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Introduction

Partial differential equations arise in the mathematical modelling of many physical, chemical
and biological phenomena (e.g. dispersion of pollutants in lakes and rivers, spreading of
diseases, weather prediction, etc.). Very frequently the equations are so complicated that
their solution by analytical means (e.g. by Laplace and Fourier transforms or in a form of
a series) is either impossible or impracticable, and one has to resort to numerical techniques
instead.

These notes are devoted to the analysis of numerical methods for elliptic, parabolic and
hyperbolic partial differential equations, by considering simple model problems. We concen-
trate on techniques that are most widespread in practice: finite difference and finite element
methods, although the analysis of finite volume schemes is also touched on. Preference is
given to theoretical results concerning the stability and the accuracy of numerical methods
— properties that are of key importance in practical computations.

The material covered in the notes had formed the basis of a 16-lecture introductory course
on the analysis of numerical algorithms for partial differential equations at the University
of Oxford given over the period 1992-1996. The background material from linear functional
analysis and the theory of function spaces discussed herein is intentionally sketchy in order
to enable the understanding of some of the key concepts, such as stability and convergence
of finite difference and finite element methods, with the bare minimum of analytical prereq-
uisites. Due to the time-constraints imposed by the length of the original lecture course,
a significant portion of the theory of numerical algorithms for partial differential equations
is not being touched upon; nevertheless, I hope that the notes will serve a helpful purpose
as a brief compendium of basic theoretical information about this exciting and practically
relevant field of research. For further details, the reader is referred to the numerous excellent
books on the subject, some of which appear on the Reading List.

1 Elements of function spaces

The accuracy of numerical methods for the approximate solution of partial differential equa-
tions depends on their capabilities to represent the important qualitative features of the
(analytical) solution. One such feature that has to be taken into account in the construction
and the analysis of numerical methods is the smoothness of the solution, and this depends
on the smoothness of the data.

Precise assumptions about the smoothness of the data and of the corresponding solution can
be conveniently formulated by considering classes of functions with particular differentia-
bility and integrability properties, called function spaces. In this section we present a brief
overview of definitions and basic results form the theory of function spaces which will be used
throughout these notes, focusing, in particular, on spaces of continuous functions, spaces of



integrable functions, and Sobolev spaces.

1.1 Spaces of continuous functions

In this section, we describe some simple function spaces that consist of continuous and
continuously differentiable functions. For the sake of notational convenience, we introduce
the concept of a multi-index.

Let N denote the set of non-negative integers. An n-tuple o = (ay,...,ay,) € N* is called
a multi—inder. The non-negative integer || := a; + ... + «, is called the length of the
multi-index o = (v, ..., a,). We denote (0,...,0) by 0; clearly |0] = 0.

o \" o\ ol
D*=|— ol =/ = v
<8x1> <8:1:n> ox{" ...0xon

EXAMPLE. Suppose that n = 3, and a = (o, a2, 3), @j € N, j =1,2,3. Then for u, a
function of three variables x1, x4, 3,

Let

Z Doy — PPu N Pu N PPu
ot 01 02201y 03074
N O*u N O*u N O*u
0r10r3  O0r10x3 0
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+8:1:18x28x3 + 03013 + 012013 + oxy

Let Q be an open set in R”, and let k& € N. We denote by C*(Q) the set of all continuous
real-valued functions defined on  such that D®u is continuous on 2 for all & = (ay, ..., ay)
with |a] < k. Assuming that € is a bounded open set, C*(Q) will denote the set of all u in
C*(2) such that D can be extended from € to a continuous function on Q, the closure of
the set €, for all & = (a,..., ), |al <k. C*(Q) can be equipped with the norm

[ull oy ==Y sup |Du(x)].
|M§kI€Q

In particular, when k = 0, we shall write C(Q) instead of C°(€);

lull @) = sup [u(z)] = max |u(z)].
N €N

Similarly, if £ =1,

lullrigy = D sup|Du(z)]

kﬂglxeg
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= sup |u(z)| + sup
upluGe) + 3 s

ou

o —(z)] .

EXAMPLE. Let n = 1, and consider the open interval Q = (0,1) C R'. The function
u(z) = 1/z belongs to C’k(Q) for each £ > 0. Since Q = [0,1], it is clear that u is not
continuous on (2; the same is true of its derivatives. Therefore u ¢ C*(Q) for any k£ > 0. ©

The support, supp u, of a continuous function u on € is defined as the closure in Q of the
set {x € Q : u(z) # 0}; in other words, supp u is the smallest closed subset of 2 such that
u =10 in Q\supp u.

EXAMPLE. Let w be the function defined on R™ by

__ 1
w(z) = {e SR o] <1,

0, otherwise;

here |z| = (22 4+ ... 4+ 22)'/2. Clearly supp w is the closed unit ball {z € R* : |2| < 1}. ©

We denote by C¥(€2) the set of all u € C*(Q) such that supp u C © and supp u is bounded.
Let

G52 (@) = S G5 (Q).

EXAMPLE. The function w defined in the previous example belongs to C§°(R"). <

1.2 Spaces of integrable functions

Next we define a class of spaces that consist of (Lebesgue) integrable functions. Let p be
a real number, p > 1; we denote by LP(Q) the set of all real-valued functions defined on Q

such that
/ lu(z) P dz < .
Q

Functions which are equal almost everywhere (i.e. equal, except on a set of measure zero)
on 2 are identified with each other. LP(Q) is equipped with the norm

il = ( [ Iute |pdx) g

A particularly important case is p = 2; then,

1/2
2
lell 20y = ( [ 1) dx)

Y



The space L?(Q) can be equipped with the inner product
(u,v) := / u(z)v(x) de.
%
Clearly [[ul|;2q) = (u, u)/2.
Lemma 1.1 (The Cauchy-Schwarz inequality). Let u,v € L*(2); then,
|(w, )| <l 120 101l 220y -

Proof Let A € R; then,

0< ||U+)\U||%2 = (u+ Av,u + o)
= (u,u) + (u, \v) + (Av,u) + (Av, Av)
||u||L2 + 2\ (u, v) 4+ M2 ||’U||L2 AER

The right-hand side is a quadratic polynomial in A\ with real coefficients which is non-negative for
all A € R. Therefore its discriminant is non-positive, i.e.

12(u,0)|* = 4|ulf2(q) Io]|72(0) <O,

and hence the desired inequality. O

Corollary (The triangle inequality) Let u, v belong to L*(Q); then, u +v € L*(Q), and

lu+ vl 20y < llullpo@) + V]2

Remark The space L?(Q) equipped with the inner product (-,-) (and the associated norm
||u||L2(Q) = (u,u)"/?) is an example of a Hilbert space. In general, a vector space X, equipped

with an inner product (-,-)x (and the associated norm ||ul|y = (v, u)¥2) is called a Hilbert
space if, whenever {u,,}°°_, is a sequence of elements of X such that

n’gr_r)loo [t — uml|x =0,

then, there exists v € X such that lim,, o || — un||y = 0 (i.e. the sequence {u,}yo_;
converges to u in X).



1.3 Sobolev spaces

In this section we introduce a class of function spaces that play an important role in modern
differential equation theory. These spaces, called Sobolev spaces (after the Russian mathe-
matician S.L. Sobolev), consist of functions u € L*(Q2) whose weak derivatives D%u are also
elements of L?(Q). To give a precise definition of a Sobolev space, we shall first explain the
meaning of weak derivative.

Suppose u is a smooth function, say u € C*(Q), and let v € C{°(Q); then, we have the
following integration-by-parts formula:

/QDaU(ZL’) co(z) dz = (=1) /Qu(x) -D%(z)dz, |of <k,
Vo € Cg° ().

However, in the theory of partial differential equations one often has to consider functions u
that do not possess the smoothness hypothesised above, yet they have to be differentiated
(in some sense). It is for this purpose that we introduce the idea of a weak derivative.

Suppose that u is locally integrable on Q (i.e. u € L'(w) for each bounded open set w, with
@ C €).) Suppose also that there exists a function w,, locally integrable on €2, and such that

/ wa(z) - v(x) dz = (—1)° / w(@) - Du(z) Vo e C0(Q).
Q Q
We then say that w, is the weak derivative of u (of order |a| = a3 + ... + «,,) and write
wq = D%u. Clearly, if u is a smooth function then its weak derivatives coincide with those in
the classical (pointwise) sense. To simplify the notation, we shall use the letter D to denote
both a classical and a weak derivative.

EXAMPLE Let Q = R', and suppose that we wish to determine the weak first derivative
of the function u(x) = (1 — |z|); defined on €. Clearly u is not differentiable at the points

0 and £1. However, because u is locally integrable on €2, it may have a weak derivative.
Indeed, for any v € C§°(Q),

/+°° u(x)v'(z) dz = /+°°(1 — |z (z) dz = /1 (1 = |2))o (x) dz

00 —00 -1

_ /0(1+x)v'(x) dx+/01(1—x)v'(x) da

1

= —/ v(z) dx+(1+x)v(x)|gl+/0 v(w) da + (1 = 2)o(2)] 52

1

_ /_0 (—1)o(z) dz + /01 |- v(z)de

1

=~ [T utpar,

o0



where

0, »< -1,
B 1, =€ (-1,0),
w(x) B _]-7 T € (07 )7
0, >1.

Thus, the piecewise constant function w is the first (weak) derivative of the continuous
piecewise linear function u, i.e. w =u' = Du. ¢

Now we are ready to give a precise definition of a Sobolev space. Let k£ be a non-negative
integer. We define (with D® denoting a weak derivative of order |a| )
H*(Q) = {u e L*(Q) : D*u € L*(Q), |a| < k}.
H*(Q) is called a Sobolev space of order k; it is equipped with the (Sobolev) norm
1/2
a, 12
||U||Hk(9) = Z |1D UHL?(Q)
|| <k
and the inner product
(u,v) ey = Z (D%u, D%v).
a|<k

With this inner product, H*(Q2) is a Hilbert space (for the definition of Hilbert space, see
the remark in Section 1.2). Letting

1/2

2
|U|Hk(9) = Z ||Dau||L2(Q) g
|a|=k

we can write

f 1/2
2
||U||Hk(Q) = (Z|U|Hj(9)> :
5=0

|'|Hk(Q) is called the Sobolev semi-norm (it is only a semi-norm rather than a norm because
if u| gy = 0 for u € H*(Q) it does not necessarily follow that v = 0 on .)

Throughout these notes we shall frequently use H'(Q) and H?(Q).

H'(Q) = {uELQ(Q) : a—“_ € Ly(Q), jzl,...,n},

0z
1/2
n au 2
2
[l 1) = {||u||L2(Q)+Z EE } ;
j=1 J 1Ly ($2)

n 9 1/2
[l o) = {Z } :
L2(Q)

8




Similarly,

0
HXQ) = due Lo(Q) : =~ € Ly(Q), j=1,...,n,
0z
0%u
€ Ly(Q), i,7=1,...
8xi3xj 2( )7 (2] ) 7n}7
—lr ou |
u 2 — u 2 —
H2(Q) L() 921 || 1o
& u |7 }1/2
+ 2 ’
ij=1 0m:0%; || 1, (o)
1/2
ey :
" Fy 61;28% Lo(9)

Finally, we define a special Sobolev space,

i.e. Hy(f) is the set of all functions u in H'(Q) such that u = 0 on 99, the boundary of the
set, 2. We shall use this space when considering a partial differential equation that is coupled
with a homogeneous (Dirichlet) boundary condition: u = 0 on 2. We note here that H] (£2)

Hy(Q) = {u e H(Q) : u=0 on 9Q},

is also a Hilbert space, with the same norm and inner product as H'().

We conclude the section with the following important result.

Lemma 1.2 (Poincaré-Friedrichs inequality). Suppose that Q is a bounded open set in R"
(with a sufficiently smooth boundary 0Q) and let u € Hy(Q); then, there exists a constant

c(Q), independent of u, such that

Proof We shall prove this inequality for the special case of a rectangular domain =

/ dx<c*Z/

8xl

in R2. The proof for general € is analogous.

Evidently

u(eg) =ula) + [ ShEn e = [ e e

c<y<d.



Thence, by the Cauchy—Schwarz inequality,

/|u:vy dxdy—// ( dxdy
// xr—a) ( {y d§> dz dy
2
S (z —a) ( 5 y)| d§ dy)
1 ou
= E(b—a) . (x, y) dz dy.
Analogously,
2
/ |u(:1:,y)|2 dzdy < 1(d— 0)2/ %(:B,y) dz dy.
Q 2 a0y

By adding the two inequalities, we obtain

/|u:cy dxdy<c*/<

e = (G2 - ) - O

2
) dz dy,

10



2 Elliptic boundary value problems: existence and unique-
ness of weak solutions

In the first part of this lecture course we focus on boundary value problems for elliptic partial
differential equations. Elliptic equations are typified by the Laplace equation

Au =0,
and its non-homogeneous counterpart, Poisson’s equation
—Au = f.

More generally, let 2 be a bounded open set in R", and consider the (linear) second-order
partial differential equation

> < aza) Z”

z]l

c(x)u= f(x), z€Q, (2.1)

where the coefficients a;;, b;, ¢ and f satisfy the following conditions:

a; €C(Q), i,j=1,...,m
byeC(Q), i=1,...,n
ceC(Q), feC(Q), and

n

S ay(a)g >y & YeE=(6,...,&) ERY, s (2.2)
=1

ij=1
here ¢ is a positive constant independent of x and £. The condition (2.2) is usually referred

to as uniform ellipticity and (2.1) is called an elliptic equation.

Equation (2.1) is supplemented with one of the following boundary conditions:

(a) u = g on 0 (Dirichlet boundary condition);

ou
(b) — = g on 09, where v denotes the unit outward normal vector to 92 (Neumann

ov

boundary condition);

(c) ? + ou = g on 9 , where o(z) > 0 on 92 (Robin boundary condition);
v

(d) A more general version of the boundary conditions (b) and (c) is

Za”a cosaj +o(r)u=g on 0Q,

i,j=1

where «; is the angle between the unit outward normal vector n to d€2 and the Ox;
axis (Oblique derivative boundary condition).

11



In many physical problems more than one type of boundary condition is imposed on 9% (e.g.
0% is the union of two disjoint subsets 0€2; and 0€),, with a Dirichlet boundary condition
is imposed on 0€; and a Neumann boundary condition on 9€);). The study of such mixed
boundary value problems is beyond the scope of these notes.

We begin by considering the homogeneous Dirichlet boundary value problem

_Zax (”a ) Zb

i,7=1

u=0 on 09, (2.4)
where a;j, b;, ¢ and f are as in (2.2).

A function v € C*(Q) N C(Q) satisfying (2.3) and (2.4) is called a classical solution of
this problem. The theory of partial differential equations tells us that (2.3), (2.4) has a
unique classical solution, provided a;;, b;, ¢, f and 0 are sufficiently smooth. However,
in many applications one has to consider boundary value problems where these smoothness
requirements are violated, and for such problems the classical theory is inappropriate. Take,

for example, Poisson’s equation with zero Dirichlet boundary condition on the cube ) =
(—=1,1)™ in R™:

1
—Au = sgn <§ - |x|> , T €L, (%)
u = 0, x € 0f2.

This problem does not have a classical solution, u € C?(Q) N C(2), for otherwise Au would
be a continuous function on €2, which is not possible because sgn(1/2 — |z|) is discontinuous.

In order to overcome the limitations of the classical theory and to be able to deal with
partial differential equations with “non-smooth” data, we generalise the notion of solution
by weakening the differentiability requirements on w.

To begin, let us suppose that u is a classical solution of (2.3), (2.4). Then, for any v € C}(Q),

—Z/ax (a”a ) vd:}:+2/ axl cvd

+/Qc(x)uvdx _ /Qf(x)v(x) Az

Upon integration by parts in the first integral and noting that v = 0 on 0S2, we obtain:

8u ov
Z / aij (v 8% 8x] da + z/ axl”dx
/ x)uv dx —/f z)dr Vv e Cy(Q).

