

kuk

H

k

(
)

:=

0

�

X

j�j�k

kD

�

uk

2

L

2

(
)

1

A

1=2

and the inner produt

(u; v)

H

k

(
)

:=

X

j�j�k

(D

�

u;D

�

v):

With this inner produt, H

k

(
) is a Hilbert spae (for the de�nition of Hilbert spae, see

the remark in Setion 1:2). Letting

juj

H

k

(
)

:=

0

�

X

j�j=k

kD

�

uk

2

L

2

(
)

1

A

1=2

;

we an write

kuk

H

k

(
)

=

 

k

X

j=0

juj

2

H

j

(
)

!

1=2

:

j�j

H

k

(
)

is alled the Sobolev semi-norm (it is only a semi-norm rather than a norm beause

if juj

H

k

(
)

= 0 for u 2 H

k

(
) it does not neessarily follow that u � 0 on 
:)

Throughout these notes we shall frequently use H

1

(
) and H

2

(
).

H

1

(
) =

�

u 2 L

2

(
) :

�u

�x

j

2 L

2

(
); j = 1; : : : ; n

�

;

kuk

H

1

(
)

=

(

kuk

2

L

2

(
)

+

n

X

j=1









�u

�x

j









2

L

2

(
)

)

1=2

;

juj

H

1

(
)

=

(

n

X

j=1









�u

�x

j









2

L

2

(
)

)

1=2

:
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Similarly,

H

2

(
) =

�

u 2 L

2

(
) :

�u

�x

j

2 L

2

(
); j = 1; : : : ; n;

�

2

u

�x

i

�x

j

2 L

2

(
); i; j = 1; : : : ; n

�

;

kuk

H

2

(
)

=

n

kuk

2

L

2

(
)

+

n

X

j=1









�u

�x

j









2

L

2

(
)

+

n

X

i;j=1









�

2

u

�x

i

�x

j









2

L

2

(
)

)

1=2

;

juj

H

2

(
)

=

(

n

X

i;j=1









�

2

u

�x

i

�x

j









2

L

2

(
)

)

1=2

:

Finally, we de�ne a speial Sobolev spae,

H

1

0

(
) = fu 2 H

1

(
) : u = 0 on �
g;

i.e. H

1

0

(
) is the set of all funtions u in H

1

(
) suh that u = 0 on �
; the boundary of the

set 
:We shall use this spae when onsidering a partial di�erential equation that is oupled

with a homogeneous (Dirihlet) boundary ondition: u = 0 on �
: We note here that H

1

0

(
)

is also a Hilbert spae, with the same norm and inner produt as H

1

(
):

We onlude the setion with the following important result.

Lemma 1.2 (Poinar�e{Friedrihs inequality). Suppose that 
 is a bounded open set in R

n

(with a suÆiently smooth boundary �
) and let u 2 H

1

0

(
); then, there exists a onstant



?

(
), independent of u, suh that

Z




u

2

(x) dx � 

?

n

X

i=1

Z




�

�

�

�

�u

�x

i

(x)

�

�

�

�

2

dx: (1.1)

Proof We shall prove this inequality for the speial ase of a retangular domain 
 = (a; b)�(; d):

in R

2

: The proof for general 
 is analogous.

Evidently

u(x; y) = u(a; y) +

Z

x

a

�u

�x

(�; y) d� =

Z

x

a

�u

�x

(�; y) d�;

 < y < d:
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Thene, by the Cauhy{Shwarz inequality,

Z




ju(x; y)j

2

dxdy =

Z

b

a

Z

d



�

�

�

�

Z

x

a

�u

�x

(�; y) d�

�

�

�

�

2

dxdy

�

Z

b

a

Z

d



(x� a)

 

Z

x

a

�

�

�

�

�u

�x

(�; y)

�

�

�

�

2

d�

!

dxdy

�

Z

b

a

(x� a) dx

 

Z

d



Z

b

a

�

�

�

�

�u

�x

(�; y)

�

�

�

�

2

d� dy

!

=

1

2

(b� a)

2

Z




�

�

�

�

�u

�x

(x; y)

�

�

�

�

2

dxdy:

Analogously,

Z




ju(x; y)j

2

dxdy �

1

2

(d� )

2

Z




�

�

�

�

�u

�y

(x; y)

�

�

�

�

2

dxdy:

By adding the two inequalities, we obtain

Z




ju(x; y)j

2

dxdy � 

?

Z




 

�

�

�

�

�u

�x

�

�

�

�

2

+

�

�

�

�

�u

�y

�

�

�

�

2

!

dxdy;

where 

?

=

�

2

(b� a)

2

+

2

(d� )

2

�

�1

: 2
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2 Ellipti boundary value problems: existene and unique-

ness of weak solutions

In the �rst part of this leture ourse we fous on boundary value problems for ellipti partial

di�erential equations. Ellipti equations are typi�ed by the Laplae equation

�u = 0;

and its non-homogeneous ounterpart, Poisson's equation

��u = f:

More generally, let 
 be a bounded open set in R

n

, and onsider the (linear) seond-order

partial di�erential equation

�

n

X

i;j=1

�

�x

j

�

a

ij

(x)

�u

�x

i

�

+

n

X

i=1

b

i

(x)

�u

�x

i

+ (x)u = f(x); x 2 
; (2.1)

where the oeÆients a

ij

; b

i

;  and f satisfy the following onditions:

a

ij

2 C

1

(

�


); i; j = 1; : : : ; n;

b

i

2 C(

�


); i = 1; : : : ; n;

 2 C(

�


); f 2 C(

�


); and

n

X

i;j=1

a

ij

(x)�

i

�

j

� ~

n

X

i=1

�

2

i

; 8� = (�

1

; : : : ; �

n

) 2 R

n

; x 2

�


; (2.2)

here ~ is a positive onstant independent of x and �: The ondition (2.2) is usually referred

to as uniform elliptiity and (2.1) is alled an ellipti equation.

Equation (2.1) is supplemented with one of the following boundary onditions:

(a) u = g on �
 (Dirihlet boundary ondition);

(b)

�u

��

= g on �
, where � denotes the unit outward normal vetor to �
 (Neumann

boundary ondition);

()

�u

��

+ �u = g on �
 , where �(x) � 0 on �
 (Robin boundary ondition);

(d) A more general version of the boundary onditions (b) and () is

n

X

i;j=1

a

ij

�u

�x

i

os�

j

+ �(x)u = g on �
;

where �

j

is the angle between the unit outward normal vetor n to �
 and the Ox

j

axis (Oblique derivative boundary ondition).
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In many physial problems more than one type of boundary ondition is imposed on �
 (e.g.

�
 is the union of two disjoint subsets �


1

and �


2

, with a Dirihlet boundary ondition

is imposed on �


1

and a Neumann boundary ondition on �


2

). The study of suh mixed

boundary value problems is beyond the sope of these notes.

We begin by onsidering the homogeneous Dirihlet boundary value problem

�

n

X

i;j=1

�

�x

j

�

a

ij

�u

�x

i

�

+

n

X

i=1

b

i

(x)

�u

�x

i

+ (x)u = f(x); x 2 
; (2.3)

u = 0 on �
; (2.4)

where a

ij

; b

i

,  and f are as in (2.2).

A funtion u 2 C

2

(
) \ C(

�


) satisfying (2.3) and (2.4) is alled a lassial solution of

this problem. The theory of partial di�erential equations tells us that (2.3), (2.4) has a

unique lassial solution, provided a

ij

; b

i

, , f and �
 are suÆiently smooth. However,

in many appliations one has to onsider boundary value problems where these smoothness

requirements are violated, and for suh problems the lassial theory is inappropriate. Take,

for example, Poisson's equation with zero Dirihlet boundary ondition on the ube 
 =

(�1; 1)

n

in R

n

:

��u = sgn

�

1

2

� jxj

�

; x 2 
;

u = 0; x 2 �
:

9

=

;

(�)

This problem does not have a lassial solution, u 2 C

2

(
) \ C(

�


); for otherwise �u would

be a ontinuous funtion on 
; whih is not possible beause sgn(1=2� jxj) is disontinuous.

In order to overome the limitations of the lassial theory and to be able to deal with

partial di�erential equations with \non-smooth" data, we generalise the notion of solution

by weakening the di�erentiability requirements on u:

To begin, let us suppose that u is a lassial solution of (2.3), (2.4). Then, for any v 2 C

1

0

(
);

�

n

X

i;j=1

Z




�

�x

j

�

a

ij

�u

�x

i

�

� v dx +

n

X

i=1

Z




b

i

(x)

�u

�x

i

� v dx

+

Z




(x)uv dx =

Z




f(x)v(x) dx:

Upon integration by parts in the �rst integral and noting that v = 0 on �
; we obtain:

n

X

i;j=1

Z




a

ij

(x)

�u

�x

i

�v

�x

j

dx +

n

X

i=1

Z




b

i

(x)

�u

�x

i

v dx

+

Z




(x)uv dx =

Z




f(x)v(x) dx 8v 2 C

1

0

(
):
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In order for this equality to make sense we no longer need to assume that u 2 C

2

(
): it is

suÆient that u 2 L

2

(
) and �u=�x

i

2 L

2

(
), i = 1; : : : ; n: Thus, remembering that u has

to satisfy a zero Dirihlet boundary ondition, it is natural to seek u in the spae H

1

0

(
)

instead, where, as in Setion 1.3,

H

1

0

(
) = fu 2 L

2

(
) :

�u

�x

i

2 L

2

(
); i = 1; : : : ; n; u = 0 on �
g:

Therefore, we onsider the following problem: �nd u in H

1

0

(
); suh that

n

X

i;j=1

Z




a

ij

(x)

�u

�x

i

�

�v

�x

j

dx +

n

X

i=1

Z




b

i

(x)

�u

�x

i

v dx

+

Z




(x)uv dx =

Z




f(x)v(x) dx 8v 2 C

1

0

(
): (2.5)

We note that C

1

0

(
) � H

1

0

(
); and it is easily seen that when u 2 H

1

0

(
) and v 2 H

1

0

(
);

(instead of v 2 C

1

0

(
)), the expressions on the left- and right-hand side of (2.5) are still

meaningful (in fat, we shall prove this below). This motivates the following de�nition.

De�nition 2.1 Let a

ij

2 C(

�


), i; j = 1; : : : ; n, b

i

2 C(

�


), i = 1; : : : ; n,  2 C(

�


), and let

f 2 L

2

(
). A funtion u 2 H

1

0

(
) satisfying

n

X

i;j=1

Z




a

ij

(x)

�u

�x

i

�v

�x

j

dx +

n

X

i=1

Z




b

i

(x)

�u

�x

i

v dx

+

Z




(x)uv dx =

Z




f(x)v(x) dx 8v 2 H

1

0

(
) (2.6)

is alled a weak solution of (2.3), (2.4). All partial derivatives in (2.6) should be understood

as weak derivatives.

Clearly if u is a lassial solution of (2.3), (2.4), then it is also a weak solution of (2.3),

(2.4). However, the onverse is not true. If (2.3), (2.4) has a weak solution, this may not be

smooth enough to be a lassial solution. Indeed, we shall prove below that the boundary

value problem (�) has a unique weak solution u 2 H

1

0

(
), despite the fat that it has no

lassial solution. Before onsidering this partiular boundary value problem, we look at the

wider issue of existene of a unique weak solution to the general problem (2.3), (2.4).

For the sake of simpliity, let us introdue the following notation:

a(u; v) =

n

X

i;j=1

Z




a

ij

(x)

�u

�x

i

�v

�x

j

dx +

n

X

i=1

Z




b

i

(x)

�u

�x

i

v dx +

Z




(x)uv dx (2.7)

and

l(v) =

Z




f(x)v(x) dx: (2.8)
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With this new notation, problem (2.6) an be written as follows:

�nd u 2 H

1

0

(
) suh that a(u; v) = l(v) 8v 2 H

1

0

(
): (2.9)

We shall prove the existene of a unique solution to this problem using the following abstrat

result from Funtional Analysis.

Theorem 2.2 (Lax{Milgram theorem) Suppose that V is a real Hilbert spae equipped with

norm k�k

V

. Let a(�; �) be a bilinear form on V � V suh that:

(a) 9

0

> 0 8v 2 V a(v; v) � 

0

kvk

2

V

,

(b) 9

1

> 0 8v; w 2 V ja(v; w)j � 

1

kvk

V

kwk

V

,

and let l(�) be a linear form on V suh that

() 9

2

> 0 8v 2 V jl(v)j � 

2

kvk

V

:

Then, there exists a unique u 2 V suh that

a(u; v) = l(v) 8v 2 V:

For a proof of this result the interested reader is referred to the book of P. Ciarlet: The

Finite Element Method for Ellipti Problems, North-Holland, 1978.

We apply the Lax{Milgram theorem with V = H

1

0

(
) and k�k

V

= k�k

H

1

(
)

to show the

existene of a unique weak solution to (2.3), (2.4) (or, equivalently, to (2.9)). Let us reall

from Setion 1.3 that H

1

0

(
) is a Hilbert spae with the inner produt

(u; v)

H

1

(
)

=

Z




uv dx +

n

X

i=1

Z




�u

�x

i

�

�v

�x

i

dx

and the assoiated norm kuk

H

1

(
)

= (u; u)

1=2

H

1

(
)

: Next we show that a(�; �) and l(�), de�ned

by (2.7) and (2.8), satisfy the hypotheses (a), (b), () of the Lax{Milgram theorem.

We begin with (). The mapping v 7! l(v) is linear: indeed, for any �; � 2 R;

l(�v

1

+ �v

2

) =

Z




f(x)(�v

1

(x) + �v

2

(x)) dx

= �

Z




f(x)v

1

(x) dx+ �

Z




f(x)v

2

(x) dx

= �l(v

1

) + �l(v

2

); v

1

; v

2

2 H

1

0

(
);

so that l(�) is a linear form on H

1

0

(
). Also, by the Cauhy{Shwarz inequality,

jl(v)j =

�

�

�

�

Z




f(x)v(x) dx

�

�

�

�

�

�

Z




jf(x)j

2

dx

�

1=2

�

Z




jv(x)j

2

dx

�

1=2

= kfk

L

2

(
)

kvk

L

2

(
)

� kfk

L

2

(
)

kvk

H

1

(
)

;
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for all v 2 H

1

0

(
); where we have used the obvious inequality kvk

L

2

(
)

� kvk

H

1

(
)

: Letting



2

= kfk

L

2

(
)

; we obtain the required bound.

Next we verify (b). For any �xed w 2 H

1

0

(
); the mapping v 7! a(v; w) is linear. Similarly,

for any �xed v 2 H

1

0

(
); the mapping w 7! a(v; w) is linear. Hene a(�; �) is a bilinear form

on H

1

0

(
)�H

1

0

(
): Employing the Cauhy{Shwarz inequality, we dedue that

ja(u; v)j �

n

X

i;j=1

max

x2

�




ja

ij

(x)j

�

�

�

�

Z




�u

�x

i

�v

�x

j

dx

�

�

�

�

+

n

X

i=1

max

x2

�




jb

i

(x)j

�

�

�

�

Z




�u

�x

i

v dx

�

�

�

�

+max

x2

�




j(x)j

�

�

�

�

Z




u(x)v(x) dx

�

�

�

�

� 

8

<

:

n

X

i;j=1

 

Z




�

�

�

�

�u

�x

i

�

�

�

�

2

dx

!

1=2

 

Z




�

�

�

�

�v

�x

j

�

�

�

�

2

dx

!

1=2

+

n

X

i=1

 

Z




�

�

�

�

�u

�x

i

�

�

�

�

2

dx

!

1=2

�

Z




jvj

2

dx

�

1=2

+

�

Z




juj

2

dx

�

1=2

�

Z




jvj

2

dx

�

1=2

)

� 

8

<

:

�

Z




juj

2

dx

�

1=2

+

n

X

i=1

 

Z




�

�

�

�

�u

�x

i

�

�

�

�

2

dx

!

1=2

9

=

;

�

8

<

:

�

Z




jvj

2

dx

�

1=2

+

n

X

j=1

 

Z




�

�

�

�

�v

�x

j

�

�

�

�

2

dx

!

1=2

9

=

;

; (2.10)

where

 = max

�

max

1�i;j�n

max

x2

�




ja

ij

(x)j ; max

1�i�n

max

x2

�




jb

i

(x)j ;max

x2

�




j(x)j

�

:

By further majorisation of the right-hand side in (2.10),

ja(u; v)j � 2n

(

Z




juj

2

dx +

n

X

i=1

Z




�

�

�

�

�u

�x

i

�

�

�

�

2

dx

)

1=2

�

(

Z




jvj

2

dx +

n

X

j=1

Z




�

�

�

�

�v

�x

j

�

�

�

�

2

dx

)

1=2

;

so that, by letting 

1

= 2n, we obtain inequality (b).
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It remains to establish (a). Using (2.2), we dedue that

a(u; u) � ~

n

X

i=1

Z




�

�

�

�

�u

�x

i

�

�

�

�

2

dx +

n

X

i=1

Z




b

i

(x)

1

2

�

�x

i

(u

2

) dx+

Z




(x) juj

2

dx;

where we wrote

�u

�x

i

� u as

1

2

�

�x

i

(u

2

): Integrating by parts in the seond term on the right, we

obtain

a(u; u) � ~

n

X

i=1

Z




�

�

�

�

�u

�x

i

�

�

�

�

2

dx +

Z




 

(x)�

1

2

n

X

i=1

�b

i

�x

i

!

juj

2

dx:

Suppose that b

i

, i = 1; : : : ; n, and  satisfy the inequality

(x)�

1

2

n

X

i=1

�b

i

�x

i

� 0; x 2

�


: (2.11)

Then,

a(u; u) � ~

n

X

i=1

Z




�

�

�

�

�u

�x

i

�

�

�

�

2

dx: (2.12)

By virtue of the Poinar�e{Friedrihs inequality stated in Lemma 1.2, the right-hand side an

be further bounded from below to obtain

a(u; u) �

~



?

Z




juj

2

dx: (2.13)

Summing (2.12) and (2.13) multiplied by 

?

,

a(u; u) � 

0

 

Z




juj

2

dx +

n

X

i=1

Z




�

�

�

�

�u

�x

i

�

�

�

�

2

dx

!

; (2.14)

where 

0

= ~=(1 + 

?

), and hene (a). Having heked all hypotheses of the Lax{Milgram

theorem, we dedue the existene of a unique u 2 H

1

0

(
) satisfying (2.9); thene problem

(2.3), (2.4) has a unique weak solution.

We enapsulate this result in the following theorem.

Theorem 2.3 Suppose that a

ij

2 C(

�


), i; j = 1; : : : ; n, b

i

2 C

1

(

�


), i = 1; : : : ; n,  2 C(

�


),

f 2 L

2

(
), and assume that (2.2) and (2.11) hold; then, the boundary value problem (2.3),

(2.4) possesses a unique weak solution u 2 H

1

0

(
): In addition,

kuk

H

1

(
)

�

1



0

kfk

L

2

(
)

: (2.15)
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Proof We only have to prove (2.15). By (2.14), (2.9), the Cauhy{Shwarz inequality and realling

the de�nition of k�k

H

1

(
)

,



0

kuk

2

H

1

(
)

� a(u; u) = l(u) = (f; u)

� j(f; u)j � kfk

L

2

(
)

kuk

L

2

(
)

� kfk

L

2

(
)

kuk

H

1

(
)

:

Hene the desired inequality. 2

Now we return to our earlier example (�) whih has been shown to have no lassial solution.

However, applying the above theorem with a

ij

(x) � 1, i = j, a

ij

(x) � 0, i 6= j, 1 � i; j � n,

b

i

(x) � 0, (x) � 0, f(x) = sgn(

1

2

� jxj), and 
 = (�1; 1)

n

, we see that (2.2) holds with

~ = 1 and (2.11) is trivially ful�lled. Thus (�) has a unique weak solution u 2 H

1

0

(
):

Remark. The existene and uniqueness of a weak solution to a Neumann, a Robin, or an

oblique derivative boundary value problem an be established in a similar fashion, using the

Lax{Milgram theorem. �

Remark. Theorem 2.3 implies that the weak formulation of the ellipti boundary value

problem (2.3), (2.4) is well-posed in the sense of Hadamard; namely, for eah f 2 L

2

(
)

there exists a unique (weak) solution u 2 H

1

0

(
), and \small" hanges in f give rise to

\small" hanges in the orresponding solution u. The latter property follows by noting that

if u

1

and u

2

are weak solutions in H

1

0

(
) of (2.3), (2.4) orresponding to right-hand sides

f

1

and f

2

in L

2

(
), respetively, then u

1

� u

2

is the weak solution in H

1

0

(
) of (2.3), (2.4)

orresponding to the right-hand side f

1

� f

2

2 L

2

(
). Thus, by virtue of (2.15),

ku

1

� u

2

k

H

1

(
)

�

1



0

kf

1

� f

2

k

L

2

(
)

; (2.16)

and hene the required ontinuous dependene of the solution of the boundary value problem

on the right-hand side: �
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3 Introdution to the theory of �nite di�erene shemes

Let 
 be a bounded open set in R

n

, and suppose we wish to solve the boundary value problem

Lu = f in 
; (3.1a)

lu = g on � = �
; (3.1b)

where L is a linear partial di�erential operator, and l is a linear operator whih spei�es the

boundary ondition. For example,

Lu � �

n

X

i;j=1

�

�x

j

�

a

ij

�u

�x

i

�

+

n

X

i=1

b

i

�u

�x

i

+ u;

and

lu � u (Dirihlet boundary ondition),

or

lu �

�u

��

(Neumann boundary ondition),

or

lu �

n

X

i;j=1

a

ij

�u

�x

i

os�

j

+ �(x)u (oblique derivative boundary ondition),

or some other appropriate boundary ondition.

