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Introdu
tion

Partial di�erential equations arise in the mathemati
al modelling of many physi
al, 
hemi
al

and biologi
al phenomena (e.g. dispersion of pollutants in lakes and rivers, spreading of

diseases, weather predi
tion, et
.). Very frequently the equations are so 
ompli
ated that

their solution by analyti
al means (e.g. by Lapla
e and Fourier transforms or in a form of

a series) is either impossible or impra
ti
able, and one has to resort to numeri
al te
hniques

instead.

These notes are devoted to the analysis of numeri
al methods for ellipti
, paraboli
 and

hyperboli
 partial di�erential equations, by 
onsidering simple model problems. We 
on
en-

trate on te
hniques that are most widespread in pra
ti
e: �nite di�eren
e and �nite element

methods, although the analysis of �nite volume s
hemes is also tou
hed on. Preferen
e is

given to theoreti
al results 
on
erning the stability and the a

ura
y of numeri
al methods

{ properties that are of key importan
e in pra
ti
al 
omputations.

The material 
overed in the notes had formed the basis of a 16-le
ture introdu
tory 
ourse

on the analysis of numeri
al algorithms for partial di�erential equations at the University

of Oxford given over the period 1992{1996. The ba
kground material from linear fun
tional

analysis and the theory of fun
tion spa
es dis
ussed herein is intentionally sket
hy in order

to enable the understanding of some of the key 
on
epts, su
h as stability and 
onvergen
e

of �nite di�eren
e and �nite element methods, with the bare minimum of analyti
al prereq-

uisites. Due to the time-
onstraints imposed by the length of the original le
ture 
ourse,

a signi�
ant portion of the theory of numeri
al algorithms for partial di�erential equations

is not being tou
hed upon; nevertheless, I hope that the notes will serve a helpful purpose

as a brief 
ompendium of basi
 theoreti
al information about this ex
iting and pra
ti
ally

relevant �eld of resear
h. For further details, the reader is referred to the numerous ex
ellent

books on the subje
t, some of whi
h appear on the Reading List.

1 Elements of fun
tion spa
es

The a

ura
y of numeri
al methods for the approximate solution of partial di�erential equa-

tions depends on their 
apabilities to represent the important qualitative features of the

(analyti
al) solution. One su
h feature that has to be taken into a

ount in the 
onstru
tion

and the analysis of numeri
al methods is the smoothness of the solution, and this depends

on the smoothness of the data.

Pre
ise assumptions about the smoothness of the data and of the 
orresponding solution 
an

be 
onveniently formulated by 
onsidering 
lasses of fun
tions with parti
ular di�erentia-

bility and integrability properties, 
alled fun
tion spa
es. In this se
tion we present a brief

overview of de�nitions and basi
 results form the theory of fun
tion spa
es whi
h will be used

throughout these notes, fo
using, in parti
ular, on spa
es of 
ontinuous fun
tions, spa
es of

3



integrable fun
tions, and Sobolev spa
es.

1.1 Spa
es of 
ontinuous fun
tions

In this se
tion, we des
ribe some simple fun
tion spa
es that 
onsist of 
ontinuous and


ontinuously di�erentiable fun
tions. For the sake of notational 
onvenien
e, we introdu
e

the 
on
ept of a multi-index.

Let N denote the set of non-negative integers. An n-tuple � = (�

1

; : : : ; �

n

) 2 N

n

is 
alled

a multi{index. The non-negative integer j�j := �

1

+ : : : + �

n

is 
alled the length of the

multi{index � = (�

1

; : : : ; �

n

). We denote (0; : : : ; 0) by 0; 
learly j0j = 0.

Let

D

�

=

�

�

�x

1

�

�

1

: : :

�

�

�x

n

�

�

n

=

�

j�j

�x

�

1

1

: : : �x

�

n

n

:

EXAMPLE. Suppose that n = 3, and � = (�

1

; �

2

; �

3

), �

j

2 N , j = 1; 2; 3. Then for u, a

fun
tion of three variables x

1

; x

2

; x

3

,

X

j�j=3

D

�

u =

�

3

u

�x

3

1

+

�

3

u

�x

2

1

�x

2

+

�

3

u

�x

2

1

�x

3

+

�

3

u

�x

1

�x

2

2

+

�

3

u

�x

1

�x

3

2

+

�

3

u

�x

3

2

+

�

3

u

�x

1

�x

2

�x

3

+

�

3

u

�x

2

2

�x

3

+

�

3

u

�x

2

�x

2

3

+

�

3

u

�x

3

3

: �

Let 
 be an open set in R

n

, and let k 2 N . We denote by C

k

(
) the set of all 
ontinuous

real-valued fun
tions de�ned on 
 su
h that D

�

u is 
ontinuous on 
 for all � = (�

1

; : : : ; �

n

)

with j�j � k. Assuming that 
 is a bounded open set, C

k

(

�


) will denote the set of all u in

C

k

(
) su
h that D

�

u 
an be extended from 
 to a 
ontinuous fun
tion on

�


, the 
losure of

the set 
, for all � = (�

1

; : : : ; �

n

); j�j � k. C

k

(

�


) 
an be equipped with the norm

kuk

C

k

(

�


)

:=

X

j�j�k

sup

x2


jD

�

u(x)j :

In parti
ular, when k = 0, we shall write C(

�


) instead of C

0

(

�


);

kuk

C(

�


)

= sup

x2


ju(x)j = max

x2

�




ju(x)j :

Similarly, if k = 1,

kuk

C

1

(

�


)

=

X

j�j�1

sup

x2


jD

�

u(x)j
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= sup

x2


ju(x)j+

n

X

j=1

sup

x2


�

�

�

�

�u

�x

j

(x)

�

�

�

�

:

EXAMPLE. Let n = 1, and 
onsider the open interval 
 = (0; 1) � R

1

. The fun
tion

u(x) = 1=x belongs to C

k

(
) for ea
h k � 0. Sin
e

�


 = [0; 1℄, it is 
lear that u is not


ontinuous on

�


; the same is true of its derivatives. Therefore u 62 C

k

(

�


) for any k � 0: �

The support, supp u, of a 
ontinuous fun
tion u on 
 is de�ned as the 
losure in 
 of the

set fx 2 
 : u(x) 6= 0g; in other words, supp u is the smallest 
losed subset of 
 su
h that

u = 0 in 
nsupp u.

EXAMPLE. Let w be the fun
tion de�ned on R

n

by

w(x) =

(

e

�

1

1�jxj

2

; jxj < 1;

0; otherwise;

here jxj = (x

2

1

+ : : :+ x

2

n

)

1=2

. Clearly supp w is the 
losed unit ball fx 2 R

n

: jxj � 1g: �

We denote by C

k

0

(
) the set of all u 2 C

k

(
) su
h that supp u � 
 and supp u is bounded.

Let

C

1

0

(
) =

\

k�0

C

k

0

(
):

EXAMPLE. The fun
tion w de�ned in the previous example belongs to C

1

0

(R

n

): �

1.2 Spa
es of integrable fun
tions

Next we de�ne a 
lass of spa
es that 
onsist of (Lebesgue) integrable fun
tions. Let p be

a real number, p � 1; we denote by L

p

(
) the set of all real-valued fun
tions de�ned on 


su
h that

Z




ju(x)j

p

dx <1:

Fun
tions whi
h are equal almost everywhere (i.e. equal, ex
ept on a set of measure zero)

on 
 are identi�ed with ea
h other. L

p

(
) is equipped with the norm

kuk

L

p

(
)

:=

�

Z




ju(x)j

p

dx

�

1=p

:

A parti
ularly important 
ase is p = 2; then,

kuk

L

2

(
)

=

�

Z




ju(x)j

2

dx

�

1=2

:
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The spa
e L

2

(
) 
an be equipped with the inner produ
t

(u; v) :=

Z




u(x)v(x) dx:

Clearly kuk

L

2

(
)

= (u; u)

1=2

.

Lemma 1.1 (The Cau
hy{S
hwarz inequality). Let u; v 2 L

2

(
); then,

j(u; v)j � kuk

L

2

(
)

kvk

L

2

(
)

:

Proof Let � 2 R; then,

0 � ku+ �vk

2

L

2

(
)

= (u+ �v; u+ �v)

= (u; u) + (u; �v) + (�v; u) + (�v; �v)

= kuk

2

L

2

(
)

+ 2�(u; v) + �

2

kvk

2

L

2

(
)

; � 2 R:

The right-hand side is a quadrati
 polynomial in � with real 
oeÆ
ients whi
h is non-negative for

all � 2 R. Therefore its dis
riminant is non-positive, i.e.

j2(u; v)j

2

� 4 kuk

2

L

2

(
)

kvk

2

L

2

(
)

� 0;

and hen
e the desired inequality. 2

Corollary (The triangle inequality) Let u, v belong to L

2

(
); then, u+ v 2 L

2

(
), and

ku+ vk

L

2

(
)

� kuk

L

2

(
)

+ kvk

L

2

(
)

:

Remark The spa
e L

2

(
) equipped with the inner produ
t (�; �) (and the asso
iated norm

kuk

L

2

(
)

= (u; u)

1=2

) is an example of a Hilbert spa
e. In general, a ve
tor spa
e X, equipped

with an inner produ
t (�; �)

X

(and the asso
iated norm kuk

X

= (u; u)

1=2

X

) is 
alled a Hilbert

spa
e if, whenever fu

m

g

1

m=1

is a sequen
e of elements of X su
h that

lim

n;m!1

ku

n

� u

m

k

X

= 0;

then, there exists u 2 X su
h that lim

m!1

ku� u

m

k

X

= 0 (i.e. the sequen
e fu

m

g

1

m=1


onverges to u in X).
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1.3 Sobolev spa
es

In this se
tion we introdu
e a 
lass of fun
tion spa
es that play an important role in modern

di�erential equation theory. These spa
es, 
alled Sobolev spa
es (after the Russian mathe-

mati
ian S.L. Sobolev), 
onsist of fun
tions u 2 L

2

(
) whose weak derivatives D

�

u are also

elements of L

2

(
). To give a pre
ise de�nition of a Sobolev spa
e, we shall �rst explain the

meaning of weak derivative.

Suppose u is a smooth fun
tion, say u 2 C

k

(
), and let v 2 C

1

0

(
); then, we have the

following integration-by-parts formula:

Z




D

�

u(x) � v(x) dx = (�1)

j�j

Z




u(x) �D

�

v(x) dx; j�j � k;

8v 2 C

1

0

(
):

However, in the theory of partial di�erential equations one often has to 
onsider fun
tions u

that do not possess the smoothness hypothesised above, yet they have to be di�erentiated

(in some sense). It is for this purpose that we introdu
e the idea of a weak derivative.

Suppose that u is lo
ally integrable on 
 (i.e. u 2 L

1

(!) for ea
h bounded open set !; with

�! � 
:) Suppose also that there exists a fun
tion w

�

, lo
ally integrable on 
, and su
h that

Z




w

�

(x) � v(x) dx = (�1)

j�j

Z




u(x) �D

�

v(x) 8v 2 C

1

0

(
):

We then say that w

�

is the weak derivative of u (of order j�j = �

1

+ : : : + �

n

) and write

w

�

= D

�

u. Clearly, if u is a smooth fun
tion then its weak derivatives 
oin
ide with those in

the 
lassi
al (pointwise) sense. To simplify the notation, we shall use the letter D to denote

both a 
lassi
al and a weak derivative.

EXAMPLE Let 
 = R

1

, and suppose that we wish to determine the weak �rst derivative

of the fun
tion u(x) = (1� jxj)

+

de�ned on 
. Clearly u is not di�erentiable at the points

0 and �1. However, be
ause u is lo
ally integrable on 
, it may have a weak derivative.

Indeed, for any v 2 C

1

0

(
),

Z

+1

�1

u(x)v

0

(x) dx =

Z

+1

�1

(1� jxj)

+

v

0

(x) dx =

Z

1

�1

(1� jxj)v

0

(x) dx

=

Z

0

�1

(1 + x)v

0

(x) dx +

Z

1

0

(1� x)v

0

(x) dx

= �

Z

0

�1

v(x) dx + (1 + x)v(x)j

0

�1

+

Z

1

0

v(x) dx+ (1� x)v(x)j

1

x=0

=

Z

0

�1

(�1)v(x) dx+

Z

1

0

1 � v(x) dx

= �

Z

+1

�1

w(x)v(x) dx;
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where

w(x) =

8

>

>

<

>

>

:

0; x < �1;

1; x 2 (�1; 0);

�1; x 2 (0; 1);

0; x > 1:

Thus, the pie
ewise 
onstant fun
tion w is the �rst (weak) derivative of the 
ontinuous

pie
ewise linear fun
tion u, i.e. w = u

0

= Du: �

Now we are ready to give a pre
ise de�nition of a Sobolev spa
e. Let k be a non-negative

integer. We de�ne (with D

�

denoting a weak derivative of order j�j )

H

k

(
) = fu 2 L

2

(
) : D

�

u 2 L

2

(
); j�j � kg:

H

k

(
) is 
alled a Sobolev spa
e of order k; it is equipped with the (Sobolev) norm

kuk

H

k

(
)

:=

0

�

X

j�j�k

kD

�

uk

2

L

2

(
)

1

A

1=2

and the inner produ
t

(u; v)

H

k

(
)

:=

X

j�j�k

(D

�

u;D

�

v):

With this inner produ
t, H

k

(
) is a Hilbert spa
e (for the de�nition of Hilbert spa
e, see

the remark in Se
tion 1:2). Letting

juj

H

k

(
)

:=

0

�

X

j�j=k

kD

�

uk

2

L

2

(
)

1

A

1=2

;

we 
an write

kuk

H

k

(
)

=

 

k

X

j=0

juj

2

H

j

(
)

!

1=2

:

j�j

H

k

(
)

is 
alled the Sobolev semi-norm (it is only a semi-norm rather than a norm be
ause

if juj

H

k

(
)

= 0 for u 2 H

k

(
) it does not ne
essarily follow that u � 0 on 
:)

Throughout these notes we shall frequently use H

1

(
) and H

2

(
).

H

1

(
) =

�

u 2 L

2

(
) :

�u

�x

j

2 L

2

(
); j = 1; : : : ; n

�

;

kuk

H

1

(
)

=

(

kuk

2

L

2

(
)

+

n

X

j=1













�u

�x

j













2

L

2

(
)

)

1=2

;

juj

H

1

(
)

=

(

n

X

j=1













�u

�x

j













2

L

2

(
)

)

1=2

:
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Similarly,

H

2

(
) =

�

u 2 L

2

(
) :

�u

�x

j

2 L

2

(
); j = 1; : : : ; n;

�

2

u

�x

i

�x

j

2 L

2

(
); i; j = 1; : : : ; n

�

;

kuk

H

2

(
)

=

n

kuk

2

L

2

(
)

+

n

X

j=1













�u

�x

j













2

L

2

(
)

+

n

X

i;j=1













�

2

u

�x

i

�x

j













2

L

2

(
)

)

1=2

;

juj

H

2

(
)

=

(

n

X

i;j=1













�

2

u

�x

i

�x

j













2

L

2

(
)

)

1=2

:

Finally, we de�ne a spe
ial Sobolev spa
e,

H

1

0

(
) = fu 2 H

1

(
) : u = 0 on �
g;

i.e. H

1

0

(
) is the set of all fun
tions u in H

1

(
) su
h that u = 0 on �
; the boundary of the

set 
:We shall use this spa
e when 
onsidering a partial di�erential equation that is 
oupled

with a homogeneous (Diri
hlet) boundary 
ondition: u = 0 on �
: We note here that H

1

0

(
)

is also a Hilbert spa
e, with the same norm and inner produ
t as H

1

(
):

We 
on
lude the se
tion with the following important result.

Lemma 1.2 (Poin
ar�e{Friedri
hs inequality). Suppose that 
 is a bounded open set in R

n

(with a suÆ
iently smooth boundary �
) and let u 2 H

1

0

(
); then, there exists a 
onstant




?

(
), independent of u, su
h that

Z




u

2

(x) dx � 


?

n

X

i=1

Z




�

�

�

�

�u

�x

i

(x)

�

�

�

�

2

dx: (1.1)

Proof We shall prove this inequality for the spe
ial 
ase of a re
tangular domain 
 = (a; b)�(
; d):

in R

2

: The proof for general 
 is analogous.

Evidently

u(x; y) = u(a; y) +

Z

x

a

�u

�x

(�; y) d� =

Z

x

a

�u

�x

(�; y) d�;


 < y < d:
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Then
e, by the Cau
hy{S
hwarz inequality,

Z




ju(x; y)j

2

dxdy =

Z

b

a

Z

d




�

�

�

�

Z

x

a

�u

�x

(�; y) d�

�

�

�

�

2

dxdy

�

Z

b

a

Z

d




(x� a)

 

Z

x

a

�

�

�

�

�u

�x

(�; y)

�

�

�

�

2

d�

!

dxdy

�

Z

b

a

(x� a) dx

 

Z

d




Z

b

a

�

�

�

�

�u

�x

(�; y)

�

�

�

�

2

d� dy

!

=

1

2

(b� a)

2

Z




�

�

�

�

�u

�x

(x; y)

�

�

�

�

2

dxdy:

Analogously,

Z




ju(x; y)j

2

dxdy �

1

2

(d� 
)

2

Z




�

�

�

�

�u

�y

(x; y)

�

�

�

�

2

dxdy:

By adding the two inequalities, we obtain

Z




ju(x; y)j

2

dxdy � 


?