12



In order for this equality to make sense we no longer need to assume that u € C*(Q): it is
sufficient that u € Lo(Q2) and du/0x; € Ly(2), i = 1,...,n. Thus, remembering that u has
to satisfy a zero Dirichlet boundary condition, it is natural to seek u in the space H(Q)
instead, where, as in Section 1.3,

ou
axi

Therefore, we consider the following problem: find u in Hg(2), such that

ou
Ou Doy
Z / 8:)/:Z 0z T Z/ 8:)/:Z
/ r)uvdr = / fx)v(z)dr Yo e Ci(Q). (2.5)
We note that CJ(Q2) C Hj(Q2), and it is easily seen that when u € H}(Q) and v € Hy(Q),

(instead of v € C3(Q)), the expressions on the left- and right-hand side of (2.5) are still
meaningful (in fact, we shall prove this below). This motivates the following definition.

Hy(Q) = {u € Ly(Q) : €Ly(Q), i=1,...,n, u=0 on 0N}.

Definition 2.1 Let a;; € C(Q), i,j =1,...,n, b; € C(Q), i =1,...,n, c € C(Q), and let
f € Ly(Q). A function u € H}(Q) satisfying

8u ov
Z / aij (v 8332 8:1:] dr + Z/ 8:)/:Z

/ r)uvdr = / fx)v(z)dr Yo e Hy(Q) (2.6)

is called a weak solution of (2.3), (2.4). All partial derivatives in (2.6) should be understood
as weak derivatives.

Clearly if u is a classical solution of (2.3), (2.4), then it is also a weak solution of (2.3),
(2.4). However, the converse is not true. If (2.3), (2.4) has a weak solution, this may not be
smooth enough to be a classical solution. Indeed, we shall prove below that the boundary
value problem (x) has a unique weak solution u € H{ (), despite the fact that it has no
classical solution. Before considering this particular boundary value problem, we look at the
wider issue of existence of a unique weak solution to the general problem (2.3), (2.4).

For the sake of simplicity, let us introduce the following notation:

a(u,v):i/ﬂaij(:r)g—zaa—;jdxwL;/b( )gxzvdxwL/Q c(z)uv dz (2.7)

and

l(v) = [ f(z)v(z)dz. (2.8)



With this new notation, problem (2.6) can be written as follows:
find u € H}(Q) such that a(u,v) =(v) Vv € Hy(Q). (2.9)

We shall prove the existence of a unique solution to this problem using the following abstract
result from Functional Analysis.

Theorem 2.2 (Laz—Milgram theorem) Suppose that V' is a real Hilbert space equipped with
norm ||-||y,. Let a(-,-) be a bilinear form on V x V such that:

(a)3co >0 Yo eV a(v,v) > colv|l?,
()31 >0 Vo0 eV lav,w)] < e [olly oy,
and let I(+) be a linear form on V' such that
(¢c)3co >0 YoeV |l(v)] <eclv]y -
Then, there exists a unique u € V' such that
a(u,v) =1(v) YveV.
For a proof of this result the interested reader is referred to the book of P. Ciarlet: The

Finite Element Method for Elliptic Problems, North-Holland, 1978.

We apply the Lax-Milgram theorem with V' = Hg(Q) and |||, = ||| (o) to show the
existence of a unique weak solution to (2.3), (2.4) (or, equivalently, to (2.9)). Let us recall
from Section 1.3 that H{ () is a Hilbert space with the inner product

(u, V) (02 :/uvdx+2/8x 61;

and the associated norm |[ul| oy = (u, u)él(g) Next we show that a(-,-) and [(-), defined
by (2.7) and (2.8), satisfy the hypotheses (a), (b), (¢) of the Lax-Milgram theorem.

We begin with (¢). The mapping v +— [(v) is linear: indeed, for any «, 5 € R,
l(ovy + fog) = / f(z)(av (x) + Bua(x)) da

= /f x)vy (z d:r+6/f z)va(T

= al(vy) + Bl(ve), wvi,v9 € HI(Q)

so that [(-) is a linear form on Hj (). Also, by the Cauchy-Schwarz inequality,

o)l = o < ([1sor da:)m ([ 1w da:)m

= ||f||L2(Q) ||U||L2(Q) < ||f||L2(Q) ||U||H1(Q) )

14



for all v € H(Q), where we have used the obvious inequality [0l 1,0) < IVllg1(q) - Letting
Co = ||f||L2(Q) , we obtain the required bound.

Next we verify (b). For any fixed w € H}(f2), the mapping v — a(v,w) is linear. Similarly,
for any fixed v € Hy(Q), the mapping w — a(v,w) is linear. Hence a(-,-) is a bilinear form
on Hy(Q) x Hy(Q). Employing the Cauchy—Schwarz inequality, we deduce that

- Ju Ov
< P g
a(u,v)| < ngggla](aﬁ)l et
+Zmax|b 8xlvd:v
+ max |c(z)] /u(x)v(x) dz
HASY) QO
n 1/2 9 1/2
ou | / v
<ec dx —| dz
- mz—l (/9 oz ) ( 2|07 )

u
8@

+ (/Q uf? d:}:) " </Q o]? da:) 1/2} 12
<o (horan) "+ S (L1 o)
2 )1/2 : (2.10)

AUe) 2 ([
c:max{ max max |a;;(z)|, max max |b;(x )|,ri1€a§§(|c(x)|}.

1<4,7<n zeQ 1<i<n zeQ
9 1/2
dx

)

0x;

8x]

where

By further majorisation of the right-hand side in (2.10),

la(u, )| < 2nc{/ [ul” dz + Z/
{/|v dx—i—Z/

so that, by letting ¢; = 2ne, we obtain inequality (b).

afL’i

ax]

15



It remains to establish (a). Using (2.2), we deduce that

< ou 2
>
a(u,u) > ¢é ;21 /Q o d:L‘ + E / 28% u?) dw +/Qc(x) lul” dx,

where we wrote gl u as %8ii( u?). Integrating by parts in the second term on the right, we
obtain
- ou |? 1 o Ob; )
a(u,u) > ¢ dx c(r) — = ul” dx.
) ze3 [ |5 +A@>2_miu
=1 =1

Suppose that b;, i = 1,...,n, and c satisfy the inequality

— = Z 6:{; >0, z€Q. (2.11)

Then,

(2.12)

i ou |?
a(u,u) > ¢
(u,u) ;sz

By virtue of the Poincaré-Friedrichs inequality stated in Lemma 1.2, the right-hand side can
be further bounded from below to obtain

a(u,u) > £/ lul” da. (2.13)
C* Q
Summing (2.12) and (2.13) multiplied by ¢,

& ou |
a(u,u) > ¢ ul® dz + / dz |, 2.14
(1) %LH > /15 ) (2.14)

where ¢y = ¢/(1 + ¢*), and hence (a). Having checked all hypotheses of the Lax-Milgram
theorem, we deduce the existence of a unique u € H}(f) satisfying (2.9); thence problem
(2.3), (2.4) has a unique weak solution.

We encapsulate this result in the following theorem.

Theorem 2.3 Suppose that a;; € C(Q), i,j=1,...,n, b, € C'(Q),i=1,...,n, c € C(Q),
[ € Ly(2), and assume that (2.2) and (2.11) hold; then, the boundary value problem (2.3),
(2.4) possesses a unique weak solution u € HE (). In addition,

lull 1 o <_||f||L2 : (2.15)

16



Proof We only have to prove (2.15). By (2.14), (2.9), the Cauchy—Schwarz inequality and recalling
the definition of ||-||H1(Q),

a(u,u) = l(u) = (f,u)
()] < 1 pgo) el 0
1120 el ooy -

2
co |l (g

(VAN VAN VAN

Hence the desired inequality. O

Now we return to our earlier example (*) which has been shown to have no classical solution.
However, applying the above theorem with a;;(z) =1, 1 =7, a;;(z) =0,i # j, 1 <i,j <mn,
bi(z) =0, c(z) =0, f(z) = sgn(3 — |z]), and Q@ = (—1,1)", we see that (2.2) holds with
¢ =1 and (2.11) is trivially fulfilled. Thus (*) has a unique weak solution u € H}(<2).

Remark. The existence and uniqueness of a weak solution to a Neumann, a Robin, or an
oblique derivative boundary value problem can be established in a similar fashion, using the
Lax—Milgram theorem. <

Remark. Theorem 2.3 implies that the weak formulation of the elliptic boundary value
problem (2.3), (2.4) is well-posed in the sense of Hadamard; namely, for each f € Ly(Q)
there exists a unique (weak) solution u € H}(Q2), and “small” changes in f give rise to
“small” changes in the corresponding solution u. The latter property follows by noting that
if u; and uy are weak solutions in H;(€2) of (2.3), (2.4) corresponding to right-hand sides
f1 and fo in L%(Q), respectively, then u; — uy is the weak solution in H}(2) of (2.3), (2.4)
corresponding to the right-hand side f; — fo € L?(2). Thus, by virtue of (2.15),

1
[Jur — U2||H1(Q) < P 1fr = f2||L2(Q) ) (2.16)

and hence the required continuous dependence of the solution of the boundary value problem
on the right-hand side. <
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3 Introduction to the theory of finite difference schemes

Let €2 be a bounded open set in R”, and suppose we wish to solve the boundary value problem
Lu=f in (3.1a)
lu=yg on I'=0Q, (3.1b)

where L is a linear partial differential operator, and [ is a linear operator which specifies the
boundary condition. For example,

"0 ou "L Ou
= o | Qi bi~— )
Lu Zl o (ajax) —l-; oz, + cu

ij=
and
lu=wu (Dirichlet boundary condition),
or
ou .
lu = Em (Neumann boundary condition),
v

or

n

u
lu = Z aijm—cosa; +o(z)u  (oblique derivative boundary condition),
7

ox

1,j=1
or some other appropriate boundary condition.

In general, it is impossible to determine the solution of the boundary value problem (3.1)
in closed form. Thus the aim of this chapter is to describe a simple and general numerical
technique for the approximate solution of (3.1), called the finite difference method. The
construction of a finite difference scheme consists of two basic steps: first, the approximation
of the computational domain by a finite set of points, and second, the approximation of the
derivatives appearing in the differential equation and in the boundary condition by divided
differences.

To describe the first of these two steps more precisely, suppose that we have approximated
Q=QUT by a finite set of points

Qh = QhUFh,

where Q, € Q and T, C T'; Qj, is called a mesh, €, is the set of interior mesh-points and T,
the set boundary mesh-points. The parameter h = (hq,..., h,) measures the fineness of the
mesh (here h; denotes the mesh-size in the coordinate direction Oz;): the smaller |h] is, the
denser the mesh.

18



Having constructed the mesh, we proceed by replacing the derivatives in £ by divided dif-
ferences, and approximate the boundary condition in a similar fashion. This yields the finite
difference scheme

LyU(x) = fu(z), x€ Qp, (3.2a)
WU(x) = gn(x), z €Ty, (3.2b)

where f;, and g, are suitable approximations of f and g, respectively. Now (3.2) is a system of
linear equations involving the values of U at the mesh-points, and can be solved by Gaussian
elimination or an iterative method, provided, of course, that it has a unique solution. The
sequence {U(z) : z € Q,} parametrised by mesh parameter h is an approximation to the
sequence {u(z) : x € Q,}, — the values of the exact solution at the mesh-points.

There are two classes of problems associated with finite difference schemes:

(1) the first, and most fundamental, is the problem of approximation, that is, whether (3.2)
approximates the boundary value problem (3.1) in some sense, and whether its solution
{U(x) : x € Q,} approximates {u(x) : & € Q4}, the values of the exact solution at the
mesh-points.

(2) the second problem concerns the efficient solution of the discrete problem (3.2) using
techniques from Numerical Linear Algebra.

In these notes we shall be concerned with the first of these two problems - the question of
approximation.

In order to give a simple illustration of the general framework of finite difference approxi-
mation, let us consider the following two-point boundary value problem for a second-order
linear (ordinary) differential equation:

—u" +ce(x)u = f(x), =€ (0,1), (3.3a)
u(0) =0, u(l)=0. (3.3b)

The first step in the construction of a finite difference scheme for this boundary value problem
is to define the mesh. Let N be an integer, N > 2, and let h = 1/N be the mesh-size; the
mesh-points are z; = ih, i = 0,..., N. Formally, Q;, = {z; :i=1,..., N—1}, T}, = {xo,zn},
and Q;, = Q, UT},. Suppose that u is sufficiently smooth (e.g. v € C*[0,1]). Then, by Taylor
series expansion,

w(ziy1) = u(z; £ h)
h? h3
= u(x;) £ hu'(z;) + Eu"(xi) + Fu"'(xi) + O(hY),

so that




and

Dy Dy u(wi) = Dy Dy u(x;)
_ w(2iv1) — 2u(z;) + u(ziy)
12
= u"(2;) + O(h?).

Thus we replace the second derivative u” by a second divided difference:

—D D, u(x;) + e(z)u(x;) ~ f(x;), i=1,...,N—1, (3.4a)
u(zg) =0, u(zy)=0. (3.4b)

Now (3.4) indicates that the approximate solution U should be sought as the solution of the
system of difference equations:

—D;FD;UZ—FC(J?Z)UZ = f(fl?l), 1= 1,,N—1, (35&)
Uy=0, Uy=0. (3.5b)

Using matrix notation, this can be written as

ﬁ + C(xl) 72 O ~ _ _ }
1 2 1 Uy f($1)
— 3 +c(xa) —7z U, F(x2)
L2 Ux- F(onos)
_% 4 _ _% N—2 N—2
h h2 C(Z'N 2) ) h I UN,l | I f(fol) |
O h_12 ﬁ + C(:EN,I)

or, more compactly, AU = F, where A is the tri-diagonal (N — 1) x (N — 1) matrix displayed
above, and U and F' are column vectors of size N — 1.

We begin the analysis of the finite difference scheme (3.5) by showing that it has a unique
solution. It suffices to show that the matrix A is non-singular. For this purpose, we introduce,

for two functions V' and W defined at the interior mesh-points z;, ¢ = 1,..., N — 1, the inner
product
N-1
(VW)=Y hViW;
i=1

(which resembles the L2-inner product
1
(v,w) = / v(x)w(x)dx).
0
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Lemma 3.1 Suppose that V is a function defined at the mesh-points x;, + = 0,...,N, and
let Vo = Vi = 0; then,

N
(-DID;V,V)=> h|D;Vi|”. (3.6)

i=1
Proof Performing summation by parts,

PDﬁgWVﬁ:—E}DﬁXWWh

N—-1
. Vz+1 Vi—Via
= - g Vz-l- E T‘/’L
=1
N N-1
Vi—Vie Vi—Vie
== Vit Yy

N N
Vi—Viz Vi—=Via
=—;—h Vit = Ve

vV, — Vi al
=Y (Vi Vi) = YO A|D L,
3 =1

where in the third line we shifted the indices in the first summation, and in the fourth line we made
use of the fact that V, =Vy =0. O

Returning to the finite difference scheme (3.5), let V' be as in the above lemma and note that
if ¢(x) > 0 then,

(AV,V) = (=Df D,V + ¢V, V),
= (=Dy DV, V) + (cV, V)

N
> " h|Drvi" (3.7)
=1

Thus, if AV = 0 for some V, then D_V; =0, ¢ = 1,...,N; because Vj = Vy = 0, this
implies that V; = 0,7 =0,..., N. Hence AV = 0 if and only if V = 0. We deduce that A is
a non-singular matrix, and (3.5) has a unique solution, U = A~ 'F.

Theorem 3.2 Suppose that ¢ and f are continuous functions on [0,1], and ¢(x) > 0, x €
[0,1]; then, the finite difference scheme (3.5) possesses a unique solution U.

We note that, by virtue of Theorem 2.3, the boundary value problem (3.3) has a unique
(weak) solution under the same hypotheses on ¢ and f as in Theorem 3.2.
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Next, we investigate the approximation properties of the difference scheme (3.5). A key
ingredient in our analysis is the fact that the scheme (3.5) is stable (or discretely well-posed)
in the sense that “small” perturbations in the data result in “small” perturbations in the
corresponding finite difference solution. Effectively, we shall prove the discrete version of the
inequality (2.15). For this purpose, we define the discrete L*-norm

1/2
U, = (U,0),/% = (Zhw) ,

and the discrete Sobolev norm

= (U1l + [ D7 U,

where

N
2 2
VI => hvil*.
i=1
Using this notation, the inequality (3.7) can be written

(AV, V), > [D;V][: . (3.8)

In fact, employing a discrete version of the Poincaré—Friedrichs inequality (1.1), stated in
Lemma 3.3 below, we shall prove that

(AV, V)i > e VI3,

where ¢ is a positive constant.