In general, it is impossible to determine the solution of the boundary value problem (3.1)

in losed form. Thus the aim of this hapter is to desribe a simple and general numerial

tehnique for the approximate solution of (3.1), alled the �nite di�erene method. The

onstrution of a �nite di�erene sheme onsists of two basi steps: �rst, the approximation

of the omputational domain by a �nite set of points, and seond, the approximation of the

derivatives appearing in the di�erential equation and in the boundary ondition by divided

di�erenes.

To desribe the �rst of these two steps more preisely, suppose that we have approximated

�


 = 
 [ � by a �nite set of points

�




h

= 


h

[ �

h

;

where 


h

� 
 and �

h

� �;

�




h

is alled a mesh, 


h

is the set of interior mesh-points and �

h

the set boundary mesh-points. The parameter h = (h

1

; : : : ; h

n

) measures the �neness of the

mesh (here h

i

denotes the mesh-size in the oordinate diretion Ox

i

): the smaller jhj is, the

denser the mesh.
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Having onstruted the mesh, we proeed by replaing the derivatives in L by divided dif-

ferenes, and approximate the boundary ondition in a similar fashion. This yields the �nite

di�erene sheme

L

h

U(x) = f

h

(x); x 2 


h

; (3.2a)

l

h

U(x) = g

h

(x); x 2 �

h

; (3.2b)

where f

h

and g

h

are suitable approximations of f and g, respetively. Now (3.2) is a system of

linear equations involving the values of U at the mesh-points, and an be solved by Gaussian

elimination or an iterative method, provided, of ourse, that it has a unique solution. The

sequene fU(x) : x 2

�




h

g parametrised by mesh parameter h is an approximation to the

sequene fu(x) : x 2

�




h

g, | the values of the exat solution at the mesh-points.

There are two lasses of problems assoiated with �nite di�erene shemes:

(1) the �rst, and most fundamental, is the problem of approximation, that is, whether (3.2)

approximates the boundary value problem (3.1) in some sense, and whether its solution

fU(x) : x 2

�




h

g approximates fu(x) : x 2

�




h

g, the values of the exat solution at the

mesh-points.

(2) the seond problem onerns the eÆient solution of the disrete problem (3.2) using

tehniques from Numerial Linear Algebra.

In these notes we shall be onerned with the �rst of these two problems - the question of

approximation.

In order to give a simple illustration of the general framework of �nite di�erene approxi-

mation, let us onsider the following two-point boundary value problem for a seond-order

linear (ordinary) di�erential equation:

�u

00

+ (x)u = f(x); x 2 (0; 1); (3.3a)

u(0) = 0; u(1) = 0: (3.3b)

The �rst step in the onstrution of a �nite di�erene sheme for this boundary value problem

is to de�ne the mesh. Let N be an integer, N � 2, and let h = 1=N be the mesh-size; the

mesh-points are x

i

= ih, i = 0; : : : ; N: Formally, 


h

= fx

i

: i = 1; : : : ; N�1g, �

h

= fx

0

; x

N

g,

and

�




h

= 


h

[�

h

: Suppose that u is suÆiently smooth (e.g. u 2 C

4

[0; 1℄). Then, by Taylor

series expansion,

u(x

i�1

) = u(x

i

� h)

= u(x

i

)� hu

0

(x

i

) +

h

2

2

u

00

(x

i

)�

h

3

6

u

000

(x

i

) +O(h

4

);

so that

D

+

x

u(x

i

) �

u(x

i+1

)� u(x

i

)

h

= u

0

(x

i

) +O(h);
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D

�

x

u(x

i

) �

u(x

i

)� u(x

i�1

)

h

= u

0

(x

i

) +O(h);

and

D

+

x

D

�

x

u(x

i

) = D

�

x

D

+

x

u(x

i

)

=

u(x

i+1

)� 2u(x

i

) + u(x

i�1

)

h

2

= u

00

(x

i

) +O(h

2

):

Thus we replae the seond derivative u

00

by a seond divided di�erene:

�D

+

x

D

�

x

u(x

i

) + (x

i

)u(x

i

) � f(x

i

); i = 1; : : : ; N � 1; (3.4a)

u(x

0

) = 0; u(x

N

) = 0: (3.4b)

Now (3.4) indiates that the approximate solution U should be sought as the solution of the

system of di�erene equations:

�D

+

x

D

�

x

U

i

+ (x

i

)U

i

= f(x

i

); i = 1; : : : ; N � 1; (3.5a)

U

0

= 0; U

N

= 0: (3.5b)

Using matrix notation, this an be written as

2

6

6

6

6

6

6

6

6

6

6

4

2

h

2

+ (x

1

) �

1

h

2



�

1

h

2

2

h

2

+ (x

2

) �

1

h

2

.

.

.

.

.

.

.

.

.

�

1

h

2

2

h

2

+ (x

N�2

) �

1

h

2

 �

1

h

2

2

h

2

+ (x

N�1

)

3

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

4

U

1

U

2

.

.

.

U

N�2

U

N�1

3

7

7

7

7

7

5

=

2

6

6

6

6

6

4

f(x

1

)

f(x

2

)

.

.

.

f(x

N�2

)

f(x

N�1

)

3

7

7

7

7

7

5

;

or, more ompatly, AU = F , where A is the tri-diagonal (N �1)� (N �1) matrix displayed

above, and U and F are olumn vetors of size N � 1:

We begin the analysis of the �nite di�erene sheme (3.5) by showing that it has a unique

solution. It suÆes to show that the matrix A is non-singular. For this purpose, we introdue,

for two funtions V and W de�ned at the interior mesh-points x

i

, i = 1; : : : ; N �1, the inner

produt

(V;W )

h

=

N�1

X

i=1

hV

i

W

i

(whih resembles the L

2

-inner produt

(v; w) =

Z

1

0

v(x)w(x) dx):
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Lemma 3.1 Suppose that V is a funtion de�ned at the mesh-points x

i

, i = 0; : : : ; N , and

let V

0

= V

N

= 0; then,

(�D

+

x

D

�

x

V; V )

h

=

N

X

i=1

h

�

�

D

�

x

V

i

�

�

2

: (3.6)

Proof Performing summation by parts,

(�D

+

x

D

�

x

V; V )

h

= �

N�1

X

i=1

(D

+

x

D

�

x

V

i

)V

i

h

= �

N�1

X

i=1

V

i+1

� V

i

h

V

i

+

N�1

X

i=1

V

i

� V

i�1

h

V

i

= �

N

X

i=2

V

i

� V

i�1

h

V

i�1

+

N�1

X

i=1

V

i

� V

i�1

h

V

i

= �

N

X

i=1

V

i

� V

i�1

h

V

i�1

+

N

X

i=1

V

i

� V

i�1

h

V

i

=

N

X

i=1

V

i

� V

i�1

h

(V

i

� V

i�1

) =

N

X

i=1

h

�

�

D

�

x

V

i

�

�

2

;

where in the third line we shifted the indies in the �rst summation, and in the fourth line we made

use of the fat that V

0

= V

N

= 0: 2

Returning to the �nite di�erene sheme (3.5), let V be as in the above lemma and note that

if (x) � 0 then,

(AV; V )

h

= (�D

+

x

D

�

x

V + V; V )

h

= (�D

+

x

D

�

x

V; V )

h

+ (V; V )

h

�

N

X

i=1

h

�

�

D

�

x

V

i

�

�

2

: (3.7)

Thus, if AV = 0 for some V , then D

�

x

V

i

= 0, i = 1; : : : ; N ; beause V

0

= V

N

= 0, this

implies that V

i

= 0, i = 0; : : : ; N . Hene AV = 0 if and only if V = 0. We dedue that A is

a non-singular matrix, and (3.5) has a unique solution, U = A

�1

F:

Theorem 3.2 Suppose that  and f are ontinuous funtions on [0; 1℄, and (x) � 0; x 2

[0; 1℄; then, the �nite di�erene sheme (3.5) possesses a unique solution U .

We note that, by virtue of Theorem 2.3, the boundary value problem (3.3) has a unique

(weak) solution under the same hypotheses on  and f as in Theorem 3.2.
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Next, we investigate the approximation properties of the di�erene sheme (3.5). A key

ingredient in our analysis is the fat that the sheme (3.5) is stable (or disretely well-posed)

in the sense that \small" perturbations in the data result in \small" perturbations in the

orresponding �nite di�erene solution. E�etively, we shall prove the disrete version of the

inequality (2.15). For this purpose, we de�ne the disrete L

2

-norm

kUk

h

= (U; U)

1=2

h

=

 

N�1

X

i=1

hjU

i

j

2

!

1=2

;

and the disrete Sobolev norm

kUk

1;h

= (kUk

2

h

+

�

�

�

�

D

�

x

U

�

�

�

2

h

)

1=2

;

where

jjV ℄j

2

h

=

N

X

i=1

h jV

i

j

2

:

Using this notation, the inequality (3.7) an be written

(AV; V )

h

�

�

�

�

�

D

�

x

V

�

�

�

2

h

: (3.8)

In fat, employing a disrete version of the Poinar�e{Friedrihs inequality (1.1), stated in

Lemma 3.3 below, we shall prove that

(AV; V )

h

� 

0

kV k

2

1;h

;

where 

0

is a positive onstant.

Lemma 3.3 (Disrete Poinar�e{Friedrihs inequality.) Let V be a funtion de�ned on the

mesh fx

i

; i = 0; : : : ; Ng; and suh that V

0

= V

N

= 0; then, there exists a positive onstant



?

, independent of V and h, suh that

kV k

2

h

� 

?

�

�

�

�

D

�

x

V

�

�

�

2

h

(3.9)

for all suh V .

Proof We proeed in the same way as in the proof of (1.1). First note that

jV

i

j

2

=

�

�

�

�

�

�

i

X

j=1

(D

�

x

V

j

)h

�

�

�

�

�

�

2

�

0

�

i

X

j=1

h

1

A

i

X

j=1

h

�

�

D

�

x

V

j

�

�

2

:
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Thene,

kV k

2

h

=

N�1

X

i=1

h jV

i

j

2

�

N�1

X

i=1

ih

2

i

X

j=1

h

�

�

D

�

x

V

j

�

�

2

�

(N � 1)N

2

h

2

N

X

j=1

h

�

�

D

�

x

V

j

�

�

2

�

1

2

�

�

�

�

D

�

x

V

�

�

�

2

h

: 2

We note that the onstant 

?

= 1=2 in (3.9).

Using (3.9) to bound the right-hand side of (3.8) from below we obtain

(AV; V )

h

�

1



?

kV k

2

h

: (3.10)

Adding (3.8) to (3.10) multiplied by 

?

, we dedue that

(AV; V )

h

� (1 + 

?

)

�1

�

kV k

2

h

+

�

�

�

�

D

�

x

V

�

�

�

2

h

�

:

Letting 

0

= (1 + 

?

)

�1

;

(AV; V )

h

� 

0

kV k

2

1;h

: (3.11)

Now the stability of the �nite di�erene sheme (3.5) easily follows.

Theorem 3.4 The sheme (3.5) is stable in the sense that

kUk

1;h

�

1



0

kfk

h

: (3.12)

Proof From (3.11) and (3.5) we have that



0

kUk

2

1;h

� (AU;U)

h

= (f; U)

h

� j(f; U)

h

j

� kfk

h

kUk

h

� kfk

h

kUk

1;h

;

and hene (3.12). 2

Using this stability result it is easy to derive an estimate of the error between the exat

solution u, and its �nite di�erene approximation, U . We de�ne the global error, e, by

e

i

:= u(x

i

)� U

i

; i = 0; : : : ; N:
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Obviously e

0

= 0, e

N

= 0, and

Ae

i

= Au(x

i

)� AU

i

= Au(x

i

)� f(x

i

)

= �D

+

x

D

�

x

u(x

i

) + (x

i

)u(x

i

)� f(x

i

)

= u

00

(x

i

)�D

+

x

D

�

x

u(x

i

); i = 1; : : : ; N � 1:

Thus,

Ae

i

= '

i

; i = 1; : : : ; N � 1; (3.13a)

e

0

= 0; e

N

= 0; (3.13b)

where '

i

= u

00

(x

i

)�D

+

x

D

�

x

u(x

i

) is the trunation error.

Applying (3.12) to the �nite di�erene sheme (3.13), we obtain

ku� Uk

1;h

= kek

1;h

�

1



0

k'k

h

: (3.14)

It remains to estimate k'k

h

. We have shown on page 19 that, if u 2 C

4

[0; 1℄; then,

'

i

= u

00

(x

i

)�D

+

x

D

�

x

u(x

i

) = O(h

2

);

i.e. there is a positive onstant C, independent of h, suh that

j'

i

j � Ch

2

:

Consequently,

k'k

h

=

 

N�1

X

i=1

h j'

i

j

2

!

1=2

� Ch

2

: (3.15)

Combining (3.14) and (3.15), it follows that

ku� Uk

1;h

�

C



0

h

2

: (3.16)

In fat, a more areful treatment of the remainder term in the Taylor series expansion on p.

19 reveals that

'

i

= u

00

(x

i

)�D

+

x

D

�

x

u(x

i

) = �

h

2

12

u

IV

(�

i

); �

i

2 [x

i�1

; x

i+1

℄:

Thus

j'

i

j � h

2

1

12

max

x2[0;1℄

�

�

u

IV

(x)

�

�

;

and hene

C =

1

12

max

x2[0;1℄

�

�

u

IV

(x)

�

�
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in (3.15). Realling that 

0

= (1+

?

)

�1

and 

?

= 1=2, we dedue that 

0

= 2=3. Substituting

the values of the onstants C and 

0

into (3.16), it follows that

ku� Uk

1;h

�

1

8

h

2





u

IV





C[0;1℄

:

Thus we have proved the following result.

Theorem 3.5 Let f 2 C[0; 1℄,  2 C[0; 1℄, with (x) � 0, x 2 [0; 1℄, and suppose that the

orresponding (weak) solution of the boundary value problem (3.3) belongs to C

4

[0; 1℄; then,

ku� Uk

1;h

�

1

8

h

2





u

IV





C[0;1℄

: (3.17)

The analysis of the �nite di�erene sheme (3.3) ontains the key steps of a general error

analysis for �nite di�erene approximations of (ellipti) partial di�erential equations:

(1) The �rst step is to prove the stability of the sheme in an appropriate mesh-dependent

norm (.f. (3.12), for example). A typial stability result for the general �nite di�erene

sheme (3.2) is

jjjU jjj




h

� (kf

h

k




h

+ kg

h

k

�

h

); (3.18)

where jjj � jjj




h

, k�k




h

and k�k

�

h

are mesh-dependent norms involving mesh-points of 


h

(or

�




h

) and �

h

, respetively, and  is a positive onstant, independent of h.

(2) The seond step is to estimate the size of the trunation error,

'




h

= L

h

u� f

h

; in 


h

;

'

�

h

= l

h

u� g

h

; on �

h

:

(in the ase of the �nite di�erene sheme (3.3) '

�

h

= 0, and therefore '

�

h

never appeared

expliitly in our error analysis). If

k'




h

k




h

+ k'

�

h

k

�

h

! 0 as h! 0;

for a suÆiently smooth solution u of (3.1), we say that the sheme (3.2) is onsistent. If p

is the largest positive integer suh that

k'




h

k




h

+ k'

�

h

k

�

h

� Ch

p

as h! 0;

(where C is a positive onstant independent of h) for all suÆiently smooth u, the sheme

is said to have order of auray p.

The �nite di�erene sheme (3.2) is said to provide a onvergent approximation to (3.1) in

the norm jjj � jjj




h

, if

jjju� U jjj




h

! 0 as h! 0:
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If q is the largest positive integer suh that

jjju� U jjj




h

� Ch

q

as h! 0

(where C is a positive onstant independent of h), then the sheme is said to have order of

onvergene q.

From these de�nitions we dedue the following fundamental theorem.

Theorem 3.6 Suppose that the �nite di�erene sheme (3.2) is stable (i.e. (3.18) holds for

all f

h

and g

h

) and that the sheme is a onsistent approximation of (3.1); then, (3.2) is a

onvergent approximation of (3.1), and the order of onvergene is not smaller then the order

of auray.

Proof We de�ne the global error e = u� U . Then,

L

h

e = L

h

(u� U) = L

h

u� L

h

U = L

h

u� f

h

:

Thus

L

h

e = '




h

;

and similarly,

l

h

e = '

�

h

:

By stability,

jjju� U jjj




h

= jjjejjj




h

� (k'




h

k




h

+ k'

�

h

k

�

h

);

and hene the stated result. 2

Thus, paraphrasing Theorem 3.6, stability and onsisteny imply onvergene. This abstrat

result is at the heart of the error analysis of �nite di�erene approximations of di�erential

equations.
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4 Finite di�erene approximation of ellipti boundary

value problems

In Setion 3 we presented a detailed error analysis for a �nite di�erene approximation of a

two-point boundary value problem. Here we shall arry out a similar analysis for the model

problem

��u+ (x)u = f(x) in 
; (4.1a)

u = 0 on �
; (4.1b)

where 
 = (0; 1) � (0; 1),  is a ontinuous funtion on

�


 and (x) � 0. As far as the

smoothness of the funtion f is onerned, we shall onsider two separate ases:

(a) First we shall assume that f is a ontinuous funtion on

�


. In this ase, the error

analysis will proeed along the same lines as in Setion 3.

(b) We shall then onsider the ase when f is only in L

2

(
). In this instane the boundary

value problem (4.1) does not have a lassial solution { only a weak solution exists. This

lak of smoothness gives rise to some tehnial diÆulties: in partiular, we annot use

a Taylor series expansion to estimate the size of the trunation error. We shall bypass

the problem by employing a di�erent tehnique, instead.

(a) (f 2 C(

�


)) The �rst step in the onstrution of the �nite di�erene approximation of

(4.1) is to de�ne the mesh. Let N be an integer, N � 2, and let h = 1=N ; the mesh-points

are (x

i

; y

j

), i; j = 0; : : : ; N; where x

i

= ih, y

j

= jh: These mesh-points form the mesh

�




h

= f(x

i

; y

j

) : i; j = 0; : : : ; Ng:

Similarly as in Setion 3, we onsider the set of interior mesh-points




h

= f(x

i

; y

j

) : i; j = 1; :::; N � 1g;

and the set of boundary mesh-points �

h

=

�




h

n 


h

: Analogously to (3.5), the di�erene

sheme is:

�(D

+

x

D

�

x

U

ij

+D

+

y

D

�

y

U

ij

) + (x

i

; y

j

)U

ij

= f(x

i

; y

j

); (x

i

; y

j

) 2 


h

; (4.2a)

U = 0 on �

h

: (4.2b)

In an expanded form, this an be written

�

�

U

i+1;j

� 2U

ij

+ U

i�1;j

h

2

+

U

i;j+1

� 2U

ij

+ U

i;j�1

h

2

�

+ (x

i

; y

j

)U

ij

= f(x

i

; y

j

);

i; j = 1; : : : ; N � 1; (4.3)
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Figure 1: The mesh 


h

(�), the boundary mesh �

h

(�), and a typial 5-point di�erene stenil.