Z




 

�

�

�

�

�u

�x

�

�

�

�

2

+

�

�

�

�

�u

�y

�

�

�

�

2

!

dxdy;

where 


?

=

�

2

(b� a)

2

+

2

(d� 
)

2

�

�1

: 2
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2 Ellipti
 boundary value problems: existen
e and unique-

ness of weak solutions

In the �rst part of this le
ture 
ourse we fo
us on boundary value problems for ellipti
 partial

di�erential equations. Ellipti
 equations are typi�ed by the Lapla
e equation

�u = 0;

and its non-homogeneous 
ounterpart, Poisson's equation

��u = f:

More generally, let 
 be a bounded open set in R

n

, and 
onsider the (linear) se
ond-order

partial di�erential equation

�

n

X

i;j=1

�

�x

j

�

a

ij

(x)

�u

�x

i

�

+

n

X

i=1

b

i

(x)

�u

�x

i

+ 
(x)u = f(x); x 2 
; (2.1)

where the 
oeÆ
ients a

ij

; b

i

; 
 and f satisfy the following 
onditions:

a

ij

2 C

1

(

�


); i; j = 1; : : : ; n;

b

i

2 C(

�


); i = 1; : : : ; n;


 2 C(

�


); f 2 C(

�


); and

n

X

i;j=1

a

ij

(x)�

i

�

j

� ~


n

X

i=1

�

2

i

; 8� = (�

1

; : : : ; �

n

) 2 R

n

; x 2

�


; (2.2)

here ~
 is a positive 
onstant independent of x and �: The 
ondition (2.2) is usually referred

to as uniform ellipti
ity and (2.1) is 
alled an ellipti
 equation.

Equation (2.1) is supplemented with one of the following boundary 
onditions:

(a) u = g on �
 (Diri
hlet boundary 
ondition);

(b)

�u

��

= g on �
, where � denotes the unit outward normal ve
tor to �
 (Neumann

boundary 
ondition);

(
)

�u

��

+ �u = g on �
 , where �(x) � 0 on �
 (Robin boundary 
ondition);

(d) A more general version of the boundary 
onditions (b) and (
) is

n

X

i;j=1

a

ij

�u

�x

i


os�

j

+ �(x)u = g on �
;

where �

j

is the angle between the unit outward normal ve
tor n to �
 and the Ox

j

axis (Oblique derivative boundary 
ondition).

11



In many physi
al problems more than one type of boundary 
ondition is imposed on �
 (e.g.

�
 is the union of two disjoint subsets �


1

and �


2

, with a Diri
hlet boundary 
ondition

is imposed on �


1

and a Neumann boundary 
ondition on �


2

). The study of su
h mixed

boundary value problems is beyond the s
ope of these notes.

We begin by 
onsidering the homogeneous Diri
hlet boundary value problem

�

n

X

i;j=1

�

�x

j

�

a

ij

�u

�x

i

�

+

n

X

i=1

b

i

(x)

�u

�x

i

+ 
(x)u = f(x); x 2 
; (2.3)

u = 0 on �
; (2.4)

where a

ij

; b

i

, 
 and f are as in (2.2).

A fun
tion u 2 C

2

(
) \ C(

�


) satisfying (2.3) and (2.4) is 
alled a 
lassi
al solution of

this problem. The theory of partial di�erential equations tells us that (2.3), (2.4) has a

unique 
lassi
al solution, provided a

ij

; b

i

, 
, f and �
 are suÆ
iently smooth. However,

in many appli
ations one has to 
onsider boundary value problems where these smoothness

requirements are violated, and for su
h problems the 
lassi
al theory is inappropriate. Take,

for example, Poisson's equation with zero Diri
hlet boundary 
ondition on the 
ube 
 =

(�1; 1)

n

in R

n

:

��u = sgn

�

1

2

� jxj

�

; x 2 
;

u = 0; x 2 �
:

9

=

;

(�)

This problem does not have a 
lassi
al solution, u 2 C

2

(
) \ C(

�


); for otherwise �u would

be a 
ontinuous fun
tion on 
; whi
h is not possible be
ause sgn(1=2� jxj) is dis
ontinuous.

In order to over
ome the limitations of the 
lassi
al theory and to be able to deal with

partial di�erential equations with \non-smooth" data, we generalise the notion of solution

by weakening the di�erentiability requirements on u:

To begin, let us suppose that u is a 
lassi
al solution of (2.3), (2.4). Then, for any v 2 C

1

0

(
);

�

n

X

i;j=1

Z




�

�x

j

�

a

ij

�u

�x

i

�

� v dx +

n

X

i=1

Z




b

i

(x)

�u

�x

i

� v dx

+

Z





(x)uv dx =

Z




f(x)v(x) dx:

Upon integration by parts in the �rst integral and noting that v = 0 on �
; we obtain:

n

X

i;j=1

Z




a

ij

(x)

�u

�x

i

�v

�x

j

dx +

n

X

i=1

Z




b

i

(x)

�u

�x

i

v dx

+

Z





(x)uv dx =

Z




f(x)v(x) dx 8v 2 C

1

0

(
):
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In order for this equality to make sense we no longer need to assume that u 2 C

2

(
): it is

suÆ
ient that u 2 L

2

(
) and �u=�x

i

2 L

2

(
), i = 1; : : : ; n: Thus, remembering that u has

to satisfy a zero Diri
hlet boundary 
ondition, it is natural to seek u in the spa
e H

1

0

(
)

instead, where, as in Se
tion 1.3,

H

1

0

(
) = fu 2 L

2

(
) :

�u

�x

i

2 L

2

(
); i = 1; : : : ; n; u = 0 on �
g:

Therefore, we 
onsider the following problem: �nd u in H

1

0

(
); su
h that

n

X

i;j=1

Z




a

ij

(x)

�u

�x

i

�

�v

�x

j

dx +

n

X

i=1

Z




b

i

(x)

�u

�x

i

v dx

+

Z





(x)uv dx =

Z




f(x)v(x) dx 8v 2 C

1

0

(
): (2.5)

We note that C

1

0

(
) � H

1

0

(
); and it is easily seen that when u 2 H

1

0

(
) and v 2 H

1

0

(
);

(instead of v 2 C

1

0

(
)), the expressions on the left- and right-hand side of (2.5) are still

meaningful (in fa
t, we shall prove this below). This motivates the following de�nition.

De�nition 2.1 Let a

ij

2 C(

�


), i; j = 1; : : : ; n, b

i

2 C(

�


), i = 1; : : : ; n, 
 2 C(

�


), and let

f 2 L

2

(
). A fun
tion u 2 H

1

0

(
) satisfying

n

X

i;j=1

Z




a

ij

(x)

�u

�x

i

�v

�x

j

dx +

n

X

i=1

Z




b

i

(x)

�u

�x

i

v dx

+

Z





(x)uv dx =

Z




f(x)v(x) dx 8v 2 H

1

0

(
) (2.6)

is 
alled a weak solution of (2.3), (2.4). All partial derivatives in (2.6) should be understood

as weak derivatives.

Clearly if u is a 
lassi
al solution of (2.3), (2.4), then it is also a weak solution of (2.3),

(2.4). However, the 
onverse is not true. If (2.3), (2.4) has a weak solution, this may not be

smooth enough to be a 
lassi
al solution. Indeed, we shall prove below that the boundary

value problem (�) has a unique weak solution u 2 H

1

0

(
), despite the fa
t that it has no


lassi
al solution. Before 
onsidering this parti
ular boundary value problem, we look at the

wider issue of existen
e of a unique weak solution to the general problem (2.3), (2.4).

For the sake of simpli
ity, let us introdu
e the following notation:

a(u; v) =

n

X

i;j=1

Z




a

ij

(x)

�u

�x

i

�v

�x

j

dx +

n

X

i=1

Z




b

i

(x)

�u

�x

i

v dx +

Z





(x)uv dx (2.7)

and

l(v) =

Z




f(x)v(x) dx: (2.8)
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With this new notation, problem (2.6) 
an be written as follows:

�nd u 2 H

1

0

(
) su
h that a(u; v) = l(v) 8v 2 H

1

0

(
): (2.9)

We shall prove the existen
e of a unique solution to this problem using the following abstra
t

result from Fun
tional Analysis.

Theorem 2.2 (Lax{Milgram theorem) Suppose that V is a real Hilbert spa
e equipped with

norm k�k

V

. Let a(�; �) be a bilinear form on V � V su
h that:

(a) 9


0

> 0 8v 2 V a(v; v) � 


0

kvk

2

V

,

(b) 9


1

> 0 8v; w 2 V ja(v; w)j � 


1

kvk

V

kwk

V

,

and let l(�) be a linear form on V su
h that

(
) 9


2

> 0 8v 2 V jl(v)j � 


2

kvk

V

:

Then, there exists a unique u 2 V su
h that

a(u; v) = l(v) 8v 2 V:

For a proof of this result the interested reader is referred to the book of P. Ciarlet: The

Finite Element Method for Ellipti
 Problems, North-Holland, 1978.

We apply the Lax{Milgram theorem with V = H

1

0

(
) and k�k

V

= k�k

H

1

(
)

to show the

existen
e of a unique weak solution to (2.3), (2.4) (or, equivalently, to (2.9)). Let us re
all

from Se
tion 1.3 that H

1

0

(
) is a Hilbert spa
e with the inner produ
t

(u; v)

H

1

(
)

=

Z




uv dx +

n

X

i=1

Z




�u

�x

i

�

�v

�x

i

dx

and the asso
iated norm kuk

H

1

(
)

= (u; u)

1=2

H

1

(
)

: Next we show that a(�; �) and l(�), de�ned

by (2.7) and (2.8), satisfy the hypotheses (a), (b), (
) of the Lax{Milgram theorem.

We begin with (
). The mapping v 7! l(v) is linear: indeed, for any �; � 2 R;

l(�v

1

+ �v

2

) =

Z




f(x)(�v

1

(x) + �v

2

(x)) dx

= �

Z




f(x)v

1

(x) dx+ �

Z




f(x)v

2

(x) dx

= �l(v

1

) + �l(v

2

); v

1

; v

2

2 H

1

0

(
);

so that l(�) is a linear form on H

1

0

(
). Also, by the Cau
hy{S
hwarz inequality,

jl(v)j =

�

�

�

�

Z




f(x)v(x) dx

�

�

�

�

�

�

Z




jf(x)j

2

dx

�

1=2

�

Z




jv(x)j

2

dx

�

1=2

= kfk

L

2

(
)

kvk

L

2

(
)

� kfk

L

2

(
)

kvk

H

1

(
)

;
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for all v 2 H

1

0

(
); where we have used the obvious inequality kvk

L

2

(
)

� kvk

H

1

(
)

: Letting




2

= kfk

L

2

(
)

; we obtain the required bound.

Next we verify (b). For any �xed w 2 H

1

0

(
); the mapping v 7! a(v; w) is linear. Similarly,

for any �xed v 2 H

1

0

(
); the mapping w 7! a(v; w) is linear. Hen
e a(�; �) is a bilinear form

on H

1

0

(
)�H

1

0

(
): Employing the Cau
hy{S
hwarz inequality, we dedu
e that

ja(u; v)j �

n

X

i;j=1

max

x2

�




ja

ij

(x)j

�

�

�

�

Z




�u

�x

i

�v

�x

j

dx

�

�

�

�

+

n

X

i=1

max

x2

�




jb

i

(x)j

�

�

�

�

Z




�u

�x

i

v dx

�

�

�

�

+max

x2

�




j
(x)j

�

�

�

�

Z




u(x)v(x) dx

�

�

�

�

� 


8

<

:

n

X

i;j=1

 

Z




�

�

�

�

�u

�x

i

�

�

�

�

2

dx

!

1=2

 

Z




�

�

�

�

�v

�x

j

�

�

�

�

2

dx

!

1=2

+

n

X

i=1

 

Z




�

�

�

�

�u

�x

i

�

�

�

�

2

dx

!

1=2

�

Z




jvj

2

dx

�

1=2

+

�

Z




juj

2

dx

�

1=2

�

Z




jvj

2

dx

�

1=2

)

� 


8

<

:

�

Z




juj

2

dx

�

1=2

+

n

X

i=1

 

Z




�

�

�

�

�u

�x

i

�

�

�

�

2

dx

!

1=2

9

=

;

�

8

<

:

�

Z




jvj

2

dx

�

1=2

+

n

X

j=1

 

Z




�

�

�

�

�v

�x

j

�

�

�

�

2

dx

!

1=2

9

=

;

; (2.10)

where


 = max

�

max

1�i;j�n

max

x2

�




ja

ij

(x)j ; max

1�i�n

max

x2

�




jb

i

(x)j ;max

x2

�




j
(x)j

�

:

By further majorisation of the right-hand side in (2.10),

ja(u; v)j � 2n


(

Z




juj

2

dx +

n

X

i=1

Z




�

�

�

�

�u

�x

i

�

�

�

�

2

dx

)

1=2

�

(

Z




jvj

2

dx +

n

X

j=1

Z




�

�

�

�

�v

�x

j

�

�

�

�

2

dx

)

1=2

;

so that, by letting 


1

= 2n
, we obtain inequality (b).
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It remains to establish (a). Using (2.2), we dedu
e that

a(u; u) � ~


n

X

i=1

Z




�

�

�

�

�u

�x

i

�

�

�

�

2

dx +

n

X

i=1

Z




b

i

(x)

1

2

�

�x

i

(u

2

) dx+

Z





(x) juj

2

dx;

where we wrote

�u

�x

i

� u as

1

2

�

�x

i

(u

2

): Integrating by parts in the se
ond term on the right, we

obtain

a(u; u) � ~


n

X

i=1

Z




�

�

�

�

�u

�x

i

�

�

�

�

2

dx +

Z




 


(x)�

1

2

n

X

i=1

�b

i

�x

i

!

juj

2

dx:

Suppose that b

i

, i = 1; : : : ; n, and 
 satisfy the inequality


(x)�

1

2

n

X

i=1

�b

i

�x

i

� 0; x 2

�


: (2.11)

Then,

a(u; u) � ~


n

X

i=1

Z




�

�

�

�

�u

�x

i

�

�

�

�

2

dx: (2.12)

By virtue of the Poin
ar�e{Friedri
hs inequality stated in Lemma 1.2, the right-hand side 
an

be further bounded from below to obtain

a(u; u) �

~





?

Z




juj

2

dx: (2.13)

Summing (2.12) and (2.13) multiplied by 


?

,

a(u; u) � 


0

 

Z




juj

2

dx +

n

X

i=1

Z




�

�

�

�

�u

�x

i

�

�

�

�

2

dx

!

; (2.14)

where 


0

= ~
=(1 + 


?

), and hen
e (a). Having 
he
ked all hypotheses of the Lax{Milgram

theorem, we dedu
e the existen
e of a unique u 2 H

1

0

(
) satisfying (2.9); then
e problem

(2.3), (2.4) has a unique weak solution.

We en
apsulate this result in the following theorem.

Theorem 2.3 Suppose that a

ij

2 C(

�


), i; j = 1; : : : ; n, b

i

2 C

1

(

�


), i = 1; : : : ; n, 
 2 C(

�


),

f 2 L

2

(
), and assume that (2.2) and (2.11) hold; then, the boundary value problem (2.3),

(2.4) possesses a unique weak solution u 2 H

1

0

(
): In addition,

kuk

H

1

(
)

�

1




0

kfk

L

2

(
)

: (2.15)
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Proof We only have to prove (2.15). By (2.14), (2.9), the Cau
hy{S
hwarz inequality and re
alling

the de�nition of k�k

H

1

(
)

,




0

kuk

2

H

1

(
)

� a(u; u) = l(u) = (f; u)

� j(f; u)j � kfk

L

2

(
)

kuk

L

2

(
)

� kfk

L

2

(
)

kuk

H

1

(
)

:

Hen
e the desired inequality. 2

Now we return to our earlier example (�) whi
h has been shown to have no 
lassi
al solution.

However, applying the above theorem with a

ij

(x) � 1, i = j, a

ij

(x) � 0, i 6= j, 1 � i; j � n,

b

i

(x) � 0, 
(x) � 0, f(x) = sgn(

1

2

� jxj), and 
 = (�1; 1)

n

, we see that (2.2) holds with

~
 = 1 and (2.11) is trivially ful�lled. Thus (�) has a unique weak solution u 2 H

1

0

(
):

Remark. The existen
e and uniqueness of a weak solution to a Neumann, a Robin, or an

oblique derivative boundary value problem 
an be established in a similar fashion, using the

Lax{Milgram theorem. �

Remark. Theorem 2.3 implies that the weak formulation of the ellipti
 boundary value

problem (2.3), (2.4) is well-posed in the sense of Hadamard; namely, for ea
h f 2 L

2

(
)

there exists a unique (weak) solution u 2 H

1

0

(
), and \small" 
hanges in f give rise to

\small" 
hanges in the 
orresponding solution u. The latter property follows by noting that

if u

1

and u

2

are weak solutions in H

1

0

(
) of (2.3), (2.4) 
orresponding to right-hand sides

f

1

and f

2

in L

2

(
), respe
tively, then u

1

� u

2

is the weak solution in H

1

0

(
) of (2.3), (2.4)


orresponding to the right-hand side f

1

� f

2

2 L

2

(
). Thus, by virtue of (2.15),

ku

1

� u

2

k

H

1

(
)

�

1




0

kf

1

� f

2

k

L

2

(
)

; (2.16)

and hen
e the required 
ontinuous dependen
e of the solution of the boundary value problem

on the right-hand side: �
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3 Introdu
tion to the theory of �nite di�eren
e s
hemes

Let 
 be a bounded open set in R

n

, and suppose we wish to solve the boundary value problem

Lu = f in 
; (3.1a)

lu = g on � = �
; (3.1b)

where L is a linear partial di�erential operator, and l is a linear operator whi
h spe
i�es the

boundary 
ondition. For example,

Lu � �

n

X

i;j=1

�

�x

j

�

a

ij

�u

�x

i

�

+

n

X

i=1

b

i

�u

�x

i

+ 
u;

and

lu � u (Diri
hlet boundary 
ondition),

or

lu �

�u

��

(Neumann boundary 
ondition),

or

lu �

n

X

i;j=1

a

ij

�u

�x

i


os�

j

+ �(x)u (oblique derivative boundary 
ondition),

or some other appropriate boundary 
ondition.