Lemma 3.3 (Discrete Poincaré—Friedrichs inequality.) Let V' be a function defined on the
mesh {x;;i = 0,..., N}, and such that Vo = Vi = 0; then, there erists a positive constant
Cy, tndependent of V' and h, such that
2 _ 2
VIl < e || D V], (3.9)

for all such V.

Proof We proceed in the same way as in the proof of (1.1). First note that

Vil2 = Z(D Vi)h| < (Zh)ZhD vi|?.

7j=1
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Thence,

N—-1 N—-1 7
WVIiz =S vl < Y a2y n|D, v
i=1 i=1 j=1

N
B S v
7j=1

IN

1 _
Lpaviz. o

We note that the constant ¢, = 1/2 in (3.9).

Using (3.9) to bound the right-hand side of (3.8) from below we obtain

1
(AV. V) = —[IV]l; -
Cx
Adding (3.8) to (3.10) multiplied by ¢, we deduce that
- 2
AV, V) > (1 e)™ (IVIE+ D7 V]3) -
Letting co = (1 +¢,) !,

(AV, V) > o |IVI[5, -

Now the stability of the finite difference scheme (3.5) easily follows.

Theorem 3.4 The scheme (3.5) is stable in the sense that

U

1
< — .
< ol

Proof From (3.11) and (3.5) we have that

o |UNT, < (AU, UYL = (£, U)n < |(f.U)al
<A T, < NN T s

and hence (3.12). O

(3.10)

(3.11)

(3.12)

Using this stability result it is easy to derive an estimate of the error between the exact
solution u, and its finite difference approximation, U. We define the global error, e, by

ei:=u(x;) —U;, 1=0,...,N.
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Obviously ey = 0, ey = 0, and

Ae; = Au(z;) — AU; = Au(x;) — f(;)
= —D D u(x;) + c(x;)u(x;) — f(x;)
=u"(v;)) — DS Dyu(z;), i=1,...,N—1.

Thus,

Aei:<pi, izl,...,N—l, (313&)
€ — 0, eEN = 0, (313b)

where ¢; = u"(x;) — D} D u(x;) is the truncation error.

Applying (3.12) to the finite difference scheme (3.13), we obtain

1
[l = Ully, = llellyn < . el - (3.14)

It remains to estimate ||p||,. We have shown on page 19 that, if u € C*[0,1], then,
i = u"(z;) — D Dy u(w;) = O(h?),
i.e. there is a positive constant C, independent of A, such that
il < Ch2.

Consequently,

N-1 1/2
lell, = (Z h |80i|2> < Ch%. (3.15)
i=1

Combining (3.14) and (3.15), it follows that

C
lu =Tl < h° (3.16)

In fact, a more careful treatment of the remainder term in the Taylor series expansion on p.
19 reveals that

2
gi = (@) — Dy Dyu(a) = —u'V (&), & € lrir, ]

Thus
1
< B2 v
and hence
1 v
€ = 35 oy [u" @)
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in (3.15). Recalling that g = (1+¢,) ! and ¢, = 1/2, we deduce that ¢y = 2/3. Substituting
the values of the constants C' and ¢y into (3.16), it follows that

1
lu—=Ully, < ghQ HuIVHC[O,l} :

Thus we have proved the following result.

Theorem 3.5 Let f € C[0,1], ¢ € C[0,1], with c¢(z) > 0, x € [0,1], and suppose that the
corresponding (weak) solution of the boundary value problem (3.8) belongs to C*[0,1]; then,

1
|u— U“l,h < §h2 HUIVHC[U’H . (3.17)

The analysis of the finite difference scheme (3.3) contains the key steps of a general error
analysis for finite difference approximations of (elliptic) partial differential equations:

(1) The first step is to prove the stability of the scheme in an appropriate mesh-dependent
norm (c.f. (3.12), for example). A typical stability result for the general finite difference
scheme (3.2) is

U, < elllfullq, + lgnllr,), (3.18)

where [|[ - [||q,, [|[lg, and [|-[|;, are mesh-dependent norms involving mesh-points of €, (or
Q) and Ty, respectively, and c is a positive constant, independent of .

(2) The second step is to estimate the size of the truncation error,

va, = L'u— fp, in €,
or, = lyu— gp, on [

(in the case of the finite difference scheme (3.3) ¢r, = 0, and therefore ¢r, never appeared
explicitly in our error analysis). If

leay llg, + leryllp, =0 as h =0,

for a sufficiently smooth solution u of (3.1), we say that the scheme (3.2) is consistent. If p
is the largest positive integer such that

lpa, g, + ller, I, < CR”as h —0,

(where C'is a positive constant independent of h) for all sufficiently smooth u, the scheme
is said to have order of accuracy p.

The finite difference scheme (3.2) is said to provide a convergent approximation to (3.1) in
the norm ||| - |||q,, if

llw—Ulllg, =0 ash— 0.
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If ¢ is the largest positive integer such that
l||u—Ullla, <Ch? ash—0

(where C' is a positive constant independent of h), then the scheme is said to have order of
convergence (.

From these definitions we deduce the following fundamental theorem.

Theorem 3.6 Suppose that the finite difference scheme (3.2) is stable (i.e. (3.18) holds for
all fy, and gn) and that the scheme is a consistent approzimation of (3.1); then, (3.2) is a
convergent approzimation of (3.1), and the order of convergence is not smaller then the order
of accuracy.

Proof We define the global error e = u — U. Then,

Lhe = LMu - U) = L'"u — L"U = L"u — f.

Thus
L'e = pq,,
and similarly,
lhe = or,.
By stability,
v = Ullla, = lllellla, < clleay,llg, + ler,lr,),

and hence the stated result. O

Thus, paraphrasing Theorem 3.6, stability and consistency imply convergence. This abstract
result is at the heart of the error analysis of finite difference approximations of differential
equations.
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4 Finite difference approximation of elliptic boundary
value problems

In Section 3 we presented a detailed error analysis for a finite difference approximation of a
two-point boundary value problem. Here we shall carry out a similar analysis for the model
problem

—Au+c(x)u = f(zr) inQ, (4.1a)
u=0 on 02, (4.1b)

where Q = (0,1) x (0,1), ¢ is a continuous function on Q and c(z) > 0. As far as the
smoothness of the function f is concerned, we shall consider two separate cases:

(a) First we shall assume that f is a continuous function on . In this case, the error
analysis will proceed along the same lines as in Section 3.

(b) We shall then consider the case when f is only in L*(€2). In this instance the boundary
value problem (4.1) does not have a classical solution — only a weak solution exists. This
lack of smoothness gives rise to some technical difficulties: in particular, we cannot use
a Taylor series expansion to estimate the size of the truncation error. We shall bypass
the problem by employing a different technique, instead.

(a) (f € C(Q)) The first step in the construction of the finite difference approximation of
(4.1) is to define the mesh. Let N be an integer, N > 2, and let h = 1/N; the mesh-points
are (z;,9;),4,J =0,..., N, where z; = ih, y; = jh. These mesh-points form the mesh

O ={(z;,y;) 14,7 =0,...,N}.
Similarly as in Section 3, we consider the set of interior mesh-points
Qn =A{(wi,y;) 1,7 =1,..., N — 1},

and the set of boundary mesh-points T, = Q, \ €. Analogously to (3.5), the difference
scheme is:

—(D;D;Ul] + D;D;Uzg) + C(!L‘i, yj)Uij = f(ﬂ?l, yj), (Q?i, yj) S Qh, (42&)
U=0 on T (4.2b)

In an expanded form, this can be written

_ Y Uiy = 2Ui + Uiy | Uign = 2Ui + Uij
h? h?

} + c(@i, y;)Uij = [ (@i, 9;),
ij=1,...,N—1, (4.3)
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(i,7+1)

\ 4 L 4
(i=1,7) | (3,5) (i+1,5)

(i,5—1)

Figure 1: The mesh Q,(+), the boundary mesh I',(x), and a typical 5-point difference stencil.
Uy =0, ifi=0,i=Norifj=0, j=N. (4.4)

For each i and j, 1 < i,j < N — 1, the finite difference equation (4.3) involves five values
of the approximate solution U: U;;, Ui_1,;, Uit1,5, Ui j—1, Ui j41. It is again possible to write
(4.3), (4.4) as a system of linear equations

AU = F, (4.5)
where

U= (U117 U12, R UI,N—la U21; U22; sy UZ,N—la ..

T
ey U217 U227 ey UZ,N—l) ey UN_l’l, UN_l’Q, e eey UN_l’N_l) 9

*

F: (F117F12;'"7F1,N717F217F227"')FQ,N*I)"'J
T
"7F1il;F1i27"'7F1’i,N717"'7FN*l,laFNfl,Q;'"7FN71,N71) )

and A is an (N —1)%?x (N —1)? sparse matrix of banded structure. A typical row of the matrix
contains five non-zero entries, corresponding to the five values of U in the finite difference
stencil shown in Fig. 1, while the sparsity structure of A is depicted in Fig. 2.
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Figure 2: The sparsity structure of the banded matrix A.

Next we show that (4.2) has a unique solution. We proceed in the same way as in Section 3
For two functions, V' and W, defined on €2, we introduce the inner product

N-1N-1

Lemma 4.1 Suppose that V is a function defined on Qy and that V =0 on T'; then,

N N-1 N—-1 N
(=DiD,V,V)i+ (=D DV, V), =Y Y WD, VP + Y > RD, Vi’ (4.6)
i=1 j=1 i=1 j=1

Proof (4.6) is a straightforward consequence of (3.6) and the analogous identity for —D,fD,". O

Returning to the analysis of the finite difference scheme (4.2), we note that, since c(z,y) >
0 on €2, by (4.6) we have

(AV,V), = (=DF D,V = Df D,V +cV,V),

(=D DV, V), + (—D;Dy‘v, Vn+ (cV, V)
N N-1 N—-1 N

> Y WDV ) Y WD, VP (4.7)
i=1 j=1

i=1 j=1
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for any V defined on €, such that V = 0 on I',. Now this implies, just as in the one-
dimensional analysis presented in Section 3, that A is a non-singular matrix. Indeed if
AV =0, then (4.7) yields:

e V=V 1=1,...,N,
D Vij = h =0y N—1
o V=V 1=1,...,N —1,
D, Vij = h =0 N

Since V' =0 on T'j,, these imply that V' = 0. Thus AV = 0 if and only if V' = 0. Hence A is
non-singular, and U = A~'F is the unique solution of (4.2). Thus the solution of the finite
difference scheme (4.2) may be found by solving the system of linear equations (4.5).

In order to prove the stability of the finite difference scheme (4.2), we introduce (similarly
as in one dimension) the mesh-dependent norms

U, = (U, U),",

and
1/2
101 = (101 + |12 002 + D, U]2)
where
N N-1 1/2
|D; U, (Z h2|D;Ui]~|2>
i=1 j=1
and

1

1 N 1/2
|y U], = ( > Dy UZJ|2> .
i=1 j=1

The norm || - || is the discrete version of the Sobolev norm ||-||H1(Q)

) 1/2
lullion <|u||L2 H \ )
LZ)

With this new notation, the inequality (4.7) takes the following form:

ou
dy

(AV, V), > | D, V] + | D, V]\ (4.8)

Using the discrete Poincaré-Friedrichs inequality stated in the next lemma, we shall be able
to deduce that

(AV, V)i = e[V 4

where ¢ is a positive constant.
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Lemma 4.2 (Discrete Poincaré—Friedrichs inequality.)

Let V be a function defined on Qp, and such that V =0 on T'y; then, there exists a constant
Cy, tndependent of V' and h, such that

VI < e (12, V]2 + 12, V) (4.9)

for all such V.

Proof (4.9) is a straightforward consequence of its one-dimensional counterpart (3.9). Tt follows
from (3.9) that, for each fixed j, 1 <j < N —1,

N-1 L N
2 —1 2
> Vil <5 3 DTVl (4.10)
=1 =1
Analogously, for each fixed 4, 1 <¢ < N — 1,

N-1 1 N
> hlVil* < 5 ) hIDy Vil (4.11)
j=1 j=1

We multiply (4.10) by A and sum through j, 1 < j < N — 1, multiply (4.11) by h and sum through
1, 1 <i < N —1, and add these two inequalities to obtain

2|V < 2 (1D VIE + |0, V).
Hence (4.9) with ¢, = 1. O
Now (4.8) and (4.9) imply that
(AV.V)u > — VI
Finally, combining this with (4.8) and recalling the definition of the norm |[|-||, ,, we obtain

(AV, V)i = e[V (4.12)

where ¢y = (1 +¢,)7".

Theorem 4.3 The scheme (4.2) is stable in the sense that

1
1Tl = — N flla- (4.13)
0
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Proof Identical to the proof of (3.12) 0O.

Having established stability, we turn to the question of accuracy. We define the global error,
e, by

eij = u(zi, y;) — Uiy, 0<1i,j <N.
Then, assuming that u € C’4(Q), and employing Taylor series expansions,

Aeij = Au(zy, ;) — (Dy Dyu(wi, y;) + Dy Dyu(wi, ;)

0%u _ 0%u _
h? 0*u h? 0*u

—E@(fi,%)—ﬁa—w(%m)a 1<i,j<N-1,

where & € [zi_1, %iy1], 0 € [Yj-1, Yjs1)-
Let
2 4 4
Pij = _% (%(&,%‘) + g—;:(xi’nj)>  IsdhjsN-1
then,
Aeij:goij, 1§i;j§N_1a
e=0 on I',.

By virtue of (4.13),

Ju =Tl = el < el (4.14)
Noting that
|pij| < s (‘ o ‘ o )
D2 \ 0wt o 109t ey )
we deduce that the truncation error, ¢, satisfies
h? [ ||0*u o*u
|WM§I§Q5;Cm)\aFC®>. (4.15)

Finally (4.14) and (4.15) yield the following result.

Theorem 4.4 Let f € C(Q), c € C(Q), with c(x,y) > 0, (z,y) € Q, and suppose that the
corresponding weak solution of the boundary value problem (4.1) belongs to C*(Q2); then,

h2 4
M—UmﬁsagQ Al ). (4.16)
c(9)

ay'

0*u

dt

O () ‘
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Proof Recall that ¢y = (14 ¢.)~!,c. = 1, so that 1/cy = 2, and combine (4.14) and (4.15). O

According to this result, the five-point difference scheme (4.2) for the boundary value problem
(4.1) is second-order convergent, provided that w is sufficiently smooth.

In general, however, even if f and ¢ are smooth functions, the corresponding solution, u,
of (4.1) will not be a smooth function because the boundary, T', of the domain, , is a
non-smooth curve. Thus, the hypothesis u € C*(2) is unrealistic.

Our analysis has another limitation: it has been performed under the assumption that f €
C(Q) which was required in order to ensure that the values of f are well defined at the mesh-
points. However, in physical applications one often has to consider differential equations
with f discontinuous (e.g. piecewise continuous), or, more generally, f € L?(Q). We know
that in this case Theorem 2.3 still implies that the problem has a unique weak solution, so
it is natural to ask whether one can construct an accurate finite difference approximation of

the weak solution. This brings us to case (b), formulated on page 26.

(b) (f € L*(€)). We retain the same finite difference mesh as in case (a), but we modify the
difference scheme (4.3) to cater for the fact that f is not necessarily continuous on 2.