U

ij

= 0; if i = 0; i = N or if j = 0; j = N: (4.4)

For eah i and j, 1 � i; j � N � 1; the �nite di�erene equation (4.3) involves �ve values

of the approximate solution U : U

i;j

, U

i�1;j

, U

i+1;j

, U

i;j�1

, U

i;j+1

: It is again possible to write

(4.3), (4.4) as a system of linear equations

AU = F; (4.5)

where

U = (U

11

; U

12

; : : : ; U

1;N�1

; U

21

; U

22

; : : : ; U

2;N�1

; : : : ;

: : : ; U

i1

; U

i2

; : : : ; U

i;N�1

; : : : ; U

N�1;1

; U

N�1;2

; : : : ; U

N�1;N�1

)

T

;

F = (F

11

; F

12

; : : : ; F

1;N�1

; F

21

; F

22

; : : : ; F

2;N�1

; : : : ;

: : : ; F

i1

; F

i2

; : : : ; F

i;N�1

; : : : ; F

N�1;1

; F

N�1;2

; : : : ; F

N�1;N�1

)

T

;

and A is an (N�1)

2

�(N�1)

2

sparse matrix of banded struture. A typial row of the matrix

ontains �ve non-zero entries, orresponding to the �ve values of U in the �nite di�erene

stenil shown in Fig. 1, while the sparsity struture of A is depited in Fig. 2.
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Figure 2: The sparsity struture of the banded matrix A.

Next we show that (4.2) has a unique solution. We proeed in the same way as in Setion 3.

For two funtions, V and W , de�ned on 


h

, we introdue the inner produt

(V;W )

h

=

N�1

X

i=1

N�1

X

j=1

h

2

V

ij

W

ij

(whih resembles the L

2

-inner produt (v; w) =

R




v(x; y)w(x; y) dx dy):

Lemma 4.1 Suppose that V is a funtion de�ned on

�




h

and that V = 0 on �

h

; then,

(�D

+

x

D

�

x

V; V )

h

+ (�D

+

y

D

�

y

V; V )

h

=

N

X

i=1

N�1

X

j=1

h

2

jD

�

x

V

ij

j

2

+

N�1

X

i=1

N

X

j=1

h

2

jD

�

y

V

ij

j

2

: (4.6)

Proof (4.6) is a straightforward onsequene of (3.6) and the analogous identity for �D

+

y

D

�

y

: 2

Returning to the analysis of the �nite di�erene sheme (4.2), we note that, sine (x; y) �

0 on

�


, by (4.6) we have

(AV; V )

h

= (�D

+

x

D

�

x

V �D

+

y

D

�

y

V + V; V )

h

= (�D

+

x

D

�

x

V; V )

h

+ (�D

+

y

D

�

y

V; V )

h

+ (V; V )

h

�

N

X

i=1

N�1

X

j=1

h

2

jD

�

x

V

ij

j

2

+

N�1

X

i=1

N

X

j=1

h

2

jD

�

y

V

ij

j

2

; (4.7)
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for any V de�ned on

�




h

suh that V = 0 on �

h

. Now this implies, just as in the one-

dimensional analysis presented in Setion 3, that A is a non-singular matrix. Indeed if

AV = 0; then (4.7) yields:

D

�

x

V

ij

=

V

ij

� V

i�1;j

h

= 0;

i = 1; : : : ; N;

j = 1; : : : ; N � 1;

D

�

y

V

ij

=

V

ij

� V

i;j�1

h

= 0;

i = 1; : : : ; N � 1;

j = 1; : : : ; N:

Sine V = 0 on �

h

, these imply that V � 0. Thus AV = 0 if and only if V = 0. Hene A is

non-singular, and U = A

�1

F is the unique solution of (4.2). Thus the solution of the �nite

di�erene sheme (4.2) may be found by solving the system of linear equations (4.5).

In order to prove the stability of the �nite di�erene sheme (4.2), we introdue (similarly

as in one dimension) the mesh{dependent norms

kUk

h

= (U; U)

1=2

h

;

and

kUk

1;h

=

�

kUk

2

h

+

�

�

�

�

D

�

x

U

�

�

�

2

x

+

�

�

�

�

D

�

y

U

�

�

�

2

y

�

1=2

;

where

�

�

�

�

D

�

x

U

�

�

�

x

=

 

N

X

i=1

N�1

X

j=1

h

2

jD

�

x

U

ij

j

2

!

1=2

and

�

�

�

�

D

�

y

U

�

�

�

y

=

 

N�1

X

i=1

N

X

j=1

h

2

jD

�

y

U

ij

j

2

!

1=2

:

The norm k � k

1;h

is the disrete version of the Sobolev norm k�k

H

1

(
)

,

kuk

H

1

(
)

=

 

kuk

2

L

2

(
)

+









�u

�x









2

L

2

(
)

+









�u

�y









2

L

2

(
)

!

1=2

:

With this new notation, the inequality (4.7) takes the following form:

(AV; V )

h

�

�

�

�

�

D

�

x

V

�

�

�

2

x

+

�

�

�

�

D

�

y

V

�

�

�

2

y

: (4.8)

Using the disrete Poinar�e{Friedrihs inequality stated in the next lemma, we shall be able

to dedue that

(AV; V )

h

� 

0

kV k

2

1;h

;

where 

0

is a positive onstant.
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Lemma 4.2 (Disrete Poinar�e{Friedrihs inequality.)

Let V be a funtion de�ned on

�




h

and suh that V = 0 on �

h

; then, there exists a onstant



�

, independent of V and h, suh that

kV k

2

h

� 

�

�

�

�

�

�

D

�

x

V

�

�

�

2

x

+

�

�

�

�

D

�

y

V

�

�

�

2

y

�

(4.9)

for all suh V .

Proof (4.9) is a straightforward onsequene of its one-dimensional ounterpart (3.9). It follows

from (3.9) that, for eah �xed j, 1 � j � N � 1,

N�1

X

i=1

hjV

ij

j

2

�

1

2

N

X

i=1

hjD

�

x

V

ij

j

2

: (4.10)

Analogously, for eah �xed i, 1 � i � N � 1;

N�1

X

j=1

hjV

ij

j

2

�

1

2

N

X

j=1

hjD

�

y

V

ij

j

2

: (4.11)

We multiply (4.10) by h and sum through j, 1 � j � N � 1, multiply (4.11) by h and sum through

i, 1 � i � N � 1; and add these two inequalities to obtain

2 kV k

2

h

�

1

2

�

�

�

�

�

D

�

x

V

�

�

�

2

x

+

�

�

�

�

D

�

y

V

�

�

�

2

y

�

:

Hene (4.9) with 

�

=

1

4

: 2

Now (4.8) and (4.9) imply that

(AV; V )

h

�

1



�

kV k

2

h

:

Finally, ombining this with (4.8) and realling the de�nition of the norm k�k

1;h

, we obtain

(AV; V )

h

� 

0

kV k

2

1;h

; (4.12)

where 

0

= (1 + 

�

)

�1

:

Theorem 4.3 The sheme (4.2) is stable in the sense that

kUk

1;h

�

1



0

kfk

h

: (4.13)
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Proof Idential to the proof of (3.12) 2.

Having established stability, we turn to the question of auray. We de�ne the global error,

e, by

e

ij

= u(x

i

; y

j

)� U

ij

; 0 � i; j � N:

Then, assuming that u 2 C

4

(

�


); and employing Taylor series expansions,

Ae

ij

= �u(x

i

; y

j

)� (D

+

x

D

�

x

u(x

i

; y

j

) +D

+

y

D

�

y

u(x

i

; y

j

))

=

�

�

2

u

�x

2

(x

i

; y

j

)�D

+

x

D

�

x

u(x

i

; y

j

)

�

+

�

�

2

u

�y

2

(x

i

; y

j

)�D

+

y

D

�

y

u(x

i

; y

j

)

�

= �

h

2

12

�

4

u

�x

4

(�

i

; y

j

)�

h

2

12

�

4

u

�y

4

(x

i

; �

j

); 1 � i; j � N � 1;

where �

i

2 [x

i�1

; x

i+1

℄, �

j

2 [y

j�1

; y

j+1

℄:

Let

'

ij

= �

h

2

12

�

�

4

u

�x

4

(�

i

; y

j

) +

�

4

u

�y

4

(x

i

; �

j

)

�

; 1 � i; j � N � 1;

then,

Ae

ij

= '

ij

; 1 � i; j � N � 1;

e = 0 on �

h

:

By virtue of (4.13),

ku� Uk

1;h

= kek

1;h

�

1



0

k'k

h

: (4.14)

Noting that

j'

ij

j �

h

2

12

 









�

4

u

�x

4









C(

�


)

+









�

4

u

�y

4









C(

�


)

!

;

we dedue that the trunation error, ', satis�es

k'k

h

�

h

2

12

 









�

4

u

�x

4









C(

�


)

+









�

4

u

�y

4









C(

�


)

!

: (4.15)

Finally (4.14) and (4.15) yield the following result.

Theorem 4.4 Let f 2 C(

�


),  2 C(

�


), with (x; y) � 0, (x; y) 2

�


; and suppose that the

orresponding weak solution of the boundary value problem (4.1) belongs to C

4

(

�


); then,

ku� Uk

1;h

�

5h

2

48

 









�

4

u

�x

4









C(

�


)

+









�

4

u

�y

4









C(

�


)

!

: (4.16)
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Proof Reall that 

0

= (1 + 

�

)

�1

; 

�

=

1

4

; so that 1=

0

=

5

4

; and ombine (4.14) and (4.15). 2

Aording to this result, the �ve-point di�erene sheme (4.2) for the boundary value problem

(4.1) is seond-order onvergent, provided that u is suÆiently smooth.

In general, however, even if f and  are smooth funtions, the orresponding solution, u,

of (4.1) will not be a smooth funtion beause the boundary, �, of the domain, 
, is a

non-smooth urve. Thus, the hypothesis u 2 C

4

(

�


) is unrealisti.

Our analysis has another limitation: it has been performed under the assumption that f 2

C(

�


) whih was required in order to ensure that the values of f are well de�ned at the mesh-

points. However, in physial appliations one often has to onsider di�erential equations

with f disontinuous (e.g. pieewise ontinuous), or, more generally, f 2 L

2

(
): We know

that in this ase Theorem 2.3 still implies that the problem has a unique weak solution, so

it is natural to ask whether one an onstrut an aurate �nite di�erene approximation of

the weak solution. This brings us to ase (b), formulated on page 26.

(b) (f 2 L

2

(
)): We retain the same �nite di�erene mesh as in ase (a), but we modify the

di�erene sheme (4.3) to ater for the fat that f is not neessarily ontinuous on

�


.

The idea is to replae f(x

i

; y

j

) in (4.3) by a ell-average of f ,

Tf

ij

=

1

h

2

Z

K

ij

f(x; y) dx dy;

where

K

ij

=

�

x

i

�

h

2

; x

i

+

h

2

�

�

�

y

j

�

h

2

; y

j

+

h

2

�

:

This, seemingly ad ho approah, has the following justi�ation. Integrating the partial

di�erential equation ��u + u = f over the ell K

ij

; and using Gauss' theorem, we have

�

Z

�K

ij

�u

��

dl +

Z

K

ij

u dx dy =

Z

K

ij

f dx dy (��)

where �K

ij

is the boundary of K

ij

, and � the unit outward normal to �K

ij

. The normal

vetors to �K

ij

point in the oordinate diretions, so the normal derivative �u=�� an be

approximated by divided di�erenes using the values of u at the �ve mesh-points marked

\�" on Fig. 3. Approximating the seond integral on the left by mid-point quadrature, and

dividing both sides by meas(K

ij

) = h

2

; we obtain

�(D

+

x

D

�

x

u(x

i

; y

j

) +D

+

y

D

�

y

u(x

i

; y

j

)) + (x

i

; y

j

)u(x

i

; y

j

) �

1

h

2

Z

K

ij

f(x; y) dx dy:

REMARK Finite di�erene shemes whih arise from integral formulations of a di�erential

equation, suh as (��), are alled �nite volume methods. �
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s

s

s

s

s

s

s

s

K

ij

(x

i

; y

j+1

)

(x

i

; y

j�1

)

(x

i�1

; y

j

) (x

i+1

; y

j

)

(x

i

; y

j

)

Figure 3: The ell K

ij

Clearly, Tf

ij

is well de�ned for f in L

2

(
) (and, in fat, even for f 2 L

1

(
)); this follows by

noting that

jTf

ij

j =

1

h

2

�

�

�

�

�

Z

K

ij

f(x; y) dx dy

�

�

�

�

�

�

1

h

2

 

Z

K

ij

1

2

dx dy

!

1=2

 

Z

K

ij

jf(x; y)j

2

dx dy

!

1=2

=

1

h

kfk

L

2

(K

ij

)

; (4.17)

whih, in turn, is bounded by h

�1

kfk

L

2

(
)

. Thus we de�ne our �nite di�erene (or, more

preisely, �nite volume) approximation of (4.1) by

�(D

+

x

D

�

x

U

ij

+D

+

y

D

�

y

U

ij

) + (x

i

; y

j

)U

ij

= Tf

ij

; (x

i

; y

j

) 2 


h

; (4.18a)

U = 0 on �

h

: (4.18b)

Sine we have not hanged the di�erene operator on the left-hand side, the argument pre-

sented on page 28 still applies, and therefore (4.18) has a unique solution, U .

Theorem 4.5 The sheme (4.18) is stable in the sense that

kUk

1;h

�

1



0

kfk

L

2

(
)

: (4.19)
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Proof Aording to (4.12) and (4.17),



0

kUk

2

1;h

� (AU;U)

h

= (Tf; U)

h

� kTfk

h

kUk

h

� kTfk

h

kUk

1;h

� kfk

L

2

(
)

kUk

1;h

;

and hene (4.19). 2

Having established the stability of the sheme (4.18), we onsider the question of its auray.

Let us de�ne the global error, e; as before,

e

ij

= u(x

i

; y

j

)� U

ij

; 0 � i; j � N:

Clearly,

Ae

ij

= Au(x

i

; y

j

)� AU

ij

= Au(x

i

; y

j

)� Tf

ij

= �(D

+

x

D

�

x

u(x

i

; y

j

) +D

+

y

D

�

y

u(x

i

; y

j

)) + (x

i

; y

j

)u(x

i

; y

j

)

+

�

T

�

�

2

u

�x

2

�

(x

i

; y

j

) + T

�

�

2

u

�y

2

�

(x

i

; y

j

)� T (u)(x

i

; y

j

)

�

: (4.20)

Noting that

T

�

�

2

u

�x

2

�

(x

i

; y

j

) =

1

h

Z

y

j

+h=2

y

j

�h=2

�u

�x

(x

i

+ h=2; y)�

�u

�x

(x

i

� h=2; y)

h

dy

=

1

h

Z

y

j

+h=2

y

j

�h=2

D

+

x

�u

�x

(x

i

� h=2; y) dy

= D

+

x

"

1

h

Z

y

j

+h=2

y

j

�h=2

�u

�x

(x

i

� h=2; y) dy

#

;

and similarly,

T

�

�

2

u

�y

2

�

(x

i

; y

j

) = D

+

y

"

1

h

Z

x

i

+h=2

x

i

�h=2

�u

�y

(x; y

j

� h=2) dx

#

;

(4.20) an be rewritten as

Ae = D

+

x

'

1

+D

+

y

'

2

+  ;

where

'

1

(x

i

; y

j

) =

1

h

Z

y

j

+h=2

y

j

�h=2

�u

�x

(x

i

� h=2; y) dy �D

�

x

u(x

i

; y

j

);

'

2

(x

i

; y

j

) =

1

h

Z

x

i

+h=2

x

i

�h=2

�u

�y

(x; y

j

� h=2) dx�D

�

y

u(x

i

; y

j

);

 (x

i

; y

j

) = (u)(x

i

; y

j

)� T (u)(x

i

; y

j

):
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Thus,

Ae = D

+

x

'

1

+D

+

y

'

2

+  in 


h

; (4.21a)

e = 0 on �

h

: (4.21b)

As the stability of the di�erene sheme would only imply the rude bound

kek

1;h

�

1



0





D

+

x

'

1

+D

+

y

'

2

+  





h

whih makes no use of the speial form of the trunation error

' = D

+

x

'

1

+D

+

y

'

2

+  ;

we shall proeed in a di�erent way. Aording to (4.12),



0

kek

2

1;h

� (Ae; e)

h

= (D

+

x

'

1

; e)

h

+ (D

+

y

'

2

; e)

h

+ ( ; e)

h

: (4.22)

Using summation by parts, we shall pass the di�erene operators D

+

x

and D

+

y

from '

1

and

'

2

, respetively, onto e. Realling that e = 0 on �

h

,

(D

+

x

'

1

; e)

h

=

N�1

X

j=1

h

 

N�1

X

i=1

h

'

1

(x

i+1

; y

j

)� '

1

(x

i

; y

j

)

h

e

ij

!

= �

N�1

X

j=1

h

 

N

X

i=1

h'

1

(x

i

; y

j

)

e

ij

� e

i�1;j

h

!

= �

N�1

X

j=1

h

 

N

X

i=1

h'

1

(x

i

; y

j

)D

�

x

e

ij

!

= �

N

X

i=1

N�1

X

j=1

h

2

'

1

(x

i

; y

j

)D

�

x

e

ij

�

 

N

X

i=1

N�1

X

j=1

h

2

j'

1

(x

i

; y

j

)j

2

!

1=2

 

N

X

i=1

N�1

X

j=1

h

2

jD

�

x

e

ij

j

2

!

1=2

= jj'

1

℄j

x

�

�

�

�

D

�

x

e

�

�

�

x

:

Thus,

(D

+

x

'

1

; e)

h

� jj'

1

℄j

x

�

�

�

�

D

�

x

e

�

�

�

x

: (4.23)

Similarly,

(D

+

y

'

2

; e)

h

� jj'

2

℄j

y

�

�

�

�

D

�

y

e

�

�

�

y

(4.24)
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(see page 29 for the de�nition of the mesh-dependent norms jj�℄j

x

and jj�℄j

y

:) By the Cauhy{

Shwarz inequality we also have that

( ; e)

h

� k k

h

kek

h

: (4.25)

Upon substituting (4.23) { (4.25) into (4.22) we obtain



0

kek

2

1;h

� jj'

1

℄j

x

�

�

�

�

D

�

x

e

�

�

�

x

+ jj'

2

℄j

y

�

�

�

�

D

�

y

e

�

�

�

y

+ k k

h

kek

h

�

�

jj'

1

℄j

2

x

+ jj'

2

℄j

2

y

+ k k

2

h

�

1=2

�

�

�

�

�

D

�

x

e

�

�

�

2

x

+

�

�

�

�

D

�

y

e

�

�

�

2

y

+ kek

2

h

�

1=2

=

�

jj'

1

℄j

2

x

+ jj'

2

℄j

2

y

+ k k

2

h

�

1=2

kek

1;h

:

Dividing both sides by kek

1;h

yields the following result.

Lemma 4.6 The global error, e, of the �nite di�erene sheme (4.18) satis�es

kek

1;h

�

1



0

(jj'

1

℄j

2

x

+ jj'

2

℄j

2

y

+ k k

2

h

)

1=2

; (4.26)

where '

1

; '

2

, and  are de�ned by

'

1

(x

i

; y

j

) =

1

h

Z

y

j

+h=2

y

j

�h=2

�u

�x

(x

i

� h=2; y) dy�D

�

x

u(x

i

; y

j

); (4.27)

'

2

(x

i

; y

j

) =

1

h

Z

x

i

+h=2

x

i

�h=2

�u

�y

(x; y

j

� h=2) dx�D

�

y

u(x

i

; y

j

); (4.28)

 (x

i

; y

j

) = (u)(x

i

; y

j

)�

1

h

2

Z

x

i

+h=2

x

i

�h=2

Z

y

j

+h=2

y

j

�h=2

(u)(x; y) dx dy; (4.29)

i = 1; : : : ; N � 1; j = 1; : : : ; N:

To omplete the error analysis, it remains to estimate '

1

, '

2

and  . Using Taylor series

expansions it is easily seen that

j'

1

(x

i

; y

j

)j �

h

2

24

 









�

3

u

�x�y

2









C(

�


)

+









�

3

u

�x

3









C(

�


)

!

; (4.30)

j'

2

(x

i

; y

j

)j �

h

2

24

 









�

3

u

�x

2

�y









C(

�


)

+









�

3

u

�y

3









C(

�


)

!

; (4.31)

j (x

i

; y

j

)j �

h

2

24

 









�

2

(u)

�x

2









C(

�


)

+









�

2

(u)

�y

2









C(

�


)

!

; (4.32)

and hene the bounds for jj'

1

℄j

x

, jj'

2

℄j

y

and jj ℄j

h

. We have the following theorem.
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Theorem 4.7 Let f 2 L

2

(
),  2 C

2

(

�


) with (x; y) � 0, (x; y) 2

�


, and suppose that the

orresponding weak solution of the boundary value problem (4.1) belongs to C

3

(

�


). Then,

ku� Uk

1;h

�

5

96

h

2

M

3

; (4.33)

where

M

3

=

( 









�

3

u

�x�y

2









C(

�


)

+









�

3

u

�x

3









C(

�


)

!