In general, it is impossible to determine the solution of the boundary value problem (3.1)

in 
losed form. Thus the aim of this 
hapter is to des
ribe a simple and general numeri
al

te
hnique for the approximate solution of (3.1), 
alled the �nite di�eren
e method. The


onstru
tion of a �nite di�eren
e s
heme 
onsists of two basi
 steps: �rst, the approximation

of the 
omputational domain by a �nite set of points, and se
ond, the approximation of the

derivatives appearing in the di�erential equation and in the boundary 
ondition by divided

di�eren
es.

To des
ribe the �rst of these two steps more pre
isely, suppose that we have approximated

�


 = 
 [ � by a �nite set of points

�




h

= 


h

[ �

h

;

where 


h

� 
 and �

h

� �;

�




h

is 
alled a mesh, 


h

is the set of interior mesh-points and �

h

the set boundary mesh-points. The parameter h = (h

1

; : : : ; h

n

) measures the �neness of the

mesh (here h

i

denotes the mesh-size in the 
oordinate dire
tion Ox

i

): the smaller jhj is, the

denser the mesh.
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Having 
onstru
ted the mesh, we pro
eed by repla
ing the derivatives in L by divided dif-

feren
es, and approximate the boundary 
ondition in a similar fashion. This yields the �nite

di�eren
e s
heme

L

h

U(x) = f

h

(x); x 2 


h

; (3.2a)

l

h

U(x) = g

h

(x); x 2 �

h

; (3.2b)

where f

h

and g

h

are suitable approximations of f and g, respe
tively. Now (3.2) is a system of

linear equations involving the values of U at the mesh-points, and 
an be solved by Gaussian

elimination or an iterative method, provided, of 
ourse, that it has a unique solution. The

sequen
e fU(x) : x 2

�




h

g parametrised by mesh parameter h is an approximation to the

sequen
e fu(x) : x 2

�




h

g, | the values of the exa
t solution at the mesh-points.

There are two 
lasses of problems asso
iated with �nite di�eren
e s
hemes:

(1) the �rst, and most fundamental, is the problem of approximation, that is, whether (3.2)

approximates the boundary value problem (3.1) in some sense, and whether its solution

fU(x) : x 2

�




h

g approximates fu(x) : x 2

�




h

g, the values of the exa
t solution at the

mesh-points.

(2) the se
ond problem 
on
erns the eÆ
ient solution of the dis
rete problem (3.2) using

te
hniques from Numeri
al Linear Algebra.

In these notes we shall be 
on
erned with the �rst of these two problems - the question of

approximation.

In order to give a simple illustration of the general framework of �nite di�eren
e approxi-

mation, let us 
onsider the following two-point boundary value problem for a se
ond-order

linear (ordinary) di�erential equation:

�u

00

+ 
(x)u = f(x); x 2 (0; 1); (3.3a)

u(0) = 0; u(1) = 0: (3.3b)

The �rst step in the 
onstru
tion of a �nite di�eren
e s
heme for this boundary value problem

is to de�ne the mesh. Let N be an integer, N � 2, and let h = 1=N be the mesh-size; the

mesh-points are x

i

= ih, i = 0; : : : ; N: Formally, 


h

= fx

i

: i = 1; : : : ; N�1g, �

h

= fx

0

; x

N

g,

and

�




h

= 


h

[�

h

: Suppose that u is suÆ
iently smooth (e.g. u 2 C

4

[0; 1℄). Then, by Taylor

series expansion,

u(x

i�1

) = u(x

i

� h)

= u(x

i

)� hu

0

(x

i

) +

h

2

2

u

00

(x

i

)�

h

3

6

u

000

(x

i

) +O(h

4

);

so that

D

+

x

u(x

i

) �

u(x

i+1

)� u(x

i

)

h

= u

0

(x

i

) +O(h);
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D

�

x

u(x

i

) �

u(x

i

)� u(x

i�1

)

h

= u

0

(x

i

) +O(h);

and

D

+

x

D

�

x

u(x

i

) = D

�

x

D

+

x

u(x

i

)

=

u(x

i+1

)� 2u(x

i

) + u(x

i�1

)

h

2

= u

00

(x

i

) +O(h

2

):

Thus we repla
e the se
ond derivative u

00

by a se
ond divided di�eren
e:

�D

+

x

D

�

x

u(x

i

) + 
(x

i

)u(x

i

) � f(x

i

); i = 1; : : : ; N � 1; (3.4a)

u(x

0

) = 0; u(x

N

) = 0: (3.4b)

Now (3.4) indi
ates that the approximate solution U should be sought as the solution of the

system of di�eren
e equations:

�D

+

x

D

�

x

U

i

+ 
(x

i

)U

i

= f(x

i

); i = 1; : : : ; N � 1; (3.5a)

U

0

= 0; U

N

= 0: (3.5b)

Using matrix notation, this 
an be written as

2

6

6

6

6

6

6

6

6

6

6

4

2

h

2

+ 
(x

1

) �

1

h

2




�

1

h

2

2

h

2

+ 
(x

2

) �

1

h

2

.

.

.

.

.

.

.

.

.

�

1

h

2

2

h

2

+ 
(x

N�2

) �

1

h

2


 �

1

h

2

2

h

2

+ 
(x

N�1

)

3

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

4

U

1

U

2

.

.

.

U

N�2

U

N�1

3

7

7

7

7

7

5

=

2

6

6

6

6

6

4

f(x

1

)

f(x

2

)

.

.

.

f(x

N�2

)

f(x

N�1

)

3

7

7

7

7

7

5

;

or, more 
ompa
tly, AU = F , where A is the tri-diagonal (N �1)� (N �1) matrix displayed

above, and U and F are 
olumn ve
tors of size N � 1:

We begin the analysis of the �nite di�eren
e s
heme (3.5) by showing that it has a unique

solution. It suÆ
es to show that the matrix A is non-singular. For this purpose, we introdu
e,

for two fun
tions V and W de�ned at the interior mesh-points x

i

, i = 1; : : : ; N �1, the inner

produ
t

(V;W )

h

=

N�1

X

i=1

hV

i

W

i

(whi
h resembles the L

2

-inner produ
t

(v; w) =

Z

1

0

v(x)w(x) dx):
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Lemma 3.1 Suppose that V is a fun
tion de�ned at the mesh-points x

i

, i = 0; : : : ; N , and

let V

0

= V

N

= 0; then,

(�D

+

x

D

�

x

V; V )

h

=

N

X

i=1

h

�

�

D

�

x

V

i

�

�

2

: (3.6)

Proof Performing summation by parts,

(�D

+

x

D

�

x

V; V )

h

= �

N�1

X

i=1

(D

+

x

D

�

x

V

i

)V

i

h

= �

N�1

X

i=1

V

i+1

� V

i

h

V

i

+

N�1

X

i=1

V

i

� V

i�1

h

V

i

= �

N

X

i=2

V

i

� V

i�1

h

V

i�1

+

N�1

X

i=1

V

i

� V

i�1

h

V

i

= �

N

X

i=1

V

i

� V

i�1

h

V

i�1

+

N

X

i=1

V

i

� V

i�1

h

V

i

=

N

X

i=1

V

i

� V

i�1

h

(V

i

� V

i�1

) =

N

X

i=1

h

�

�

D

�

x

V

i

�

�

2

;

where in the third line we shifted the indi
es in the �rst summation, and in the fourth line we made

use of the fa
t that V

0

= V

N

= 0: 2

Returning to the �nite di�eren
e s
heme (3.5), let V be as in the above lemma and note that

if 
(x) � 0 then,

(AV; V )

h

= (�D

+

x

D

�

x

V + 
V; V )

h

= (�D

+

x

D

�

x

V; V )

h

+ (
V; V )

h

�

N

X

i=1

h

�

�

D

�

x

V

i

�

�

2

: (3.7)

Thus, if AV = 0 for some V , then D

�

x

V

i

= 0, i = 1; : : : ; N ; be
ause V

0

= V

N

= 0, this

implies that V

i

= 0, i = 0; : : : ; N . Hen
e AV = 0 if and only if V = 0. We dedu
e that A is

a non-singular matrix, and (3.5) has a unique solution, U = A

�1

F:

Theorem 3.2 Suppose that 
 and f are 
ontinuous fun
tions on [0; 1℄, and 
(x) � 0; x 2

[0; 1℄; then, the �nite di�eren
e s
heme (3.5) possesses a unique solution U .

We note that, by virtue of Theorem 2.3, the boundary value problem (3.3) has a unique

(weak) solution under the same hypotheses on 
 and f as in Theorem 3.2.
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Next, we investigate the approximation properties of the di�eren
e s
heme (3.5). A key

ingredient in our analysis is the fa
t that the s
heme (3.5) is stable (or dis
retely well-posed)

in the sense that \small" perturbations in the data result in \small" perturbations in the


orresponding �nite di�eren
e solution. E�e
tively, we shall prove the dis
rete version of the

inequality (2.15). For this purpose, we de�ne the dis
rete L

2

-norm

kUk

h

= (U; U)

1=2

h

=

 

N�1

X

i=1

hjU

i

j

2

!

1=2

;

and the dis
rete Sobolev norm

kUk

1;h

= (kUk

2

h

+

�

�

�

�

D

�

x

U

�

�

�

2

h

)

1=2

;

where

jjV ℄j

2

h

=

N

X

i=1

h jV

i

j

2

:

Using this notation, the inequality (3.7) 
an be written

(AV; V )

h

�

�

�

�

�

D

�

x

V

�

�

�

2

h

: (3.8)

In fa
t, employing a dis
rete version of the Poin
ar�e{Friedri
hs inequality (1.1), stated in

Lemma 3.3 below, we shall prove that

(AV; V )

h

� 


0

kV k

2

1;h

;

where 


0

is a positive 
onstant.

Lemma 3.3 (Dis
rete Poin
ar�e{Friedri
hs inequality.) Let V be a fun
tion de�ned on the

mesh fx

i

; i = 0; : : : ; Ng; and su
h that V

0

= V

N

= 0; then, there exists a positive 
onstant




?

, independent of V and h, su
h that

kV k

2

h

� 


?

�

�

�

�

D

�

x

V

�

�

�

2

h

(3.9)

for all su
h V .

Proof We pro
eed in the same way as in the proof of (1.1). First note that

jV

i

j

2

=

�

�

�

�

�

�

i

X

j=1

(D

�

x

V

j

)h

�

�

�

�

�

�

2

�

0

�

i

X

j=1

h

1

A

i

X

j=1

h

�

�

D

�

x

V

j

�

�

2

:
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Then
e,

kV k

2

h

=

N�1

X

i=1

h jV

i

j

2

�

N�1

X

i=1

ih

2

i

X

j=1

h

�

�

D

�

x

V

j

�

�

2

�

(N � 1)N

2

h

2

N

X

j=1

h

�

�

D

�

x

V

j

�

�

2

�

1

2

�

�

�

�

D

�

x

V

�

�

�

2

h

: 2

We note that the 
onstant 


?

= 1=2 in (3.9).

Using (3.9) to bound the right-hand side of (3.8) from below we obtain

(AV; V )

h

�

1




?

kV k

2

h

: (3.10)

Adding (3.8) to (3.10) multiplied by 


?

, we dedu
e that

(AV; V )

h

� (1 + 


?

)

�1

�

kV k

2

h

+

�

�

�

�

D

�

x

V

�

�

�

2

h

�

:

Letting 


0

= (1 + 


?

)

�1

;

(AV; V )

h

� 


0

kV k

2

1;h

: (3.11)

Now the stability of the �nite di�eren
e s
heme (3.5) easily follows.

Theorem 3.4 The s
heme (3.5) is stable in the sense that

kUk

1;h

�

1




0

kfk

h

: (3.12)

Proof From (3.11) and (3.5) we have that




0

kUk

2

1;h

� (AU;U)

h

= (f; U)

h

� j(f; U)

h

j

� kfk

h

kUk

h

� kfk

h

kUk

1;h

;

and hen
e (3.12). 2

Using this stability result it is easy to derive an estimate of the error between the exa
t

solution u, and its �nite di�eren
e approximation, U . We de�ne the global error, e, by

e

i

:= u(x

i

)� U

i

; i = 0; : : : ; N:
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Obviously e

0

= 0, e

N

= 0, and

Ae

i

= Au(x

i

)� AU

i

= Au(x

i

)� f(x

i

)

= �D

+

x

D

�

x

u(x

i

) + 
(x

i

)u(x

i

)� f(x

i

)

= u

00

(x

i

)�D

+

x

D

�

x

u(x

i

); i = 1; : : : ; N � 1:

Thus,

Ae

i

= '

i

; i = 1; : : : ; N � 1; (3.13a)

e

0

= 0; e

N

= 0; (3.13b)

where '

i

= u

00

(x

i

)�D

+

x

D

�

x

u(x

i

) is the trun
ation error.

Applying (3.12) to the �nite di�eren
e s
heme (3.13), we obtain

ku� Uk

1;h

= kek

1;h

�

1




0

k'k

h

: (3.14)

It remains to estimate k'k

h

. We have shown on page 19 that, if u 2 C

4

[0; 1℄; then,

'

i

= u

00

(x

i

)�D

+

x

D

�

x

u(x

i

) = O(h

2

);

i.e. there is a positive 
onstant C, independent of h, su
h that

j'

i

j � Ch

2

:

Consequently,

k'k

h

=

 

N�1

X

i=1

h j'

i

j

2

!

1=2

� Ch

2

: (3.15)

Combining (3.14) and (3.15), it follows that

ku� Uk

1;h

�

C




0

h

2

: (3.16)

In fa
t, a more 
areful treatment of the remainder term in the Taylor series expansion on p.

19 reveals that

'

i

= u

00

(x

i

)�D

+

x

D

�

x

u(x

i

) = �

h

2

12

u

IV

(�

i

); �

i

2 [x

i�1

; x

i+1

℄:

Thus

j'

i

j � h

2

1

12

max

x2[0;1℄

�

�

u

IV

(x)

�

�

;

and hen
e

C =

1

12

max

x2[0;1℄

�

�

u

IV

(x)

�

�
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in (3.15). Re
alling that 


0

= (1+


?

)

�1

and 


?

= 1=2, we dedu
e that 


0

= 2=3. Substituting

the values of the 
onstants C and 


0

into (3.16), it follows that

ku� Uk

1;h

�

1

8

h

2







u

IV







C[0;1℄

:

Thus we have proved the following result.

Theorem 3.5 Let f 2 C[0; 1℄, 
 2 C[0; 1℄, with 
(x) � 0, x 2 [0; 1℄, and suppose that the


orresponding (weak) solution of the boundary value problem (3.3) belongs to C

4

[0; 1℄; then,

ku� Uk

1;h

�

1

8

h

2







u

IV







C[0;1℄

: (3.17)

The analysis of the �nite di�eren
e s
heme (3.3) 
ontains the key steps of a general error

analysis for �nite di�eren
e approximations of (ellipti
) partial di�erential equations:

(1) The �rst step is to prove the stability of the s
heme in an appropriate mesh-dependent

norm (
.f. (3.12), for example). A typi
al stability result for the general �nite di�eren
e

s
heme (3.2) is

jjjU jjj




h

� 
(kf

h

k




h

+ kg

h

k

�

h

); (3.18)

where jjj � jjj




h

, k�k




h

and k�k

�

h

are mesh-dependent norms involving mesh-points of 


h

(or

�




h

) and �

h

, respe
tively, and 
 is a positive 
onstant, independent of h.

(2) The se
ond step is to estimate the size of the trun
ation error,

'




h

= L

h

u� f

h

; in 


h

;

'

�

h

= l

h

u� g

h

; on �

h

:

(in the 
ase of the �nite di�eren
e s
heme (3.3) '

�

h

= 0, and therefore '

�

h

never appeared

expli
itly in our error analysis). If

k'




h

k




h

+ k'

�

h

k

�

h

! 0 as h! 0;

for a suÆ
iently smooth solution u of (3.1), we say that the s
heme (3.2) is 
onsistent. If p

is the largest positive integer su
h that

k'




h

k




h

+ k'

�

h

k

�

h

� Ch

p

as h! 0;

(where C is a positive 
onstant independent of h) for all suÆ
iently smooth u, the s
heme

is said to have order of a

ura
y p.