The idea is to replace f(z;,y;) in (4.3) by a cell-average of f,
1
Tfij= ﬁ/ f(x,y)dz dy,
Kij

where

K.. = ._@ ._|_ﬁ X ._@ ._|_@
ij — | Ti 2,(171 92 Yj Q’yj 2 '

This, seemingly ad hoc approach, has the following justification. Integrating the partial
differential equation —Au + cu = f over the cell K;;, and using Gauss’ theorem, we have

ou
[ St
/aKZ-j ov K

where OK;; is the boundary of Kj;;, and v the unit outward normal to 0K;;. The normal
vectors to OK;; point in the coordinate directions, so the normal derivative du/0v can be
approximated by divided differences using the values of u at the five mesh-points marked
[P

¢’ on Fig. 3. Approximating the second integral on the left by mid-point quadrature, and
dividing both sides by meas(K;;) = h?, we obtain

cu dx dy :/ fdxdy (%)
Ki]'

ij

_ _ 1
—(Dy D, u(wi,y;) + Dy Dy u(wi, y;)) + c(wi, y)u(wi, y;) ~ 7 / f(z,y)dzdy.
K;;

REMARK Finite difference schemes which arise from integral formulations of a differential
equation, such as (xx), are called finite volume methods. ¢
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(xia yj+1)

(«’131'71, yj) ($i+1, yj)

ij

(xia yj—l)
Figure 3: The cell K,

Clearly, T f;; is well defined for f in L?(Q) (and, in fact, even for f € L*(Q)); this follows by
noting that

1
WMVZ@

/ f(x,y) dzdy
Kij

! 1/2
— 12dxd
e (fmeean) (],

1
= 1y (4.17)

IN

1/2
If@ayNdedy>

which, in turn, is bounded by h~! [ fllz2(q)- Thus we define our finite difference (or, more
precisely, finite volume) approximation of (4.1) by

—(D;FD;UZ] + D;D;UZ]) + C(IL’Z', yj)UZ-j = Tfij; (ZL’Z', yj) € Qy, (418&)
U=0 on I'y. (4.18b)

Since we have not changed the difference operator on the left-hand side, the argument pre-
sented on page 28 still applies, and therefore (4.18) has a unique solution, U.

Theorem 4.5 The scheme (4.18) is stable in the sense that

1
10Ul < . 11120 - (4.19)
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Proof According to (4.12) and (4.17),

co U, < (AU, U) = (Tf,U)
< NI NTN, < ITEL U,
< N F 20 10N 5

and hence (4.19). O

Having established the stability of the scheme (4.18), we consider the question of its accuracy.

Let us define the global error, e, as before,
e;j = u(z;,y;) — Uy, 0<14,7 <N.
Clearly,
Aei; = Au(zy,y;) — AU,

= Au(z;,y;) — T fi

+ (7 (55 ) o)+ 7 (55) (i)~ Tlew@y) )

Noting that

82“ 1 yjth/2 @(xl + h/27 y) - @(IEZ - h/27 y)
T <_> (xiayj) — E/ ox ox dy

81‘2 yj—h/2 h

l/yﬁh/2 ou

= — D —(z; — h/2,y)dy

h yi—h/2 8x( /2:9)
1 [Yith/2 gy,

:D; _/ —flfl—hQ,y dya
[h " 2 /2,9)

and similarly,
62u> 1 [mthi2 gy
T|—— ) (w,y;) = D —/ —(z,y; — h/2)dzx|,
(5) @) =1, [h S
(4.20) can be rewritten as
Ae = D} o1 + Doy + 1),

where

1 [Yith/2 ou
o1(zi,y;) = E/ » %(«’L’i —h/2,y)dy — D u(wi, y;),
yie

J

1 [mth/2 oy _
902(xiayj) = E/ h2 8_y(x7yj - h/2) dr — Dy U(xi,yj),

(i, y5) = (cu)(wi,y5) — Teu) (i, y;).
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Thus,
Ae = Dip1 +DJgy+1p  in Q, (4.21a)
e=0 on I'y. (4.21Db)

As the stability of the difference scheme would only imply the crude bound

||e||1,h HD 901+D 902+¢Hh

which makes no use of the special form of the truncation error
o =Dfo1+D}s+ 0,
we shall proceed in a different way. According to (4.12),

collelli, < (Ae,e)n
= (D;;r%a e)n + (D;r%, e)n+ (P, €. (4.22)

Using summation by parts, we shall pass the difference operators D; and D;“ from ¢; and
9, respectively, onto e. Recalling that e =0 on ['y,

(D+<Pla ) _ Zh (Z hgpl $z+lay] Qpl(xzay])ezj>

Jj=

N-1
= — Z h (Z h801 xzay] hez LJ)

j=1 =1
N-1 N

- —-N"h (Z hoy (;, yj)D:Zeij>
j=1 i=1

=

h?1(zi, y;) Dy ey

12/ n N1 1/2
h2|¢1($iayj)|2> (Z h2|D:Z€ij|2>

1 q

.
1M

)

<

=

M=
=

-1 i=1 j=1
= e, | Drel| -
Thus,
(Df o1, e)n < |, | Dy ell, - (4.23)
Similarly,
(Dy @2, ¢)n < |p2],, HDy_e]‘y (4.24)
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(see page 29 for the definition of the mesh-dependent norms [-], and [-],.) By the Cauchy-
Schwarz inequality we also have that

W, e)n < 19l [lell, - (4.25)

Upon substituting (4.23) — (4.25) into (4.22) we obtain
2 . ~
collelly, < lenl, [Drell, + M2l | Dyell, + 1l llell,

1/2 1/2
< (leil + Ieal +11l) ([ Dzl + 1Dy ells + el

1/2
= (loal2 + Il + 107) el -
Dividing both sides by |[[e]|, , vields the following result.

Lemma 4.6 The global error, e, of the finite difference scheme (4.18) satisfies

1
lelly ), < C_O(||901]|925 + ool + ll0l3) 72, (4.26)
where 1, Yo, and v are defined by
1 [Yith/2 9y,
o1z, y5) = —/ ~—(z; = h/2,y) dy — D, u(zi, y5), (4.27)
h y-—h/2 ax
J
1 [mth/2 gy _
902(%,%) = E/ By —(z, Yj — h/2)dz — ‘Dy U(xz‘,yj), (4.28)
x;—h/2
z;+h/2 y]+h/2
Yz, yi) = (cu) (4, y;) / / (cu)(x,y)dzdy, (4.29)
x;i—h/2 h/2
1=1,. j=1,...,N.

To complete the error analysis, it remains to estimate ¢y, o and ¢. Using Taylor series
expansions it is easily seen that

h? du O*u
o< Ou L || : 4.30
o1 (i, ;)| 24 \ || 0z0y? @) Ox? C(Q)> -
h2 a3u 83U
< Pu L |0 ’ 4.31
|02 (i, ;)| 24 \ | 0220y || e dy? C@)) "
B (]| 92 (cw) 9" (cu)
el < 5 (| q , (432
i Y 022 || g 9 @

and hence the bounds for [¢1],, |¢2], and [¢],. We have the following theorem.
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Theorem 4.7 Let f € L*(Q), ¢ € C*(Q) with c(x,y) > 0, (z,y) € Q, and suppose that the
corresponding weak solution of the boundary value problem (4.1) belongs to C*(Q2). Then,

5

le = Ully < 5h*Ms, (4.33)
where
2
Pu 0u
My =9\ 152002 PR
0xdy c@) ox c@)
2
N ‘ Pu N ‘83u
Oz*y c(Q) dy? c(Q)
oy 1/2
0*(cu) 0*(cu)
+ 2 + 912
Ox (@) ¥ Alew)

Proof Recalling that 1/cy = 5/4 and substituting (4.30) - (4.32) into the right-hand side of (4.26),
(4.33) immediately follows. O

Comparing (4.33) with (4.16), we see that while the smoothness requirement on the solution
has been relaxed from u € C*(Q) to u € C3(Q2), second-order convergence has been retained.

The hypothesis u € C3(Q) can be further relaxed by using integral representations of ¢, s
and v instead of Taylor series expansions. The key idea is to use the Newton-Leibniz formula

w(b) —w(a) = /ab w'(x) dz.

Thus, denoting x4/ = x; &= h/2 and y;11/2 = y; = h/2, we have

Yi+1/2 6u ou
Sol(xzay]) = / / |: xl 1/27 ) 8 (IL' yﬂ):| dl‘dy
—1/2
Yj+1/2 8U
= / / [ Ti-1/2,Y xay:| dz dy
Ti—1YYj-1/2
Yj+1/2 8U
+—z/ [ [ = Gotem] s
Ti—1 —1/2
Yi+1/2 Ti i-1/2 )
_ { / / dg] dz dy
—1/2
1 /y]+1/z
1- / (z,m)dn
h2 Ti—1 Yj—1/2 axay

=
oL
8
(oW
<
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1 Yjt+1/2 i—1/2 82
- [ )

T; 82U
. +/I‘ x@(x,y) dx] dy
j—1/2 —1 i—1
1 i ’V 0%u Yiv12 92y -|
), { / Py ) A0 _/y_w 9wy &Y dyJ dz

1 Yj+1/2 Ti—1/2 o0%u T 0u
:ﬁ/ [/ (x—xi_l)a 5 (7, y)dx—i—/ (x — )a 5 (7, y)dx] dy
Yj—1/2 Ti—1 Ti_1/2
1 [

Yj 62u q Yj+1/2 a2u q 1
" /ij(y—yj—m)ax—%(x,y) y+/ (= vy () dy| do.

Yj

Yj+1/2

Yj—1/2

We define the functions

Alr) — %(x - xz‘—l)Qa S [%—1,%—1/2],
2 (A 1—1/2137111

B(y) = { s —yi-172)% ¥ € (Y1723,
1y —yir12)°, Y€ Y, Yjrrs2)-

Note that A and B are continuous functions, A(z;—1) = A(z;) = 0, and B(y;_1/2) =
B(yj41/2) = 0. Thus, upon integration by parts,

1 Yj+1/2 z; , 0%u
1w, y5) = 12 [/ A (x)@(%y) dx] dy

Yj—1/2

1 i Yi+1/2 82U
- B’
h2 i [/yj_l/2 ( )a a (ZU y) dy] dz

1 Yit+1/2 T a3u
=73 [/x Az )8 3(:1:y)d:1:} dy

Yj—1/2

1o | e o
— B dy| dz.
+h2 _ [Lj_l/2 ( )axa 2 (ZU y) y] T

But
Al <2 Bw<
and therefore,
el <g [* [ | S| anay
zi 1| 93
+ %/ /yy]:r/: 837;;2(:5,3;)‘ dz dy.
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Consequently,

he (] 83u|® Bu ||
o2 < 2 \— +\— | (434)
32\ ||ox3 ||, ) 0xdy? Lo(9)
Analogously,
Rt (|| 63ul)? o ||?
loa)? < \— +\— | (4.35)
v =32 \ || 993 ) 0x20y L>(Q)

In order to estimate ¢, we note that

i+1/2 Yj+1/2 T 811)
V(@i y,) = / / ( (s y) ds+
Ti-1/2 —1/2 T
Vi Qw i (Y% 9%
—l—/y o — (x, t)dt—i—/x /y 900y — (s, t)dsdt) dz dy

Tiy1/2 yJ+1/z 2’LU
= / 2) 55 (2,y) dv dy
Ti—1/2 —1/2
Tit1/2 yJ+1/z 62
/ (x y)dz dy
Ti—1/2 —1/2
Tiy1/2 /y]+1/2 (/ /y] )
(s,t)dsdt | dzdy,
Ti—1/2 1/2 axay

where w(x,y) = C(«T;y)u(x;y)a

(2
2 it1/2)" T € [T4,Tiy1)2),
and
D(y) = { iy : y]:—l/Q)z, ye [y]:_l/lz,yj],
s = Yir1/2)", Y € Y Yjr1y2]
Thence,

g—w( ,y)‘ dz dy

1 Tit1/2 Yit+1/2
wewl <5 ([
Ti-1/2 Yj—1/2
Tit1/2 Yit+1/2
o)
Ti-1/2 Yj—1/2
Tit1/2 Yi+1/2
2 / /
Ti-1/2 Yj—1/2
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8—y2($,y)‘ dx dy

O*w
dzd
dxdy ‘ v y) ’




so that, with w = cu, we have

3ht
2 < (\

2
0%w

02

0w

0x0y

64

2
+4‘
La(Q)

0w 2
|2 ) e
Yy L2()

Substituting (4.34)—(4.36) into the right-hand side of (4.26) and recalling that 1/¢o = 4/5,
we obtain the following result.

+
L>(Q2)

Theorem 4.8 Let f € Ly(Q), ¢ € C(Q), with c(z,y) > 0, (z,y) € Q, and suppose that the
corresponding weak solution of the boundary value problem (4.1) belongs to H*(Q)). Then,

lu = Ul < C* JJull sy » (4.37)
where C' is a positive constant (computable from (4.34)-(4.36)).
It can be shown that the error estimate (4.37) is best possible in the sense that further
relaxation of the regularity hypothesis on u leads to a loss of second-order convergence.
Error estimates of this type, where the highest possible accuracy has been attained with the
minimum hypotheses on the smoothness of the solution are called optimal error estimates.

Thus, for example, (4.37) is an optimal error estimate for the difference scheme (4.18), but
(4.33) is not.

We have used integral representations of differences to show the bounds (4.34)-(4.36). Al-
ternatively one can use the following abstract device.

Lemma 4.9 (The Bramble-Hilbert Lemma) Suppose ® : H®(Q) — R is a linear form, i.e.
for all u,v € H*(Q), and all o, B € R,

O (au + fv) = a®(u) + P (v),
and assume that:
(a) ®(p) = 0 for every polynomial p of degree < k — 1, and
(b) there exists a positive constant C' such that

()| < C lullpe Vo€ HQ).

Then, there exists a constant Cy = C(Q2, C, k) such that

®(u)| < Cilulyugy  Yu € HHQ).
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Proof See P. Ciarlet: The Finite Element Method for Elliptic Problems, North-Holland, 1979.

We shall use the Bramble-Hilbert lemma to re-derive the bound (4.34) for ¢;. Let K =
[—1/2,1/2] x [-1/2,1/2], and consider the affine mapping

r=x;—h/2+sh, —-1/2<s<1/2,

of K onto Kj; = [zi1, ;] X [yj-1/2,Yj41/2]- We define
u(s, t) == u(z,y).
In terms of u, ; can be rewritten as follows:
.. _
o1(@i ;) = E‘I’(U)a

where

1/2 g
oa) = [ SH0.0d~ {u(3,0) ~ a(-3,0))

1/2 0s
Clearly @ : 4 — ®(a) is a linear form, and ®(p) = 0 for every polynomial of the form
P =ay+ a5+ ast + azs® + asst + ast’

(i.e. ®(p) =0 if p is a polynomial of degree < 2). In addition,

®(a)| < /_11/; gs (0, t)‘ dt+2 max [a(s,0)]. (4.38)
Lemma 4.10 Let v € H*(K); then,
1/2
(a) 0 t) ‘ dt < V210l o)
—-1/2
(b) max (s, )] < 2ol o
Proof
(a) Note that, for any s € [~1/2,1/2],
g”(o t)‘ ‘gZ(s,t)‘ + so%(a,t)da
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Thus,

S <

ov 12 1 52y
88(3,15)‘-!-/1/2 882(0 t)‘ do.

Integrating both sides in s and ¢,

1/2 | 9y 172 p1/2 172 p1/2
/ —(0, t)‘dt</ / st‘dsdt—i—/ / ‘dadt
1/2 | 0s 12172 1/2 1/2
12 p1/2 12 p1/2 1/2
< / / (s, 1) ds dt / / (0,t) dadt
—1/2J-1/2 1/2J-1/2
| ‘@
Osllramy 1195 oy

Finally, using the inequality
a+b<V2a®+)Y2 ab>0,
and the definition of ||| yr2 (), we get (a).

(b) Let (z,y) € K and (s,t) € K. Then,

v(z,y) =v(s,t) + /x%(a,t) da-l-/y%(sn’) dr

Y 952y
/ / 95 8t 7)do dT,

and therefore

1/2 1/2 | 5y
lv(z,y)] < |v(s,t)] +/ — (o, 1) da+/ —(s,7)| dr
1/2 105 “1/210
/2 p1/2
dodr.
/1/2/1/2 33575
Integrating both sides in s and ¢, we obtain
1/2 1/2 /2 p1/2
a:y|—/ / st|dsdt+/ / ‘dadt
1/2/-1/2 1/2J-1/2
12 p1/2 1/2 1/2
(s,7) dsdT—l—/ / dodr
/1/2/1/2 1/2 1/2 83815
< Iollzgo + | 5 1%
- LZ(K) aS LZ(K) at LQ(K) 888t LQ(K)
<2ollpa Vo) € K.

Taking the maximum over all (z,y) in K, we obtain (b). O
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Equipped with the inequalities (a) and (b), we return to (4.38). It follows that
(@) < (V2 +4) |l o ey -

Since [|@| gra(gey < 1@l oy » We also have
[@(a)] < (V2 +4) |l o ey

Thus we have shown that the mapping ® satisfies the hypotheses of the Bramble-Hilbert
lemma with £ = 3 and Q2 = K.