2

+

 









�

3

u

�x

2

y









C(

�


)

+









�

3

u

�y

3









C(

�


)

!

2

+

 









�

2

(u)

�x

2









C(

�


)

+









�

2

(u)

�y

2









C(

�


)

!

2

9

=

;

1=2

:

Proof Realling that 1=

0

= 5=4 and substituting (4.30) - (4.32) into the right-hand side of (4.26),

(4.33) immediately follows. 2

Comparing (4.33) with (4.16), we see that while the smoothness requirement on the solution

has been relaxed from u 2 C

4

(

�


) to u 2 C

3

(

�


), seond-order onvergene has been retained.

The hypothesis u 2 C

3

(

�


) an be further relaxed by using integral representations of '

1

, '

2

and  instead of Taylor series expansions. The key idea is to use the Newton-Leibniz formula

w(b)� w(a) =

Z

b

a

w

0

(x) dx:

Thus, denoting x

i�1=2

= x

i

� h=2 and y

j�1=2

= y

j

� h=2, we have

'

1

(x

i

; y

j

) =

1

h

2

Z

x

i

x

i�1

Z

y

j+1=2

y

j�1=2

�

�u

�x

(x

i�1=2

; y)�

�u

�x

(x; y

j

)

�

dx dy

=

1

h

2

Z

x

i

x

i�1

Z

y

j+1=2

y

j�1=2

�

�u

�x

(x

i�1=2

; y)�

�u

�x

(x; y)

�

dx dy

+

1

h

2

Z

x

i

x

i�1

Z

y

j+1=2

y

j�1=2

�

�u

�x

(x; y)�

�u

�x

(x; y

j

)

�

dx dy

=

1

h

2

Z

y

j+1=2

y

j�1=2

�

Z

x

i

x

i�1

1 �

Z

x

i�1=2

x

�

2

u

�x

2

(�; y) d�

�

dx dy

+

1

h

2

Z

x

i

x

i�1

"

Z

y

j+1=2

y

j�1=2

1 �

Z

y

y

j

�

2

u

�x�y

(x; �) d�

#

dx dy
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=

1

h

2

Z

y

j+1=2

y

j�1=2

"

x

Z

x

i�1=2

x

�

2

u

�x

2

(�; y) d�

�

�

�

�

x

i

x

i�1

+

Z

x

i

x

i�1

x

�

2

u

�x

2

(x; y) dx

#

dy

+

1

h

2

Z

x

i

x

i�1

2

4

y

Z

y

y

j

�

2

u

�x�y

(x; �) d�

�

�

�

�

�

y

j+1=2

y

j�1=2

�

Z

y

j+1=2

y

j�1=2

y

�

2

u

�x�y

(x; y) dy

3

5

dx

=

1

h

2

Z

y

j+1=2

y

j�1=2

"

Z

x

i�1=2

x

i�1

(x� x

i�1

)

�

2

u

�x

2

(x; y) dx+

Z

x

i

x

i�1=2

(x� x

i

)

�

2

u

�x

2

(x; y) dx

#

dy

�

1

h

2

Z

x

i

x

i�1

"

Z

y

j

y

j�1=2

(y � y

j�1=2

)

�

2

u

�x�y

(x; y) dy +

Z

y

j+1=2

y

j

(y � y

j+1=2

)

�

2

u

�x�y

(x; y) dy

#

dx:

We de�ne the funtions

A(x) =

(

1

2

(x� x

i�1

)

2

; x 2 [x

i�1

; x

i�1=2

℄;

1

2

(x� x

i

)

2

; x 2 [x

i�1=2

; x

i

℄;

B(y) =

(

1

2

(y � y

j�1=2

)

2

; y 2 [y

j�1=2

; y

j

℄;

1

2

(y � y

j+1=2

)

2

; y 2 [y

j

; y

j+1=2

℄:

Note that A and B are ontinuous funtions, A(x

i�1

) = A(x

i

) = 0; and B(y

j�1=2

) =

B(y

j+1=2

) = 0: Thus, upon integration by parts,

'

1

(x

i

; y

j

) =

1

h

2

Z

y

j+1=2

y

j�1=2

�

Z

x

i

x

i�1

A

0

(x)

�

2

u

�x

2

(x; y) dx

�

dy

�

1

h

2

Z

x

i

x

i�1

"

Z

y

j+1=2

y

j�1=2

B

0

(y)

�

2

u

�x�y

(x; y) dy

#

dx

= �

1

h

2

Z

y

j+1=2

y

j�1=2

�

Z

x

i

x

i�1

A(x)

�

3

u

�x

3

(x; y) dx

�

dy

+

1

h

2

Z

x

i

x

i�1

"

Z

y

j+1=2

y

j�1=2

B(y)

�

3

u

�x�y

2

(x; y) dy

#

dx:

But

jA(x)j �

h

2

8

; jB(y)j �

h

2

8

;

and therefore,

j'

1

(x

i

; y

j

)j �

1

8

Z

x

i

x

i�1

Z

y

j+1=2

y

j�1=2

�

�

�

�

�

3

u

�x

3

(x; y)

�

�

�

�

dx dy

+

1

8

Z

x

i

x

i�1

Z

y

j+1=2

y

j�1=2

�

�

�

�

�

3

u

�x�y

2

(x; y)

�

�

�

�

dx dy:
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Consequently,

jj'

1

℄j

2

x

�

h

4
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�x

3









2

L

2

(
)

+









�

3

u

�x�y

2









2

L

2

(
)

!

: (4.34)

Analogously,

jj'

2

℄j

2

y

�

h

4
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�

3

u

�y

3









2

L

2

(
)

+









�

3

u

�x

2

�y









2

L

2

(
)

!

: (4.35)

In order to estimate  , we note that

 (x

i

; y

j

) =

1

h

2

Z

x

i+1=2

x

i�1=2

Z

y

j+1=2

y

j�1=2

�

Z

x

i

x

�w

�x

(s; y) ds+

+

Z

y

j

y

�w

�y

(x; t) dt+

Z

x

i

x

Z

y

j

y

�

2

w

�x�y

(s; t) ds dt

�

dx dy

= �

1

h

2

Z

x

i+1=2

x

i�1=2

Z

y

j+1=2

y

j�1=2

C(x)

�

2

w

�x

2

(x; y) dx dy

�

1

h

2

Z

x

i+1=2

x

i�1=2

Z

y

j+1=2

y

j�1=2

D(y)

�

2

w

�y

2

(x; y) dx dy

+

1

h

2

Z

x

i+1=2

x

i�1=2

Z

y

j+1=2

y

j�1=2

�

Z

x

i

x

Z

y

j

y

�

2

w

�x�y

(s; t) ds dt

�

dx dy;

where w(x; y) = (x; y)u(x; y);

C(x) =

(

1

2

(x� x

i�1=2

)

2

; x 2 [x

i�1=2

; x

i

℄;

1

2

(x� x

i+1=2

)

2

; x 2 [x

i

; x

i+1=2

℄;

and

D(y) =

(

1

2

(y � y

j�1=2

)

2

; y 2 [y

j�1=2

; y

j

℄;

1

2

(y � y

j+1=2

)

2

; y 2 [y

j

; y

j+1=2

℄:

Thene,

j (x

i

; y

j

)j �

1

8

 

Z

x

i+1=2

x

i�1=2

Z

y

j+1=2

y

j�1=2

�

�

�

�

�

2

w

�x

2

(x; y)

�

�

�

�

dx dy

+

Z

x

i+1=2

x

i�1=2

Z

y

j+1=2

y

j�1=2

�

�

�

�

�

2

w

�y

2

(x; y)

�

�

�

�

dx dy

+ 2

Z

x

i+1=2

x

i�1=2

Z

y

j+1=2

y

j�1=2

�

�

�

�

�

2

w

�x�y

�

�

�

�

dx dy

!

;
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so that, with w = u, we have

k k

2

h

�

3h

4

64

 









�

2

w

�x

2









2

L

2

(
)

+









�
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�
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L

2

(
)

!

: (4.36)

Substituting (4.34){(4.36) into the right-hand side of (4.26) and realling that 1=

0

= 4=5,

we obtain the following result.

Theorem 4.8 Let f 2 L

2

(
),  2 C

2

(

�


), with (x; y) � 0, (x; y) 2

�


, and suppose that the

orresponding weak solution of the boundary value problem (4.1) belongs to H

3

(
). Then,

ku� Uk

1;h

� Ch

2

kuk

H

3

(
)

; (4.37)

where C is a positive onstant (omputable from (4.34){(4.36)).

It an be shown that the error estimate (4.37) is best possible in the sense that further

relaxation of the regularity hypothesis on u leads to a loss of seond-order onvergene.

Error estimates of this type, where the highest possible auray has been attained with the

minimum hypotheses on the smoothness of the solution are alled optimal error estimates.

Thus, for example, (4.37) is an optimal error estimate for the di�erene sheme (4.18), but

(4.33) is not.

We have used integral representations of di�erenes to show the bounds (4.34){(4.36). Al-

ternatively one an use the following abstrat devie.

Lemma 4.9 (The Bramble-Hilbert Lemma) Suppose � : H

k

(
) ! R is a linear form, i.e.

for all u; v 2 H

k

(
); and all �; � 2 R,

�(�u+ �v) = ��(u) + ��(v);

and assume that:

(a) �(p) = 0 for every polynomial p of degree � k � 1, and

(b) there exists a positive onstant C suh that

j�(u)j � C kuk

H

k

(
)

8u 2 H

k

(
):

Then, there exists a onstant C

1

= C

1

(
; C; k) suh that

j�(u)j � C

1

juj

H

k

(
)

8u 2 H

k

(
):

41



Proof See P. Ciarlet: The Finite Element Method for Ellipti Problems, North-Holland, 1979.

We shall use the Bramble-Hilbert lemma to re-derive the bound (4.34) for '

1

. Let K =

[�1=2; 1=2℄� [�1=2; 1=2℄; and onsider the aÆne mapping

�

x = x

i

� h=2 + sh; �1=2 � s � 1=2;

y = y

j

+ th; �1=2 � t � 1=2;

of K onto K

�

ij

= [x

i�1

; x

i

℄� [y

j�1=2

; y

j+1=2

℄. We de�ne

�u(s; t) := u(x; y):

In terms of �u, '

1

an be rewritten as follows:

'

1

(x

i

; y

j

) =

1

h

�(�u);

where

�(�u) =

Z

1=2

�1=2

��u

�s

(0; t) dt� f�u(

1

2

; 0)� �u(�

1

2

; 0)g:

Clearly � : �u 7! �(�u) is a linear form, and �(p) = 0 for every polynomial of the form

p = a

0

+ a

1

s+ a

2

t+ a

3

s

2

+ a

4

st+ a

5

t

2

(i.e. �(p) = 0 if p is a polynomial of degree � 2). In addition,

j�(�u)j �

Z

1=2

�1=2

�

�

�

�

��u

�s

(0; t)

�

�

�

�

dt+ 2 max

(s;t)2K

j�u(s; t)j : (4.38)

Lemma 4.10 Let v 2 H

2

(K); then,

(a)

Z

1=2

�1=2

�

�

�

�

�v

�s

(0; t)

�

�

�

�

dt �

p

2 kvk

H

2

(K)

;

(b) max

(s;t)2K

jv(s; t)j � 2 kvk

H

2

(K)

:

Proof

(a) Note that, for any s 2 [�1=2; 1=2℄;

�

�

�

�

�v

�s

(0; t)

�

�

�

�

�

�

�

�

�

�v

�s

(s; t)

�

�

�

�

+

�

�

�

�

Z

0

s

�

2

v

�s

2

(�; t) d�

�

�

�

�

:
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Thus,

�

�

�

�

�v

�s

(0; t)

�

�

�

�

�

�

�

�

�

�v

�s

(s; t)

�

�

�

�

+

Z

1=2

�1=2

�

�

�

�

�

2

v

�s

2

(�; t)

�

�

�

�

d�:

Integrating both sides in s and t,

Z

1=2

�1=2

�

�

�

�

�v

�s

(0; t)

�

�

�

�

dt �

Z

1=2

�1=2

Z

1=2

�1=2

�

�

�

�

�v

�s

(s; t)

�

�

�

�

dsdt+

Z

1=2

�1=2

Z

1=2

�1=2

�

�

�

�

�

2

v

�s

2

(�; t)

�

�

�

�

d� dt;

�

 

Z

1=2

�1=2

Z

1=2

�1=2

�

�

�

�

�v

�s

(s; t)

�

�

�

�

2

dsdt

!

1=2

+

 

Z

1=2

�1=2

Z

1=2

�1=2

�

�

�

�

�

2

v

�s

2

(�; t)

�

�

�

�

2

d� dt

!

1=2

=









�v

�s









L

2

(K)

+









�

2

v

�s

2









L

2

(K)

:

Finally, using the inequality

a+ b �

p

2(a

2

+ b

2

)

1=2

; a; b � 0;

and the de�nition of k�k

H

2

(K)

, we get (a).

(b) Let (x; y) 2 K and (s; t) 2 K. Then,

v(x; y) = v(s; t) +

Z

x

s

�v

�s

(�; t) d� +

Z

y

t

�v

�t

(s; �) d�

+

Z

x

s

Z

y

t

�

2

v

�s�t

(�; �) d� d�;

and therefore

jv(x; y)j � jv(s; t)j +

Z

1=2

�1=2

�

�

�

�

�v

�s

(�; t)

�

�

�

�

d� +

Z

1=2

�1=2

�

�

�

�

�v

�t

(s; �)

�

�

�

�

d�

+

Z

1=2

�1=2

Z

1=2

�1=2

�

�

�

�

�

2

v

�s�t

(�; �)

�

�

�

�

d� d�:

Integrating both sides in s and t, we obtain

jv(x; y)j =

Z

1=2

�1=2

Z

1=2

�1=2

jv(s; t)j dsdt+

Z

1=2

�1=2

Z

1=2

�1=2

�

�

�

�

�v

�s

(�; t)

�

�

�

�

d� dt

+

Z

1=2

�1=2

Z

1=2

�1=2

�

�

�

�

�v

�t

(s; �)

�

�

�

�

dsd� +

Z

1=2

�1=2

Z

1=2

�1=2

�

�

�

�

�

2

v

�s�t

(�; �)

�

�

�

�

d� d�

� kvk

L

2

(K)

+









�v

�s









L

2

(K)

+









�v

�t









L

2

(K)

+









�

2

v

�s�t









L

2

(K)

� 2 kvk

H

2

(K)

8(x; y) 2 K:

Taking the maximum over all (x; y) in K, we obtain (b). 2
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Equipped with the inequalities (a) and (b), we return to (4.38). It follows that

j�(�u)j � (

p

2 + 4) k�uk

H

2

(K)

:

Sine k�uk

H

2

(K)

� k�uk

H

3

(K)

; we also have

j�(�u)j � (

p

2 + 4) k�uk

H

3

(K)

:

Thus we have shown that the mapping � satis�es the hypotheses of the Bramble-Hilbert

lemma with k = 3 and 
 = K.

Hene, there exists a onstant C

1

suh that

j�(�u)j � C

1

j�uj

H

3

(K)

8�u 2 H

3

(K):

Returning from (s; t) 2 K to our original variables (x; y) 2 K

�

ij

, we dedue that

j�(�u)j � C

1

h

3�1

juj

H

3

(K

�

ij

)

;

and therefore,

j'

1

(x

i

; y

j

)j =

1

h

j�(�u)j � C

1

h juj

H

3

(K

�

ij

)

:

Consequently,

jj'

1

℄j

2

x

=

N

X

i=1

N�1

X

j=1

h

2

j'

1

(x

i

; y

j

)j

2

� C

2

1

h

4

N

X

i=1

N�1

X

j=1

juj

2

H

3

(K

�

ij

)

� C

2

1

h

4

juj

2

H

3

(
)

:

Therefore,

jj'

1

℄j

x

� C

1

h

2

juj

H

3

(
)

: (4.39)

Similarly,

jj'

2

℄j

y

� C

2

h

2

juj

H

3

(
)

(4.40)

and

jj ℄j

h

� C

3

h

2

juj

H

2

(
)

: (4.41)

The bounds (4.39){(4.41) derived by using the Bramble-Hilbert lemma are essentially the

same as those obtained earlier by integral representations, and stated in (4.34){(4.36). There
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is, however, an important pratial di�erene: while the onstants involved in (4.34){(4.36)

are known, those whih appear in (4.39){(4.41) (namely, C

1

, C

2

, C

3

) are unknown beause

the Bramble-Hilbert lemma does not tell us what these are, so the onstant in the resulting

error estimate is not omputable. We note, however, that in reent years several onstrutive

proofs of the Bramble-Hilbert lemma have been derived for restrited lasses of 
. (e.g. 


onvex or star-shaped). These onstrutive proofs give an expliit expression for C

1

(see the

statement of the Bramble-Hilbert lemma) in terms of C, k and the area (volume) of 
.

Conluding remarks. We have arried out an error analysis of �nite di�erene shemes

for the partial di�erential equation

��u+ (x; y)u = f(x; y)

on a square domain 
. The error analysis of di�erene shemes for more general ellipti

equations would proeed along similar lines. Consider, for example,

�

�

�

�x

�

a

1

(x; y)

�u

�x

�

+

�

�y

�

a

2

(x; y)

�u

�y

��

+ b

1

(x; y)

�u

�x

+ b

2

(x; y)

�u

�y

+ (x; y)u = f(x; y)

on the unit square 
 in R

2

. We approximate the equation by

�

1

h

�

a

1

(x

i+1=2

; y

j

)

U

i+1;j

� U

i;j

h

� a

1

(x

i�1=2

; y

j

)

U

i;j

� U

i�1;j

h

�

�

1

h

�

a

2

(x

i

; y

j+1=2

)

U

i;j+1

� U

i;j

h

� a

2

(x

i

; y

j�1=2

)

U

i;j

� U

i;j�1

h

�

+ b

1

(x

i

; y

j

)

U

i+1;j

� U

i�1;j

2h

+ b

1

(x

i

; y

j

)

U

i;j+1

� U

i;j�1

2h

+ (x

i

; y

j

)U

ij

=

1

h

2

Z

x

i+1=2

x

i�1=2

Z

y

i+1=2

y

i�1=2

f(x; y) dx dy:

This is still a �ve-point di�erene sheme. Provided u 2 H

3

(
) \ H

1

0

(
), the sheme is

seond-order onvergent in the k�k

1;h

norm (i.e. (4.38) holds).

When 
 has a urved boundary, a non-uniform mesh has to be used near �
 to avoid a loss

of auray. To be more preise, let us introdue the following notation: let h

i+1

= x

i+1

�x

i

,

h

i

= x

i

� x

i�1

, and let ~

i

=

1

2

(h

i+1

+ h

i

): We de�ne

D

+

x

U

i

=

U

i+1

� U

i

~

i

; D

�

x

U

i

=

U

i

� U

i�1

h

i

;

D

+

x

D

�

x

U

i

=

1

~

i

�

U

i+1

� U

i

h

i+1

�

U

i

� U

i�1

h

i

�

:

Similarly, let k

j+1

= y

j+1

� y

j

, k

j

= y

j

� y

j�1

, and let

k

i

=

1

2

(k

j+1

+ k

j

):
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Let

D

+

y

U

j

=

U

j+1

� U

j

k

j

; D

�

y

U

j

=

U

j

� U

j�1

k

j

;

D

+

y

D

�

y

U

j

=

1

k

j

�

U

j+1

� U

j

k

j+1

�

U

j

� U

j�1

k

j

�

:

So, on a general non-uniform mesh

�




h

= f(x

i

; y

j

) : x

i+1

� x

i

= h

i

; y

j+1

� y

j

= k

j

g;

the Laplae operator, �, an be approximated by D

+

x

D

�

x

+ D

+

y

D

�

y

, with the di�erene

operators D

+

x

D

�

x

, D

+

y

D

�

y

de�ned above.

Consider, for example, the Dirihlet problem

��u = f(x; y) in 
;

u = 0 on �
;

where 
 and the non-uniform mesh

�




h

are depited in Fig. 4.

� 


h

; � �

h

;

�




h

= 


h

\ �

h

:

Figure 4: Non-uniform mesh

�




h

:

The �nite di�erene approximation of this boundary value problem is

�(D

+

x

D

�

x

U

ij

+D

+

y

D

�

y

U

ij

) = f(x

i

; y

j

) in 


h

;

U

ij

= 0 on �

h

:

Equivalently,

�

1

~

i

�

U

i+1;j

� U

ij

h

i+1

�

U

ij

� U

i�1;j

h

i

�

�

1

k

j

�

U

i;j+1

� U

ij

k

j+1

�

U

ij

� U

i;j�1

k

j

�

= f(x

i

; y

j

) in 


h

;

U

ij

= 0 on �

h

:

A typial di�erene stenil is shown in Fig. 5; learly we still have a �ve-point di�erene

sheme.
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)
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Figure 5: Five-point stenil on a non-uniform mesh.