The �nite di�eren
e s
heme (3.2) is said to provide a 
onvergent approximation to (3.1) in

the norm jjj � jjj




h

, if

jjju� U jjj




h

! 0 as h! 0:
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If q is the largest positive integer su
h that

jjju� U jjj




h

� Ch

q

as h! 0

(where C is a positive 
onstant independent of h), then the s
heme is said to have order of


onvergen
e q.

From these de�nitions we dedu
e the following fundamental theorem.

Theorem 3.6 Suppose that the �nite di�eren
e s
heme (3.2) is stable (i.e. (3.18) holds for

all f

h

and g

h

) and that the s
heme is a 
onsistent approximation of (3.1); then, (3.2) is a


onvergent approximation of (3.1), and the order of 
onvergen
e is not smaller then the order

of a

ura
y.

Proof We de�ne the global error e = u� U . Then,

L

h

e = L

h

(u� U) = L

h

u� L

h

U = L

h

u� f

h

:

Thus

L

h

e = '




h

;

and similarly,

l

h

e = '

�

h

:

By stability,

jjju� U jjj




h

= jjjejjj




h

� 
(k'




h

k




h

+ k'

�

h

k

�

h

);

and hen
e the stated result. 2

Thus, paraphrasing Theorem 3.6, stability and 
onsisten
y imply 
onvergen
e. This abstra
t

result is at the heart of the error analysis of �nite di�eren
e approximations of di�erential

equations.
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4 Finite di�eren
e approximation of ellipti
 boundary

value problems

In Se
tion 3 we presented a detailed error analysis for a �nite di�eren
e approximation of a

two-point boundary value problem. Here we shall 
arry out a similar analysis for the model

problem

��u+ 
(x)u = f(x) in 
; (4.1a)

u = 0 on �
; (4.1b)

where 
 = (0; 1) � (0; 1), 
 is a 
ontinuous fun
tion on

�


 and 
(x) � 0. As far as the

smoothness of the fun
tion f is 
on
erned, we shall 
onsider two separate 
ases:

(a) First we shall assume that f is a 
ontinuous fun
tion on

�


. In this 
ase, the error

analysis will pro
eed along the same lines as in Se
tion 3.

(b) We shall then 
onsider the 
ase when f is only in L

2

(
). In this instan
e the boundary

value problem (4.1) does not have a 
lassi
al solution { only a weak solution exists. This

la
k of smoothness gives rise to some te
hni
al diÆ
ulties: in parti
ular, we 
annot use

a Taylor series expansion to estimate the size of the trun
ation error. We shall bypass

the problem by employing a di�erent te
hnique, instead.

(a) (f 2 C(

�


)) The �rst step in the 
onstru
tion of the �nite di�eren
e approximation of

(4.1) is to de�ne the mesh. Let N be an integer, N � 2, and let h = 1=N ; the mesh-points

are (x

i

; y

j

), i; j = 0; : : : ; N; where x

i

= ih, y

j

= jh: These mesh-points form the mesh

�




h

= f(x

i

; y

j

) : i; j = 0; : : : ; Ng:

Similarly as in Se
tion 3, we 
onsider the set of interior mesh-points




h

= f(x

i

; y

j

) : i; j = 1; :::; N � 1g;

and the set of boundary mesh-points �

h

=

�




h

n 


h

: Analogously to (3.5), the di�eren
e

s
heme is:

�(D

+

x

D

�

x

U

ij

+D

+

y

D

�

y

U

ij

) + 
(x

i

; y

j

)U

ij

= f(x

i

; y

j

); (x

i

; y

j

) 2 


h

; (4.2a)

U = 0 on �

h

: (4.2b)

In an expanded form, this 
an be written

�

�

U

i+1;j

� 2U

ij

+ U

i�1;j

h

2

+

U

i;j+1

� 2U

ij

+ U

i;j�1

h

2

�

+ 
(x

i

; y

j

)U

ij

= f(x

i

; y

j

);

i; j = 1; : : : ; N � 1; (4.3)
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Figure 1: The mesh 


h

(�), the boundary mesh �

h

(�), and a typi
al 5-point di�eren
e sten
il.

U

ij

= 0; if i = 0; i = N or if j = 0; j = N: (4.4)

For ea
h i and j, 1 � i; j � N � 1; the �nite di�eren
e equation (4.3) involves �ve values

of the approximate solution U : U

i;j

, U

i�1;j

, U

i+1;j

, U

i;j�1

, U

i;j+1

: It is again possible to write

(4.3), (4.4) as a system of linear equations

AU = F; (4.5)

where

U = (U

11

; U

12

; : : : ; U

1;N�1

; U

21

; U

22

; : : : ; U

2;N�1

; : : : ;

: : : ; U

i1

; U

i2

; : : : ; U

i;N�1

; : : : ; U

N�1;1

; U

N�1;2

; : : : ; U

N�1;N�1

)

T

;

F = (F

11

; F

12

; : : : ; F

1;N�1

; F

21

; F

22

; : : : ; F

2;N�1

; : : : ;

: : : ; F

i1

; F

i2

; : : : ; F

i;N�1

; : : : ; F

N�1;1

; F

N�1;2

; : : : ; F

N�1;N�1

)

T

;

and A is an (N�1)

2

�(N�1)

2

sparse matrix of banded stru
ture. A typi
al row of the matrix


ontains �ve non-zero entries, 
orresponding to the �ve values of U in the �nite di�eren
e

sten
il shown in Fig. 1, while the sparsity stru
ture of A is depi
ted in Fig. 2.
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Figure 2: The sparsity stru
ture of the banded matrix A.

Next we show that (4.2) has a unique solution. We pro
eed in the same way as in Se
tion 3.

For two fun
tions, V and W , de�ned on 


h

, we introdu
e the inner produ
t

(V;W )

h

=

N�1

X

i=1

N�1

X

j=1

h

2

V

ij

W

ij

(whi
h resembles the L

2

-inner produ
t (v; w) =

R




v(x; y)w(x; y) dx dy):

Lemma 4.1 Suppose that V is a fun
tion de�ned on

�




h

and that V = 0 on �

h

; then,

(�D

+

x

D

�

x

V; V )

h

+ (�D

+

y

D

�

y

V; V )

h

=

N

X

i=1

N�1

X

j=1

h

2

jD

�

x

V

ij

j

2

+

N�1

X

i=1

N

X

j=1

h

2

jD

�

y

V

ij

j

2

: (4.6)

Proof (4.6) is a straightforward 
onsequen
e of (3.6) and the analogous identity for �D

+

y

D

�

y

: 2

Returning to the analysis of the �nite di�eren
e s
heme (4.2), we note that, sin
e 
(x; y) �

0 on

�


, by (4.6) we have

(AV; V )

h

= (�D

+

x

D

�

x

V �D

+

y

D

�

y

V + 
V; V )

h

= (�D

+

x

D

�

x

V; V )

h

+ (�D

+

y

D

�

y

V; V )

h

+ (
V; V )

h

�

N

X

i=1

N�1

X

j=1

h

2

jD

�

x

V

ij

j

2

+

N�1

X

i=1

N

X

j=1

h

2

jD

�

y

V

ij

j

2

; (4.7)
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for any V de�ned on

�




h

su
h that V = 0 on �

h

. Now this implies, just as in the one-

dimensional analysis presented in Se
tion 3, that A is a non-singular matrix. Indeed if

AV = 0; then (4.7) yields:

D

�

x

V

ij

=

V

ij

� V

i�1;j

h

= 0;

i = 1; : : : ; N;

j = 1; : : : ; N � 1;

D

�

y

V

ij

=

V

ij

� V

i;j�1

h

= 0;

i = 1; : : : ; N � 1;

j = 1; : : : ; N:

Sin
e V = 0 on �

h

, these imply that V � 0. Thus AV = 0 if and only if V = 0. Hen
e A is

non-singular, and U = A

�1

F is the unique solution of (4.2). Thus the solution of the �nite

di�eren
e s
heme (4.2) may be found by solving the system of linear equations (4.5).

In order to prove the stability of the �nite di�eren
e s
heme (4.2), we introdu
e (similarly

as in one dimension) the mesh{dependent norms

kUk

h

= (U; U)

1=2

h

;

and

kUk

1;h

=

�

kUk

2

h

+

�

�

�

�

D

�

x

U

�

�

�

2

x

+

�

�

�

�

D

�

y

U

�

�

�

2

y

�

1=2

;

where

�

�

�

�

D

�

x

U

�

�

�

x

=

 

N

X

i=1

N�1

X

j=1

h

2

jD

�

x

U

ij

j

2

!

1=2

and

�

�

�

�

D

�

y

U

�

�

�

y

=

 

N�1

X

i=1

N

X

j=1

h

2

jD

�

y

U

ij

j

2

!

1=2

:

The norm k � k

1;h

is the dis
rete version of the Sobolev norm k�k

H

1

(
)

,

kuk

H

1

(
)

=

 

kuk

2

L

2

(
)

+













�u

�x













2

L

2

(
)

+













�u

�y













2

L

2

(
)

!

1=2

:

With this new notation, the inequality (4.7) takes the following form:

(AV; V )

h

�

�

�

�

�

D

�

x

V

�

�

�

2

x

+

�

�

�

�

D

�

y

V

�

�

�

2

y

: (4.8)

Using the dis
rete Poin
ar�e{Friedri
hs inequality stated in the next lemma, we shall be able

to dedu
e that

(AV; V )

h

� 


0

kV k

2

1;h

;

where 


0

is a positive 
onstant.
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Lemma 4.2 (Dis
rete Poin
ar�e{Friedri
hs inequality.)

Let V be a fun
tion de�ned on

�




h

and su
h that V = 0 on �

h

; then, there exists a 
onstant




�

, independent of V and h, su
h that

kV k

2

h

� 


�

�

�

�

�

�

D

�

x

V

�

�

�

2

x

+

�

�

�

�

D

�

y

V

�

�

�

2

y

�

(4.9)

for all su
h V .

Proof (4.9) is a straightforward 
onsequen
e of its one-dimensional 
ounterpart (3.9). It follows

from (3.9) that, for ea
h �xed j, 1 � j � N � 1,

N�1

X

i=1

hjV

ij

j

2

�

1

2

N

X

i=1

hjD

�

x

V

ij

j

2

: (4.10)

Analogously, for ea
h �xed i, 1 � i � N � 1;

N�1

X

j=1

hjV

ij

j

2

�

1

2

N

X

j=1

hjD

�

y

V

ij

j

2

: (4.11)

We multiply (4.10) by h and sum through j, 1 � j � N � 1, multiply (4.11) by h and sum through

i, 1 � i � N � 1; and add these two inequalities to obtain

2 kV k

2

h

�

1

2

�

�

�

�

�

D

�

x

V

�

�

�

2

x

+

�

�

�

�

D

�

y

V

�

�

�

2

y

�

:

Hen
e (4.9) with 


�

=

1

4

: 2

Now (4.8) and (4.9) imply that

(AV; V )

h

�

1




�

kV k

2

h

:

Finally, 
ombining this with (4.8) and re
alling the de�nition of the norm k�k

1;h

, we obtain

(AV; V )

h

� 


0

kV k

2

1;h

; (4.12)

where 


0

= (1 + 


�

)

�1

:

Theorem 4.3 The s
heme (4.2) is stable in the sense that

kUk

1;h

�

1




0

kfk

h

: (4.13)
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Proof Identi
al to the proof of (3.12) 2.

Having established stability, we turn to the question of a

ura
y. We de�ne the global error,

e, by

e

ij

= u(x

i

; y

j

)� U

ij

; 0 � i; j � N:

Then, assuming that u 2 C

4

(

�


); and employing Taylor series expansions,

Ae

ij

= �u(x

i

; y

j

)� (D

+

x

D

�

x

u(x

i

; y

j

) +D

+

y

D

�

y

u(x

i

; y

j

))

=

�

�

2

u

�x

2

(x

i

; y

j

)�D

+

x

D

�

x

u(x

i

; y

j

)

�

+

�

�

2

u

�y

2

(x

i

; y

j

)�D

+

y

D

�

y

u(x

i

; y

j

)

�

= �

h

2

12

�

4

u

�x

4

(�

i

; y

j

)�

h

2

12

�

4

u

�y

4

(x

i

; �

j

); 1 � i; j � N � 1;

where �

i

2 [x

i�1

; x

i+1

℄, �

j

2 [y

j�1

; y

j+1

℄:

Let

'

ij

= �

h

2

12

�

�

4

u

�x

4

(�

i

; y

j

) +

�

4

u

�y

4

(x

i

; �

j

)

�

; 1 � i; j � N � 1;

then,

Ae

ij

= '

ij

; 1 � i; j � N � 1;

e = 0 on �

h

:

By virtue of (4.13),

ku� Uk

1;h

= kek

1;h

�

1




0

k'k

h

: (4.14)

Noting that

j'

ij

j �

h

2

12

 













�

4

u

�x

4













C(

�


)

+













�

4

u

�y

4













C(

�


)

!

;

we dedu
e that the trun
ation error, ', satis�es

k'k

h

�

h

2

12

 













�

4

u

�x

4













C(

�


)

+













�

4

u

�y

4













C(

�


)

!

: (4.15)

Finally (4.14) and (4.15) yield the following result.

Theorem 4.4 Let f 2 C(

�


), 
 2 C(

�


), with 
(x; y) � 0, (x; y) 2

�


; and suppose that the


orresponding weak solution of the boundary value problem (4.1) belongs to C

4

(

�


); then,

ku� Uk

1;h

�

5h

2

48

 













�

4

u

�x

4













C(

�


)

+













�

4

u

�y

4













C(

�


)

!

: (4.16)
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Proof Re
all that 


0

= (1 + 


�

)

�1

; 


�

=

1

4

; so that 1=


0

=

5

4

; and 
ombine (4.14) and (4.15). 2

A

ording to this result, the �ve-point di�eren
e s
heme (4.2) for the boundary value problem

(4.1) is se
ond-order 
onvergent, provided that u is suÆ
iently smooth.

In general, however, even if f and 
 are smooth fun
tions, the 
orresponding solution, u,

of (4.1) will not be a smooth fun
tion be
ause the boundary, �, of the domain, 
, is a

non-smooth 
urve. Thus, the hypothesis u 2 C

4

(

�


) is unrealisti
.

Our analysis has another limitation: it has been performed under the assumption that f 2

C(

�


) whi
h was required in order to ensure that the values of f are well de�ned at the mesh-

points. However, in physi
al appli
ations one often has to 
onsider di�erential equations

with f dis
ontinuous (e.g. pie
ewise 
ontinuous), or, more generally, f 2 L

2

(
): We know

that in this 
ase Theorem 2.3 still implies that the problem has a unique weak solution, so

it is natural to ask whether one 
an 
onstru
t an a

urate �nite di�eren
e approximation of

the weak solution. This brings us to 
ase (b), formulated on page 26.

(b) (f 2 L

2

(
)): We retain the same �nite di�eren
e mesh as in 
ase (a), but we modify the

di�eren
e s
heme (4.3) to 
ater for the fa
t that f is not ne
essarily 
ontinuous on

�


.

The idea is to repla
e f(x

i

; y

j

) in (4.3) by a 
ell-average of f ,

Tf

ij

=

1

h

2

Z

K

ij

f(x; y) dx dy;

where

K

ij

=

�

x

i

�

h

2

; x

i

+

h

2

�

�

�

y

j

�

h

2

; y

j

+

h

2

�

:

This, seemingly ad ho
 approa
h, has the following justi�
ation. Integrating the partial

di�erential equation ��u + 
u = f over the 
ell K

ij

; and using Gauss' theorem, we have

�

Z

�K

ij

�u

��

dl +

Z

K

ij


u dx dy =

Z

K

ij

f dx dy (��)

where �K

ij

is the boundary of K

ij

, and � the unit outward normal to �K

ij

. The normal

ve
tors to �K

ij

point in the 
oordinate dire
tions, so the normal derivative �u=�� 
an be

approximated by divided di�eren
es using the values of u at the �ve mesh-points marked

\�" on Fig. 3. Approximating the se
ond integral on the left by mid-point quadrature, and

dividing both sides by meas(K

ij

) = h

2

; we obtain

�(D

+

x

D

�

x

u(x

i

; y

j

) +D

+

y

D

�

y

u(x

i

; y

j

)) + 
(x

i

; y

j

)u(x

i

; y

j

) �

1

h

2

Z

K

ij

f(x; y) dx dy:

REMARK Finite di�eren
e s
hemes whi
h arise from integral formulations of a di�erential

equation, su
h as (��), are 
alled �nite volume methods. �
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)
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Figure 3: The 
ell K

ij

Clearly, Tf

ij

is well de�ned for f in L

2

(
) (and, in fa
t, even for f 2 L

1

(
)); this follows by

noting that

jTf

ij

j =

1

h

2

�

�

�

�

�

Z

K

ij

f(x; y) dx dy

�

�

�

�

�

�

1

h

2

 

Z

K

ij

1

2

dx dy

!

1=2

 

Z

K

ij

jf(x; y)j

2

dx dy

!