Hence, there exists a constant C' such that
B()| < Culaloey Y € HH(E).
Returning from (s,?) € K to our original variables (r,y) € K;;, we deduce that

|®(a)] < C1h° |U|H3(Ki;) ;

and therefore,

I
(i )| = 5 [@(@)] < Cihfulgag) -

Consequently,
N N-1
Iz =D 0> B2 e (i, y3)I
i=1 j=1
N N-1
< Cth! Z |U|§13(Ki;)
i=1 j=1
< Cin' |U|§13(Q)
Therefore,
lor], < CLb? fulgyag - (4.39)
Similarly,
lp2], < Coh® |ul s (4.40)
and
[]), < Csh? [ul 2 - (4.41)

The bounds (4.39)—(4.41) derived by using the Bramble-Hilbert lemma are essentially the
same as those obtained earlier by integral representations, and stated in (4.34)—(4.36). There
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is, however, an important practical difference: while the constants involved in (4.34)—(4.36)
are known, those which appear in (4.39)—(4.41) (namely, Cy, Cy, C3) are unknown because
the Bramble-Hilbert lemma does not tell us what these are, so the constant in the resulting
error estimate is not computable. We note, however, that in recent years several constructive
proofs of the Bramble-Hilbert lemma have been derived for restricted classes of 2. (e.g. Q
convex or star-shaped). These constructive proofs give an explicit expression for C; (see the
statement of the Bramble-Hilbert lemma) in terms of C, k and the area (volume) of €.

Concluding remarks. We have carried out an error analysis of finite difference schemes
for the partial differential equation

—Au+ c(z,y)u = f(z,y)

on a square domain (2. The error analysis of difference schemes for more general elliptic
equations would proceed along similar lines. Consider, for example,

_{%<m@w%)+%<ﬂﬁw%ﬂ

ou

ou
+ bi(x,y)=— + ba(x,
1(z,y) 2(2,y) By

e +c(z,y)u = f(z,y)

on the unit square Q in R?. We approximate the equation by

1 Uii1,— U Ui —U;_1.;
- A [a1($i+1/2,yj)% - al(xil/%yj)’]TL]}

1 U, iz1— U, Ui —U; i
- E |:a2(xiayj+1/2)% - 02(%’;%‘1/2)%]

Uit1,; — Ui Uijs1 —Uij
9, ), b l . 5] 5]
20 + b (i, ) 20

1 Tit1/2 Yi+1/2
+ c(zi, yy) Uiy = ﬁ/ / f(z,y)dzdy.
Ti—1/2 Yi—1/2

+ bl (xia yj)

This is still a five-point difference scheme. Provided w € H?*(Q) N Hi (), the scheme is
second-order convergent in the [|-[|; , norm (i.e. (4.38) holds).

When 2 has a curved boundary, a non-uniform mesh has to be used near 0S2 to avoid a loss
of accuracy. To be more precise, let us introduce the following notation: let h;11 = ;11 — x;,
h; = x; — xi_1, and let h; = %(hi+1 + h;). We define

U1 — U B U, —U;_4
DU, = il Fr o p U =+ —=1
T hz ) T h/,L )
1 /U, —-U U, —-U,;_
D+D_ = — 1+1 L 7 1—1 )
» el h( Bt "

Similarly, let k11 = yj41 — yj, kj = y; — y;—1, and let

1
ki = 5 (kjer + Kj).
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Let

Uisi — U; _ U — U,
DU, = L——1 - L DU =-1—= k_ﬂ ,
J J
1 (U —-U; U, —U;_
D+D_U-:—< J+1 J _ 3 J 1>‘
R T N kj

So, on a general non-uniform mesh
Q= {(i,y;) : @ir1 — @ = hiy yj1 — y; = kj},
the Laplace operator, A, can be approximated by D} D, + DJDy_, with the difference
operators D;F D", DD, defined above.
Consider, for example, the Dirichlet problem
—Au = f(z,y) in Q,

u=0 on 09,
where Q and the non-uniform mesh Q, are depicted in Fig. 4.
® ®
® ®

o U O Th U= NT
Figure 4: Non-uniform mesh €2;.

The finite difference approximation of this boundary value problem is

UZ] = 0 on Fh.
Equivalently,
_l (Ui+1,j — Uij B Usij — Uil,j) _ i (Ui,jJrl — Uij _ Uij — Ui’j1> = f(xyy;) inQy
hi hit1 hi kj k1 ki - |
U’L] =0 on Fh.

A typical difference stencil is shown in Fig. 5; clearly we still have a five-point difference
scheme.
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g (xz', yj+1)

kjia
h; his1
° ®

(z;_1, yj) (2, ?Jj) (Tig1, ?Jj)
k;

(xia yj—l).

Figure 5: Five-point stencil on a non-uniform mesh.
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5 Finite element methods for elliptic boundary value
problems

In sections 3 and 4 we described the construction of finite difference methods for elliptic
boundary value problems and outlined some simple techniques for their analysis. There,
because of the very nature of finite difference schemes, the emphasis was placed on approx-
imating the values of the exact solution at a finite number of mesh-points. In this section
we concentrate on an alternative approach which is based on the approximation of the exact
solution by continuous piecewise polynomial functions. Numerical methods of this type are
called finite element methods.

Finite element methods were proposed by Courant in 1943, but the importance of his con-
tribution was not recognised at the time and the idea was forgotten. The method was
rediscovered by engineers in the early 1950’s, though the mathematical analysis of finite el-
ement, schemes only began in the 1960’s, the first important theoretical results being those
of Zlamal in 1968.

In this section we present some of the basic properties of finite element methods for elliptic
boundary value problems. Unlike finite difference schemes which are constructed in a more-
or-less ad hoc fashion by replacing the derivatives in the differential equation by divided
differences, the derivation of finite element methods is much more systematic.

The first step in the construction of a finite element method for an elliptic boundary value
problem (e.g. (2.3), (2.4)) is to convert the problem into its weak formulation:

find u € V such that a(u,v) = [(v) Yv eV, (P)

where V' is the solution space (e.g. H{(Q) for a homogeneous Dirichlet boundary value
problem), a(-,-) is a bilinear form on V' x V, and [(-) is a linear form on V' (e.g. (2.7) and

(2.8)).

The second step in the construction is to replace V in (P) by a finite-dimensional subspace
Vi, € V which consists of continuous piecewise polynomial functions of a fixed degree, and
to consider the following approximation of (P):

find up, € V}, such that a(up,v,) = l(vp) Yoy, € V. (Py)

Suppose, for example, that dimV}, = N(h) and V}, = span{¢y, ..., ¢n(n)}, where the linearly
independent basis functions ¢;, i = 1,...,N(h), have “small” support. Expressing the
approximate solution u; in terms of the basis functions, ¢;, we can write

N(h)
up(x) = Z Uii(x), (%)
i=1
where U;, i =1,..., N(h), are to be determined. Thus (P,) can be rewritten as follows:
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Figure 6: Subdivision of Q = [0, 1].

N(h)
find (Uy,..., Uney) € RY® such that > a(¢i, ¢)Us = U(¢;), j=1,...,N(h).  (P})
i=1
This is a system of linear equations for U = (Uy, ..., Uy@py)", with the matrix of the system,

A = (a(¢j, ¢:)), of size N(h) x N(h). Because the ¢;’s have small support, a(¢;, ¢;) = 0 for
most ¢ and j, so the matrix A is sparse. Once the system of linear equations (P}) has been
solved for U = (Uy, ..., Unu)T, () provides the required approximation of u.

After this brief outline of the finite element method, we illustrate the construction of this
numerical technique through some simple examples.

5.1 Construction of the finite element method: piecewise linear
basis functions

In this section we describe two specific examples of finite element methods for boundary
value problems.

5.1.1 One-dimensional problem

Let us consider the boundary value problem
u
) = (1) , (5.1b)

where p € C[0,1], ¢ € C[0,1], f € L*(0,1), p(z) > ¢ > 0, q(x) > 0, x € [0,1]. The weak
formulation of this problem is:

find uw € H{(0,1) such that

/Op(x)u'(x)v'(x)dx—i-/o g(x)u(z)v(z)dz = /Of(:r)v(:r)d:r (P)
Vv € H}(0,1).

In order to construct the finite element approximation of this problem, we subdivide Q = [0, 1]

into N subintervals [z;, z;41], i = 0,..., N — 1, by the points z; = ih, i = 0,..., N, where
h=1/N, N > 2 (see Fig. 6).
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The subintervals are called “elements”. The solution, v € HZ(0,1), of (P) will be approx-
imated by a continuous piecewise linear function on this subdivison. For this purpose we
define the finite element basis functions

¢i(x) = (1 -

r — T

h

) . i=1,...,N—1.
+

Here, for z € R, we used the notation 2z, = max{0, z}. Clearly ¢; € Hj(0,1), and supp ¢; =
[zi 1,2i41], © = 1,..., N — 1. The functions ¢;, i = 1,..., N — 1, are linearly independent
and therefore

Vi = Span{¢17 SR ¢N71}
is an (N — 1)-dimensional subspace of Hj(0,1). The finite element approximation of (P) is:

find u;, € V}, such that

/op(x)u;(x)vg(x)dx + /0 q(z)up(v)vp(z) do (P)

= /f(x)vh(x)dx Yy, € V.

Since uy, € Vj, = span{¢y,...,¢n_1}, it can be written as a linear combination of the basis
functions:

up(z) = Z_ Uii(x).

Substituting this into (P,) we obtain the following problem, equivalent to (P}):

find U = (Uy,...,Ux1)" € R¥~! such that )
N—-1 1
S20 [ b)) + @] ()
1
= fx)p;(z)dz, j=1,...,N—1.

0 J

Letting

1
F; ::/ f(x)p;(zr)dzx, j=1,...,N—1,
0
(P;) can be written as a system of linear equations

AU = F,
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where A = (aj;), F = (Fi,...,Fy_1)T. The matrix A is symmetric (i.e. AT = A) and
positive definite (i.e. 27Az > 0, x # 0). Since supp ¢; U supp ¢; has empty interior when
li — 7] > 1, it follows that the matrix A is tri-diagonal. Having solved the system of linear
equations AU = F', we substitute the values Uy,...,Uy_; into

N-1
up(x) = Z Uidi(x)
i=1
to obtain wuy,.

In practice the entries aj; of the matrix A and the entries F; of the vector F' are calculated
approximately using numerical quadrature rules. In the simple case when p and ¢ are constant,
functions on [0, 1], the entries of A can be calculated exactly:

w = (@) () de 4 g / @)y () da

2/h, =14, 4h/6, =7,
= pg —1/h, |i—jl=1, +¢ h/6, |i—jl=1,
07 |i_j|>17 07 |Z_]|>1

2p/h + 4hq/6, i = j,
= —p/h+qh/6, |i—j|=1,
0, li —j| > 1.

5.1.2 Two-dimensional problem

Let © be a bounded domain in R? with a polygonal boundary 9, so that € can be exactly
covered by a finite number of triangles. We shall suppose that a family of such sets of
triangles is parametrised by h, where h is the maximum diameter of triangles in the set. We
shall assume that any pair of triangles in a triangulation of {2 intersect along a complete
edge, at a vertex, or not at all, as shown in Fig. 7.

Figure 7: A subdivision (triangulation) of Q.
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With each interior node (marked ® in the figure) we associate a basis function ¢ which is
equal to 1 at that node and to 0 at all the other nodes; ¢ is assumed to be continuous and
piecewise linear on the triangulation, as shown in Fig. 8.

Figure 8: A typical finite element basis function.

Let us suppose that the interior nodes are labelled 1,2, ..., N(h), let ¢1(z,y),..., dnm) (7, y)
be the corresponding basis functions. The functions ¢y, ..., ¢n() are linearly independent
and they span an N(h)-dimensional linear subspace V}, of H{ ().

Let us consider the elliptic boundary value problem

—Au=f in €
u=0 on Of.

The weak formulation of this problem is:

find u € Hy(€2) such that

oudv Ouodv
ox = H(Q
/Q<axax Ay Oy ) drdy = /fvdxdy Vv € Hy(Q).

The finite element approximation of the problem is:

find u, € V}, such that

Oup, Ovy,  Ouy, vy,
- dzdy = dzd
/sz<3$8x+8ya> ray = /fvhxvahevh
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Writing

N(h)
uh(xa y) = Z U2¢2(x7 y)a
i=1

the finite element approximation can be restated as follows:

find U = (U1, ..., UN(h))T e R¥™ such that
N(h)
0¢; 0p;  0¢; 09, / '
' or 5 = : —1,...,N(h).
;Uz {/Q<6x o + 3y Oy dx dy quﬁjd:rdy, j ..., N(h)

Letting A = (a;;), F = (F1,..., Exm)7,

o 00; 0p;  0¢; 0O;
ij = 451 = /Q (8:1: ox + oy Oy dzdy,

FJ:/fd)]d.’L'dy,
Q

the finite element approximation can be restated as a system of linear equations
AU = F.

Solving this, we obtain U = (Uy, ..., Uyg)”, and hence the approximate solution

N(h)
up (T, y) = Z Uigi(z,y).
i=1
To simplify matters let us suppose that 2 = (0,1) x (0,1) and consider the triangulation of
Q2 shown in Fig. 9.
Let ¢;; denote the basis function associated with the interior node (x;, y;):

(L T—T Y-y

1— — €l
_]_L - h J(ny)
1_%1 (xay)GQ
1_‘772'];:1", (xay)€3
Gij(r,y) =q1_H -2 _Y—Y c4
1 -4y (z,y) €5
]-_x;lxia (.’L’,y)EG
L 0 otherwise,

where 1,2,...,6 denote the triangles surrounding the node (z;,y;) (see Fig. 10.)
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Figure 9: Subdivision (triangulation) of Q = [0, 1] x [0, 1].

Figure 10: Triangles surrounding a node.
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Thus

( _l/ha (xay) €l
0, (z,y) €2
a¢ 1/h7 (:r,y) € 3
8—Z]:< 1/h7 (:r,y)€4
o 0, (z,y) €5
_l/ha (xay) €6
L 0, otherwise,
and
( _l/ha (xay) €l
_l/ha (xay) €2
0, (z,y) €3
8 i ’ )
W5~ 8 Ah wy) e
Y 1/h, (z,y) €5
0, (z,y) €6
L 0, otherwise.
Since

N-1N-1
00i; O~ Opij Ody
Usj d J dxd

=AUy — U1y — Ukg10 — U1 — Up 41, k,l=1,..,N—1,
the finite element approximation is equivalent to

Uk = 22Uk + U1y Ukggr = 20U + Upy
hQ

h2
1
:ﬁ// flz,y)op(z,y)dedy, kil=1,..., N —1;
Supp ¢
Uy =0 on 0.

Thus, on this special partition of €2, the finite element approximation gives rise to the familiar
5-point finite difference scheme with the forcing function f averaged in a special way.

5.2 Variational formulation of self-adjoint elliptic boundary value
problems

Let us consider, as in Section 2, the elliptic boundary value problem

_ Z ai% (mﬂ@%) + sz(x)gz +c(x)u = f(x), T €, (5.2a)

t,j=1
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where Q is a bounded open set in R*, a;; € C(Q), i,j =1,...,n; b € CY(Q),i=1,...,n,
c € C(Q), f € Ly(R2), and assume that there exists a positive constant ¢ such that

n

Y ay(n)&& > & VE=(&,....6) ERY, Vo e Q. (5.3)
=1

i,7=1
We recall from Section 2 that the weak formulation of (5.2) is
find v € Hy(Q) such that a(u,v) =1(v) Yv € H;(Q), (5.4)

where the bilinear form a(-,-) and the linear form [(-) are defined by
Ou 81}
o= [ e [
— [ st da
Q

1w 0b; _
C(x)_izaxizo’ z €€,

and

We have shown that if

then (5.4) has a unique solution u in H} (), — the weak solution of (5.2).
In the special case when the boundary value problem is self-adjoint, i.e.
aij(z) = aji(z), i,j=1,...,n, x€Q,
and
bi(x) =0, i=1,...,n, v€K,
the bilinear form a(-, -) is symmetric in the sense that
a(v,w) = a(w,v) Yv,w € Hy();

in the following this will always be assumed to be the case. Thus we consider

- Y o (e ) +elau= ), s 550

u=20, on 09 (5.5b)
with a;;(z) satisfying the ellipticity condition (5.3); a;;() = aji(z), c(x) >0, z € Q.