47



5 Finite element methods for ellipti boundary value

problems

In setions 3 and 4 we desribed the onstrution of �nite di�erene methods for ellipti

boundary value problems and outlined some simple tehniques for their analysis. There,

beause of the very nature of �nite di�erene shemes, the emphasis was plaed on approx-

imating the values of the exat solution at a �nite number of mesh-points. In this setion

we onentrate on an alternative approah whih is based on the approximation of the exat

solution by ontinuous pieewise polynomial funtions. Numerial methods of this type are

alled �nite element methods.

Finite element methods were proposed by Courant in 1943, but the importane of his on-

tribution was not reognised at the time and the idea was forgotten. The method was

redisovered by engineers in the early 1950's, though the mathematial analysis of �nite el-

ement shemes only began in the 1960's, the �rst important theoretial results being those

of Zl�amal in 1968.

In this setion we present some of the basi properties of �nite element methods for ellipti

boundary value problems. Unlike �nite di�erene shemes whih are onstruted in a more-

or-less ad ho fashion by replaing the derivatives in the di�erential equation by divided

di�erenes, the derivation of �nite element methods is muh more systemati.

The �rst step in the onstrution of a �nite element method for an ellipti boundary value

problem (e.g. (2.3), (2.4)) is to onvert the problem into its weak formulation:

�nd u 2 V suh that a(u; v) = l(v) 8v 2 V , (P )

where V is the solution spae (e.g. H

1

0

(
) for a homogeneous Dirihlet boundary value

problem), a(�; �) is a bilinear form on V � V , and l(�) is a linear form on V (e.g. (2.7) and

(2.8)).

The seond step in the onstrution is to replae V in (P ) by a �nite-dimensional subspae

V

h

� V whih onsists of ontinuous pieewise polynomial funtions of a �xed degree, and

to onsider the following approximation of (P ):

�nd u

h

2 V

h

suh that a(u

h

; v

h

) = l(v

h

) 8v

h

2 V

h

. (P

h

)

Suppose, for example, that dimV

h

= N(h) and V

h

= spanf�

1

; : : : ; �

N(h)

g, where the linearly

independent basis funtions �

i

; i = 1; : : : ; N(h), have \small" support. Expressing the

approximate solution u

h

in terms of the basis funtions, �

i

, we an write

u

h

(x) =

N(h)

X

i=1

U

i

�

i

(x), (�)

where U

i

, i = 1; : : : ; N(h), are to be determined. Thus (P

h

) an be rewritten as follows:
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0 = x

0

x

1

x

2

: : : x

n

x

N

= 1

Figure 6: Subdivision of

�


 = [0; 1℄:

�nd (U

1

; : : : ; U

N(h)

) 2 R

N(h)

suh that

N(h)

X

i=1

a(�

i

; �

j

)U

i

= l(�

j

), j = 1; : : : ; N(h). (P

0

h

)

This is a system of linear equations for U = (U

1

; : : : ; U

N(h)

)

T

, with the matrix of the system,

A = (a(�

j

; �

i

)), of size N(h) �N(h): Beause the �

i

's have small support, a(�

j

; �

i

) = 0 for

most i and j, so the matrix A is sparse. One the system of linear equations (P

0

h

) has been

solved for U = (U

1

; : : : ; U

N(h)

)

T

, (�) provides the required approximation of u.

After this brief outline of the �nite element method, we illustrate the onstrution of this

numerial tehnique through some simple examples.

5.1 Constrution of the �nite element method: pieewise linear

basis funtions

In this setion we desribe two spei� examples of �nite element methods for boundary

value problems.

5.1.1 One-dimensional problem

Let us onsider the boundary value problem

�(p(x)u

0

)

0

+ q(x)u = f(x); x 2 (0; 1); (5.1a)

u(0) = 0; u(1) = 0; (5.1b)

where p 2 C[0; 1℄, q 2 C[0; 1℄, f 2 L

2

(0; 1), p(x) � ~ > 0, q(x) � 0, x 2 [0; 1℄. The weak

formulation of this problem is:

�nd u 2 H

1

0

(0; 1) suh that

Z

1

0

p(x)u

0

(x)v

0

(x) dx+

Z

1

0

q(x)u(x)v(x) dx =

Z

1

0

f(x)v(x) dx

8v 2 H

1

0

(0; 1):

9

>

>

=

>

>

;

(P )

In order to onstrut the �nite element approximation of this problem, we subdivide

�


 = [0; 1℄

into N subintervals [x

i

; x

i+1

℄, i = 0; : : : ; N � 1, by the points x

i

= ih, i = 0; : : : ; N , where

h = 1=N , N � 2 (see Fig. 6).
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The subintervals are alled \elements". The solution, u 2 H

1

0

(0; 1), of (P ) will be approx-

imated by a ontinuous pieewise linear funtion on this subdivison. For this purpose we

de�ne the �nite element basis funtions

�

i

(x) =

�

1�

�

�

�

�

x� x

i

h

�

�

�

�

�

+

; i = 1; : : : ; N � 1:

Here, for z 2 R, we used the notation z

+

= maxf0; zg. Clearly �

i

2 H

1

0

(0; 1), and supp �

i

=

[x

i�1

; x

i+1

℄, i = 1; : : : ; N � 1: The funtions �

i

, i = 1; : : : ; N � 1, are linearly independent

and therefore

V

h

:= spanf�

1

; : : : ; �

N�1

g

is an (N � 1)-dimensional subspae of H

1

0

(0; 1). The �nite element approximation of (P ) is:

�nd u

h

2 V

h

suh that

Z

1

0

p(x)u

0

h

(x)v

0

h

(x) dx +

Z

1

0

q(x)u

h

(x)v

h

(x) dx

=

Z

1

0

f(x)v

h

(x) dx 8v

h

2 V

h

:

9

>

>

>

>

=

>

>

>

>

;

(P

h

)

Sine u

h

2 V

h

= spanf�

1

; : : : ; �

N�1

g, it an be written as a linear ombination of the basis

funtions:

u

h

(x) =

N�1

X

i=1

U

i

�

i

(x):

Substituting this into (P

h

) we obtain the following problem, equivalent to (P

h

):

�nd U = (U

1

; : : : ; U

N�1

)

T

2 R

N�1

suh that

N�1

X

i=1

U

i

Z

1

0

[p(x)�

0

i

(x)�

0

j

(x) + q(x)�

i

(x)�

j

(x)℄ dx

=

Z

1

0

f(x)�

j

(x) dx; j = 1; : : : ; N � 1:

9

>

>

>

>

>

=

>

>

>

>

>

;

(P

0

h

)

Letting

a

ij

:=

Z

1

0

[p(x)�

0

i

(x)�

0

j

(x) + q(x)�

i

(x)�

j

(x)℄ dx; i; j = 1; : : : ; N � 1;

F

j

:=

Z

1

0

f(x)�

j

(x) dx; j = 1; : : : ; N � 1;

(P

0

h

) an be written as a system of linear equations

AU = F;
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where A = (a

ji

), F = (F

1

; : : : ; F

N�1

)

T

. The matrix A is symmetri (i.e. A

T

= A) and

positive de�nite (i.e. x

T

Ax > 0, x 6= 0). Sine supp �

i

[ supp�

j

has empty interior when

ji� jj > 1, it follows that the matrix A is tri-diagonal. Having solved the system of linear

equations AU = F , we substitute the values U

1

; : : : ; U

N�1

into

u

h

(x) =

N�1

X

i=1

U

i

�

i

(x)

to obtain u

h

.

In pratie the entries a

ji

of the matrix A and the entries F

j

of the vetor F are alulated

approximately using numerial quadrature rules. In the simple ase when p and q are onstant

funtions on [0; 1℄, the entries of A an be alulated exatly:

a

ij

= p

Z

1

0

�

0

i

(x)�

0

j

(x) dx+ q

Z

1

0

�

i

(x)�

j

(x) dx

= p

8

<

:

2=h; i = j;

�1=h; ji� jj = 1;

0; ji� jj > 1;

+ q

8

<

:

4h=6; i = j;

h=6; ji� jj = 1;

0; ji� jj > 1:

=

8

<

:

2p=h+ 4hq=6; i = j;

�p=h + qh=6; ji� jj = 1;

0; ji� jj > 1:

5.1.2 Two-dimensional problem

Let 
 be a bounded domain in R

2

with a polygonal boundary �
, so that 
 an be exatly

overed by a �nite number of triangles. We shall suppose that a family of suh sets of

triangles is parametrised by h, where h is the maximum diameter of triangles in the set. We

shall assume that any pair of triangles in a triangulation of 
 interset along a omplete

edge, at a vertex, or not at all, as shown in Fig. 7.

Figure 7: A subdivision (triangulation) of

�


.
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With eah interior node (marked � in the �gure) we assoiate a basis funtion � whih is

equal to 1 at that node and to 0 at all the other nodes; � is assumed to be ontinuous and

pieewise linear on the triangulation, as shown in Fig. 8.

0 0

0 0

0 0

1

Figure 8: A typial �nite element basis funtion.

Let us suppose that the interior nodes are labelled 1; 2; : : : ; N(h), let �

1

(x; y); : : : ; �

N(h)

(x; y)

be the orresponding basis funtions. The funtions �

1

; : : : ; �

N(h)

are linearly independent

and they span an N(h)-dimensional linear subspae V

h

of H

1

0

(
).

Let us onsider the ellipti boundary value problem

��u = f in 
;

u = 0 on �
:

The weak formulation of this problem is:

�nd u 2 H

1

0

(
) suh that

Z




�

�u

�x

�v

�x

+

�u

�y

�v

�y

�

dx dy =

Z




fv dx dy 8v 2 H

1

0

(
):

The �nite element approximation of the problem is:

�nd u

h

2 V

h

suh that

Z




�

�u

h

�x

�v

h

�x

+

�u

h

�y

�v

h

�y

�

dx dy =

Z




fv

h

dx dy 8v

h

2 V

h

:
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Writing

u

h

(x; y) =

N(h)

X

i=1

U

i

�

i

(x; y);

the �nite element approximation an be restated as follows:

�nd U = (U

1

; : : : ; U

N(h)

)

T

2 R

N(h)

suh that

N(h)

X

i=1

U

i

�

Z




�

��

i

�x

��

j

�x

+

��

i

�y

��

j

�y

�

dx dy

�

=

Z




f�

j

dx dy; j = 1; : : : ; N(h):

Letting A = (a

ij

), F = (F

1

; : : : ; F

N(h)

)

T

,

a

ij

= a

ji

=

Z




�

��

i

�x

��

j

�x

+

��

i

�y

��

j

�y

�

dx dy;

F

j

=

Z




f�

j

dx dy;

the �nite element approximation an be restated as a system of linear equations

AU = F:

Solving this, we obtain U = (U

1

; : : : ; U

N(h)

)

T

, and hene the approximate solution

u

h

(x; y) =

N(h)

X

i=1

U

i

�

i

(x; y):

To simplify matters let us suppose that 
 = (0; 1)� (0; 1) and onsider the triangulation of

�


 shown in Fig. 9.

Let �

ij

denote the basis funtion assoiated with the interior node (x

i

; y

j

):

�

ij

(x; y) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1�

x� x

i

h

�

y � y

j

h

; (x; y) 2 1

1�

y � y

j

h

; (x; y) 2 2

1�

x

i

� x

h

; (x; y) 2 3

1�

x

i

� x

h

�

y

j

� y

h

; (x; y) 2 4

1�

y

j

� y

h

; (x; y) 2 5

1�

x� x

i

h

; (x; y) 2 6

0 otherwise;

where 1; 2; : : : ; 6 denote the triangles surrounding the node (x

i

; y

j

) (see Fig. 10.)
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�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

si si si

si si si

si si si

y

N

= 1

x

N

= 1

y

x

x

1

: : :x

0

= 0

y

1

.

.

.

Figure 9: Subdivision (triangulation) of

�


 = [0; 1℄� [0; 1℄.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

si

1

2

3

4

5

6

Figure 10: Triangles surrounding a node.
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Thus

��

ij

�x

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�1=h; (x; y) 2 1

0; (x; y) 2 2

1=h; (x; y) 2 3

1=h; (x; y) 2 4

0; (x; y) 2 5

�1=h; (x; y) 2 6

0; otherwise;

and

��

ij

�y

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�1=h; (x; y) 2 1

�1=h; (x; y) 2 2

0; (x; y) 2 3

1=h; (x; y) 2 4

1=h; (x; y) 2 5

0; (x; y) 2 6

0; otherwise:

Sine

N�1

X

i=1

N�1

X

j=1

U

ij

Z




�

��

ij

�x

��

kl

�x

+

��

ij

�y

��

kl

�y

�

dx dy

= 4U

kl

� U

k�1;l

� U

k+1;l

� U

k;l�1

� U

k;l+1

; k; l = 1; :::; N � 1;

the �nite element approximation is equivalent to

�

U

k+1;l

� 2U

k;l

+ U

k�1;l

h

2

�

U

k;l+1

� 2U

k;l

+ U

k;l�1

h

2

=

1

h

2

Z Z

supp �

kl

f(x; y)�

kl

(x; y) dx dy; k; l = 1; : : : ; N � 1;

U

kl

= 0 on �
:

Thus, on this speial partition of 
, the �nite element approximation gives rise to the familiar

5-point �nite di�erene sheme with the foring funtion f averaged in a speial way.

5.2 Variational formulation of self-adjoint ellipti boundary value

problems

Let us onsider, as in Setion 2, the ellipti boundary value problem

�

n

X

i;j=1

�

�x

j

�

a

ij

(x)

�u

�x

i

�

+

n

X

i=1

b

i

(x)

�u

�x

i

+ (x)u = f(x); x 2 
; (5.2a)

u = 0 on �
; (5.2b)
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where 
 is a bounded open set in R

n

, a

ij

2 C(

�


), i; j = 1; : : : ; n; b

i

2 C

1

(

�


), i = 1; : : : ; n,

 2 C(

�


), f 2 L

2

(
), and assume that there exists a positive onstant ~ suh that

n

X

i;j=1

a

ij

(x)�

i

�

j

� ~

n

X

i=1

�

2

i

8� = (�

1

; : : : ; �

n

) 2 R

n

; 8x 2

�


: (5.3)

We reall from Setion 2 that the weak formulation of (5.2) is:

�nd u 2 H

1

0

(
) suh that a(u; v) = l(v) 8v 2 H

1

0

(
); (5.4)

where the bilinear form a(�; �) and the linear form l(�) are de�ned by

a(u; v) =

n

X

i;j=1

Z




a

ij

�u

�x

i

�v

�x

j

dx +

n

X

i=1

Z




b

i

(x)

�u

�x

i

v dx +

Z




(x)uv dx;

and

l(v) =

Z




f(x)v(x) dx:

We have shown that if

(x)�

1

2

n

X

i=1

�b

i

�x

i

� 0; x 2

�


;

then (5.4) has a unique solution u in H

1

0

(
), | the weak solution of (5.2).

In the speial ase when the boundary value problem is self-adjoint, i.e.

a

ij

(x) = a

ji

(x); i; j = 1; : : : ; n; x 2

�


;

and

b

i

(x) � 0; i = 1; : : : ; n; x 2

�


;

the bilinear form a(�; �) is symmetri in the sense that

a(v; w) = a(w; v) 8v; w 2 H

1

0

(
);

in the following this will always be assumed to be the ase. Thus we onsider

�

n

X

i;j=1

�

�x

j

�

a

ij

(x)

�u

�x

i

�

+ (x)u = f(x); x 2 
; (5.5a)

u = 0; on �
 (5.5b)

with a

ij

(x) satisfying the elliptiity ondition (5.3); a

ij

(x) = a

ji

(x), (x) � 0, x 2

�


.

It turns out that (5.5) an be restated as a minimisation problem. To be more preise, let

us de�ne the quadrati funtional J : H

1

0

(
)! R by

J(v) =

1

2

a(v; v)� l(v); v 2 H

1

0

(
):
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Lemma 5.1 Let u be the (unique) solution of (5.4) and suppose that a(�; �) is a symmetri

bilinear form on H

1

0

(
); then, u is the unique minimiser of J(�) over H

1

0

(
).

Proof Let u be the unique solution of (5.4) and, for v 2 H

1

0

(
), onsider J(v)� J(u):

J(v)� J(u) =

1

2

a(v; v) � l(v) �

1

2

a(u; u) + l(u)

=

1

2

a(v; v) �

1

2

a(u; u)� l(v � u)

=

1

2

a(v; v) �

1

2

a(u; u)� a(u; v � u)

=

1

2

[a(v; v) � 2a(u; v) + a(u; u)℄

=

1

2

[a(v; v) � a(u; v)� a(v; u) + a(u; u)℄

=

1

2

a(v � u; v � u):

Thene

J(v)� J(u) =

1

2

a(v � u; v � u):

Beause of (2.14),

a(v � u; v � u) � 

0

kv � uk

2

H

1

(
)

;

where 

0

is a positive onstant. Thus

J(v)� J(u) �



0

2

kv � uk

2

H

1

(
)

8v 2 H

1

0

(
); (5.6)

and therefore,

J(v) � J(u) 8v 2 H

1

0

(
); (5.7)

i.e. u minimises J(�) over H

1

0

(
).

In fat, u is the unique minimiser of J(�) on H

1

0

(
). Indeed, if ~u also minimises J(�) on H

1

0

(
),

then

J(v) � J(~u) 8v 2 H

1

0

(
): (5.8)

Taking v = ~u in (5.7) and v = u in (5.8), we dedue that

J(u) = J(~u);

but then, by virtue of (5.6),

k~u� uk

H

1

(
)

= 0;

and hene u = ~u. 2
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u

J(u)

J(v)

H

1

0

(
)

R

Figure 11: The quadrati funtional J(�).

It is easily shown that J(�) is onvex (down), i.e.

J((1� �)v + �w) � (1� �)J(v) + �J(w) 8� 2 [0; 1℄; 8v; w 2 H

1

0

(
):

This follows from the identity

(1� �)J(v) + �J(w) = J((1� �)v + �w) +

1

2

�(1� �)a(v � w; v � w)

and the fat that a(v � w; v � w) � 0 on noting that � 2 [0; 1℄.

Moreover, if u minimises J(�) then the Gateaux derivative J

0

(u) of J(�) at u,

J

0

(u)v := lim

�!0

J(u+ �v)� J(u)

�

= 0

for all v 2 H

1

0

(
). Sine

J(u+ �v)� J(u)

�

= a(u; v)� l(v) +

�

2

a(v; v);

we dedue that if u minimises J(�) then

lim

�!0

[a(u; v)� l(v) +

�

2

a(v; v)℄ = a(u; v)� l(v) = 0 8v 2 H

1

0

(
);

whih proves the following result.

Lemma 5.2 Suppose that u 2 H

1

0

(
) minimises J(�) over H

1

0

(
); then, u is the (unique)

solution of problem (5.4).
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This lemma is preisely the onverse of the previous lemma, and the two results together

express the equivalene of the weak formulation:

�nd u 2 H

1

0

(
) suh that a(u; v) = l(v) 8v 2 H

1

0

(
) (W )

of the self-adjoint ellipti boundary value problem (5.5) to the assoiated minimisation prob-

lem:

�nd u 2 H

1

0

(
) suh that J(u) � J(v) 8v 2 H

1

0

(
): (M)

We shall use of this equivalene to perform an error analysis of the �nite element method.

5.3 Constrution of the �nite element method: abstrat setting

Let us onsider the self-adjoint ellipti boundary value problem (5.5), and reall that its weak

formulation is

�nd u 2 H

1

0

(
) suh that a(u; v) = l(v) 8v 2 H

1

0

(
); (W )

where

a(u; v) =

n

X

i;j=1

Z




a

ij

(x)

�u

�x

i

�v

�x

j

dx +

Z




(x)uv dx;

l(v) =

Z




f(x)v(x) dx;

we suppose that a

ij

(x) = a

ji

(x), i; j = 1; : : : ; n, x 2

�


, (x) � 0, x 2

�


, a

ij

,  2 C(

�


),

f 2 L

2

(
), and the elliptiity ondition (5.3) holds. Reall also that (W ) is equivalent to

the minimisation problem

�nd u 2 H

1

0

(
) suh that J(u) � J(v) 8v 2 H

1

0

(
); (M)

where J(v) =

1

2

a(v; v)� l(v).

We an derive the �nite element approximation of (5.5) by replaing the spae H

1

0

(
) in (W )

by a ertain �nite-dimensional subspae V

h

� H

1

0

(
) whih onsists of ontinuous pieewise

polynomials of a �xed degree k, k � 1.