1=2

=

1

h

kfk

L

2

(K

ij

)

; (4.17)

whi
h, in turn, is bounded by h

�1

kfk

L

2

(
)

. Thus we de�ne our �nite di�eren
e (or, more

pre
isely, �nite volume) approximation of (4.1) by

�(D

+

x

D

�

x

U

ij

+D

+

y

D

�

y

U

ij

) + 
(x

i

; y

j

)U

ij

= Tf

ij

; (x

i

; y

j

) 2 


h

; (4.18a)

U = 0 on �

h

: (4.18b)

Sin
e we have not 
hanged the di�eren
e operator on the left-hand side, the argument pre-

sented on page 28 still applies, and therefore (4.18) has a unique solution, U .

Theorem 4.5 The s
heme (4.18) is stable in the sense that

kUk

1;h

�

1




0

kfk

L

2

(
)

: (4.19)
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Proof A

ording to (4.12) and (4.17),




0

kUk

2

1;h

� (AU;U)

h

= (Tf; U)

h

� kTfk

h

kUk

h

� kTfk

h

kUk

1;h

� kfk

L

2

(
)

kUk

1;h

;

and hen
e (4.19). 2

Having established the stability of the s
heme (4.18), we 
onsider the question of its a

ura
y.

Let us de�ne the global error, e; as before,
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Noting that
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+
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;

and similarly,
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(4.20) 
an be rewritten as
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+
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+
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1

h

Z

x

i

+h=2

x

i

�h=2

�u

�y

(x; y

j

� h=2) dx�D

�
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Thus,

Ae = D

+
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1

+D

+

y

'

2

+  in 


h

; (4.21a)

e = 0 on �

h

: (4.21b)

As the stability of the di�eren
e s
heme would only imply the 
rude bound
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ial form of the trun
ation error
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we shall pro
eed in a di�erent way. A

ording to (4.12),
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Using summation by parts, we shall pass the di�eren
e operators D
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and D
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Similarly,
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(see page 29 for the de�nition of the mesh-dependent norms jj�℄j

x

and jj�℄j

y

:) By the Cau
hy{

S
hwarz inequality we also have that
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h
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: (4.25)

Upon substituting (4.23) { (4.25) into (4.22) we obtain
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Dividing both sides by kek

1;h

yields the following result.

Lemma 4.6 The global error, e, of the �nite di�eren
e s
heme (4.18) satis�es
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i = 1; : : : ; N � 1; j = 1; : : : ; N:

To 
omplete the error analysis, it remains to estimate '
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2

and  . Using Taylor series

expansions it is easily seen that

j'

1

(x

i

; y

j

)j �

h

2

24

 













�

3

u

�x�y

2













C(

�


)

+













�

3

u

�x

3













C(

�


)

!

; (4.30)

j'

2

(x

i

; y

j

)j �

h

2

24

 













�

3

u

�x

2

�y













C(

�


)

+













�

3

u

�y

3













C(

�


)

!

; (4.31)

j (x

i

; y

j

)j �

h

2

24

 













�

2

(
u)

�x

2













C(

�


)

+













�

2

(
u)

�y

2













C(

�


)

!

; (4.32)

and hen
e the bounds for jj'

1

℄j

x

, jj'

2

℄j

y

and jj ℄j

h

. We have the following theorem.
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Proof Re
alling that 1=


0

= 5=4 and substituting (4.30) - (4.32) into the right-hand side of (4.26),

(4.33) immediately follows. 2

Comparing (4.33) with (4.16), we see that while the smoothness requirement on the solution
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), se
ond-order 
onvergen
e has been retained.
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Consequently,
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so that, with w = 
u, we have
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�

2

w

�y

2













2

L

2

(
)

+ 4













�

2

w

�x�y













2

L

2

(
)

!

: (4.36)

Substituting (4.34){(4.36) into the right-hand side of (4.26) and re
alling that 1=


0

= 4=5,

we obtain the following result.

Theorem 4.8 Let f 2 L

2

(
), 
 2 C

2

(

�


), with 
(x; y) � 0, (x; y) 2

�


, and suppose that the


orresponding weak solution of the boundary value problem (4.1) belongs to H

3

(
). Then,

ku� Uk

1;h

� Ch

2

kuk

H

3

(
)

; (4.37)

where C is a positive 
onstant (
omputable from (4.34){(4.36)).

It 
an be shown that the error estimate (4.37) is best possible in the sense that further

relaxation of the regularity hypothesis on u leads to a loss of se
ond-order 
onvergen
e.

Error estimates of this type, where the highest possible a

ura
y has been attained with the

minimum hypotheses on the smoothness of the solution are 
alled optimal error estimates.

Thus, for example, (4.37) is an optimal error estimate for the di�eren
e s
heme (4.18), but

(4.33) is not.

We have used integral representations of di�eren
es to show the bounds (4.34){(4.36). Al-

ternatively one 
an use the following abstra
t devi
e.

Lemma 4.9 (The Bramble-Hilbert Lemma) Suppose � : H

k

(
) ! R is a linear form, i.e.

for all u; v 2 H

k

(
); and all �; � 2 R,

�(�u+ �v) = ��(u) + ��(v);

and assume that:

(a) �(p) = 0 for every polynomial p of degree � k � 1, and

(b) there exists a positive 
onstant C su
h that

j�(u)j � C kuk

H

k

(
)

8u 2 H

k

(
):

Then, there exists a 
onstant C

1

= C

1

(
; C; k) su
h that

j�(u)j � C

1

juj

H

k

(
)

8u 2 H

k

(
):
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Proof See P. Ciarlet: The Finite Element Method for Ellipti
 Problems, North-Holland, 1979.

We shall use the Bramble-Hilbert lemma to re-derive the bound (4.34) for '

1

. Let K =

[�1=2; 1=2℄� [�1=2; 1=2℄; and 
onsider the aÆne mapping

�

x = x

i

� h=2 + sh; �1=2 � s � 1=2;

y = y

j

+ th; �1=2 � t � 1=2;

of K onto K

�

ij

= [x

i�1

; x

i

℄� [y

j�1=2

; y

j+1=2

℄. We de�ne

�u(s; t) := u(x; y):

In terms of �u, '

1


an be rewritten as follows:

'

1

(x

i

; y

j

) =

1

h

�(�u);

where

�(�u) =

Z

1=2

�1=2

��u

�s

(0; t) dt� f�u(

1

2

; 0)� �u(�

1

2

; 0)g:

Clearly � : �u 7! �(�u) is a linear form, and �(p) = 0 for every polynomial of the form

p = a

0

+ a

1

s+ a

2

t+ a

3

s

2

+ a

4

st+ a

5

t

2

(i.e. �(p) = 0 if p is a polynomial of degree � 2). In addition,

j�(�u)j �

Z

1=2

�1=2

�

�

�

�

��u

�s

(0; t)

�

�

�

�

dt+ 2 max

(s;t)2K

j�u(s; t)j : (4.38)

Lemma 4.10 Let v 2 H

2

(K); then,

(a)

Z

1=2

�1=2

�

�

�

�

�v

�s

(0; t)

�

�

�

�

dt �

p

2 kvk

H

2

(K)

;

(b) max

(s;t)2K

jv(s; t)j � 2 kvk

H

2

(K)

:

Proof

(a) Note that, for any s 2 [�1=2; 1=2℄;

�

�

�

�

�v

�s

(0; t)

�

�

�

�

�

�

�

�

�

�v

�s

(s; t)

�

�

�

�

+

�

�

�

�

Z

0

s

�

2

v

�s

2

(�; t) d�

�

�

�

�

:
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Thus,

�

�

�

�

�v

�s

(0; t)

�

�

�

�

�

�

�

�

�

�v

�s

(s; t)

�

�

�

�

+

Z

1=2

�1=2

�

�

�

�

�

2

v

�s

2

(�; t)

�

�

�

�

d�:

Integrating both sides in s and t,

Z

1=2

�1=2

�

�

�

�

�v

�s

(0; t)

�

�

�

�

dt �

Z

1=2

�1=2

Z

1=2

�1=2

�

�

�

�

�v

�s

(s; t)

�

�

�

�

dsdt+

Z

1=2

�1=2

Z

1=2

�1=2

�

�

�

�

�

2

v

�s

2

(�; t)

�

�

�

�

d� dt;

�

 

Z

1=2

�1=2

Z

1=2

�1=2

�

�

�

�

�v

�s

(s; t)

�

�

�

�

2

dsdt

!

1=2

+

 

Z

1=2

�1=2

Z

1=2

�1=2

�

�

�

�

�

2

v

�s

2

(�; t)

�

�

�

�

2

d� dt

!

1=2

=













�v

�s













L

2

(K)

+













�

2

v

�s

2













L

2

(K)

:

Finally, using the inequality

a+ b �

p

2(a

2

+ b

2

)

1=2

; a; b � 0;

and the de�nition of k�k

H

2

(K)

, we get (a).

(b) Let (x; y) 2 K and (s; t) 2 K. Then,

v(x; y) = v(s; t) +

Z

x

s

�v

�s

(�; t) d� +

Z

y

t

�v

�t

(s; �) d�

+

Z

x

s

Z

y

t

�

2

v

�s�t

(�; �) d� d�;

and therefore

jv(x; y)j � jv(s; t)j +

Z

1=2

�1=2

�

�

�

�

�v

�s

(�; t)

�

�

�

�

d� +

Z

1=2

�1=2

�

�

�

�

�v

�t

(s; �)

�

�

�

�

d�

+

Z

1=2

�1=2

Z

1=2

�1=2

�

�

�

�

�

2

v

�s�t

(�; �)

�

�

�

�

d� d�:

Integrating both sides in s and t, we obtain

jv(x; y)j =

Z

1=2

�1=2

Z

1=2

�1=2

jv(s; t)j dsdt+

Z

1=2

�1=2

Z

1=2

�1=2

�

�

�

�

�v

�s

(�; t)

�

�

�

�

d� dt

+

Z

1=2

�1=2

Z

1=2

�1=2

�

�

�

�

�v

�t

(s; �)

�

�

�

�

dsd� +

Z

1=2

�1=2

Z

1=2

�1=2

�

�

�

�

�

2

v

�s�t

(�; �)

�

�

�

�

d� d�

� kvk

L

2

(K)

+













�v

�s













L

2

(K)

+













�v

�t













L

2

(K)

+













�

2

v

�s�t













L

2

(K)

� 2 kvk

H

2

(K)

8(x; y) 2 K:

Taking the maximum over all (x; y) in K, we obtain (b). 2
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Equipped with the inequalities (a) and (b), we return to (4.38). It follows that

j�(�u)j � (

p

2 + 4) k�uk

H

2

(K)

:

Sin
e k�uk

H

2

(K)

� k�uk

H

3

(K)

; we also have

j�(�u)j � (

p

2 + 4) k�uk

H

3

(K)

:

Thus we have shown that the mapping � satis�es the hypotheses of the Bramble-Hilbert

lemma with k = 3 and 
 = K.

Hen
e, there exists a 
onstant C

1

su
h that

j�(�u)j � C

1

j�uj

H

3

(K)

8�u 2 H

3

(K):

Returning from (s; t) 2 K to our original variables (x; y) 2 K

�

ij

, we dedu
e that

j�(�u)j � C

1

h

3�1

juj

H

3

(K

�

ij

)

;

and therefore,

j'

1

(x

i

; y

j

)j =

1

h

j�(�u)j � C

1

h juj

H

3

(K

�

ij

)

:

Consequently,

jj'

1

℄j

2

x

=

N

X

i=1

N�1

X

j=1

h

2

j'

1

(x

i

; y

j

)j

2

� C

2

1

h

4

N

X

i=1

N�1

X

j=1

juj

2

H

3

(K

�

ij

)

� C

2

1

h

4

juj

2

H

3

(
)

:

Therefore,

jj'

1

℄j

x

� C

1

h

2

juj

H

3

(
)

: (4.39)

Similarly,

jj'

2

℄j

y

� C

2

h

2

juj

H

3

(
)

(4.40)

and

jj ℄j

h

� C

3

h

2

juj

H

2

(
)

: (4.41)

The bounds (4.39){(4.41) derived by using the Bramble-Hilbert lemma are essentially the

same as those obtained earlier by integral representations, and stated in (4.34){(4.36). There
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is, however, an important pra
ti
al di�eren
e: while the 
onstants involved in (4.34){(4.36)

are known, those whi
h appear in (4.39){(4.41) (namely, C

1

, C

2

, C

3

) are unknown be
ause

the Bramble-Hilbert lemma does not tell us what these are, so the 
onstant in the resulting

error estimate is not 
omputable. We note, however, that in re
ent years several 
onstru
tive

proofs of the Bramble-Hilbert lemma have been derived for restri
ted 
lasses of 
. (e.g. 



onvex or star-shaped). These 
onstru
tive proofs give an expli
it expression for C

1

(see the

statement of the Bramble-Hilbert lemma) in terms of C, k and the area (volume) of 
.

Con
luding remarks. We have 
arried out an error analysis of �nite di�eren
e s
hemes

for the partial di�erential equation

��u+ 
(x; y)u = f(x; y)

on a square domain 
. The error analysis of di�eren
e s
hemes for more general ellipti


equations would pro
eed along similar lines. Consider, for example,

�

�

�

�x

�

a

1

(x; y)

�u

�x

�

+

�

�y

�

a

2

(x; y)

�u

�y

��

+ b

1

(x; y)

�u

�x

+ b

2

(x; y)

�u

�y

+ 
(x; y)u = f(x; y)

on the unit square 
 in R

2

. We approximate the equation by

�

1

h

�

a

1

(x

i+1=2

; y

j

)

U

i+1;j

� U

i;j

h

� a

1

(x

i�1=2

; y

j

)

U

i;j

� U

i�1;j

h

�

�

1

h

�

a

2

(x

i

; y

j+1=2

)

U

i;j+1

� U

i;j

h

� a

2

(x

i

; y

j�1=2

)

U

i;j

� U

i;j�1

h

�

+ b

1

(x

i

; y

j

)

U

i+1;j

� U

i�1;j

2h

+ b

1

(x

i

; y

j

)

U

i;j+1

� U

i;j�1

2h

+ 
(x

i

; y

j

)U

ij

=

1

h

2

Z

x

i+1=2

x

i�1=2

Z

y

i+1=2

y

i�1=2

f(x; y) dx dy:

This is still a �ve-point di�eren
e s
heme. Provided u 2 H

3

(
) \ H

1

0

(
), the s
heme is

se
ond-order 
onvergent in the k�k

1;h

norm (i.e. (4.38) holds).

When 
 has a 
urved boundary, a non-uniform mesh has to be used near �
 to avoid a loss

of a

ura
y. To be more pre
ise, let us introdu
e the following notation: let h

i+1

= x

i+1

�x

i

,

h

i

= x

i

� x

i�1

, and let ~

i

=

1

2

(h

i+1

+ h

i

): We de�ne

D

+

x

U

i

=

U

i+1

� U

i

~

i

; D

�

x

U

i

=

U

i

� U

i�1

h

i

;

D

+

x

D

�

x

U

i

=

1

~

i

�

U

i+1

� U

i

h

i+1

�

U

i

� U

i�1

h

i

�

:

Similarly, let k

j+1

= y

j+1

� y

j

, k

j

= y

j

� y

j�1

, and let

k

i

=

1

2

(k

j+1

+ k

j

):
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Let

D

+

y

U

j

=

U

j+1

� U

j

k

j

; D

�

y

U

j

=

U

j

� U

j�1

k

j

;

D

+

y

D

�

y

U

j

=

1

k

j

�

U

j+1

� U

j

k

j+1

�

U

j

� U

j�1

k

j

�

:

So, on a general non-uniform mesh

�




h

= f(x

i

; y

j

) : x

i+1

� x

i

= h

i

; y

j+1

� y

j

= k

j

g;

the Lapla
e operator, �, 
an be approximated by D

+

x

D

�

x

+ D

+

y

D

�

y

, with the di�eren
e

operators D

+

x

D

�

x

, D

+

y

D

�

y

de�ned above.

Consider, for example, the Diri
hlet problem

��u = f(x; y) in 
;

u = 0 on �
;

where 
 and the non-uniform mesh

�




h

are depi
ted in Fig. 4.

� 


h

; � �

h

;

�




h

= 


h

\ �

h

:

Figure 4: Non-uniform mesh

�




h

:

The �nite di�eren
e approximation of this boundary value problem is

�(D

+

x

D

�

x

U

ij

+D

+

y

D

�

y

U

ij

) = f(x

i

; y

j

) in 


h

;

U

ij

= 0 on �

h

:

Equivalently,

�

1

~

i

�

U

i+1;j

� U

ij

h

i+1

�

U

ij

� U

i�1;j

h

i

�

�

1

k

j

�

U

i;j+1

� U

ij

k

j+1

�

U

ij

� U

i;j�1

k

j

�

= f(x

i

; y

j

) in 


h

;

U

ij

= 0 on �

h

:

A typi
al di�eren
e sten
il is shown in Fig. 5; 
learly we still have a �ve-point di�eren
e

s
heme.
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(x

i

; y

j�1
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(x

i�1

; y

j

) (x

i+1

; y

j

)
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j+1
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(x

i

; y

j

)
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h

i+1

k

j

k
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Figure 5: Five-point sten
il on a non-uniform mesh.
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5 Finite element methods for ellipti
 boundary value

problems

In se
tions 3 and 4 we des
ribed the 
onstru
tion of �nite di�eren
e methods for ellipti


boundary value problems and outlined some simple te
hniques for their analysis. There,

be
ause of the very nature of �nite di�eren
e s
hemes, the emphasis was pla
ed on approx-

imating the values of the exa
t solution at a �nite number of mesh-points. In this se
tion

we 
on
entrate on an alternative approa
h whi
h is based on the approximation of the exa
t

solution by 
ontinuous pie
ewise polynomial fun
tions. Numeri
al methods of this type are


alled �nite element methods.