It turns out that (5.5) can be restated as a minimisation problem. To be more precise, let
us define the quadratic functional .J : H}(Q) — R by

J(v) = %a(v,v) —1(v), v € Hy().
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Lemma 5.1 Let u be the (unique) solution of (5.4) and suppose that a(-,-) is a symmetric
bilinear form on H{(Q); then, u is the unique minimiser of J(-) over H}(Q).

Proof Let u be the unique solution of (5.4) and, for v € H}(Q2), consider J(v) — J(u):

T(v) = J(u) = %a(v,v) i) — %a(u,u) +1(u)
1 1
= §a(v,v) - §a(u,u) —Il(v—u)
1 1

= —a(v,v) — §a(u,u) —a(u,v — u)
1
= E[a(va ’U) - 20’(“’7 U) + a(ua u)]
= —[a(v, ’U) - a(ua ’U) - a(v, u) + a(ua u)]
= §a(v — U,V — u).
Thence
1
J(w) = J(u) = §a(v —u,v — u).
Because of (2.14),
av = 1,0 — 1) > co 0 = ullr(0y
where ¢ is a positive constant. Thus
€o 2 1
Tw) = () > Do —ulfpg Vo€ HY®), (56)
and therefore,
J(v) > J(u) Vv € HY (), (5.7)
i.e. u minimises J(-) over H} ().

In fact, u is the unique minimiser of J(-) on H}(2). Indeed, if % also minimises J(-) on H{ (),
then

J(w) > J(@) Vv € H}(Q). (5.8)

Taking v = @ in (5.7) and v = u in (5.8), we deduce that
but then, by virtue of (5.6),

and hence u =a. 0O
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Hy(9)

Figure 11: The quadratic functional J(-).

It is easily shown that J(-) is convex (down), i.e.
J(1=0)v+0w) < (1-0)J()+0J(w) V0€0,1], VYv,we Hy(Q).
This follows from the identity
(1= 0)J(0) + 07 (w) = J((1 — 0)v + Ow) + %9(1 — O)av — w,v — w)
and the fact that a(v —w,v —w) > 0 on noting that 6 € [0, 1].
Moreover, if v minimises J(-) then the Gateaux derivative J'(u) of J(-) at u,

J'(u)v := lim J(utAv) = J(u)
A—=0 A

=0

for all v € H}(Q). Since

J(u+ Av) — J(u)
A

we deduce that if v minimises J(-) then

=a(u,v) —I(v) + %a(v, v),

/l\i_r)r(l)[a(u, v) —l(v) + %a(v, v)] = a(u,v) —1(v) =0 Vv € Hy(Q),

which proves the following result.

Lemma 5.2 Suppose that u € H}(Q)) minimises J(-) over H}(Q); then, u is the (unique)
solution of problem (5.4).
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This lemma is precisely the converse of the previous lemma, and the two results together
express the equivalence of the weak formulation:

find u € Hj(2) such that a(u,v) =1(v) Vv € Hy(Q) (W)

of the self-adjoint elliptic boundary value problem (5.5) to the associated minimisation prob-
lem:

find v € H}(Q) such that J(u) < J(v) Vv e H(Q). (M)

We shall use of this equivalence to perform an error analysis of the finite element method.

5.3 Construction of the finite element method: abstract setting

Let us consider the self-adjoint elliptic boundary value problem (5.5), and recall that its weak
formulation is

find u € H)(2) such that a(u,v) =1(v) Vv € Hy(Q), (W)

where

a(u,v) = Z/a”(x)g—xu% dx-i—/ﬂc(x)uvdx,
i 0%

we suppose that a;;(z) = aji(z), i,j = 1,...,n, x € Q, c(z) > 0, z € Q, a;;, c € C(Q),
[ € Ly(Q), and the ellipticity condition (5.3) holds. Recall also that (W) is equivalent to
the minimisation problem

find v € H}(Q) such that J(u) < J(v) Vv e H(Q), (M)
where J(v) = 1a(v,v) — I(v).

We can derive the finite element approximation of (5.5) by replacing the space H} () in (W)
by a certain finite-dimensional subspace V;, C Hg(£2) which consists of continuous piecewise
polynomials of a fixed degree k, k > 1.

Leaving aside for a moment the question of the actual construction of Vj,, we consider,
instead, some general questions concerning finite element methods which do not depend on
the particular properties of Vj,.

In its most general form, the finite element approximation of (W) is:

find uy, € V}, such that a(up,vy) = l(vy) Vo, € V. (Wh)
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As V, € V = H}(Q), the existence of a unique solution u, € V} is a straightforward
consequence of the Lax—Milgram theorem (see, Section 2). In addition, we can repeat the
argument presented in the previous section to show the equivalence of (17},) to the following
minimisation problem:

find uy, € V3, such that J(up) < J(v) Yoy € V. (My)

Next we study the approximation properties of ().

5.4 Céa’s lemma

Céa’s lemma expresses the fact that, in a certain sense, the finite element solution u, € V,,
is the best approximation to u € V' = H}(2) from Vj. To be more precise, we define

(v,w), == a(v,w), v,w € Hy(Q).
Because a(-,-) is a symmetric bilinear form on HZ(2) x H} () and
a(v,v) > ¢ ||U||i11(9) Vo € Hy(9),

(cf. Section 2), it is easily seen that (-, ), satisfies all axioms of an inner product. Let |||,
denote the associated “energy norm”:

o]l = la(v, )],

Since Vj, C H} (), taking v = vj, € V}, in the statement of (W), we deduce that
a(u,vp) = Uvn), vn € Vi (5.9)
also by, (W,),
a(up,vp) = Uvp), v € V. (5.10)
Subtracting (5.10) from (5.9) and using the fact that a(-,-) is a bilinear form, we deduce that
a(u —up,vp) =0 Yo, € Vj,
ie.
(u—up,vp)e =0 Yo, € V. (5.11)

Thus, the error between the exact solution u and its finite element approximation w, is
orthogonal to V},.
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U
H; (9)
U — Up,
u
v
0 Up, h

Figure 12: The error u — uy, is orthogonal to V},.

By virtue of the orthogonality property (5.11) (see Figure 12),

U — Up, U — Up)q

w— up, ) — (U — up, up)g
U — Up, W)

U — Up, ) — (U — Up, Vp)a

= (u— up,u—vy)y Yup € Vj.

lu — wall;

(
(
(
(

Thence, by the Cauchy—Schwarz inequality,
lu— Uh||z = (U — Up, U — Vp)a
< lw—unlly llu—vnll,  Von € Va;
therefore
= unll, < llu = vall, Vou € Vi
Consequently,

Ju = unll, = min flu = vl

the minimum being achieved when v, = u;,. Thus we have proved the following result

Lemma 5.3 (Céa’s lemma) The finite element approximation up, € Vi, of u € Hy(Q) is the

best fit to u from Vj, in the energy norm |||, , i

IW—UNa=$$Ju—%M

This result is the key to the error analysis of the finite element method for self-adjoint elliptic
boundary value problems. In the next section we describe how such an analysis proceeds
for a particularly simple finite element space, V},, consisting of continuous piecewise linear

functions on €.
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5.5 Optimal error bounds in the energy norm

In this section, we shall employ Céa’s lemma to derive an optimal error bound for the finite
element approximation (W},) of problem (W) in the case of piecewise linear basis functions.

Let Q = (0,1) x (0,1), and consider the elliptic boundary value problem

—Au = f in (), (5.12a)
u=10 on 0fQ. (5.12b)

We recall that the weak formulation of this problem is:

find u € H} () such that
Ooudv  Oudv L
/Q<8x8x+3y3y> dxdy—/gfvdxdy Yo € Hy(Q). (5.13)
In order to construct the finite element approximation, we triangulate the domain as shown
in the Fig. 13. Let h = 1/N, and define z; = ih, i =0,...,N, y; = jh, 7 =0,...,N. With
each node, (z;,y;), contained in the interior of Q (labelled ® in the figure), we associate a
basis-function ¢;;, i,7 = 1,..., N — 1, defined by

1— ~ . €1
_}L . h J(ny)
1 yhy”, (z,y) €2
1_xii;xa (xay)€3
Gij(r,y) =1 _FH -2 _Yi—Y c4
14y (z,y) €5
1_‘77;/:171', (xay)€6
L 0 otherwise.

Let Vj, = span{¢;;, i =1,...,N —1; j=1,...,N — 1}. The finite element approximation
of (5.12) (and (5.13)) is:

find u;, € V), such that

8uh avh 8uh 6vh
= . .14
/Q<8x o + o 8y> dz dy /vahdxdy Yo, € V), (5.14)

Letting

I(v) :/Qf(x)v(x)dx, and

ovow Ovow
a — ) = a._ a9 a a d da
(oo =ato,u) = [ (G50 + 050 drdy
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SL’OZO Ty ... [L’Nzl

Figure 13: Subdivision (triangulation) of Q = [0,1] x [0, 1].

(i1, Yj41) (¥, 9j41)

(Ii—hyj) Q ($i+1,yj)

(«’L’i+1, yjq)

Figure 14: Triangles surrounding the node (z;, y;).
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(5.13) and the finite element method (5.14) can be written, respectively, as follows:
find u € Hj(Q2) such that a(u,v) =1(v) Vv € Hj(Q), (5.13")
and
find uy, € V3, such that a(up,v,) = l(vp) Yo, € Vp,. (5.14")

Let us suppose that u € H?(Q)N H{ (). By the Sobolev embedding theorem H?(Q) C C(Q)
(cf. also Lemma 4.10 (b)); therefore u € C(Q). According to Céa’s lemma,

= wnll, = min ffu = vall, < llu = Lal], . (5.5)
v EVY

where Iu denotes the continuous piecewise linear interpolant of u on €Q:

N—-1N-1

Ihu x y Z Z l‘z,yg ¢zg x y)

=1 j=1
Clearly (Inu)(zg, ) = u(zy,y;). Since u € C(Q), Iyu is correctly defined. Let us estimate
||U - Ihu”a:

2 2

5 0 0
||u—Ihu||a—/‘%(u—Ihu) dr dy + . ay(u—Ihu) dz dy
2 9 2
—Z u—Ihu) dr dy + (u—Tpu)| dzdyp, (5.16)
A |0y

where A is a triangle in the partition of €2. Suppose, for example, that
A:{(xay) ;< §$i+1; Yj §y§y7+1+xz_x}

In order to estimate

I

we define the canonical triangle

2
drdy +

2

dx dy,

0 0
o (u — Thu)

-1
(u hU) A |0y

K={(st):0<s<1,0<t<1-s}
and the affine mapping (z,y) — (s,1) from A to K by

r=ux;+sh, 0<s<1,
y=uy;+th, 0<t<1.

Let @(s,t) := u(z,y). Then,

ou_ou o5 o o _1 on
dr 0O0s Or Ot Ox h 0s’
o _ou 95 o o _1 on
dy 0s Oy Ot Oy h Ot
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The Jacobian of the mapping (s,t) — (z,y) is

= h?.

Thus,

/A 0

o

2

(u— Thu)| dzdy

dsdt

0 ( (s,t) = [(1 — s —t)u(0,0) + su(1,0) + tu(0, 1)])

/ / % 1)~ 01.0) ~ 700,0)
:/0/015 gZ(st) 0 ‘;S(aoma2

2

dsdt

dsdt

1 1—s 611 8@ 1 8u aﬂ )
_/0/0 A(g(s,t)—g(a,to d0+/0 <as(at) 8S(a,o)> do| dsdt
1 pl-s i )
:// //8829td0d0+//8 dsds
<
> 8320t d9dadsdt+2// // asat"" dndadsdt
827 0%
<
2// 9,1) Ca0ar T2 (o) dody

2
)‘ B[P h 2 dedy.

Tit1l  fYj+1
A

Tit1 Yj+1
:cy‘ ‘hQ‘ -h™ dxdy—i—/ /

axay
Therefore,
0 ? et v (192t 1) 9% |?
—(u—1 dz dy < 2n? — | += dedy.  (5.17
/A ax(“ wu)| dedy < /l, /y]. (3x2 +2 0xdy vy (5:17)
Similarly,

~—"

0 2 zivt rvie (192417 1] 0%u |?
—1I dz dy < 242 S — dz dy. 1
/Aa(u Bl rdy < /E /y]- (3y2 +28x6y> xdy (5.18)
(

Substituting (5.17) and (5.18) into (5.16),

o0%u|? o%u | |0%ul?
-7 2<4h2/ dz dy. 5.19
||U/ hu”a = 0 < Ox2 axay ayg ray ( )
Finally by (5.15) and (5.19),
| = unll, < 2h |u|H2(Q) . (5.20)

Thus we have proved the following result.
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Theorem 5.4 Let u be the weak solution of the boundary value problem (5.12), and let uy,
be its piecewise linear finite element approzimation defined by (5.14). Suppose that u €
H?(Q) N H(Q); then,

lu = unll, <2k |ulg2q, -

Corollary Under the hypotheses of Theorem 5.4

| — Uh||H1(Q) <V5h |U|H2(Q) :

Proof According to Theorem 5.4,
2 2 2
lu—unlly = u— Uh|H1(Q) < 4n? |U|H2(Q) :

Since u € H} (), up € Vi C HE(Q), it follows that u — u, € H}(2). By the Poincaré—Friedrichs
inequality,

1
2 2
lu = unllz, @) < 7 lu—unlimo); (5.21)
thus,
2 2 2
[ = unlli@y = llu = unllz, @) + [ = vnli o)
)

IA

2 2
1 [u = unlp () < 5h? |ul2 () »

and that completes the proof. O
According to (5.21) and (5.20),
= unll ) < 7 [ulge, -

This error estimate seems to indicate that the error in the L?-norm between u and its finite
element approximation uy, is of the size O(h). It turns out, however, that this bound is

crude and can be improved to O(h?). For this purpose, let us first observe that if w €
H?(Q)N H (), Q= (0,1) x (0,1), then

2w Pw\’
2
1Aw[7, 0 :/Q<—ax2 +—6y2> dz dy

02w\ 2 w  0*w 02w\ 2
A I A T TNz dy.
/<6x> R “/gz(ay?) ey

Performing integration by parts and using the fact that w = 0 on 052,

>w  0*w Pw  Pw
q 0x2  0y? T /anﬁy 0x0y T
0%w |?
= dz dy.
/Q 0x0y i
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Thus,

2 2

+

0w
oy?

0w

0x0y

o
02

8wl 0 = [ (
Q

2
= |w|H2(Q)‘

2
) dz dy

Given g € Ly(Q), let w, € Hj(2) denote the weak solution of the boundary value problem

—Aw, =g in Q, (5.22a)
wy, =0 on 0 (5.22h)

then, w, € H*(Q) N Hy (), and
ol 20y = 1AWl () = 9y 0y - (5.23)

After this brief preparation, we turn to the derivation of the optimal error bound in the
L2?-norm.

According to the Cauchy—Schwarz inequality for the L?-inner product (-, -),

(u—up, g) < |lu— Uh||L2(Q) ||g||L2(Q) Vg € Ly().

Therefore,
= vnllp, ) = sup w (5.24)
9EL2 () ||9||L2(Q)
Given g € Ly(Q), let w, € H;(Q2) denote the weak solution of the problem (5.22), i.e.
a(wy,v) =1,(v) Yo € Hy(S), (5.25)
where
ly(v) = /ngdxdy = (9,v),
ow, 0v  Ow, Qv
a(wg,v) = /Q < 8;% + ayg 8_y> dz dy.
Consider the finite element approximation of (5.25):
find wy, € Vj, such that a(wg, vy) = ly(vy) Yo, € V. (5.26)

From (5.25), (5.26) and the error bound (5.20), we deduce that

[wg — wgnl|, < 2h |wQ|H2(Q) ’
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and therefore, by (5.23),
||wg - wtha <2h ||g||L2(Q) . (5.27)
Now,

(v —un,g) = (9,u— up) = lg(u— up)
= a(wg, u — up) = a(u — up, wy). (5.28)

Because wgy, € V3, (5.11) implies that
a(u — up, we) =0,
and therefore, by (5.28),

(w— up, ) = alu — up, wy) — alu — up, W)
(

= a(u — up, Wy — Wyp)

= (u — up, Wy — Wyp)q.