Leaving aside for a moment the question of the atual onstrution of V

h

, we onsider,

instead, some general questions onerning �nite element methods whih do not depend on

the partiular properties of V

h

.

In its most general form, the �nite element approximation of (W ) is:

�nd u

h

2 V

h

suh that a(u

h

; v

h

) = l(v

h

) 8v

h

2 V

h

: (W

h

)
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As V

h

� V = H

1

0

(
), the existene of a unique solution u

h

2 V

h

is a straightforward

onsequene of the Lax{Milgram theorem (see, Setion 2). In addition, we an repeat the

argument presented in the previous setion to show the equivalene of (W

h

) to the following

minimisation problem:

�nd u

h

2 V

h

suh that J(u

h

) � J(v

h

) 8v

h

2 V

h

. (M

h

)

Next we study the approximation properties of (W

h

).

5.4 C�ea's lemma

C�ea's lemma expresses the fat that, in a ertain sense, the �nite element solution u

h

2 V

h

is the best approximation to u 2 V = H

1

0

(
) from V

h

. To be more preise, we de�ne

(v; w)

a

:= a(v; w); v; w 2 H

1

0

(
):

Beause a(�; �) is a symmetri bilinear form on H

1

0

(
)�H

1

0

(
) and

a(v; v) � 

0

kvk

2

H

1

(
)

8v 2 H

1

0

(
);

(f. Setion 2), it is easily seen that (�; �)

a

satis�es all axioms of an inner produt. Let k�k

a

denote the assoiated \energy norm":

kvk

a

:= [a(v; v)℄

1=2

:

Sine V

h

� H

1

0

(
), taking v = v

h

2 V

h

in the statement of (W ), we dedue that

a(u; v

h

) = l(v

h

); v

h

2 V

h

; (5.9)

also by, (W

h

),

a(u

h

; v

h

) = l(v

h

); v

h

2 V

h

: (5.10)

Subtrating (5.10) from (5.9) and using the fat that a(�; �) is a bilinear form, we dedue that

a(u� u

h

; v

h

) = 0 8v

h

2 V

h

;

i.e.

(u� u

h

; v

h

)

a

= 0 8v

h

2 V

h

: (5.11)

Thus, the error between the exat solution u and its �nite element approximation u

h

is

orthogonal to V

h

.
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�
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h

0
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1

0

(
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h

s

Figure 12: The error u� u

h

is orthogonal to V

h

.

By virtue of the orthogonality property (5.11) (see Figure 12),

ku� u

h

k

2

a

= (u� u

h

; u� u

h

)

a

= (u� u

h

; u)

a

� (u� u

h

; u

h

)

a

= (u� u

h

; u)

a

= (u� u

h

; u)

a

� (u� u

h

; v

h

)

a

= (u� u

h

; u� v

h

)

a

8v

h

2 V

h

:

Thene, by the Cauhy{Shwarz inequality,

ku� u

h

k

2

a

= (u� u

h

; u� v

h

)

a

� ku� u

h

k

a

ku� v

h

k

a

8v

h

2 V

h

;

therefore

ku� u

h

k

a

� ku� v

h

k

a

8v

h

2 V

h

:

Consequently,

ku� u

h

k

a

= min

v

h

2V

h

ku� v

h

k

a

;

the minimum being ahieved when v

h

= u

h

. Thus we have proved the following result

Lemma 5.3 (C�ea's lemma) The �nite element approximation u

h

2 V

h

of u 2 H

1

0

(
) is the

best �t to u from V

h

in the energy norm k�k

a

; i.e.

ku� u

h

k

a

= min

v

h

2V

h

ku� v

h

k

a

:

This result is the key to the error analysis of the �nite element method for self-adjoint ellipti

boundary value problems. In the next setion we desribe how suh an analysis proeeds

for a partiularly simple �nite element spae, V

h

, onsisting of ontinuous pieewise linear

funtions on 
.
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5.5 Optimal error bounds in the energy norm

In this setion, we shall employ C�ea's lemma to derive an optimal error bound for the �nite

element approximation (W

h

) of problem (W ) in the ase of pieewise linear basis funtions.

Let 
 = (0; 1)� (0; 1), and onsider the ellipti boundary value problem

��u = f in 
; (5.12a)

u = 0 on �
: (5.12b)

We reall that the weak formulation of this problem is:

�nd u 2 H

1

0

(
) suh that

Z




�

�u

�x

�v

�x

+

�u

�y

�v

�y

�

dx dy =

Z




fv dx dy 8v 2 H

1

0

(
): (5.13)

In order to onstrut the �nite element approximation, we triangulate the domain as shown

in the Fig. 13. Let h = 1=N , and de�ne x

i

= ih, i = 0; : : : ; N , y

j

= jh, j = 0; : : : ; N . With

eah node, (x

i

; y

j

), ontained in the interior of 
 (labelled � in the �gure), we assoiate a

basis-funtion �

ij

, i; j = 1; : : : ; N � 1, de�ned by

�

ij

(x; y) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1�

x� x

i

h

�

y � y

j

h

; (x; y) 2 1

1�

y � y

j

h

; (x; y) 2 2

1�

x

i

� x

h

; (x; y) 2 3

1�

x

i

� x

h

�

y

j

� y

h

; (x; y) 2 4

1�

y

j

� y

h

; (x; y) 2 5

1�

x� x

i

h

; (x; y) 2 6

0 otherwise:

Let V

h

= spanf�

ij

; i = 1; : : : ; N � 1; j = 1; : : : ; N � 1g. The �nite element approximation

of (5.12) (and (5.13)) is:

�nd u

h

2 V

h

suh that

Z




�

�u

h

�x

�v

h

�x

+

�u

h

�y

�v

h

�y

�

dx dy =

Z




fv

h

dx dy 8v

h

2 V

h

: (5.14)

Letting

l(v) =

Z




f(x)v(x) dx; and

(v; w)

a

= a(v; w) =

Z




�

�v

�x

�w

�x

+

�v

�y

�w

�y

�

dx dy;
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�

�
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Figure 13: Subdivision (triangulation) of

�


 = [0; 1℄� [0; 1℄.
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)
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)
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)
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)
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Figure 14: Triangles surrounding the node (x

i

; y

j

).
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(5.13) and the �nite element method (5.14) an be written, respetively, as follows:

�nd u 2 H

1

0

(
) suh that a(u; v) = l(v) 8v 2 H

1

0

(
); (5:13

0

)

and

�nd u

h

2 V

h

suh that a(u

h

; v

h

) = l(v

h

) 8v

h

2 V

h

: (5:14

0

)

Let us suppose that u 2 H

2

(
)\H

1

0

(
). By the Sobolev embedding theorem H

2

(
) � C(

�


)

(f. also Lemma 4.10 (b)); therefore u 2 C(

�


). Aording to C�ea's lemma,

ku� u

h

k

a

= min

v

h

2V

h

ku� v

h

k

a

� ku� I

h

uk

a

; (5.15)

where I

h

u denotes the ontinuous pieewise linear interpolant of u on 
:

(I

h

u)(x; y) =

N�1

X

i=1

N�1

X

j=1

u(x

i

; y

j

)�

ij

(x; y):

Clearly (I

h

u)(x

k

; y

l

) = u(x

k

; y

l

). Sine u 2 C(

�


), I

h

u is orretly de�ned. Let us estimate

ku� I

h

uk

a

:

ku� I

h

uk

2

a

=

Z




�

�

�

�

�

�x

(u� I

h

u)

�

�

�

�

2

dx dy +

Z




�

�

�

�

�

�y

(u� I

h

u)

�

�

�

�

2

dx dy

=

X

4

(

Z

4

�

�

�

�

�

�x

(u� I

h

u)

�

�

�

�

2

dx dy +

Z

4

�

�

�

�

�

�y

(u� I

h

u)

�

�

�

�

2

dx dy

)

; (5.16)

where 4 is a triangle in the partition of 
. Suppose, for example, that

4 = f(x; y) : x

i

� x � x

i+1

; y

j

� y � y

j+1

+ x

i

� xg:

In order to estimate

Z

4

�

�

�

�

�

�x

(u� I

h

u)

�

�

�

�

2

dx dy +

Z

4

�

�

�

�

�

�y

(u� I

h

u)

�

�

�

�

2

dx dy;

we de�ne the anonial triangle

K = f(s; t) : 0 � s � 1; 0 � t � 1� sg

and the aÆne mapping (x; y) 7! (s; t) from 4 to K by

x = x

i

+ sh; 0 � s � 1;

y = y

j

+ th; 0 � t � 1:

Let �u(s; t) := u(x; y). Then,

�u

�x

=

��u

�s

�

�s

�x

+

��u

�t

�

�t

�x

=

1

h

�

��u

�s

;

�u

�y

=

��u

�s

�

�s

�y

+

��u

�t

�

�t

�y

=

1

h

�

��u

�t

:
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The Jaobian of the mapping (s; t) 7! (x; y) is

J =

�(x; y)

�(s; t)

=

�

�

�

�

x

s

x

t

y

s

y

t

�

�

�

�

= h

2

:

Thus,

Z

4

�

�

�

�

�

�x

(u� I

h

u)

�

�

�

�

2

dx dy

=

Z

K

�

�

�

�

�

�s

(�u(s; t)� [(1� s� t)�u(0; 0) + s�u(1; 0) + t�u(0; 1)℄)

�

�

�

�

2

ds dt

=

Z

1

0

Z

1�s

0

�

�

�

�

��u

�s

(s; t)� [�u(1; 0)� �u(0; 0)℄

�

�

�

�

2

ds dt

=

Z

1

0

Z

1�s

0

�

�

�

�

��u

�s

(s; t)�

Z

1

0

��u

�s

(�; 0) d�

�

�

�

�

2

ds dt

=

Z

1

0

Z

1�s

0

�

�

�

�

Z

1

0

�

��u

�s

(s; t)�

��u

�s

(�; t)

�

d� +

Z

1

0

�

��u

�s

(�; t)�

��u

�s

(�; 0)

�

d�

�

�

�

�

2

ds dt

=

Z

1

0

Z

1�s

0

�

�

�

�

Z

1

0

Z

s

�

�

2

�u

�s

2

(�; t) d� d� +

Z

1

0

Z

t

0

�

2

�u

�s�t

(�; �) d� d�

�

�

�

�

2

ds dt

� 2

Z

1

0

Z

1�s

0

Z

1

0

Z

1

0

�

�

�

�

�

2

�u

�s

2

(�; t)

�

�

�

�

2

d� d� ds dt+ 2

Z

1

0

Z

1�s

0

Z

1

0

Z

1

0

�

�

�

�

�

2

�u

�s�t

(�; �)

�

�

�

�

2

d� d� ds dt

� 2

Z

1

0

Z

1

0

�

�

�

�

�

2

�u

�s

2

(�; t)

�

�

�

�

2

d� dt +

Z

1

0

Z

1

0

�

�

�

�

�

2

�u

�s�t

(�; �)

�

�

�

�

2

d� d�

= 2

Z

x

i+1

x

i

Z

y

j+1

y

j

�

�

�

�

�

2

u

�x

2

(x; y)

�

�

�

�

2

�

�

�

h

2

�

�

2

� h

�2

dx dy +

Z

x

i+1

x

i

Z

y

j+1

y

j

�

�

�

�

�

2

u

�x�y

(x; y)

�

�

�

�

2

�

�

�

h

2

�

�

2

� h

�2

dx dy:

Therefore,

Z

4

�

�

�

�

�

�x

(u� I

h

u)

�

�

�

�

2

dx dy � 2h

2

Z

x

i+1

x

i

Z

y

j+1

y

j

 

�

�

�

�

�

2

u

�x

2

�

�

�

�

2

+

1

2

�

�

�

�

�

2

u

�x�y

�

�

�

�

2

!

dx dy: (5.17)

Similarly,

Z

4

�

�

�

�

�

�y

(u� I

h

u)

�

�

�

�

2

dx dy � 2h

2

Z

x

i+1

x

i

Z

y

j+1

y

j

 

�

�

�

�

�

2

u

�y

2

�

�

�

�

2

+

1

2

�

�

�

�

�

2

u

�x�y

�

�

�

�

2

!

dx dy: (5.18)

Substituting (5.17) and (5.18) into (5.16),

ku� I

h

uk

2

a

� 4h

2

Z




 

�

�

�

�

�

2

u

�x

2

�

�

�

�

2

+

�

�

�

�

�

2

u

�x�y

�

�

�

�

2

+

�

�

�

�

�

2

u

�y

2

�

�

�

�

2

!

dx dy: (5.19)

Finally by (5.15) and (5.19),

ku� u

h

k

a

� 2h juj

H

2

(
)

: (5.20)

Thus we have proved the following result.
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Theorem 5.4 Let u be the weak solution of the boundary value problem (5.12), and let u

h

be its pieewise linear �nite element approximation de�ned by (5.14). Suppose that u 2

H

2

(
) \H

1

0

(
); then,

ku� u

h

k

a

� 2h juj

H

2

(
)

:

Corollary Under the hypotheses of Theorem 5.4

ku� u

h

k

H

1

(
)

�

p

5h juj

H

2

(
)

:

Proof Aording to Theorem 5.4,

ku� u

h

k

2

a

= ju� u

h

j

2

H

1

(
)

� 4h

2

juj

2

H

2

(
)

:

Sine u 2 H

1

0

(
), u

h

2 V

h

� H

1

0

(
), it follows that u � u

h

2 H

1

0

(
). By the Poinar�e{Friedrihs

inequality,

ku� u

h

k

2

L

2

(
)

�

1

4

ju� u

h

j

2

H

1

(
)

; (5.21)

thus,

ku� u

h

k

2

H

1

(
)

= ku� u

h

k

2

L

2

(
)

+ ju� u

h

j

2

H

1

(
)

�

5

4

ju� u

h

j

2

H

1

(
)

� 5h

2

juj

2

H

2

(
)

;

and that ompletes the proof. 2

Aording to (5.21) and (5.20),

ku� u

h

k

L

2

(
)

� h � juj

H

2

(
)

:

This error estimate seems to indiate that the error in the L

2

-norm between u and its �nite

element approximation u

h

is of the size O(h). It turns out, however, that this bound is

rude and an be improved to O(h

2

). For this purpose, let us �rst observe that if w 2

H

2

(
) \H

1

0

(
); 
 = (0; 1)� (0; 1), then

k�wk

2

L

2

(
)

=

Z




�

�

2

w

�x

2

+

�

2

w

�y

2

�

2

dx dy

=

Z




�

�

2

w

�x

2

�

2

+ 2

Z




�

2

w

�x

2

�

�

2

w

�y

2

dx dy +

Z




�

�

2

w

�y

2

�

2

dx dy:

Performing integration by parts and using the fat that w = 0 on �
,

Z




�

2

w

�x

2

�

�

2

w

�y

2

dx dy =

Z




�

2

w

�x�y

�

�

2

w

�x�y

dx dy

=

Z




�

�

�

�

�

2

w

�x�y

�

�

�

�

2

dx dy:

66



Thus,

k�wk

2

L

2

(
)

=

Z




 

�

�

�

�

�

2

w

�x

2

�

�

�

�

2

+ 2

�

�

�

�

�

2

w

�x�y

�

�

�

�

2

+

�

�

�

�

�

2

w

�y

2

�

�

�

�

2

!

dx dy

= jwj

2

H

2

(
)

:

Given g 2 L

2

(
), let w

g

2 H

1

0

(
) denote the weak solution of the boundary value problem

��w

g

= g in 
; (5.22a)

w

g

= 0 on �
; (5.22b)

then, w

g

2 H

2

(
) \H

1

0

(
); and

jw

g

j

H

2

(
)

= k�w

g

k

L

2

(
)

= kgk

L

2

(
)

: (5.23)

After this brief preparation, we turn to the derivation of the optimal error bound in the

L

2

-norm.

Aording to the Cauhy{Shwarz inequality for the L

2

-inner produt (�; �),

(u� u

h

; g) � ku� u

h

k

L

2

(
)

kgk

L

2

(
)

8g 2 L

2

(
):

Therefore,

ku� u

h

k

L

2

(
)

= sup

g2L

2

(
)

(u� u

h

; g)

kgk

L

2

(
)

: (5.24)

Given g 2 L

2

(
), let w

g

2 H

1

0

(
) denote the weak solution of the problem (5.22), i.e.

a(w

g

; v) = l

g

(v) 8v 2 H

1

0

(
); (5.25)

where

l

g

(v) =

Z




gv dx dy = (g; v);

a(w

g

; v) =

Z




�

�w

g

�x

�v

�x

+

�w

g

�y

�v

�y

�

dx dy:

Consider the �nite element approximation of (5.25):

�nd w

gh

2 V

h

suh that a(w

gh

; v

h

) = l

g

(v

h

) 8v

h

2 V

h

: (5.26)

From (5.25), (5.26) and the error bound (5.20), we dedue that

kw

g

� w

gh

k

a

� 2h jw

g

j

H

2

(
)

;
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and therefore, by (5.23),

kw

g

� w

gh

k

a

� 2h kgk

L

2

(
)

: (5.27)

Now,

(u� u

h

; g) = (g; u� u

h

) = l

g

(u� u

h

)

= a(w

g

; u� u

h

) = a(u� u

h

; w

g

): (5.28)

Beause w

gh

2 V

h

, (5.11) implies that

a(u� u

h

; w

gh

) = 0;

and therefore, by (5.28),

(u� u

h

; g) = a(u� u

h

; w

g

)� a(u� u

h

; w

gh

)

= a(u� u

h

; w

g

� w

gh

)

= (u� u

h

; w

g

� w

gh

)

a

:

Applying the Cauhy{Shwarz inequality on the right,

(u� u

h

; g) � ku� u

h

k

a

kw

g

� w

gh

k

a

;

and thene by (5.20) and (5.27)

(u� u

h

; g) � 4h

2

juj

H

2

(
)

� kgk

L

2

(
)

: (5.29)

Substituting (5.29) into the right-hand side of (5.24), we obtain

ku� u

h

k

L

2

(
)

� 4h

2

juj

H

2

(
)

;

whih is our improved error bound in the L

2

-norm.

The proof presented above is alled the Aubin{Nitshe duality argument.

68



6 Finite di�erene approximation of evolutionary prob-

lems

In Setions 3{5 we onsidered numerial methods for the approximate solution of ellipti

equations. This setion is devoted to �nite di�erene methods for time-dependent problems

desribed by paraboli and hyperboli equations.

6.1 Finite di�erene methods for paraboli equations

Let 
 be a bounded open set in R

n

, n � 1, with boundary � = �
, and let T > 0. In

Q = 
 � (0; T ℄, we onsider the initial boundary value problem for the unknown funtion

u(x; t), x 2 
, t 2 (0; T ℄ :

�u

�t

�

n

X

i;j=1

�

�x

j

(a

ij

(x; t)

�u

�x

i

) +

n

X

i=1

b

i

(x; t)

�u

�x

i

+ (x; t)u = f(x; t); x 2 
; t 2 (0; T ℄; (6.1)

u(x; t) = 0; x 2 �; t 2 [0; T ℄; (6.2)

u(x; 0) = u

0

(x); x 2

�


; (6.3)

where, for the sake of onsisteny between the boundary ondition (6.2) and the initial

ondition (6.3), we shall assume that the initial datum u

0

satis�es: u

0

(x) = 0, x 2 �:

Suppose that u

0

2 L

2

(
), and that there exists a positive onstant ~ suh that

n

X

i;j=1

a

ij

(x; t)�

i

�

j

� ~

n

X

i=1

�

2

i

; 8� = (�

1

; : : : ; �

n

) 2 R

n

; 8x 2

�


; t 2 [0; T ℄: (6.4)

We shall also assume that

a

ij

2 C

1

(

�

Q); b

i

2 C

1

(

�

Q); i; j = 1; : : : ; n;

 2 C

0

(

�

Q); f 2 L

2

(Q);

and that

(x; t)�

1

2

n

X

i=1

�b

i

�x

i

(x; t) � 0; (x; t) 2

�

Q; (6.5)

similarly as in the ellipti ase.

A partial di�erential equation of the form (6.1) is alled a paraboli equation (of seond

order). Simple examples of paraboli equations are the heat equation

�u

�t

= �u
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and the onvetion-di�usion equation

�u

�t

��u+

n

X

i=1

b

i

�u

�x

i

= 0:

The proof of the existene of a unique solution of a paraboli initial boundary value problem

is more tehnial than the proof of the orresponding result for an ellipti boundary value

problem and so it is omitted. Instead, we shall assume that (6.1){(6.3) has a unique solu-

tion and we shall investigate its deay in t (t typially signi�es time), and the question of

ontinuous dependene of the solution on the initial datum, u

0

, and the foring funtion, f .