Finite element methods were proposed by Courant in 1943, but the importan
e of his 
on-

tribution was not re
ognised at the time and the idea was forgotten. The method was

redis
overed by engineers in the early 1950's, though the mathemati
al analysis of �nite el-

ement s
hemes only began in the 1960's, the �rst important theoreti
al results being those

of Zl�amal in 1968.

In this se
tion we present some of the basi
 properties of �nite element methods for ellipti


boundary value problems. Unlike �nite di�eren
e s
hemes whi
h are 
onstru
ted in a more-

or-less ad ho
 fashion by repla
ing the derivatives in the di�erential equation by divided

di�eren
es, the derivation of �nite element methods is mu
h more systemati
.

The �rst step in the 
onstru
tion of a �nite element method for an ellipti
 boundary value

problem (e.g. (2.3), (2.4)) is to 
onvert the problem into its weak formulation:

�nd u 2 V su
h that a(u; v) = l(v) 8v 2 V , (P )

where V is the solution spa
e (e.g. H

1

0

(
) for a homogeneous Diri
hlet boundary value

problem), a(�; �) is a bilinear form on V � V , and l(�) is a linear form on V (e.g. (2.7) and

(2.8)).

The se
ond step in the 
onstru
tion is to repla
e V in (P ) by a �nite-dimensional subspa
e

V

h

� V whi
h 
onsists of 
ontinuous pie
ewise polynomial fun
tions of a �xed degree, and

to 
onsider the following approximation of (P ):

�nd u

h

2 V

h

su
h that a(u

h

; v

h

) = l(v

h

) 8v

h

2 V

h

. (P

h

)

Suppose, for example, that dimV

h

= N(h) and V

h

= spanf�

1

; : : : ; �

N(h)

g, where the linearly

independent basis fun
tions �

i

; i = 1; : : : ; N(h), have \small" support. Expressing the

approximate solution u

h

in terms of the basis fun
tions, �

i

, we 
an write

u

h

(x) =

N(h)

X

i=1

U

i

�

i

(x), (�)

where U

i

, i = 1; : : : ; N(h), are to be determined. Thus (P

h

) 
an be rewritten as follows:
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0 = x

0

x

1

x

2

: : : x

n

x

N

= 1

Figure 6: Subdivision of

�


 = [0; 1℄:

�nd (U

1

; : : : ; U

N(h)

) 2 R

N(h)

su
h that

N(h)

X

i=1

a(�

i

; �

j

)U

i

= l(�

j

), j = 1; : : : ; N(h). (P

0

h

)

This is a system of linear equations for U = (U

1

; : : : ; U

N(h)

)

T

, with the matrix of the system,

A = (a(�

j

; �

i

)), of size N(h) �N(h): Be
ause the �

i

's have small support, a(�

j

; �

i

) = 0 for

most i and j, so the matrix A is sparse. On
e the system of linear equations (P

0

h

) has been

solved for U = (U

1

; : : : ; U

N(h)

)

T

, (�) provides the required approximation of u.

After this brief outline of the �nite element method, we illustrate the 
onstru
tion of this

numeri
al te
hnique through some simple examples.

5.1 Constru
tion of the �nite element method: pie
ewise linear

basis fun
tions

In this se
tion we des
ribe two spe
i�
 examples of �nite element methods for boundary

value problems.

5.1.1 One-dimensional problem

Let us 
onsider the boundary value problem

�(p(x)u

0

)

0

+ q(x)u = f(x); x 2 (0; 1); (5.1a)

u(0) = 0; u(1) = 0; (5.1b)

where p 2 C[0; 1℄, q 2 C[0; 1℄, f 2 L

2

(0; 1), p(x) � ~
 > 0, q(x) � 0, x 2 [0; 1℄. The weak

formulation of this problem is:

�nd u 2 H

1

0

(0; 1) su
h that

Z

1

0

p(x)u

0

(x)v

0

(x) dx+

Z

1

0

q(x)u(x)v(x) dx =

Z

1

0

f(x)v(x) dx

8v 2 H

1

0

(0; 1):

9

>

>

=

>

>

;

(P )

In order to 
onstru
t the �nite element approximation of this problem, we subdivide

�


 = [0; 1℄

into N subintervals [x

i

; x

i+1

℄, i = 0; : : : ; N � 1, by the points x

i

= ih, i = 0; : : : ; N , where

h = 1=N , N � 2 (see Fig. 6).

49



The subintervals are 
alled \elements". The solution, u 2 H

1

0

(0; 1), of (P ) will be approx-

imated by a 
ontinuous pie
ewise linear fun
tion on this subdivison. For this purpose we

de�ne the �nite element basis fun
tions

�

i

(x) =

�

1�

�

�

�

�

x� x

i

h

�

�

�

�

�

+

; i = 1; : : : ; N � 1:

Here, for z 2 R, we used the notation z

+

= maxf0; zg. Clearly �

i

2 H

1

0

(0; 1), and supp �

i

=

[x

i�1

; x

i+1

℄, i = 1; : : : ; N � 1: The fun
tions �

i

, i = 1; : : : ; N � 1, are linearly independent

and therefore

V

h

:= spanf�

1

; : : : ; �

N�1

g

is an (N � 1)-dimensional subspa
e of H

1

0

(0; 1). The �nite element approximation of (P ) is:

�nd u

h

2 V

h

su
h that

Z

1

0

p(x)u

0

h

(x)v

0

h

(x) dx +

Z

1

0

q(x)u

h

(x)v

h

(x) dx

=

Z

1

0

f(x)v

h

(x) dx 8v

h

2 V

h

:

9

>

>

>

>

=

>

>

>

>

;

(P

h

)

Sin
e u

h

2 V

h

= spanf�

1

; : : : ; �

N�1

g, it 
an be written as a linear 
ombination of the basis

fun
tions:

u

h

(x) =

N�1

X

i=1

U

i

�

i

(x):

Substituting this into (P

h

) we obtain the following problem, equivalent to (P

h

):

�nd U = (U

1

; : : : ; U

N�1

)

T

2 R

N�1

su
h that

N�1

X

i=1

U

i

Z

1

0

[p(x)�

0

i

(x)�

0

j

(x) + q(x)�

i

(x)�

j

(x)℄ dx

=

Z

1

0

f(x)�

j

(x) dx; j = 1; : : : ; N � 1:

9

>

>

>

>

>

=

>

>

>

>

>

;

(P

0

h

)

Letting

a

ij

:=

Z

1

0

[p(x)�

0

i

(x)�

0

j

(x) + q(x)�

i

(x)�

j

(x)℄ dx; i; j = 1; : : : ; N � 1;

F

j

:=

Z

1

0

f(x)�

j

(x) dx; j = 1; : : : ; N � 1;

(P

0

h

) 
an be written as a system of linear equations

AU = F;
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where A = (a

ji

), F = (F

1

; : : : ; F

N�1

)

T

. The matrix A is symmetri
 (i.e. A

T

= A) and

positive de�nite (i.e. x

T

Ax > 0, x 6= 0). Sin
e supp �

i

[ supp�

j

has empty interior when

ji� jj > 1, it follows that the matrix A is tri-diagonal. Having solved the system of linear

equations AU = F , we substitute the values U

1

; : : : ; U

N�1

into

u

h

(x) =

N�1

X

i=1

U

i

�

i

(x)

to obtain u

h

.

In pra
ti
e the entries a

ji

of the matrix A and the entries F

j

of the ve
tor F are 
al
ulated

approximately using numeri
al quadrature rules. In the simple 
ase when p and q are 
onstant

fun
tions on [0; 1℄, the entries of A 
an be 
al
ulated exa
tly:

a

ij

= p

Z

1

0

�

0

i

(x)�

0

j

(x) dx+ q

Z

1

0

�

i

(x)�

j

(x) dx

= p

8

<

:

2=h; i = j;

�1=h; ji� jj = 1;

0; ji� jj > 1;

+ q

8

<

:

4h=6; i = j;

h=6; ji� jj = 1;

0; ji� jj > 1:

=

8

<

:

2p=h+ 4hq=6; i = j;

�p=h + qh=6; ji� jj = 1;

0; ji� jj > 1:

5.1.2 Two-dimensional problem

Let 
 be a bounded domain in R

2

with a polygonal boundary �
, so that 
 
an be exa
tly


overed by a �nite number of triangles. We shall suppose that a family of su
h sets of

triangles is parametrised by h, where h is the maximum diameter of triangles in the set. We

shall assume that any pair of triangles in a triangulation of 
 interse
t along a 
omplete

edge, at a vertex, or not at all, as shown in Fig. 7.

Figure 7: A subdivision (triangulation) of

�


.
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With ea
h interior node (marked � in the �gure) we asso
iate a basis fun
tion � whi
h is

equal to 1 at that node and to 0 at all the other nodes; � is assumed to be 
ontinuous and

pie
ewise linear on the triangulation, as shown in Fig. 8.

0 0

0 0

0 0

1

Figure 8: A typi
al �nite element basis fun
tion.

Let us suppose that the interior nodes are labelled 1; 2; : : : ; N(h), let �

1

(x; y); : : : ; �

N(h)

(x; y)

be the 
orresponding basis fun
tions. The fun
tions �

1

; : : : ; �

N(h)

are linearly independent

and they span an N(h)-dimensional linear subspa
e V

h

of H

1

0

(
).

Let us 
onsider the ellipti
 boundary value problem

��u = f in 
;

u = 0 on �
:

The weak formulation of this problem is:

�nd u 2 H

1

0

(
) su
h that

Z




�

�u

�x

�v

�x

+

�u

�y

�v

�y

�

dx dy =

Z




fv dx dy 8v 2 H

1

0

(
):

The �nite element approximation of the problem is:

�nd u

h

2 V

h

su
h that

Z




�

�u

h

�x

�v

h

�x

+

�u

h

�y

�v

h

�y

�

dx dy =

Z




fv

h

dx dy 8v

h

2 V

h

:
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Writing

u

h

(x; y) =

N(h)

X

i=1

U

i

�

i

(x; y);

the �nite element approximation 
an be restated as follows:

�nd U = (U

1

; : : : ; U

N(h)

)

T

2 R

N(h)

su
h that

N(h)

X

i=1

U

i

�

Z




�

��

i

�x

��

j

�x

+

��

i

�y

��

j

�y

�

dx dy

�

=

Z




f�

j

dx dy; j = 1; : : : ; N(h):

Letting A = (a

ij

), F = (F

1

; : : : ; F

N(h)

)

T

,

a

ij

= a

ji

=

Z




�

��

i

�x

��

j

�x

+

��

i

�y

��

j

�y

�

dx dy;

F

j

=

Z




f�

j

dx dy;

the �nite element approximation 
an be restated as a system of linear equations

AU = F:

Solving this, we obtain U = (U

1

; : : : ; U

N(h)

)

T

, and hen
e the approximate solution

u

h

(x; y) =

N(h)

X

i=1

U

i

�

i

(x; y):

To simplify matters let us suppose that 
 = (0; 1)� (0; 1) and 
onsider the triangulation of

�


 shown in Fig. 9.

Let �

ij

denote the basis fun
tion asso
iated with the interior node (x

i

; y

j

):

�

ij

(x; y) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1�

x� x

i

h

�

y � y

j

h

; (x; y) 2 1

1�

y � y

j

h

; (x; y) 2 2

1�

x

i

� x

h

; (x; y) 2 3

1�

x

i

� x

h

�

y

j

� y

h

; (x; y) 2 4

1�

y

j

� y

h

; (x; y) 2 5

1�

x� x

i

h

; (x; y) 2 6

0 otherwise;

where 1; 2; : : : ; 6 denote the triangles surrounding the node (x

i

; y

j

) (see Fig. 10.)
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�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

si si si

si si si

si si si

y

N

= 1

x

N

= 1

y

x

x

1

: : :x

0

= 0

y

1

.

.

.

Figure 9: Subdivision (triangulation) of

�


 = [0; 1℄� [0; 1℄.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

si

1

2

3

4

5

6

Figure 10: Triangles surrounding a node.
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Thus

��

ij

�x

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�1=h; (x; y) 2 1

0; (x; y) 2 2

1=h; (x; y) 2 3

1=h; (x; y) 2 4

0; (x; y) 2 5

�1=h; (x; y) 2 6

0; otherwise;

and

��

ij

�y

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�1=h; (x; y) 2 1

�1=h; (x; y) 2 2

0; (x; y) 2 3

1=h; (x; y) 2 4

1=h; (x; y) 2 5

0; (x; y) 2 6

0; otherwise:

Sin
e

N�1

X

i=1

N�1

X

j=1

U

ij

Z




�

��

ij

�x

��

kl

�x

+

��

ij

�y

��

kl

�y

�

dx dy

= 4U

kl

� U

k�1;l

� U

k+1;l

� U

k;l�1

� U

k;l+1

; k; l = 1; :::; N � 1;

the �nite element approximation is equivalent to

�

U

k+1;l

� 2U

k;l

+ U

k�1;l

h

2

�

U

k;l+1

� 2U

k;l

+ U

k;l�1

h

2

=

1

h

2

Z Z

supp �

kl

f(x; y)�

kl

(x; y) dx dy; k; l = 1; : : : ; N � 1;

U

kl

= 0 on �
:

Thus, on this spe
ial partition of 
, the �nite element approximation gives rise to the familiar

5-point �nite di�eren
e s
heme with the for
ing fun
tion f averaged in a spe
ial way.

5.2 Variational formulation of self-adjoint ellipti
 boundary value

problems

Let us 
onsider, as in Se
tion 2, the ellipti
 boundary value problem

�

n

X

i;j=1

�

�x

j

�

a

ij

(x)

�u

�x

i

�

+

n

X

i=1

b

i

(x)

�u

�x

i

+ 
(x)u = f(x); x 2 
; (5.2a)

u = 0 on �
; (5.2b)
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where 
 is a bounded open set in R

n

, a

ij

2 C(

�


), i; j = 1; : : : ; n; b

i

2 C

1

(

�


), i = 1; : : : ; n,


 2 C(

�


), f 2 L

2

(
), and assume that there exists a positive 
onstant ~
 su
h that

n

X

i;j=1

a

ij

(x)�

i

�

j

� ~


n

X

i=1

�

2

i

8� = (�

1

; : : : ; �

n

) 2 R

n

; 8x 2

�


: (5.3)

We re
all from Se
tion 2 that the weak formulation of (5.2) is:

�nd u 2 H

1

0

(
) su
h that a(u; v) = l(v) 8v 2 H

1

0

(
); (5.4)

where the bilinear form a(�; �) and the linear form l(�) are de�ned by

a(u; v) =

n

X

i;j=1

Z




a

ij

�u

�x

i

�v

�x

j

dx +

n

X

i=1

Z




b

i

(x)

�u

�x

i

v dx +

Z





(x)uv dx;

and

l(v) =

Z




f(x)v(x) dx:

We have shown that if


(x)�

1

2

n

X

i=1

�b

i

�x

i

� 0; x 2

�


;

then (5.4) has a unique solution u in H

1

0

(
), | the weak solution of (5.2).

In the spe
ial 
ase when the boundary value problem is self-adjoint, i.e.

a

ij

(x) = a

ji

(x); i; j = 1; : : : ; n; x 2

�


;

and

b

i

(x) � 0; i = 1; : : : ; n; x 2

�


;

the bilinear form a(�; �) is symmetri
 in the sense that

a(v; w) = a(w; v) 8v; w 2 H

1

0

(
);

in the following this will always be assumed to be the 
ase. Thus we 
onsider

�

n

X

i;j=1

�

�x

j

�

a

ij

(x)

�u

�x

i

�

+ 
(x)u = f(x); x 2 
; (5.5a)

u = 0; on �
 (5.5b)

with a

ij

(x) satisfying the ellipti
ity 
ondition (5.3); a

ij

(x) = a

ji

(x), 
(x) � 0, x 2

�


.

It turns out that (5.5) 
an be restated as a minimisation problem. To be more pre
ise, let

us de�ne the quadrati
 fun
tional J : H

1

0

(
)! R by

J(v) =

1

2

a(v; v)� l(v); v 2 H

1

0

(
):
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Lemma 5.1 Let u be the (unique) solution of (5.4) and suppose that a(�; �) is a symmetri


bilinear form on H

1

0

(
); then, u is the unique minimiser of J(�) over H

1

0

(
).

Proof Let u be the unique solution of (5.4) and, for v 2 H

1

0

(
), 
onsider J(v)� J(u):

J(v)� J(u) =

1

2

a(v; v) � l(v) �

1

2

a(u; u) + l(u)

=

1

2

a(v; v) �

1

2

a(u; u)� l(v � u)

=

1

2

a(v; v) �

1

2

a(u; u)� a(u; v � u)

=

1

2

[a(v; v) � 2a(u; v) + a(u; u)℄

=

1

2

[a(v; v) � a(u; v)� a(v; u) + a(u; u)℄

=

1

2

a(v � u; v � u):

Then
e

J(v)� J(u) =

1

2

a(v � u; v � u):

Be
ause of (2.14),

a(v � u; v � u) � 


0

kv � uk

2

H

1

(
)

;

where 


0

is a positive 
onstant. Thus

J(v)� J(u) �




0

2

kv � uk

2

H

1

(
)

8v 2 H

1

0

(
); (5.6)

and therefore,

J(v) � J(u) 8v 2 H

1

0

(
); (5.7)

i.e. u minimises J(�) over H

1

0

(
).