Applying the Cauchy—Schwarz inequality on the right,

(= un, g) < [Ju = unll, [lwg — wall, ,
and thence by (5.20) and (5.27)

(v —un, g) < 40 |U|H2(Q) ' ||g||L2(Q) : (5.29)
Substituting (5.29) into the right-hand side of (5.24), we obtain

lu = unll ) < 407 Jul g2y »

which is our improved error bound in the L?-norm.

The proof presented above is called the Aubin—Nitsche duality argument.
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6 Finite difference approximation of evolutionary prob-
lems

In Sections 3-5 we considered numerical methods for the approximate solution of elliptic
equations. This section is devoted to finite difference methods for time-dependent problems
described by parabolic and hyperbolic equations.

6.1 Finite difference methods for parabolic equations

Let 2 be a bounded open set in R*, n > 1, with boundary I' = 9€2, and let T" > 0. In
Q = Q x (0,T], we consider the initial boundary value problem for the unknown function
u(z,t), z € Q, te(0,T]:

n

-y — ax (a;(z, t +Zb z,t)=— 833 +c(z, tu = f(z,1), ze€Q, te(0,T], (6.1)

t,j=1

u(z,t) =0, rel, tel0,T], (6.2)
u(z,0) = up(z), z €9, (6.3)
where, for the sake of consistency between the boundary condition (6.2) and the initial

condition (6.3), we shall assume that the initial datum wu, satisfies: ug(z) = 0, v € T.
Suppose that ug € Ly(€2), and that there exists a positive constant ¢ such that

n

N aylr )6t > €S €, VE=(&,....6) ERY, VoeQ, te[0,T].  (6.4)
=1

ij=1
We shall also assume that
a; € CHQ), bieCYQ), i,j=1,...,n,
ceCQ), [feL*Q),
and that

(t) — 2 Z gzi( ) >0, (1,1)€Q, (6.5)

similarly as in the elliptic case.

A partial differential equation of the form (6.1) is called a parabolic equation (of second
order). Simple examples of parabolic equations are the heat equation

ou
E_A
o Y
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and the convection-diffusion equation

The proof of the existence of a unique solution of a parabolic initial boundary value problem
is more technical than the proof of the corresponding result for an elliptic boundary value
problem and so it is omitted. Instead, we shall assume that (6.1)—(6.3) has a unique solu-
tion and we shall investigate its decay in ¢ (¢ typically signifies time), and the question of
continuous dependence of the solution on the initial datum, g, and the forcing function, f.

We recall that, for v,w € L»(€), the inner product (u,v) and the norm [jv[|,, , are defined
by

(v,w) = /Qv(x)w(x) dz,
10lly) = (v,0)'%.

Taking the inner product of (6.1) with u, noting that u(z,t) = 0, € T, integrating by parts,
and employing (6.4) and (6.5),
ou "L || Ou
(et ot G
(G omen)we3 |5

('7t) < (f('at)vu('vt))'

L2 ()

Noting that

ou 2
(G 0u.0)) = 55 Il g
and using the Poincaré—Friedrichs inequality (1.1), we obtain
2 c 2
3 T Ol + S ) < 0,00

Let K = ¢/c,; then, by the Cauchy-Schwarz inequality,

52 1O+ K DIy < 1) gy s )
1 2 K 2
< s IO )+ 5 Nl DI 0

Thence,

d 1
= 1 Dz + K Nl Ol[z,0) < 72 16 DIz,
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Multiplying both sides by eX*

d K 9 eKt 9
< (el Ol ye) < T 1D

Integrating from 0 to ¢,

1 t
2 2 T 2
e Jul D0 = ol ) < i TN 7)) AT
Hence
(s )7y < €% ol 7,0 KD 0 d (6.6)

Assuming that (6.1)—(6.3) has a solution, (6.6) implies that the solution is unique. Indeed,
if u; and uy are solutions of (6.1)—(6.3), then u = uy — uy satisfies (6.1)—(6.3) with f = 0 and
up = 0; therefore, by (6.6), u = 0, i.e. u; = us.

Let us also look at the special case when f = 0in (6.1). This corresponds to considering the

evolution of the solution from the initial datum, ug, in the absence of external forces. In this
case (6.6) yields

(D117 0y < e Hluoll7y0y, > 0. (6.7)

In other words, the energy, ||u(-,t)||iQ(Q) decays (dissipates) exponentially fast. Since K =
¢/c,, we have

a7y ) < e

uoll7 0y, >0, (6.8)

and we deduce that the rate of dissipation depends on the lower bound, ¢, on the diffusion
coefficients (i.e. the smaller ¢, the slower the decay of the energy).

In the next section we consider some simple finite difference schemes for the numerical so-
lution of parabolic initial boundary value problems. Analogous results can be proved when
the spatial discretisation is based on the finite difference method. In order to simplify the
presentation, we restrict ourselves to the heat equation in one space dimension.

6.1.1 Explicit and implicit schemes

We consider the following simple model problem for the heat equation in one space dimension.
Let @ = Q x (0,T], where Q = (0,1), T > 0;

find u(z,t) such that

ou  u
5% = 9 2+f(x t), xe€(0,1), te (0,7,

u(0,t) =0, u(l,t)=0, te€]|0,T], (6.9)
u(z,0) = ug(x), = €]0,1].
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* (xja tm+1)

(-1, 1™) (z;, ") (@41, 1™)

Figure 15: Four-point stencil for the explicit scheme.

We describe two schemes for the numerical solution of (6.9). They both use the same dis-
cretisation of 9?u/0x?, but while the first scheme (called the explicit scheme) employs a
forward difference in ¢ to approximate du/0t, the second (called the implicit scheme) uses a
backward difference in ¢.

The explicit scheme. We begin by constructing a mesh on Q = [0,1]x[0,T]. Let h = 1/N
be the mesh-size in the z-direction and let At = T'/M be the mesh-size in the t-direction;
here N and M are two integers, N > 2, M > 1. We define the uniform mesh Q4! on Q by

ot = {(zj,t™) 1 xj =jh, 0< j< N; t" =m-At, 0 <m < M}.
On Q4! we approximate (6.9) by the following finite difference scheme:

ﬁndUJ’-“, 0<j <N, 0<m < M, such that

Uttt —um
J J +n—7rm . 4m 4 _ _
———7— = DD U+ [y t7), 1<j<N—1, 0<m<M—1,

Um=0, UT=0, 0<m<M, (6.10)
U]Q =ug(z;), 0<j<N,
where UJ" represents the approximation of u(x;, ™), the value of u at the mesh-point (z;, ™).
Clearly, (6.10) is a 4-point difference scheme involving the values of U at the mesh-points
(xjflﬂtm)a (xj’tm)a (ijrl’ tm)a (xj’thrl)a

shown in Fig. 15. The scheme (6.10) is applied as follows. First we set m = 0. Since
Uy, U}, U}, are given by the initial condition U] = ug(z;), j = 0,..., N, the values Uj,
j=0,...,N, can be computed from (6.10):
Ul—U°+§(U° —2U 4+ U )+ At- f(2,1), j=1 N -1
j h2 J+1 i ji—1 Ty, y ) =4 )
Uy =0, Uy=0;
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the values of U on the time-level #+ = t' = 1. At can be calculated explicitly from U?,
j=0,...,N, and hence the terminology explicit scheme.

Suppose we have already calculated U™, j = 0,..., N, the values of U on time level {"™ =
m - At. The values of U on the next time level ™! = (m + 1) - At can be obtained from
(6.10):
m—+1 m At m m m m .
urtt=0 uUgt' =0,

forany m, 0 <m < M — 1.

The implicit scheme. Alternatively, one can approximate the time derivative by a back-
ward difference, which gives rise to the following implicit scheme:

find U*, 0<j5 <N, 0<m < M, such that
U]m“_UJm +p—rm+1 m+1 -

T:DzDng‘ + flzj,t"), 1<j<N-1, 0<m<M-—1,
Ut =0, Uptt=0, 0<m<M-—1, (6.11)
Uj = uo(z;), 0<j<N,

where U™ represents the approximation of u(x;, ™), the value of u at the mesh-point (z;, ™).
Equivalently, (6.11) can be written

At 2At At
—ﬁU;’ﬁl + (W + 1) Urtt — ﬁU;ﬁl = U+ At - f(z;, t™), (6.12)
1<j<N-1,

Ut =0, Ugtt =0,
foreach m, 0 <m < M — 1.

This is, again, a 4-point finite difference scheme, but it involves the values of U at the
mesh-points

tm+1)

(xjfla ) (xjatm+1)7 (xj+17tm+1)a (xjatm)a

shown in Fig. 16. The implicit scheme (6.12) is implemented as follows. First we set m = 0;
then, (6.12) is a system of linear equations with a tridiagonal matrix, and the right-hand
side can be computed from the initial datum U} = ug(z;), and the forcing function f(x;, ).
Suppose we have already computed U;", 7 = 0,..., N, the values of U on time level {"™ =
m - At. The values of U on the next time level ™' = (m + 1) - At are obtained by solving
the system of linear equations (6.12).
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(xj—latm+1) (xj,tM+1) ($j+1,tm+1)

* (w,t™)

Figure 16: Four-point stencil for the implicit scheme.
6.1.2 Stability of explicit and implicit schemes

We shall study the stability of the schemes (6.10) and (6.11) simultaneously, by embedding
them into a one-parameter family of finite difference schemes:

ﬁndUJ’-”, 0<j <N, 0<m < M, such that

gmtt _pym 1<j<N-=-1
J ) — ptp- m+1 _ m . gm0 >7 = )
A7 DID; (HUJ + (1 =0)U") + f(x;,t™7), 0<m<M-1,

Ur =0, U?=00<m<M, (6.13)
U} = uo(z;), 0<j<N,

where 0 < 8 < 1. Recall that

N—1
(VW) =Y hV;Wj,
7=1
Vi, = (V,V),"”.

Taking the inner product of (6.13) with
Unt? = eUumt 4 (1 - 0)U™,

we get

(Um+1 —_ym

N : Um—l—G) o (D;-D:E—Um—l—ﬂ, Um+6’)h — (fm+6’, Um+0)h,
h

where f*0 = fmH(z;) = f(x;,t™"7). Let

N 1/2
V1, = (Zh IVj|2> :
j=1
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Noting that U™ = 0, Un? = 0, it follows from Lemma 3.1 that
—7rm+60 m-+40 —7rm+07|2
—(DF D U™, U™, = || DZUT

Thus,

m+1 _ 7rm
<U < U ,Um+6‘> i HD:c_UmH”h (0 Umy,,.
h

Since
Um+1 —_ym Um+1 + um
+

U™t = At — 1
( 2) At 2 )

it follows that

Um—|—1 _ Um 2
At

m 2 m
Jum), = lu™;
2At

At(0 - 1) +

h
Suppose 0 € [1/2,1]; then, § —1/2 > 0, and therefore

2
1O, = 1lU™

I m mi0 rrm
A7 h+HD U -I-GH (f +6 U -I-G)h

< Ll e,

According to the discrete Poincaré-Friedrichs inequality (3.9),
a2 L2
o2, < 5 I v,
Thus

Jum™p = o™y 1 1
b W0 o fomso)2 < o)+ 2 )

so that
Jom < 1015+ At ]| 7
Summing through m,

Jo# 0 < T°lls + Z Arf ]y

forall k£, 1 <k < M.

||h + “D;Um-i-G’]‘h fm+6’ Um+0)h-

(6.14)

(6.15)

The inequality (6.15) can be thought of as the discrete version of (6.6). If follows from (6.15)

that

1g,gg>§4HU’“Hh

o[l + ZAtHf’”*”\

h’
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i.e.
1/2

[v°lls + }:zﬁtHfm+ﬂh ) (6.16)

max [[U*], <

which expresses the continuous dependence of the solution of the finite difference scheme
(6.13) on the initial data and the right-hand side. This property is called stability.

Thus we have proved that for 6§ € [1/2, 1], the scheme (6.13) is stable without any limitations

on the time step in terms of h. In other words, the scheme (6.13) is unconditionally stable
for 0 € [1/2,1].

Now let us consider the case 6 € [0,1/2). First suppose that f = 0. Then, according to
(6.14),

2
o, — 1o

|| —7™m 2 Um+1_Um ?
I Jorme - a2

At

(6.17)

h
Recalling (6.13) and the fact that f =0, it follows that

Um+ 1 _ Uum
At

Moreover, a simple calculation based on the inequality (a — b)? < 2a? + 2b* shows that

— DfD-U™t?,

D Dzum |2 < & Dy (6.18)

Thus, (6.17) implies that

2
o™ 1, — 1U™ I3
2At

4At

+ |2 U <

0) |2, U

i.e.

ol = U™ O
2At h?

) D, Um“’]\ < 0.

Let us assume that

h2
then,
[U™H 2 < |U™2, m=0,...,M—1,
and hence,
max 0%, < [|o°]],
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Thus, again, the scheme is stable, but only if (6.19) holds. In other words, for 6 € [0,1/2)
the scheme (6.13) is conditionally stable, the condition being (6.19) (when f = 0).

Let us suppose that 6 € [0,1/2), as before, but consider the general situation when f is
not identically zero. We shall prove that (6.13) is still only conditionally stable, and, in
particular, that the explicit scheme, corresponding to # = 0, is conditionally stable.

Recalling (6.14),

m 2 m
U+, = o™ |l;
2At

Um+1 —_ym 2
At

+ | DU} < . (6.20)

2 < 1l o, + e =) |

h

By (6.13), for any € € (0, 1),

umtt —um||® mid L pmid||2
|75, = Ipmm g
< (1D o, + [l £m11,)°
< U+ [ Dr DU+ (4 ) 44,
< (U4 [ DU 4 (1) [l

where (6.18) has been applied in the last line. Substituting into (6.20),

m+1(2 _ m||2 4(1
U™ ], = U™, i <1—At(% —0). ( +€)> HD;UmH}Q

2At h2 ‘h
< Lm0, om0, + A = )L+ e [l (6.21)

According to the discrete Poincaré—Friedrichs inequality (3.9),

lom Il < 5 Dz o,

h’

and therefore,

L o=l < gz |

1
e s e e

Fre 0 oo
. (6.22)

Substituting (6.22) into (6.21),

m+1 2 _ m||2 _
O™ = [1U™ 1, + <1 —At2(1 20)(1 +¢) _62> HD;Umw”}?l

2At h?
< L At - o)1+ e [
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Let us suppose that

2

h
A< s l=9, 00,172,

where € is a fixed real number, € € (0,1). Then

2(1 —260)(1
1— At ( :2)( +6)—6220,

so that

At
o < o + 55

PO+ AL —20)(1+ Y || fm]
h h

Letting c. = 1/(4€?) + At(1 — 20)(1 + €"), upon summation through all m this implies that

M—1
max (U] < [[0°)]; + Z{)At\lf’””\li-
Z

Taking the square root of both sides, we deduce that for # € [0,1/2) the scheme (6.13) is
conditionally stable in the sense that

M—1 1/2
2 0112
s I < (I e S el (623)
provided
h2
At<—(1—¢), 0O0<e<]l. (6.24)

= 2(1 — 26)

To summarise: when 6 € [1/2,1], the difference scheme (6.13) is unconditionally stable.
In the particular the implicit scheme, corresponding to # = 1, and the Crank-Nicolson
scheme, corresponding to # = 1/2, are both unconditionally stable, and (6.16) holds. When
6 € [0,1/2), the scheme (6.13) is conditionally stable, subject to the time step limitation
(6.24). In particular the explicit scheme, corresponding to 6 = 0, is only conditionally stable.

6.1.3 Error analysis of difference schemes for the heat equation

In this section we investigate the accuracy of the finite difference scheme (6.13) for the
numerical solution of the initial boundary value problem (6.9).

We define the truncation error of the scheme (6.13) by

m+0 __ u(xjatm+1) - U(:Uj,tm)
i T At

—Dy Dy [fuwy, ") + (1= O)ulay, t™)] = f(a, ™),

1<j<N-1,
0<m<M-—1,
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and the global error by

ej’ = u(z;,t") = U

It is easily seen that e} satisfies the following finite difference scheme:

emtl —em 1<j<N-1
J i _ ptp-[pe.mtl 0™ — o > > )

At DQ’JDJ? [96] +(1 0)6]] 80] Y OSmSM_].
e =0, ey=0, 0<m<M,
e)=0, 0<j<N.