We reall that, for v; w 2 L

2

(
); the inner produt (u; v) and the norm kvk

L

2

(
)

are de�ned

by

(v; w) =

Z




v(x)w(x) dx;

kvk

L

2

(
)

= (v; v)

1=2

:

Taking the inner produt of (6.1) with u, noting that u(x; t) = 0, x 2 �, integrating by parts,

and employing (6.4) and (6.5),

�

�u

�t

(�; t); u(�; t)

�

+ ~

n

X

i=1









�u

�x

i

(�; t)









2

L

2

(
)

� (f(�; t); u(�; t)):

Noting that

�

�u

�t

(�; t); u(�; t)

�

=

1

2

d

dt

ku(�; t)k

2

L

2

(
)

;

and using the Poinar�e{Friedrihs inequality (1.1), we obtain

1

2

d

dt

ku(�; t)k

2

L

2

(
)

+

~



?

ku(�; t)k

2

L

2

(
)

� (f(�; t); u(�; t)):

Let K = ~=

?

; then, by the Cauhy{Shwarz inequality,

1

2

d

dt

ku(�; t)k

2

L

2

(
)

+K ku(�; t)k

2

L

2

(
)

� kf(�; t)k

L

2

(
)

ku(�; t)k

L

2

(
)

�

1

2K

kf(�; t)k

2

L

2

(
)

+

K

2

ku(�; t)k

2

L

2

(
)

:

Thene,

d

dt

ku(�; t)k

2

L

2

(
)

+K ku(�; t)k

2

L

2

(
)

�

1

K

kf(�; t)k

2

L

2

(
)

:
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Multiplying both sides by e

Kt

,

d

dt

�

e

Kt

ku(�; t)k

2

L

2

(
)

�

�

e

Kt

K

kf(�; t)k

2

L

2

(
)

:

Integrating from 0 to t,

e

Kt

ku(�; t)k

2

L

2

(
)

� ku

0

k

2

L

2

(
)

�

1

K

Z

t

0

e

K�

kf(�; �)k

2

L

2

(
)

d�:

Hene

ku(�; t)k

2

L

2

(
)

� e

�Kt

ku

0

k

2

L

2

(
)

+

1

K

Z

t

0

e

�K(t��)

kf(�; �)k

2

L

2

(
)

d�: (6.6)

Assuming that (6.1){(6.3) has a solution, (6.6) implies that the solution is unique. Indeed,

if u

1

and u

2

are solutions of (6.1){(6.3), then u = u

1

�u

2

satis�es (6.1){(6.3) with f � 0 and

u

0

� 0; therefore, by (6.6), u � 0, i.e. u

1

� u

2

.

Let us also look at the speial ase when f � 0 in (6.1). This orresponds to onsidering the

evolution of the solution from the initial datum, u

0

, in the absene of external fores. In this

ase (6.6) yields

ku(�; t)k

2

L

2

(
)

� e

�Kt

ku

0

k

2

L

2

(
)

; t � 0: (6.7)

In other words, the energy,

1

2

ku(�; t)k

2

L

2

(
)

deays (dissipates) exponentially fast. Sine K =

~=

?

, we have

ku(�; t)k

2

L

2

(
)

� e

�~t=

?

ku

0

k

2

L

2

(
)

; t � 0; (6.8)

and we dedue that the rate of dissipation depends on the lower bound, ~, on the di�usion

oeÆients (i.e. the smaller ~, the slower the deay of the energy).

In the next setion we onsider some simple �nite di�erene shemes for the numerial so-

lution of paraboli initial boundary value problems. Analogous results an be proved when

the spatial disretisation is based on the �nite di�erene method. In order to simplify the

presentation, we restrit ourselves to the heat equation in one spae dimension.

6.1.1 Expliit and impliit shemes

We onsider the following simple model problem for the heat equation in one spae dimension.

Let Q = 
� (0; T ℄, where 
 = (0; 1), T > 0;

�nd u(x; t) suh that

�u

�t

=

�

2

u

�x

2

+ f(x; t); x 2 (0; 1); t 2 (0; T ℄;

u(0; t) = 0; u(1; t) = 0; t 2 [0; T ℄; (6.9)

u(x; 0) = u

0

(x); x 2 [0; 1℄:
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Figure 15: Four-point stenil for the expliit sheme.

We desribe two shemes for the numerial solution of (6.9). They both use the same dis-

retisation of �

2

u=�x

2

, but while the �rst sheme (alled the expliit sheme) employs a

forward di�erene in t to approximate �u=�t, the seond (alled the impliit sheme) uses a

bakward di�erene in t.

The expliit sheme. We begin by onstruting a mesh on

�

Q = [0; 1℄�[0; T ℄: Let h = 1=N

be the mesh-size in the x-diretion and let �t = T=M be the mesh-size in the t-diretion;

here N and M are two integers, N � 2, M � 1. We de�ne the uniform mesh

�

Q

�t

h

on

�

Q by

�

Q

�t

h

= f(x

j

; t

m

) : x

j

= jh; 0 � j � N ; t

m

= m ��t; 0 � m �Mg:

On

�

Q

�t

h

we approximate (6.9) by the following �nite di�erene sheme:

�nd U

m

j

; 0 � j � N; 0 � m �M; suh that

U

m+1

j

� U

m

j

�t

= D

+

x

D

�

x

U

m

j

+ f(x

j

; t

m

); 1 � j � N � 1; 0 � m �M � 1;

U

m

0

= 0; U

m

N

= 0; 0 � m �M; (6.10)

U

0

j

= u

0

(x

j

); 0 � j � N;

where U

m

j

represents the approximation of u(x

j

; t

m

), the value of u at the mesh-point (x

j

; t

m

).

Clearly, (6.10) is a 4-point di�erene sheme involving the values of U at the mesh-points

(x

j�1

; t

m

); (x

j

; t

m

); (x

j+1

; t

m

); (x

j

; t

m+1

);

shown in Fig. 15. The sheme (6.10) is applied as follows. First we set m = 0. Sine

U

0

j�1

, U

0

j

, U

0

j+1

are given by the initial ondition U

0

j

= u

0

(x

j

), j = 0; : : : ; N , the values U

1

j

,

j = 0; : : : ; N , an be omputed from (6.10):

U

1

j

= U

0

j

+

�t

h

2

(U

0

j+1

� 2U

0

j

+ U

0

j�1

) + �t � f(x

j

; t

0

); j = 1; : : : ; N � 1;

U

1

0

= 0; U

1

N

= 0;
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the values of U on the time-level t = t

1

= 1 � �t an be alulated expliitly from U

0

j

,

j = 0; : : : ; N , and hene the terminology expliit sheme.

Suppose we have already alulated U

m

j

, j = 0; : : : ; N , the values of U on time level t

m

=

m � �t. The values of U on the next time level t

m+1

= (m + 1) ��t an be obtained from

(6.10):

U

m+1

j

= U

m

j

+

�t

h

2

(U

m

j+1

� 2U

m

j

+ U

m

j�1

) + �t � f(x

j

; t

m

); j = 1; : : : ; N � 1;

U

m+1

0

= 0 U

m+1

N

= 0;

for any m, 0 � m �M � 1.

The impliit sheme. Alternatively, one an approximate the time derivative by a bak-

ward di�erene, whih gives rise to the following impliit sheme:

�nd U

m

j

; 0 � j � N; 0 � m �M; suh that

U

m+1

j

� U

m

j

�t

= D

+

x

D

�

x

U

m+1

j

+ f(x

j

; t

m+1

); 1 � j � N � 1; 0 � m � M � 1;

U

m+1

0

= 0; U

m+1

N

= 0; 0 � m �M � 1; (6.11)

U

0

j

= u

0

(x

j

); 0 � j � N;

where U

m

j

represents the approximation of u(x

j

; t

m

), the value of u at the mesh-point (x

j

; t

m

).

Equivalently, (6.11) an be written

�

�t

h

2

U

m+1

j+1

+

�

2�t

h

2

+ 1

�

U

m+1

j

�

�t

h

2

U

m+1

j�1

= U

m

j

+�t � f(x

j

; t

m+1

); (6.12)

1 � j � N � 1;

U

m+1

0

= 0; U

m+1

N

= 0;

for eah m, 0 � m �M � 1.

This is, again, a 4-point �nite di�erene sheme, but it involves the values of U at the

mesh-points

(x

j�1

; t

m+1

); (x

j

; t

m+1

); (x

j+1

; t

m+1

); (x

j

; t

m

);

shown in Fig. 16. The impliit sheme (6.12) is implemented as follows. First we set m = 0;

then, (6.12) is a system of linear equations with a tridiagonal matrix, and the right-hand

side an be omputed from the initial datum U

0

j

= u

0

(x

j

), and the foring funtion f(x

j

; t

1

).

Suppose we have already omputed U

m

j

, j = 0; : : : ; N , the values of U on time level t

m

=

m ��t: The values of U on the next time level t

m+1

= (m + 1) ��t are obtained by solving

the system of linear equations (6.12).
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Figure 16: Four-point stenil for the impliit sheme.

6.1.2 Stability of expliit and impliit shemes

We shall study the stability of the shemes (6.10) and (6.11) simultaneously, by embedding

them into a one-parameter family of �nite di�erene shemes:

�nd U

m

j

; 0 � j � N; 0 � m �M; suh that

U

m+1

j

� U

m

j

�t

= D

+

x

D

�

x

(�U

m+1

j

+ (1� �)U

m

j

) + f(x

j

; t

m+�

);

1 � j � N � 1;

0 � m �M � 1;

U

m

0

= 0; U

m

N

= 0; 0 � m �M; (6.13)

U

0

j

= u

0

(x

j

); 0 � j � N;

where 0 � � � 1. Reall that

(V;W )

h

=

N�1

X

j=1

hV

j

W

j

;

kV k

h

= (V; V )

1=2

h

:

Taking the inner produt of (6.13) with

U

m+�

:= �U

m+1

+ (1� �)U

m

;

we get

�

U

m+1

� U

m

�t

; U

m+�

�

h

� (D

+

x

D

�

x

U

m+�

; U

m+�

)

h

= (f

m+�

; U

m+�

)

h

;

where f

m+�

j

= f

m+�

(x

j

) = f(x

j

; t

m+�

). Let

jjV ℄j

h

=

 

N

X

j=1

h jV

j

j

2

!

1=2

:
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Noting that U

m+�

0

= 0, U

m+�

N

= 0, it follows from Lemma 3.1 that

�(D

+

x

D

�

x

U

m+�

; U

m+�

)

h

=

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

:

Thus,

�

U

m+1

� U

m

�t

; U

m+�

�

h

+

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

= (f

m+�

; U

m+�

)

h

:

Sine

U

m+�

= �t(� �

1

2

)

U

m+1

� U

m

�t

+

U

m+1

+ U

m

2

;

it follows that

�t(� �

1

2

)









U

m+1

� U

m

�t









2

h

+

kU

m+1

k

2

h

� kU

m

k

2

h

2�t

+

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

= (f

m+�

; U

m+�

)

h

: (6.14)

Suppose � 2 [1=2; 1℄; then, � � 1=2 � 0, and therefore

kU

m+1

k

2

h

� kU

m

k

2

h

2�t

+

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

� (f

m+�

; U

m+�

)

h

�





f

m+�





h





U

m+�





h

:

Aording to the disrete Poinar�e{Friedrihs inequality (3.9),





U

m+�





2

h

�

1

2

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

:

Thus

kU

m+1

k

2

h

� kU

m

k

2

h

2�t

+ 2





U

m+�





2

h

�

1

2





f

m+�





2

h

+

1

2





U

m+�





2

h

;

so that





U

m+1





2

h

� kU

m

k

2

h

+�t





f

m+�





2

h

:

Summing through m,





U

k





2

h

�





U

0





2

h

+

k�1

X

m=0

�t





f

m+�





2

h

; (6.15)

for all k, 1 � k �M .

The inequality (6.15) an be thought of as the disrete version of (6.6). If follows from (6.15)

that

max

1�k�M





U

k





2

h

�





U

0





2

h

+

M�1

X

m=0

�t





f

m+�





2

h

;
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i.e.

max

1�k�M





U

k





h

�

"





U

0





2

h

+

M�1

X

m=0

�t





f

m+�





2

h

#

1=2

; (6.16)

whih expresses the ontinuous dependene of the solution of the �nite di�erene sheme

(6.13) on the initial data and the right-hand side. This property is alled stability.

Thus we have proved that for � 2 [1=2; 1℄, the sheme (6.13) is stable without any limitations

on the time step in terms of h. In other words, the sheme (6.13) is unonditionally stable

for � 2 [1=2; 1℄.

Now let us onsider the ase � 2 [0; 1=2). First suppose that f � 0: Then, aording to

(6.14),

kU

m+1

k

2

h

� kU

m

k

2

h

2�t

+

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

= �t(

1

2

� �)









U

m+1

� U

m

�t









2

h

: (6.17)

Realling (6.13) and the fat that f � 0, it follows that

U

m+1

� U

m

�t

= D

+

x

D

�

x

U

m+�

:

Moreover, a simple alulation based on the inequality (a� b)

2

� 2a

2

+ 2b

2

shows that





D

+

x

D

�

x

U

m+�
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h

�

4

h

2

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

: (6.18)

Thus, (6.17) implies that

kU

m+1

k

2

h

� kU

m

k

2

h

2�t

+

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

�

4�t

h

2

(

1

2

� �)

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

;

i.e.

kU

m+1

k

2

h

� kU

m

k

2

h

2�t

+

�

1�

2�t(1� 2�)

h

2

�

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

� 0:

Let us assume that

�t �

h

2

2(1� 2�)

; � 2 [0; 1=2); (6.19)

then,





U

m+1





2

h

� kU

m
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2

h

; m = 0; : : : ;M � 1;

and hene,

max

1�k�M





U

k





h

�





U

0





h

:
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Thus, again, the sheme is stable, but only if (6.19) holds. In other words, for � 2 [0; 1=2)

the sheme (6.13) is onditionally stable, the ondition being (6.19) (when f � 0).

Let us suppose that � 2 [0; 1=2), as before, but onsider the general situation when f is

not identially zero. We shall prove that (6.13) is still only onditionally stable, and, in

partiular, that the expliit sheme, orresponding to � = 0, is onditionally stable.

Realling (6.14),

kU

m+1

k

2

h

� kU

m

k

2

h

2�t

+

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

�





f

m+�





h





U

m+�





h

+�t(

1

2

� �)









U

m+1

� U

m

�t









2

h

: (6.20)

By (6.13), for any � 2 (0; 1),









U

m+1

� U

m

�t









2

h

=





D

+

x

D

�

x

U

m+�

+ f

m+�





2

h

�

�





D

+

x

D

�

x

U

m+�





h

+





f

m+�





h

�

2

� (1 + �)





D

+

x

D

�

x

U

m+�





2

h

+ (1 + �

�1

)





f

m+�





2

h

� (1 + �)

4

h

2

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

+ (1 + �

�1

)





f

m+�





2

h

;

where (6.18) has been applied in the last line. Substituting into (6.20),

kU

m+1

k

2

h

� kU

m

k

2

h

2�t

+

�

1��t(

1

2

� �) �

4(1 + �)

h

2

�

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

�





f

m+�





h





U

m+�





h

+�t(

1

2

� �)(1 + �

�1

)





f

m+�





2

h

: (6.21)

Aording to the disrete Poinar�e{Friedrihs inequality (3.9),





U

m+�





2

h

�

1

2

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

;

and therefore,





f

m+�





h





U

m+�





h

�

1

8�

2





f

m+�





2

h

+ 2�

2





U

m+�





2

h

�

1

8�

2





f

m+�





2

h

+ �

2

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

: (6.22)

Substituting (6.22) into (6.21),

kU

m+1

k

2

h

� kU

m

k

2

h

2�t

+

�

1��t

2(1� 2�)(1 + �)

h

2

� �

2

�

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

�

1

8�

2





f

m+�





2

h

+�t(

1

2

� �)(1 + �

�1

)





f

m+�





2

h

:
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Let us suppose that

�t �

h

2

2(1� 2�)

(1� �); � 2 [0; 1=2);

where � is a �xed real number, � 2 (0; 1). Then

1��t

2(1� 2�)(1 + �)

h

2

� �

2

� 0;

so that





U

m+1





2

h

� kU

m

k

2

h

+

�t

4�

2





f

m+�





2

h

+�t

2

(1� 2�)(1 + �

�1

)





f

m+�





2

h

:

Letting 

�

= 1=(4�

2

) +�t(1� 2�)(1 + �

�1

), upon summation through all m this implies that

max

1�k�M





U

k





2

h

�





U

0





2

h

+ 

�

M�1

X

m=0

�t





f

m+�





2

h

:

Taking the square root of both sides, we dedue that for � 2 [0; 1=2) the sheme (6.13) is

onditionally stable in the sense that

max

1�k�M





U

k





h

�

"





U

0





2

h

+ 

�

M�1

X

m=0

�t





f

m+�





2

h

#

1=2

; (6.23)

provided

�t �

h

2

2(1� 2�)

(1� �); 0 < � < 1: (6.24)

To summarise: when � 2 [1=2; 1℄, the di�erene sheme (6.13) is unonditionally stable.

In the partiular the impliit sheme, orresponding to � = 1, and the Crank{Niolson

sheme, orresponding to � = 1=2, are both unonditionally stable, and (6.16) holds. When

� 2 [0; 1=2), the sheme (6.13) is onditionally stable, subjet to the time step limitation

(6.24). In partiular the expliit sheme, orresponding to � = 0; is only onditionally stable.

6.1.3 Error analysis of di�erene shemes for the heat equation

In this setion we investigate the auray of the �nite di�erene sheme (6.13) for the

numerial solution of the initial boundary value problem (6.9).

We de�ne the trunation error of the sheme (6.13) by

'

m+�

j

=

u(x

j

; t

m+1

)� u(x

j

; t

m

)

�t

�D

+

x

D

�

x

[�u(x

j

; t

m+1

) + (1� �)u(x

j

; t

m

)℄� f(x

j

; t

m+�

);

1 � j � N � 1;

0 � m �M � 1;
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and the global error by

e

m

j

= u(x

j

; t

m

)� U

m

j

:

It is easily seen that e

m

j

satis�es the following �nite di�erene sheme:

e

m+1

j

� e

m

j

�t

�D

+

x

D

�

x

[�e

m+1

j

+ (1� �)e

m

j

℄ = '

m+�

j

;

1 � j � N � 1;

0 � m �M � 1:

e

m

0

= 0; e

m

N

= 0; 0 � m �M;

e

0

j

= 0; 0 � j � N:

Aording to the stability results proved in Setion 6.1.2,

max

1�m�M

ku

m

� U

m

k

h

�

"

M�1

X

k=0

�t





'

k+�





2

h

#

1=2

; � 2 [1=2; 1℄; (6.25)

by (6.16), and

max

1�m�M

ku

m

� U

m

k

h

�

"



�

M�1

X

k=0

�t





'

k+�





2

h

#

1=2

; � 2 [0; 1=2); (6.26)

provided

�t �

h

2

2(1� 2�)

(1� �); 0 < � < 1; � 2 [0; 1=2):

In either ase we have to estimate





'

m+�





h

. Using the di�erential equation, '

m+�

j

an be

written as

'

m+�

j

=

�

u(x

j

; t

m+1

)� u(x

j

; t

m

)

�t

�

�u

�t

(x

j

; t

m+�

)

�

+

�

�

2

u

�x

2

(x

j

; t

m+�

)�D

+

x

D

�

x

(�u(x

j

; t

m+1

) + (1� �)u(x

j

; t

m

))

�

: (6.27)

In order to estimate the size of the trunation error, '

m+�

j

, we expand it into a Taylor series

about the point (x

j

; t

m+1=2

).

u

m+1

j

=

"

u+

�t

2

�u

�t

+

1

2

�

�t

2

�

2

�

2

u

�t

2

+

1

6

�

�t

2

�

3

�

3

u

�t

3

+ : : :

#

m+1=2

j

u

m

j

=

"

u�

�t

2

�u

�t

+

1

2

�

�t

2

�

2

�

2

u

�t

2

�

1

6

�

�t

2

�

3

�

3

u

�t

3

+ : : :

#

m+1=2

j

:
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If we subtrat the seond of these expansions from the �rst, all the even-numbered terms

will anel, and we obtain

u(x

j

; t

m+1

)� u(x

j

; t

m

)

�t

=

�

�u

�t

+

1

24

(�t)

2

�

3

u

�t

3

+ : : :

�

m+1=2

j

: (6.28)

Also, sine

D

+

x

D

�

x

u(x

j

; t

m+1

) =

�

�

2

u

�x

2

+

1
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h

2

�

4

u

�x

4
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2
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h

4

�

6

u
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6

+ : : :

�

m+1

j

;

expanding the right-hand side about the point (x

j

; t

m+1=2

),

D

+

x

D

�

x

u(x

j

; t

m+1

) =

�

�

2

u

�x
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+

h

2
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+ : : :
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�

�
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2
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h

2
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�x
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�
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1
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+ : : :

�
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j

:

There is a similar expansion for D

+

x

D

�

x

u(x

j

; t

m

); ombining these we obtain:

D

+

x

D

�

x

[�u(x

j
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j
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+ : : :
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3

u
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�x

4
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(6.29)

+

1

8
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2
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�

4

u

�x

2
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2

+ : : :

�

m+1=2

j

:

Substituting (6.28) and (6.29) into (6.27):
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�
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j

+ h

2

�

1

12
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�

5

u
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4
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�

2
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h

2

�

6

u
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6

+ : : :

�
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j

+ f(x

j
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m+1=2

)� f(x

j

; t

m+�

):

Thene

�

�

'

m+�

j

�

�

�

h

2

12

M

4x

+

�t

2

24

(M

3t

+ 3M

2x2t

) +H:O:T:; � =

1

2

; (6.30)
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�

�

'

m+�

j

�

�

�

�

�

1

2

� �

�

�

�t(M

2t

+ 2M

2x1t

) +

h

2

12

M

4x

+H:O:T:; � 6=

1

2

; (6.31)

where

M

kxlt

= max

(x;t)2

�

Q

�

�

�

�

�

k+l

�x

k

�t

l

u(x; t)

�

�

�

�

:

Substituting (6.30) into (6.25) and (6.31) into (6.25) or (6.26) we obtain the following error

bounds:

max

1�m�M

ku

m

� U

m

k

h

� C

1

(h

2

+�t

2

); � =

1

2

; (6.32)

where C

1

is a positive onstant, independent of h and �t;

max

1�m�M

ku

m

� U

m

k

h

� C

2

(h

2

+�t); � 2 (1=2; 1℄; (6.33)

where C

2

is a positive onstant, independent of h and �t. Moreover,

max

1�m�M

ku

m

� U

m

k

h

� C

3

(h

2

+�t); � 2 [0; 1=2); (6.34)

where C

3

= (

�

)

1=2

� C

2

, provided that

�t �

h

2

2(1� 2�)

(1� �); � 2 (0; 1); � 2 [0; 1=2):

Thus we dedue that the Crank{Niolson sheme (� = 1=2) onverges in the norm k�k

h

un-

onditionally, with error O(h

2

+(�t)

2

): For � 2 (1=2; 1℄ the sheme onverges unonditionally

with error O(h

2

+�t): For � 2 [0; 1=2) the di�erene sheme onverges with error O(h

2

+�t),

but only onditionally.