In fa
t, u is the unique minimiser of J(�) on H

1

0

(
). Indeed, if ~u also minimises J(�) on H

1

0

(
),

then

J(v) � J(~u) 8v 2 H

1

0

(
): (5.8)

Taking v = ~u in (5.7) and v = u in (5.8), we dedu
e that

J(u) = J(~u);

but then, by virtue of (5.6),

k~u� uk

H

1

(
)

= 0;

and hen
e u = ~u. 2
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u

J(u)

J(v)

H

1

0

(
)

R

Figure 11: The quadrati
 fun
tional J(�).

It is easily shown that J(�) is 
onvex (down), i.e.

J((1� �)v + �w) � (1� �)J(v) + �J(w) 8� 2 [0; 1℄; 8v; w 2 H

1

0

(
):

This follows from the identity

(1� �)J(v) + �J(w) = J((1� �)v + �w) +

1

2

�(1� �)a(v � w; v � w)

and the fa
t that a(v � w; v � w) � 0 on noting that � 2 [0; 1℄.

Moreover, if u minimises J(�) then the Gateaux derivative J

0

(u) of J(�) at u,

J

0

(u)v := lim

�!0

J(u+ �v)� J(u)

�

= 0

for all v 2 H

1

0

(
). Sin
e

J(u+ �v)� J(u)

�

= a(u; v)� l(v) +

�

2

a(v; v);

we dedu
e that if u minimises J(�) then

lim

�!0

[a(u; v)� l(v) +

�

2

a(v; v)℄ = a(u; v)� l(v) = 0 8v 2 H

1

0

(
);

whi
h proves the following result.

Lemma 5.2 Suppose that u 2 H

1

0

(
) minimises J(�) over H

1

0

(
); then, u is the (unique)

solution of problem (5.4).
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This lemma is pre
isely the 
onverse of the previous lemma, and the two results together

express the equivalen
e of the weak formulation:

�nd u 2 H

1

0

(
) su
h that a(u; v) = l(v) 8v 2 H

1

0

(
) (W )

of the self-adjoint ellipti
 boundary value problem (5.5) to the asso
iated minimisation prob-

lem:

�nd u 2 H

1

0

(
) su
h that J(u) � J(v) 8v 2 H

1

0

(
): (M)

We shall use of this equivalen
e to perform an error analysis of the �nite element method.

5.3 Constru
tion of the �nite element method: abstra
t setting

Let us 
onsider the self-adjoint ellipti
 boundary value problem (5.5), and re
all that its weak

formulation is

�nd u 2 H

1

0

(
) su
h that a(u; v) = l(v) 8v 2 H

1

0

(
); (W )

where

a(u; v) =

n

X

i;j=1

Z




a

ij

(x)

�u

�x

i

�v

�x

j

dx +

Z





(x)uv dx;

l(v) =

Z




f(x)v(x) dx;

we suppose that a

ij

(x) = a

ji

(x), i; j = 1; : : : ; n, x 2

�


, 
(x) � 0, x 2

�


, a

ij

, 
 2 C(

�


),

f 2 L

2

(
), and the ellipti
ity 
ondition (5.3) holds. Re
all also that (W ) is equivalent to

the minimisation problem

�nd u 2 H

1

0

(
) su
h that J(u) � J(v) 8v 2 H

1

0

(
); (M)

where J(v) =

1

2

a(v; v)� l(v).

We 
an derive the �nite element approximation of (5.5) by repla
ing the spa
e H

1

0

(
) in (W )

by a 
ertain �nite-dimensional subspa
e V

h

� H

1

0

(
) whi
h 
onsists of 
ontinuous pie
ewise

polynomials of a �xed degree k, k � 1.

Leaving aside for a moment the question of the a
tual 
onstru
tion of V

h

, we 
onsider,

instead, some general questions 
on
erning �nite element methods whi
h do not depend on

the parti
ular properties of V

h

.

In its most general form, the �nite element approximation of (W ) is:

�nd u

h

2 V

h

su
h that a(u

h

; v

h

) = l(v

h

) 8v

h

2 V

h

: (W

h

)
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As V

h

� V = H

1

0

(
), the existen
e of a unique solution u

h

2 V

h

is a straightforward


onsequen
e of the Lax{Milgram theorem (see, Se
tion 2). In addition, we 
an repeat the

argument presented in the previous se
tion to show the equivalen
e of (W

h

) to the following

minimisation problem:

�nd u

h

2 V

h

su
h that J(u

h

) � J(v

h

) 8v

h

2 V

h

. (M

h

)

Next we study the approximation properties of (W

h

).

5.4 C�ea's lemma

C�ea's lemma expresses the fa
t that, in a 
ertain sense, the �nite element solution u

h

2 V

h

is the best approximation to u 2 V = H

1

0

(
) from V

h

. To be more pre
ise, we de�ne

(v; w)

a

:= a(v; w); v; w 2 H

1

0

(
):

Be
ause a(�; �) is a symmetri
 bilinear form on H

1

0

(
)�H

1

0

(
) and

a(v; v) � 


0

kvk

2

H

1

(
)

8v 2 H

1

0

(
);

(
f. Se
tion 2), it is easily seen that (�; �)

a

satis�es all axioms of an inner produ
t. Let k�k

a

denote the asso
iated \energy norm":

kvk

a

:= [a(v; v)℄

1=2

:

Sin
e V

h

� H

1

0

(
), taking v = v

h

2 V

h

in the statement of (W ), we dedu
e that

a(u; v

h

) = l(v

h

); v

h

2 V

h

; (5.9)

also by, (W

h

),

a(u

h

; v

h

) = l(v

h

); v

h

2 V

h

: (5.10)

Subtra
ting (5.10) from (5.9) and using the fa
t that a(�; �) is a bilinear form, we dedu
e that

a(u� u

h

; v

h

) = 0 8v

h

2 V

h

;

i.e.

(u� u

h

; v

h

)

a

= 0 8v

h

2 V

h

: (5.11)

Thus, the error between the exa
t solution u and its �nite element approximation u

h

is

orthogonal to V

h

.
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�
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u

h

0

H

1

0

(
)

u� u

h

u

V

h

s

Figure 12: The error u� u

h

is orthogonal to V

h

.

By virtue of the orthogonality property (5.11) (see Figure 12),

ku� u

h

k

2

a

= (u� u

h

; u� u

h

)

a

= (u� u

h

; u)

a

� (u� u

h

; u

h

)

a

= (u� u

h

; u)

a

= (u� u

h

; u)

a

� (u� u

h

; v

h

)

a

= (u� u

h

; u� v

h

)

a

8v

h

2 V

h

:

Then
e, by the Cau
hy{S
hwarz inequality,

ku� u

h

k

2

a

= (u� u

h

; u� v

h

)

a

� ku� u

h

k

a

ku� v

h

k

a

8v

h

2 V

h

;

therefore

ku� u

h

k

a

� ku� v

h

k

a

8v

h

2 V

h

:

Consequently,

ku� u

h

k

a

= min

v

h

2V

h

ku� v

h

k

a

;

the minimum being a
hieved when v

h

= u

h

. Thus we have proved the following result

Lemma 5.3 (C�ea's lemma) The �nite element approximation u

h

2 V

h

of u 2 H

1

0

(
) is the

best �t to u from V

h

in the energy norm k�k

a

; i.e.

ku� u

h

k

a

= min

v

h

2V

h

ku� v

h

k

a

:

This result is the key to the error analysis of the �nite element method for self-adjoint ellipti


boundary value problems. In the next se
tion we des
ribe how su
h an analysis pro
eeds

for a parti
ularly simple �nite element spa
e, V

h

, 
onsisting of 
ontinuous pie
ewise linear

fun
tions on 
.
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5.5 Optimal error bounds in the energy norm

In this se
tion, we shall employ C�ea's lemma to derive an optimal error bound for the �nite

element approximation (W

h

) of problem (W ) in the 
ase of pie
ewise linear basis fun
tions.

Let 
 = (0; 1)� (0; 1), and 
onsider the ellipti
 boundary value problem

��u = f in 
; (5.12a)

u = 0 on �
: (5.12b)

We re
all that the weak formulation of this problem is:

�nd u 2 H

1

0

(
) su
h that

Z




�

�u

�x

�v

�x

+

�u

�y

�v

�y

�

dx dy =

Z




fv dx dy 8v 2 H

1

0

(
): (5.13)

In order to 
onstru
t the �nite element approximation, we triangulate the domain as shown

in the Fig. 13. Let h = 1=N , and de�ne x

i

= ih, i = 0; : : : ; N , y

j

= jh, j = 0; : : : ; N . With

ea
h node, (x

i

; y

j

), 
ontained in the interior of 
 (labelled � in the �gure), we asso
iate a

basis-fun
tion �

ij

, i; j = 1; : : : ; N � 1, de�ned by

�

ij

(x; y) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1�

x� x

i

h

�

y � y

j

h

; (x; y) 2 1

1�

y � y

j

h

; (x; y) 2 2

1�

x

i

� x

h

; (x; y) 2 3

1�

x

i

� x

h

�

y

j

� y

h

; (x; y) 2 4

1�

y

j

� y

h

; (x; y) 2 5

1�

x� x

i

h

; (x; y) 2 6

0 otherwise:

Let V

h

= spanf�

ij

; i = 1; : : : ; N � 1; j = 1; : : : ; N � 1g. The �nite element approximation

of (5.12) (and (5.13)) is:

�nd u

h

2 V

h

su
h that

Z




�

�u

h

�x

�v

h

�x

+

�u

h

�y

�v

h

�y

�

dx dy =

Z




fv

h

dx dy 8v

h

2 V

h

: (5.14)

Letting

l(v) =

Z




f(x)v(x) dx; and

(v; w)

a

= a(v; w) =

Z




�

�v

�x

�w

�x

+

�v

�y

�w

�y

�

dx dy;
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�
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Figure 13: Subdivision (triangulation) of

�


 = [0; 1℄� [0; 1℄.
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)
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)
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)
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)
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)

Figure 14: Triangles surrounding the node (x

i

; y

j

).
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(5.13) and the �nite element method (5.14) 
an be written, respe
tively, as follows:

�nd u 2 H

1

0

(
) su
h that a(u; v) = l(v) 8v 2 H

1

0

(
); (5:13

0

)

and

�nd u

h

2 V

h

su
h that a(u

h

; v

h

) = l(v

h

) 8v

h

2 V

h

: (5:14

0

)

Let us suppose that u 2 H

2

(
)\H

1

0

(
). By the Sobolev embedding theorem H

2

(
) � C(

�


)

(
f. also Lemma 4.10 (b)); therefore u 2 C(

�


). A

ording to C�ea's lemma,

ku� u

h

k

a

= min

v

h

2V

h

ku� v

h

k

a

� ku� I

h

uk

a

; (5.15)

where I

h

u denotes the 
ontinuous pie
ewise linear interpolant of u on 
:

(I

h

u)(x; y) =

N�1

X

i=1

N�1

X

j=1

u(x

i

; y

j

)�

ij

(x; y):

Clearly (I

h

u)(x

k

; y

l

) = u(x

k

; y

l

). Sin
e u 2 C(

�


), I

h

u is 
orre
tly de�ned. Let us estimate

ku� I

h

uk

a

:

ku� I

h

uk

2

a

=

Z




�

�

�

�

�

�x

(u� I

h

u)

�

�

�

�

2

dx dy +

Z




�

�

�

�

�

�y

(u� I

h

u)

�

�

�

�

2

dx dy

=

X

4

(

Z

4

�

�

�

�

�

�x

(u� I

h

u)

�

�

�

�

2

dx dy +

Z

4

�

�

�

�

�

�y

(u� I

h

u)

�

�

�

�

2

dx dy

)

; (5.16)

where 4 is a triangle in the partition of 
. Suppose, for example, that

4 = f(x; y) : x

i

� x � x

i+1

; y

j

� y � y

j+1

+ x

i

� xg:

In order to estimate

Z

4

�

�

�

�

�

�x

(u� I

h

u)

�

�

�

�

2

dx dy +

Z

4

�

�

�

�

�

�y

(u� I

h

u)

�

�

�

�

2

dx dy;

we de�ne the 
anoni
al triangle

K = f(s; t) : 0 � s � 1; 0 � t � 1� sg

and the aÆne mapping (x; y) 7! (s; t) from 4 to K by

x = x

i

+ sh; 0 � s � 1;

y = y

j

+ th; 0 � t � 1:

Let �u(s; t) := u(x; y). Then,

�u

�x

=

��u

�s

�

�s

�x

+

��u

�t

�

�t

�x

=

1

h

�

��u

�s

;

�u

�y

=

��u

�s

�

�s

�y

+

��u

�t

�

�t

�y

=

1

h

�

��u

�t

:
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The Ja
obian of the mapping (s; t) 7! (x; y) is

J =

�(x; y)

�(s; t)

=

�

�

�

�

x

s

x

t

y

s

y

t

�

�

�

�

= h

2

:

Thus,

Z

4

�

�

�

�

�

�x

(u� I

h

u)

�

�

�

�

2

dx dy

=

Z

K

�

�

�

�

�

�s

(�u(s; t)� [(1� s� t)�u(0; 0) + s�u(1; 0) + t�u(0; 1)℄)

�

�

�

�

2

ds dt

=

Z

1

0

Z

1�s

0

�

�

�

�

��u

�s

(s; t)� [�u(1; 0)� �u(0; 0)℄

�

�

�

�

2

ds dt

=

Z

1

0

Z

1�s

0

�

�

�

�

��u

�s

(s; t)�

Z

1

0

��u

�s

(�; 0) d�

�

�

�

�

2

ds dt

=

Z

1

0

Z

1�s

0

�

�

�

�

Z

1

0

�

��u

�s

(s; t)�

��u

�s

(�; t)

�

d� +

Z

1

0

�

��u

�s

(�; t)�

��u

�s

(�; 0)

�

d�

�

�

�

�

2

ds dt

=

Z

1

0

Z

1�s

0

�

�

�

�

Z

1

0

Z

s

�

�

2

�u

�s

2

(�; t) d� d� +

Z

1

0

Z

t

0

�

2

�u

�s�t

(�; �) d� d�

�

�

�

�

2

ds dt

� 2

Z

1

0

Z

1�s

0

Z

1

0

Z

1

0

�

�

�

�

�

2

�u

�s

2

(�; t)

�

�

�

�

2

d� d� ds dt+ 2

Z

1

0

Z

1�s

0

Z

1

0

Z

1

0

�

�

�

�

�

2

�u

�s�t

(�; �)

�

�

�

�

2

d� d� ds dt

� 2

Z

1

0

Z

1

0

�

�

�

�

�

2

�u

�s

2

(�; t)

�

�

�

�

2

d� dt +

Z

1

0

Z

1

0

�

�

�

�

�

2

�u

�s�t

(�; �)

�

�

�

�

2

d� d�

= 2

Z

x

i+1

x

i

Z

y

j+1

y

j

�

�

�

�

�

2

u

�x

2

(x; y)

�

�

�

�

2

�

�

�

h

2

�

�

2

� h

�2

dx dy +

Z

x

i+1

x

i

Z

y

j+1

y

j

�

�

�

�

�

2

u

�x�y

(x; y)

�

�

�

�

2

�

�

�

h

2

�

�

2

� h

�2

dx dy:

Therefore,

Z

4

�

�

�

�

�

�x

(u� I

h

u)

�

�

�

�

2

dx dy � 2h

2

Z

x

i+1

x

i

Z

y

j+1

y

j

 

�

�

�

�

�

2

u

�x

2

�

�

�

�

2

+

1

2

�

�

�

�

�

2

u

�x�y

�

�

�

�

2

!

dx dy: (5.17)

Similarly,

Z

4

�

�

�

�

�

�y

(u� I

h

u)

�

�

�

�

2

dx dy � 2h

2

Z

x

i+1

x

i

Z

y

j+1

y

j

 

�

�

�

�

�

2

u

�y

2

�

�

�

�

2

+

1

2

�

�

�

�

�

2

u

�x�y

�

�

�

�

2

!

dx dy: (5.18)

Substituting (5.17) and (5.18) into (5.16),

ku� I

h

uk

2

a

� 4h

2

Z




 

�

�

�

�

�

2

u

�x

2

�

�

�

�

2

+

�

�

�

�

�

2

u

�x�y

�

�

�

�

2

+

�

�

�

�

�

2

u

�y

2

�

�

�

�

2

!

dx dy: (5.19)

Finally by (5.15) and (5.19),

ku� u

h

k

a

� 2h juj

H

2

(
)

: (5.20)

Thus we have proved the following result.
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Theorem 5.4 Let u be the weak solution of the boundary value problem (5.12), and let u

h

be its pie
ewise linear �nite element approximation de�ned by (5.14). Suppose that u 2

H

2

(
) \H

1

0

(
); then,

ku� u

h

k

a

� 2h juj

H

2

(
)

:

Corollary Under the hypotheses of Theorem 5.4

ku� u

h

k

H

1

(
)