According to the stability results proved in Section 6.1.2,

M—1 1/2
m ™m k4012
s I = U7 < | 3 Aot \|h] ey, (6.25)
by (6.16), and
M—1 1/2
m m k4012
1£2XM||U — U™, < |e ;AtHcp + Hh] , 0e0,1/2), (6.26)
provided
h2
At < ——(1— 1, 0 1/2).

In either case we have to estimate HcpmJ“lo. Using the differential equation, 90;7”9 can be
written as

m+0 __ U(Q?j,tm+1) - U(.I],tm) . % - ym+0
EA { At o )
+ —82u( L) — DED(Qu(z, ) + (1 — Q)u(z, t™)) (6.27)
pye Zj, e Dy (Bulzy, u(x;, . .

In order to estimate the size of the truncation error, cpg’”o, we expand it into a Taylor series

about the point (;, #™+1/2).

r qm+1/2
et [y ALOu 1A 1 (AN 2 /
i 20t 2\2) o2 6\ 2) o ,

L 4

r qm+1/2

o [ Mou anew 1anyte M
T T e T2 \2 ) a6\ 2 ) o |
L 1
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If we subtract the second of these expansions from the first, all the even-numbered terms
will cancel, and we obtain

m+1/2
u(zj, t™ ) — u(z;, ") _ [ou 1 o, Ou i
A7 o T o (A )= +. :

(6.28)
Also, since
DD, u(z;, t™) = Gl + ihZ@ + zh‘l@ + "
» o2 12 9zt T 6l 926 T

expanding the right-hand side about the point (x;, #™1/2),

Pu K20 2ht 0w m+1/2
+ - Cmtly | 27 et =
D Du(z;, t") [axQ + oot o T L
At &3u K2 u m+1/2
2 [8x28t T Torar ]

+ 5 <7> {761;2&2 +...:|j .
There is a similar expansion for D} D, u(x;,t™); combining these we obtain:
927 12020 6 o0

Pu h? 0°u m+1/2
0201 120001 } (6.29)

2 2 94 o4 b m+1/2
D} Dy [u(z;, ™) + (1 — O)ul(z;, t™)] = [a v, WO 2O }

+ (0 — 3)At {
j

1 , ot m+1/2

+ é(At) [78:1:2 50 + ] :

Substituting (6.28) and (6.29) into (6.27):
Pu 2ot
o220t ﬁaw]y

1% 1 ot 1™/
+ (A) [ﬁ e _§ax2at2]]

Pt = [(% — 0)At

1 Pu 2 0% m+1/2
Wl —(L—O)At—— — Zp22— 4
* [12(2 e r T L e L
+ f(xja tm+1/2) - f(xjathro)'
Thence
mio] I At .
o] < T5Mu + S (Mg + 3Maye) + HOT, 0 =1, (6.30)
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h2
|0 < |5 — 0] At(May + 2Magr) + EM‘“ +HOT.,, 0+#41, (6.31)
where

kalt = max

_— t)].
(2,H)eQ 8xk6tlu(x’ )

8k+l ‘

Substituting (6.30) into (6.25) and (6.31) into (6.25) or (6.26) we obtain the following error
bounds:

max _|[[u™ — U™||, < Ci(h* + At?), 0=1, (6.32)

1<m<M
where C is a positive constant, independent of h and At;

max_|lu™ — U™||, < Co(h* + At), 0 € (1/2,1], (6.33)

1<m<M
where C is a positive constant, independent of h and At. Moreover,

max_|lu™ — U™||, < C3(h* + At), 6 €10,1/2), (6.34)

1<m<M

where C3 = (c.)'/? - Cs, provided that

2

Atgﬁ(l—e), cc(0,1), 0el0,1/2).

Thus we deduce that the Crank—Nicolson scheme (6 = 1/2) converges in the norm ||-||, un-
conditionally, with error O(h*+(At)?). For € (1/2, 1] the scheme converges unconditionally
with error O(h?+At). For § € [0,1/2) the difference scheme converges with error O(h?+ At),
but only conditionally.

The stability and convergence results presented here can be extended to parabolic equations
in more than one space dimension, but the exposition of this theory is beyond the scope of
these notes.

6.2 Finite difference methods for hyperbolic equations

Let € be a bounded open set in R”, n > 1, with boundary ' = 02, and let 7" > 0. In
Q = Q x (0,T], we consider the initial boundary value problem

n

g—“; + ;bi(x) : SZ telz,hu= f(z,t), z€Q, te(0,T) (6.35)
u(r,t) =0, xel_, tel0,T], (6.36)
u(z,0) = ug(z) =€, (6.37)
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C
\
where
' ={zel:bx)- v(x) <0},
b= (b,...,b,) and v(x) denotes the unit outward normal to I at x € T.

[ will be called the inflow boundary. Its complement, I'y = I'\I'_, will be referred to
as the outflow boundary. It is important to note that, unlike parabolic equations where a
boundary condition is specified on the whole of I" x [0,T], in a hyperbolic initial boundary
value problem the boundary condition is only imposed on part of the boundary, namely on
['_ x [0,T], or else the problem may have no solution.

We shall assume that

b € CHQ), i=1,...,n, (6.38a)
ceC(Q), fel*Q), (6.38b)
Uy € LQ(Q) (638(3)

In order to ensure consistency between the initial and the boundary condition, we shall
suppose that ug(z) =0, z € T'_.

The existence of a unique solution (at least for ¢, f € C'(Q), up € C'(Q)) can be shown
using the method of characteristics. More generally, for b;, ¢, f, ug, obeying the smoothness
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requirements of (6.38), a unique solution still exists, but the proof of this result is beyond the
scope of these notes. Let us, instead, consider the behaviour of the solution of (6.35)—(6.37)
in time.

We make the additional hypothesis:

Q T). 6.39
Z&rl 0, z€Q, te[0,T] (6.39)

Taking the inner product of (6.35) with u in Ly(Q2), we obtain:

(G5 (-3 500

1 n
+ 5/ [Z bi(x)’fz'(l‘)] u?(w, 1) ds(x) = (f,u), (6.40)
P Li=1
where v(z) = (v1(x),...,v,(x)) is the unit outward normal vector to I' at x € T'. By virtue

of (6.39) and noting that

<%,u> /g“t‘( 1) - u(z,t) do

it follows from (6.40) that

2dt||( W +3 /JZb ] (z,t) ds(z) < (f,u).

By the Cauchy-Schwarz inequality,

(fyu) < ALFC DI [lul D]

SIFCOI+ 5 (DIl

and therefore,

d 9 /
— lu .,t —+
Sl [

Multiplying both sides by e, this can be rewritten as follows:

%e_tﬂu( 1 +e_t/ [Zb ] 2(2,4)ds < et || f( D>, te[0,T].

n

Zbi(fr)vi(x)] u’(z,t)ds(z) — luC Ol < IFC I, te0,T).

i=1
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Integrating this inequality with respect to t yields

et Jul-, / / [

< Juol? / e £ d

Juc-, / /[

t t—1
< o Juoll® + / TR

Hence

:1:)] w?(z,7) ds(x) dr

e [0, 7.

x)] w?(z, 7) ds(x) dr

e [0, 7). (6.41)

This, so called, energy inequality expresses the continuous dependence of the solution to
(6.35)—(6.37) on the data. In particular it can be used to prove the uniqueness of the
solution. Indeed, if u; and uy are solutions of (6.35)—(6.37), then u := u; — uy also solves
(6.35)-(6.37), with f =0 and up = 0. Thus, by (6.41), ||u(-,t)|| =0, ¢t € [0, T] and therefore

u=0,i.e. u = us.

Let us consider a particularly important case when

c=0, f=0, and leb—Z

8:)/:Z

where b(z) = (bi(z),...,by(x)). Then, by virtue of (6.40),

1

e

and therefore,

5 ) o)) (o) () =

(- I+ / / b(2) - ()] w2 (,7) ds(z) dr = [Jugl|?, (6.42)

which expresses the conservation of energy in the physical system modelled by (6.35)—(6.37).

6.2.1 Explicit finite difference scheme

In this section we describe a simple explicit finite difference scheme for the numerical solution
of the constant-coefficient hyperbolic equation in one space dimension:

ou ou
ot 0x

84

+b=— = f(z,t), =z€(0,1), te(0,T) (6.43)



subject to the boundary and initial conditions

u(z,t) =0, rel_, tel0,T], (6.44a)
u(z,0) = ug(x), = €][0,1]. (6.44b)

If b >0 then I'_ = {0}, and if b < 0 then I'_ = {1}. Let us assume, for example, that b > 0.
Then the appropriate boundary condition is

w(0,8) =0, te[0,T). (6.45)

To construct a finite difference approximation of (6.43)—(6.45) let h = 1/N be the mesh-size
in the z-direction and At = T'/M the mesh-size in the time-direction, t. Let us also define

"L‘J:Jh, j:(),---,N, tm:m'At, m:(),...,M.

At the mesh-point (z;,t™), (6.43) is approximated by the explicit finite difference scheme

gmtt _pygm
4 A7 L +b-D,U" = f(z;,t™), j=1,...,N, (6.46)

m=0,...,M—1,
Ut =0, m=20,...,M, (6.47)
U} = ug(x;), j=0,...,N. (6.48)
Equivalently,

U]’-thrl = (1= U+ pU | + Atf(zg,t"), j=1,...,N,
m=0,...,M —1,

Ut =0, m=0,...,M,
UJO :Uo(,ﬂ?]‘), jZO,...,N,
where
_ WAt
M_ ha

 is called the Courant number.

Suppose that 0 < u < 1; then,

U4 < (0= ) U]+ U+ At o)

< — m m Ak
< (L= p) max (U] +p max [UF[ + At max |f(a;, ¢7)

_ ” o
= jmax [U| + At maxc |f(z;,87)].
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Hence

max |U7"| < max |U7| + At max | f(z;,t™)].
0<i<N Y 0<j<n Y 0<j<N

Let us define the mesh-dependent norm

Ul oo = max |U1;

0<j<N

then,
™ < N0l + AL sr m =0, M = 1.

Summing through m, we get

M—-1

max |[U*|| < |0+ D0 AL
m=0

1<k<M

which expresses the stability of the finite difference scheme (6.46)—(6.48) under the condition

bAt
OSM:TSL

Thus we have proved that (6.46)—(6.48) is conditionally stable in the ||-||o norm, the condition
being that the Courant number, 4, is in the interval [0, 1].

It is possible to show that the scheme (6.46)—(6.48) is also stable in the mesh-dependent
L%-norm, |-],. Recall that

N
VIR = nv
i=1
The associated inner product is

N
(VW] =>_ hViW;.

i=1
Since
ur+4+ur um—-umr
m _ ] Jj—1 J Jj—1
U= 5 + 5 ,
and UJ" = 0, it follows that
N
m —77M mUm B Unzl
(U™, D, U™w =Y WU =
7=1
N N 2
)Y (OSSN (7 5 ) (6.49)
j=1 j=1
1 m\2 h’ —7rm1|2



In addition, since

O N e

U =2 5 I 5 , m=0,...,M—1,
we have that
Um+1_Um

S, (Um+1 —|um 2) 6.50
(], = g (02— 650

At |UmHt — U
__Hi] , m=0,...,M—1. (6.51)

h

Thus, taking the (-, -],-inner product of (6.46) with U™ and using (6.49) and (6.51),

U2 + At-bUR)? + bhat | D7 U™ - U

m+1 _ Frm 2
— A#? u] =2At(f", U™, m=0,....,M—1.  (6.52)
At b
First suppose that f = 0; then,
Um+1 _ygm R
—Qxr —b-D, U™,
so that
[Um™ ]2 + At b|UR + bhAHL — p) | DyU™|; = U™, m=0,...,M —1.
Summing through m,
k—1
(tegal +2At bIURP +bh(1— ) Y At| D™ = |U°),, k=1,...,M,(6.53)
m=0 m=0

which proves the stability of the scheme in the case when f = 0 under the assumption that

bAt

0§M=77§L
In particular, if 4 =1, we have that
k—1
UM + S ac-b g = 002, k=1,...,M,
m=0

which is the discrete version of the identity (6.41), and expresses conservation of energy in
the discrete sense. This is equality is also trivially valid when =0 (i.e. when b = 0).

More generally, for 0 < p <1, (6.53) implies

|U*] \h + Z At-b U HUO

m=0

k=1,..., M,
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with strict inequality when 0 < g < 1. Therefore, when 0 < g < 1 the discrete energy
dissipates even through, as we have shown in (6.42), the continuous counterpart of the
discrete energy is conserved. This feature of the first-order upwind scheme is also quite
evident in numerical experiments: as time evolves, the numerical solution will be seen to be
smeared in comparison with the analytical solution.

Now let us consider the question of stability in the |-],-norm in the general case of f # 0.
Since
==

2

N = |/ =D, U, < (1", + 0 DT,
h

IN

1 mi2 —rrm1l2
(1 + Q) 1/ + (L4 €)? | DU Hh, € >0,
and
U < 1 N0, < 5157 + 5 105
it follows from (6.52) that

| + At b U + bhAt[ (1+€) bAt}

|pzum,

1 m m
gAtK1+g>Am4]w]ﬁ+u+Aﬂmrﬁ.
Lettinge =1—1/(1+¢€') € (0,1), and assuming
0 S n= T S 1 - €
we have, form=0,..., M — 1,

HUWMHMM%|ﬂWh+mQ+—)wm+mwnh

Upon summation,

At k—1 k—1
\U’“ (Z At-b|UR ) < ||U°]]7 + (1 + 7) SOALFME Y ALU™;
m=0 m=0
(6.54)

for k =1,..., M. The next lemma is easily proved by induction.

Lemma 6.1 Let (ag), (b), (ck) and (dy) be four sequences of non-negative numbers such
that the sequence (c) is non-decreasing and

k—1
ak-i-bkgck-i-deam, kzl; ao+b0§60.

m=0
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Then

k—1
ak—i-bkgckexp( dm>, k> 1.

m=0

Applying this lemma to (6.54) with
2
o= |0, k20
k—1
e =Y At-b|URI®, k>1; by=0,
m=0

k—1

) AR k31 e = U2
m=0

dy = At, k=1,2,..., M,

At

€

o = |07 + <1+

we obtain,
k—1 A\ EL
UM, + DAt b [UR[P < e <HU°]\2 + (1 + ?> S A ||fm]|§> C k=1,...,M,
m=0 m=0

and hence stability:

k-1 M—1
k7|2 m |2 T 07|2 At m72
max (HU Jiow 3 e 1om ) <o (HU 12 + (1+7> > Al ]|h> - (655)
An error estimate for the difference scheme (6.46)—(6.48) is easily derived from stability.

We define the global error, e, and the truncation error, ¢, by

ejt = u(z;,t") = U,
m w(@ ) — u(xy, t™)
Pi = At

- bD;U(ZL’j,tm) - f(xjatm)'

It is easily seen that

emtl — em
L pD e = o7 j =1 N, m=0 M—-1
At xr ) ]7 y ’ VAR ’
e = 0, m = 0,..., M,
e = 0, j = 0,...,N

J

By virtue of the stability inequality established in the first part of this section,

1<m<M

M—-1
max "]l < 3 At (6.56)
k=0
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By Taylor series expansion of 7" about the point (z;, ™),

ng = A atQ (xja )+ bha Q(é-jat )7 IS (t 7t +1)7 gj € (xj—laxj)a
so that
‘(p] ‘ < — AtMm + bhM,,),
where
8k+l
Mz = t
kxlt = ;I,lsanQ axkaﬂ( )‘
Defining M = max(My;, Ms,), we have
1
| < §M(At+ bh) (= O(h+ At)). (6.57)

Thus, by (6.56),

1
max ||u™ —U™| < zTM(At+ bh);
1<m<M 2

so the scheme (6.46)—(6.48) is first-order convergent.

Analogously, using the stability result (6.54) in the discrete L?-norm |-],, (6.57) implies that

m < *.
(Dax flu™ = U™l < cc - (AL +Dh),

where ¢ = 1eT/2(1 4+ T/e)'/2T"/2 M.

The analysis presented here can be extended to linear first-order hyperbolic equations with
variable coefficients and to hyperbolic problems in more than one space-dimension, as well
as to difference schemes on non-uniform meshes.
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