The stability and onvergene results presented here an be extended to paraboli equations

in more than one spae dimension, but the exposition of this theory is beyond the sope of

these notes.

6.2 Finite di�erene methods for hyperboli equations

Let 
 be a bounded open set in R

n

, n � 1, with boundary � = �
, and let T > 0. In

Q = 
� (0; T ℄, we onsider the initial boundary value problem

�u

�t

+

n

X

i=1

b

i

(x) �

�u

�x

i

+ (x; t)u = f(x; t); x 2 
; t 2 (0; T ℄; (6.35)

u(x; t) = 0; x 2 �

�

; t 2 [0; T ℄; (6.36)

u(x; 0) = u

0

(x) x 2

�


; (6.37)
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b

x

�(x)

�

�

�

+

T

t




Q

�

�

where

�

�

= fx 2 � : b(x) � �(x) < 0g;

b = (b

1

; : : : ; b

n

) and �(x) denotes the unit outward normal to � at x 2 �.

�

�

will be alled the inow boundary. Its omplement, �

+

= �n�

�

, will be referred to

as the outow boundary. It is important to note that, unlike paraboli equations where a

boundary ondition is spei�ed on the whole of � � [0; T ℄, in a hyperboli initial boundary

value problem the boundary ondition is only imposed on part of the boundary, namely on

�

�

� [0; T ℄, or else the problem may have no solution.

We shall assume that

b

i

2 C

1

(

�


); i = 1; : : : ; n; (6.38a)

 2 C(

�

Q); f 2 L

2

(Q); (6.38b)

u

0

2 L

2

(
): (6.38)

In order to ensure onsisteny between the initial and the boundary ondition, we shall

suppose that u

0

(x) = 0, x 2 �

�

.

The existene of a unique solution (at least for , f 2 C

1

(

�

Q), u

0

2 C

1

(

�


)) an be shown

using the method of harateristis. More generally, for b

i

, , f , u

0

, obeying the smoothness
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requirements of (6.38), a unique solution still exists, but the proof of this result is beyond the

sope of these notes. Let us, instead, onsider the behaviour of the solution of (6.35){(6.37)

in time.

We make the additional hypothesis:

(x; t)�

1

2

n

X

i=1

�b

i

�x

i

(x) � 0; x 2

�


; t 2 [0; T ℄: (6.39)

Taking the inner produt of (6.35) with u in L

2

(
), we obtain:

�

�u

�t

; u

�

+

 

(�; t)�

1

2

n

X

i=1

�b

i

�x

i

(�); u

2

!

+

1

2

Z

�

+

"

n

X

i=1

b

i

(x)�

i

(x)

#

u

2

(x; t) ds(x) = (f; u); (6.40)

where �(x) = (�

1

(x); : : : ; �

n

(x)) is the unit outward normal vetor to � at x 2 �. By virtue

of (6.39) and noting that

�

�u

�t

; u

�

=

Z




�u

�t

(x; t) � u(x; t) dx

=

Z




1

2

�

�t

u

2

(x; t) dx =

1

2

d

dt

Z




u

2

(x; t) dx

=

1

2

d

dt

ku(�; t)k

2

;

it follows from (6.40) that

1

2

d

dt

ku(�; t)k

2

+

1

2

Z

�

+

"

n

X

i=1

b

i

(x)�

i

(x)

#

u

2

(x; t) ds(x) � (f; u):

By the Cauhy{Shwarz inequality,

(f; u) � kf(�; t)k � ku(�; t)k

�

1

2

kf(�; t)k

2

+

1

2

ku(�; t)k

2

;

and therefore,

d

dt

ku(�; t)k

2

+

Z

�

+

"

n

X

i=1

b

i

(x)�

i

(x)

#

u

2

(x; t) ds(x)� ku(�; t)k

2

� kf(�; t)k

2

; t 2 [0; T ℄:

Multiplying both sides by e

�t

, this an be rewritten as follows:

d

dt

e

�t

ku(�; t)k

2

+ e

�t

Z

�

+

"

n

X

i=1

b

i

(x)�

i

(x)

#

u

2

(x; t) ds � e

�t

kf(�; t)k

2

; t 2 [0; T ℄:
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Integrating this inequality with respet to t yields

e

�t

ku(�; t)k

2

+

Z

t

0

e

��

Z

�

+

"

n

X

i=1

b

i

(x)�

i

(x)

#

u

2

(x; �) ds(x) d�

� ku

0

k

2

+

Z

t

0

e

��

kf(�; �)k

2

d�; t 2 [0; T ℄:

Hene

ku(�; t)k

2

+

Z

t

0

e

t��

Z

�

+

"

n

X

i=1

b

i

(x)�

i

(x)

#

u

2

(x; �) ds(x) d�

� e

t

ku

0

k

2

+

Z

t

0

e

t��

kf(�; �)k

2

d�; t 2 [0; T ℄: (6.41)

This, so alled, energy inequality expresses the ontinuous dependene of the solution to

(6.35){(6.37) on the data. In partiular it an be used to prove the uniqueness of the

solution. Indeed, if u

1

and u

2

are solutions of (6.35){(6.37), then u := u

1

� u

2

also solves

(6.35){(6.37), with f � 0 and u

0

� 0. Thus, by (6.41), ku(�; t)k = 0, t 2 [0; T ℄ and therefore

u � 0, i.e. u

1

� u

2

.

Let us onsider a partiularly important ase when

 � 0; f � 0; and div b =

n

X

i=1

�b

i

�x

i

� 0;

where b(x) = (b

1

(x); : : : ; b

n

(x)): Then, by virtue of (6.40),

1

2

d

dt

ku(�; t)k

2

+

1

2

Z

�

+

[b(x) � �(x)℄ u

2

(x; t) ds(x) = 0;

and therefore,

ku(�; t)k

2

+

Z

t

0

Z

�

+

[b(x) � �(x)℄ u

2

(x; �) ds(x) d� = ku

0

k

2

; (6.42)

whih expresses the onservation of energy in the physial system modelled by (6.35){(6.37).

6.2.1 Expliit �nite di�erene sheme

In this setion we desribe a simple expliit �nite di�erene sheme for the numerial solution

of the onstant-oeÆient hyperboli equation in one spae dimension:

�u

�t

+ b

�u

�x

= f(x; t); x 2 (0; 1); t 2 (0; T ℄; (6.43)
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subjet to the boundary and initial onditions

u(x; t) = 0; x 2 �

�

; t 2 [0; T ℄; (6.44a)

u(x; 0) = u

0

(x); x 2 [0; 1℄: (6.44b)

If b > 0 then �

�

= f0g, and if b < 0 then �

�

= f1g. Let us assume, for example, that b > 0.

Then the appropriate boundary ondition is

u(0; t) = 0; t 2 [0; T ℄: (6.45)

To onstrut a �nite di�erene approximation of (6.43){(6.45) let h = 1=N be the mesh-size

in the x-diretion and �t = T=M the mesh-size in the time-diretion, t. Let us also de�ne

x

j

= jh; j = 0; : : : ; N; t

m

= m ��t; m = 0; : : : ;M:

At the mesh-point (x

j

; t

m

), (6.43) is approximated by the expliit �nite di�erene sheme

U

m+1

j

� U

m

j

�t

+ b �D

�

x

U

m

j

= f(x

j

; t

m

); j = 1; : : : ; N; (6.46)

m = 0; : : : ;M � 1;

U

m

0

= 0; m = 0; : : : ;M; (6.47)

U

0

j

= u

0

(x

j

); j = 0; : : : ; N: (6.48)

Equivalently,

U

m+1

j

= (1� �)U

m

j

+ �U

m

j�1

+�tf(x

j

; t

m

); j = 1; : : : ; N;

m = 0; : : : ;M � 1;

U

m

0

= 0; m = 0; : : : ;M;

U

0

j

= u

0

(x

j

); j = 0; : : : ; N;

where

� =

b�t

h

;

� is alled the Courant number.

Suppose that 0 � � � 1; then,

�

�

U

m+1

j

�

�

� (1� �)

�

�

U

m

j

�

�

+ �

�

�

U

m

j�1

�

�

+�t jf(x

j

; t

m

)j

� (1� �) max

0�j�N

�

�

U

m

j

�

�

+ � max

1�j�N+1

�

�

U

m

j�1

�

�

+�t max

0�j�N

jf(x

j

; t

m

)j

= max

0�j�N

�

�

U

m

j

�

�

+�t max

0�j�N

jf(x

j

; t

m

)j :
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Hene

max

0�j�N

�

�

U

m+1

j

�

�

� max

0�j�N

�

�

U

m

j

�

�

+�t max

0�j�N

jf(x

j

; t

m

)j :

Let us de�ne the mesh-dependent norm

kUk

1

= max

0�j�N

jU

j

j ;

then,





U

m+1





1

� kU

m

k

1

+�t kf(�; t

m

)k

1

; m = 0; : : : ;M � 1:

Summing through m, we get

max

1�k�M





U

k





1

�





U

0





1

+

M�1

X

m=0

�t kf(�; t

m

)k

1

;

whih expresses the stability of the �nite di�erene sheme (6.46){(6.48) under the ondition

0 � � =

b�t

h

� 1:

Thus we have proved that (6.46){(6.48) is onditionally stable in the k�k

1

norm, the ondition

being that the Courant number, �, is in the interval [0; 1℄.

It is possible to show that the sheme (6.46){(6.48) is also stable in the mesh-dependent

L

2

-norm, jj�℄j

h

. Reall that

jjV ℄j

2

h

=

N

X

i=1

hV

2

i

:

The assoiated inner produt is

(V;W ℄

h

=

N

X

i=1

hV

i

W

i

:

Sine

U

m

j

=

U

m

j

+ U

m

j�1

2

+

U

m

j

� U

m

j�1

2

;

and U

m

0

= 0, it follows that

(U

m

; D

�

x

U

m

℄

h

=

N

X

j=1

hU

m

j

U

m

j

� U

m

j�1

h

=

1

2

N

X

j=1

f(U

m

j

)

2

� (U

m

j�1

)

2

g+

h

2

N

X

j=1

h

�

U

m

j

� U

m

j�1

h

�

2

(6.49)

=

1

2

(U

m

N

)

2

+

h

2

�

�

�

�

D

�

x

U

m

�

�

�

2

h

:
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In addition, sine

U

m

j

=

U

m+1

j

+ U

m

j

2

�

U

m+1

j

� U

m

j

2

; m = 0; : : : ;M � 1;

we have that

�

U

m+1

� U

m

�t

; U

m

�

h

=

1

2�t

�

�

�

�

�

U

m+1

�

�

�

2

h

� jjU

m

℄j

2

h

�

(6.50)

�

�t

2

�

�

�

�

�

�

�

�

U

m+1

� U

m

�t

�

�

�

�

�

2

h

; m = 0; : : : ;M � 1: (6.51)

Thus, taking the (�; �℄

h

-inner produt of (6.46) with U

m

and using (6.49) and (6.51),

�

�

�

�

U

m+1

�

�

�

2

h

+ �t � b(U

m

N

)

2

+ bh�t

�

�

�

�

D

�

x

U

m

�

�

�

2

h

� jjU

m

℄j

2

h

� �t

2

�

�

�

�

�

�

�

�

U

m+1

� U

m

�t

�

�

�

�

�

2

h

= 2�t(f

m

; U

m

℄

h

; m = 0; : : : ;M � 1: (6.52)

First suppose that f � 0; then,

U

m+1

� U

m

�t

= �b �D

�

x

U

m

;

so that

�

�

�

�

U

m+1

�

�

�

2

h

+�t � b jU

m

N

j

2

+ bh�t(1� �)

�

�

�

�

D

�

x

U

m

�

�

�

2

h

= jjU

m

℄j

2

h

; m = 0; : : : ;M � 1:

Summing through m,

�

�

�

�

U

k

�

�

�

2

h

+

k�1

X

m=0

�t � b jU

m

N

j

2

+ bh(1� �)

k�1

X

m=0

�t

�

�

�

�

D

�

x

U

m

�

�

�

2

h

=

�

�

�

�

U

0

�

�

�

2

h

; k = 1; : : : ;M;(6.53)

whih proves the stability of the sheme in the ase when f � 0 under the assumption that

0 � � =

b�t

h

� 1:

In partiular, if � = 1, we have that

�

�

�

�

U

k

�

�

�

2

h

+

k�1

X

m=0

�t � b jU

m

N

j

2

=

�

�

�

�

U

0

�

�

�

2

h

; k = 1; : : : ;M;

whih is the disrete version of the identity (6.41), and expresses onservation of energy in

the disrete sense. This is equality is also trivially valid when � = 0 (i.e. when b = 0).

More generally, for 0 � � � 1, (6.53) implies

�

�

�

�

U

k

�

�

�

2

h

+

k�1

X

m=0

�t � b jU

m

N

j

2

�

�

�

�

�

U

0

�

�

�

2

h

; k = 1; : : : ;M;
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with strit inequality when 0 < � < 1. Therefore, when 0 < � < 1 the disrete energy

dissipates even through, as we have shown in (6.42), the ontinuous ounterpart of the

disrete energy is onserved. This feature of the �rst-order upwind sheme is also quite

evident in numerial experiments: as time evolves, the numerial solution will be seen to be

smeared in omparison with the analytial solution.

Now let us onsider the question of stability in the jj�℄j

h

-norm in the general ase of f 6� 0:

Sine

�

�

�

�

�

�

�

�

U

m+1

� U

m

�t

�

�

�

�

�

2

h

=

�

�

�

�

f

m

� bD

�

x

U

m

�

�

�

2

h

� fjjf

m

℄j

h
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�

�

�

�

D

�

x

U

m

�

�

�

h

g

2

�

�

1 +

1

�

0

�

jjf

m

℄j

2

h

+ (1 + �

0

)b

2

�

�

�

�

D

�

x

U

m

�

�

�

2

h

; �

0

> 0;

and

(f

m

; U

m

℄

h

� jjf

m

℄j

h

jjU

m

℄j

h

�

1

2

jjf

m

℄j

2

h

+

1

2

jjU

m

℄j

2

h

;

it follows from (6.52) that

�

�

�

�

U

m+1

�

�

�

2

h

+�t � b jU

m

n

j

2

+ bh�t

�

1� (1 + �

0

)

b�t

h

�

�

�

�

�

D

�

x

U

m

�

�

�

2

h

� �t

��

1 +

1

�

0

�

�t+ 1

�

jjf

m

℄j

2

h

+ (1 + �t) jjU

m

℄j

2

h

:

Letting � = 1� 1=(1 + �

0

) 2 (0; 1), and assuming

0 � � =

b�t

h

� 1� �;

we have, for m = 0; : : : ;M � 1,

�

�

�

�

U

m+1

�
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�

2
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+�t � b jU

m

N

j

2
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+�t

�
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�
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2

h
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℄j

2
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:

Upon summation,
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�

U

k

�

�

�

2

h

+

 

k�1

X
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�t � b jU

m

N

j

2

!

�

�

�

�

�

U
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�

�

�

2

h

+

�
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�t
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�

k�1

X
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�t jjf

m

℄j

2

h

+

k�1

X
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�t jjU

m

℄j

2

h

:

(6.54)

for k = 1; : : : ;M: The next lemma is easily proved by indution.

Lemma 6.1 Let (a

k

), (b

k

), (

k

) and (d

k

) be four sequenes of non-negative numbers suh

that the sequene (

k

) is non-dereasing and

a

k

+ b

k

� 

k

+

k�1

X

m=0

d

m

a

m

; k � 1; a

0

+ b

0

� 

0

:
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Then

a

k

+ b

k

� 

k

exp

 

k�1

X

m=0

d

m

!

; k � 1:

Applying this lemma to (6.54) with

a

k

=

�

�

�

�

U

k

�

�

�

2

h

; k � 0;

b

k

=

k�1

X
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�t � b jU

m

N

j

2

; k � 1; b

0

= 0;
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�

U
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�

�

�

2

h

+

�

1 +

�t

�

�

k�1

X
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m

℄j

2

h
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�

�

�

�

U

0

�

�

�

2

h

;

d

k

= �t; k = 1; 2; : : : ;M;

we obtain,
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�t � b � jU

m

N

j

2

� e

t

k

 

�

�

�

�

U

0

�

�

�

2

h

+

�
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2
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!

; k = 1; : : : ;M;

and hene stability:

max

1�k�M
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: (6.55)

An error estimate for the di�erene sheme (6.46){(6.48) is easily derived from stability.

We de�ne the global error, e, and the trunation error, ', by

e

m

j

= u(x

j

; t

m

)� U

m

j

;

'

m

j

=

u(x
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; t
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)� u(x
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m

)
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� bD

�

x

u(x

j

; t

m

)� f(x

j
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m
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It is easily seen that

e

m+1

j

� e

m

j

�t

+ bD

�

x

e

m

j

= '

m

j

; j = 1; : : : ; N; m = 0; : : : ;M � 1;

e

m

0

= 0; m = 0; : : : ;M;

e

0

j

= 0; j = 0; : : : ; N:

By virtue of the stability inequality established in the �rst part of this setion,
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1�m�M
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m

k

1

�

M�1

X
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k

1

: (6.56)
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By Taylor series expansion of '

m

j

about the point (x

j

; t

m

),
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=
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m
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j

2 (x
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so that
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�
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2
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where

M
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�
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�
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:

De�ning M = max(M

2t

;M

2x

), we have

�

�

'

m

j

�

�

�

1

2

M(�t + bh) (= O(h+�t)): (6.57)

Thus, by (6.56),

max

1�m�M

ku

m

� U

m

k

1

�

1

2

TM(�t + bh);

so the sheme (6.46){(6.48) is �rst-order onvergent.

Analogously, using the stability result (6.54) in the disrete L

2

-norm jj�℄j

h

, (6.57) implies that

max

1�m�M
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m

� U
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?

�

� (�t+ bh);

where 

?

�

=

1

2

e

T=2

(1 + T=�)

1=2

T

1=2

M .

The analysis presented here an be extended to linear �rst-order hyperboli equations with

variable oeÆients and to hyperboli problems in more than one spae-dimension, as well

as to di�erene shemes on non-uniform meshes.

90