�

p

5h juj

H

2

(
)

:

Proof A

ording to Theorem 5.4,

ku� u

h

k

2

a

= ju� u

h

j

2

H

1

(
)

� 4h

2

juj

2

H

2

(
)

:

Sin
e u 2 H

1

0

(
), u

h

2 V

h

� H

1

0

(
), it follows that u � u

h

2 H

1

0

(
). By the Poin
ar�e{Friedri
hs

inequality,

ku� u

h

k

2

L

2

(
)

�

1

4

ju� u

h

j

2

H

1

(
)

; (5.21)

thus,

ku� u

h

k

2

H

1

(
)

= ku� u

h

k

2

L

2

(
)

+ ju� u

h

j

2

H

1

(
)

�

5

4

ju� u

h

j

2

H

1

(
)

� 5h

2

juj

2

H

2

(
)

;

and that 
ompletes the proof. 2

A

ording to (5.21) and (5.20),

ku� u

h

k

L

2

(
)

� h � juj

H

2

(
)

:

This error estimate seems to indi
ate that the error in the L

2

-norm between u and its �nite

element approximation u

h

is of the size O(h). It turns out, however, that this bound is


rude and 
an be improved to O(h

2

). For this purpose, let us �rst observe that if w 2

H

2

(
) \H

1

0

(
); 
 = (0; 1)� (0; 1), then

k�wk

2

L

2

(
)

=

Z




�

�

2

w

�x

2

+

�

2

w

�y

2

�

2

dx dy

=

Z




�

�

2

w

�x

2

�

2

+ 2

Z




�

2

w

�x

2

�

�

2

w

�y

2

dx dy +

Z




�

�

2

w

�y

2

�

2

dx dy:

Performing integration by parts and using the fa
t that w = 0 on �
,

Z




�

2

w

�x

2

�

�

2

w

�y

2

dx dy =

Z




�

2

w

�x�y

�

�

2

w

�x�y

dx dy

=

Z




�

�

�

�

�

2

w

�x�y

�

�

�

�

2

dx dy:
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Thus,

k�wk

2

L

2

(
)

=

Z




 

�

�

�

�

�

2

w

�x

2

�

�

�

�

2

+ 2

�

�

�

�

�

2

w

�x�y

�

�

�

�

2

+

�

�

�

�

�

2

w

�y

2

�

�

�

�

2

!

dx dy

= jwj

2

H

2

(
)

:

Given g 2 L

2

(
), let w

g

2 H

1

0

(
) denote the weak solution of the boundary value problem

��w

g

= g in 
; (5.22a)

w

g

= 0 on �
; (5.22b)

then, w

g

2 H

2

(
) \H

1

0

(
); and

jw

g

j

H

2

(
)

= k�w

g

k

L

2

(
)

= kgk

L

2

(
)

: (5.23)

After this brief preparation, we turn to the derivation of the optimal error bound in the

L

2

-norm.

A

ording to the Cau
hy{S
hwarz inequality for the L

2

-inner produ
t (�; �),

(u� u

h

; g) � ku� u

h

k

L

2

(
)

kgk

L

2

(
)

8g 2 L

2

(
):

Therefore,

ku� u

h

k

L

2

(
)

= sup

g2L

2

(
)

(u� u

h

; g)

kgk

L

2

(
)

: (5.24)

Given g 2 L

2

(
), let w

g

2 H

1

0

(
) denote the weak solution of the problem (5.22), i.e.

a(w

g

; v) = l

g

(v) 8v 2 H

1

0

(
); (5.25)

where

l

g

(v) =

Z




gv dx dy = (g; v);

a(w

g

; v) =

Z




�

�w

g

�x

�v

�x

+

�w

g

�y

�v

�y

�

dx dy:

Consider the �nite element approximation of (5.25):

�nd w

gh

2 V

h

su
h that a(w

gh

; v

h

) = l

g

(v

h

) 8v

h

2 V

h

: (5.26)

From (5.25), (5.26) and the error bound (5.20), we dedu
e that

kw

g

� w

gh

k

a

� 2h jw

g

j

H

2

(
)

;
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and therefore, by (5.23),

kw

g

� w

gh

k

a

� 2h kgk

L

2

(
)

: (5.27)

Now,

(u� u

h

; g) = (g; u� u

h

) = l

g

(u� u

h

)

= a(w

g

; u� u

h

) = a(u� u

h

; w

g

): (5.28)

Be
ause w

gh

2 V

h

, (5.11) implies that

a(u� u

h

; w

gh

) = 0;

and therefore, by (5.28),

(u� u

h

; g) = a(u� u

h

; w

g

)� a(u� u

h

; w

gh

)

= a(u� u

h

; w

g

� w

gh

)

= (u� u

h

; w

g

� w

gh

)

a

:

Applying the Cau
hy{S
hwarz inequality on the right,

(u� u

h

; g) � ku� u

h

k

a

kw

g

� w

gh

k

a

;

and then
e by (5.20) and (5.27)

(u� u

h

; g) � 4h

2

juj

H

2

(
)

� kgk

L

2

(
)

: (5.29)

Substituting (5.29) into the right-hand side of (5.24), we obtain

ku� u

h

k

L

2

(
)

� 4h

2

juj

H

2

(
)

;

whi
h is our improved error bound in the L

2

-norm.

The proof presented above is 
alled the Aubin{Nits
he duality argument.
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6 Finite di�eren
e approximation of evolutionary prob-

lems

In Se
tions 3{5 we 
onsidered numeri
al methods for the approximate solution of ellipti


equations. This se
tion is devoted to �nite di�eren
e methods for time-dependent problems

des
ribed by paraboli
 and hyperboli
 equations.

6.1 Finite di�eren
e methods for paraboli
 equations

Let 
 be a bounded open set in R

n

, n � 1, with boundary � = �
, and let T > 0. In

Q = 
 � (0; T ℄, we 
onsider the initial boundary value problem for the unknown fun
tion

u(x; t), x 2 
, t 2 (0; T ℄ :

�u

�t

�

n

X

i;j=1

�

�x

j

(a

ij

(x; t)

�u

�x

i

) +

n

X

i=1

b

i

(x; t)

�u

�x

i

+ 
(x; t)u = f(x; t); x 2 
; t 2 (0; T ℄; (6.1)

u(x; t) = 0; x 2 �; t 2 [0; T ℄; (6.2)

u(x; 0) = u

0

(x); x 2

�


; (6.3)

where, for the sake of 
onsisten
y between the boundary 
ondition (6.2) and the initial


ondition (6.3), we shall assume that the initial datum u

0

satis�es: u

0

(x) = 0, x 2 �:

Suppose that u

0

2 L

2

(
), and that there exists a positive 
onstant ~
 su
h that

n

X

i;j=1

a

ij

(x; t)�

i

�

j

� ~


n

X

i=1

�

2

i

; 8� = (�

1

; : : : ; �

n

) 2 R

n

; 8x 2

�


; t 2 [0; T ℄: (6.4)

We shall also assume that

a

ij

2 C

1

(

�

Q); b

i

2 C

1

(

�

Q); i; j = 1; : : : ; n;


 2 C

0

(

�

Q); f 2 L

2

(Q);

and that


(x; t)�

1

2

n

X

i=1

�b

i

�x

i

(x; t) � 0; (x; t) 2

�

Q; (6.5)

similarly as in the ellipti
 
ase.

A partial di�erential equation of the form (6.1) is 
alled a paraboli
 equation (of se
ond

order). Simple examples of paraboli
 equations are the heat equation

�u

�t

= �u
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and the 
onve
tion-di�usion equation

�u

�t

��u+

n

X

i=1

b

i

�u

�x

i

= 0:

The proof of the existen
e of a unique solution of a paraboli
 initial boundary value problem

is more te
hni
al than the proof of the 
orresponding result for an ellipti
 boundary value

problem and so it is omitted. Instead, we shall assume that (6.1){(6.3) has a unique solu-

tion and we shall investigate its de
ay in t (t typi
ally signi�es time), and the question of


ontinuous dependen
e of the solution on the initial datum, u

0

, and the for
ing fun
tion, f .

We re
all that, for v; w 2 L

2

(
); the inner produ
t (u; v) and the norm kvk

L

2

(
)

are de�ned

by

(v; w) =

Z




v(x)w(x) dx;

kvk

L

2

(
)

= (v; v)

1=2

:

Taking the inner produ
t of (6.1) with u, noting that u(x; t) = 0, x 2 �, integrating by parts,

and employing (6.4) and (6.5),

�

�u

�t

(�; t); u(�; t)

�

+ ~


n

X

i=1













�u

�x

i

(�; t)













2

L

2

(
)

� (f(�; t); u(�; t)):

Noting that

�

�u

�t

(�; t); u(�; t)

�

=

1

2

d

dt

ku(�; t)k

2

L

2

(
)

;

and using the Poin
ar�e{Friedri
hs inequality (1.1), we obtain

1

2

d

dt

ku(�; t)k

2

L

2

(
)

+

~





?

ku(�; t)k

2

L

2

(
)

� (f(�; t); u(�; t)):

Let K = ~
=


?

; then, by the Cau
hy{S
hwarz inequality,

1

2

d

dt

ku(�; t)k

2

L

2

(
)

+K ku(�; t)k

2

L

2

(
)

� kf(�; t)k

L

2

(
)

ku(�; t)k

L

2

(
)

�

1

2K

kf(�; t)k

2

L

2

(
)

+

K

2

ku(�; t)k

2

L

2

(
)

:

Then
e,

d

dt

ku(�; t)k

2

L

2

(
)

+K ku(�; t)k

2

L

2

(
)

�

1

K

kf(�; t)k

2

L

2

(
)

:
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Multiplying both sides by e

Kt

,

d

dt

�

e

Kt

ku(�; t)k

2

L

2

(
)

�

�

e

Kt

K

kf(�; t)k

2

L

2

(
)

:

Integrating from 0 to t,

e

Kt

ku(�; t)k

2

L

2

(
)

� ku

0

k

2

L

2

(
)

�

1

K

Z

t

0

e

K�

kf(�; �)k

2

L

2

(
)

d�:

Hen
e

ku(�; t)k

2

L

2

(
)

� e

�Kt

ku

0

k

2

L

2

(
)

+

1

K

Z

t

0

e

�K(t��)

kf(�; �)k

2

L

2

(
)

d�: (6.6)

Assuming that (6.1){(6.3) has a solution, (6.6) implies that the solution is unique. Indeed,

if u

1

and u

2

are solutions of (6.1){(6.3), then u = u

1

�u

2

satis�es (6.1){(6.3) with f � 0 and

u

0

� 0; therefore, by (6.6), u � 0, i.e. u

1

� u

2

.

Let us also look at the spe
ial 
ase when f � 0 in (6.1). This 
orresponds to 
onsidering the

evolution of the solution from the initial datum, u

0

, in the absen
e of external for
es. In this


ase (6.6) yields

ku(�; t)k

2

L

2

(
)

� e

�Kt

ku

0

k

2

L

2

(
)

; t � 0: (6.7)

In other words, the energy,

1

2

ku(�; t)k

2

L

2

(
)

de
ays (dissipates) exponentially fast. Sin
e K =

~
=


?

, we have

ku(�; t)k

2

L

2

(
)

� e

�~
t=


?

ku

0

k

2

L

2

(
)

; t � 0; (6.8)

and we dedu
e that the rate of dissipation depends on the lower bound, ~
, on the di�usion


oeÆ
ients (i.e. the smaller ~
, the slower the de
ay of the energy).

In the next se
tion we 
onsider some simple �nite di�eren
e s
hemes for the numeri
al so-

lution of paraboli
 initial boundary value problems. Analogous results 
an be proved when

the spatial dis
retisation is based on the �nite di�eren
e method. In order to simplify the

presentation, we restri
t ourselves to the heat equation in one spa
e dimension.

6.1.1 Expli
it and impli
it s
hemes

We 
onsider the following simple model problem for the heat equation in one spa
e dimension.

Let Q = 
� (0; T ℄, where 
 = (0; 1), T > 0;

�nd u(x; t) su
h that

�u

�t

=

�

2

u

�x

2

+ f(x; t); x 2 (0; 1); t 2 (0; T ℄;

u(0; t) = 0; u(1; t) = 0; t 2 [0; T ℄; (6.9)

u(x; 0) = u

0

(x); x 2 [0; 1℄:
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Figure 15: Four-point sten
il for the expli
it s
heme.

We des
ribe two s
hemes for the numeri
al solution of (6.9). They both use the same dis-


retisation of �

2

u=�x

2

, but while the �rst s
heme (
alled the expli
it s
heme) employs a

forward di�eren
e in t to approximate �u=�t, the se
ond (
alled the impli
it s
heme) uses a

ba
kward di�eren
e in t.

The expli
it s
heme. We begin by 
onstru
ting a mesh on

�

Q = [0; 1℄�[0; T ℄: Let h = 1=N

be the mesh-size in the x-dire
tion and let �t = T=M be the mesh-size in the t-dire
tion;

here N and M are two integers, N � 2, M � 1. We de�ne the uniform mesh

�

Q

�t

h

on

�

Q by

�

Q

�t

h

= f(x

j

; t

m

) : x

j

= jh; 0 � j � N ; t

m

= m ��t; 0 � m �Mg:

On

�

Q

�t

h

we approximate (6.9) by the following �nite di�eren
e s
heme:

�nd U

m

j

; 0 � j � N; 0 � m �M; su
h that

U

m+1

j

� U

m

j

�t

= D

+

x

D

�

x

U

m

j

+ f(x

j

; t

m

); 1 � j � N � 1; 0 � m �M � 1;

U

m

0

= 0; U

m

N

= 0; 0 � m �M; (6.10)

U

0

j

= u

0

(x

j

); 0 � j � N;

where U

m

j

represents the approximation of u(x

j

; t

m

), the value of u at the mesh-point (x

j

; t

m

).

Clearly, (6.10) is a 4-point di�eren
e s
heme involving the values of U at the mesh-points

(x

j�1

; t

m

); (x

j

; t

m

); (x

j+1

; t

m

); (x

j

; t

m+1

);

shown in Fig. 15. The s
heme (6.10) is applied as follows. First we set m = 0. Sin
e

U

0

j�1

, U

0

j

, U

0

j+1

are given by the initial 
ondition U

0

j

= u

0

(x

j

), j = 0; : : : ; N , the values U

1

j

,

j = 0; : : : ; N , 
an be 
omputed from (6.10):

U

1

j

= U

0

j

+

�t

h

2

(U

0

j+1

� 2U

0

j

+ U

0

j�1

) + �t � f(x

j

; t

0

); j = 1; : : : ; N � 1;

U

1

0

= 0; U

1

N

= 0;
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the values of U on the time-level t = t

1

= 1 � �t 
an be 
al
ulated expli
itly from U

0

j

,

j = 0; : : : ; N , and hen
e the terminology expli
it s
heme.

Suppose we have already 
al
ulated U

m

j

, j = 0; : : : ; N , the values of U on time level t

m

=

m � �t. The values of U on the next time level t

m+1

= (m + 1) ��t 
an be obtained from

(6.10):

U

m+1

j

= U

m

j

+

�t

h

2

(U

m

j+1

� 2U

m

j

+ U

m

j�1

) + �t � f(x

j

; t

m

); j = 1; : : : ; N � 1;

U

m+1

0

= 0 U

m+1

N

= 0;

for any m, 0 � m �M � 1.

The impli
it s
heme. Alternatively, one 
an approximate the time derivative by a ba
k-

ward di�eren
e, whi
h gives rise to the following impli
it s
heme:

�nd U

m

j

; 0 � j � N; 0 � m �M; su
h that

U

m+1

j

� U

m

j

�t

= D

+

x

D

�

x

U

m+1

j

+ f(x

j

; t

m+1

); 1 � j � N � 1; 0 � m � M � 1;

U

m+1

0

= 0; U

m+1

N

= 0; 0 � m �M � 1; (6.11)

U

0

j

= u

0

(x

j

); 0 � j � N;

where U

m

j

represents the approximation of u(x

j

; t

m

), the value of u at the mesh-point (x

j

; t

m

).

Equivalently, (6.11) 
an be written

�

�t

h

2

U

m+1

j+1

+

�

2�t

h

2

+ 1

�

U

m+1

j

�

�t

h

2

U

m+1

j�1

= U

m

j

+�t � f(x

j

; t

m+1

); (6.12)

1 � j � N � 1;

U

m+1

0

= 0; U

m+1

N

= 0;

for ea
h m, 0 � m �M � 1.

This is, again, a 4-point �nite di�eren
e s
heme, but it involves the values of U at the

mesh-points

(x

j�1

; t

m+1

); (x

j

; t

m+1

); (x

j+1

; t

m+1

); (x

j

; t

m

);

shown in Fig. 16. The impli
it s
heme (6.12) is implemented as follows. First we set m = 0;

then, (6.12) is a system of linear equations with a tridiagonal matrix, and the right-hand

side 
an be 
omputed from the initial datum U

0

j

= u

0

(x

j

), and the for
ing fun
tion f(x

j

; t

1

).

Suppose we have already 
omputed U

m

j

, j = 0; : : : ; N , the values of U on time level t

m

=

m ��t: The values of U on the next time level t

m+1

= (m + 1) ��t are obtained by solving

the system of linear equations (6.12).
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Figure 16: Four-point sten
il for the impli
it s
heme.

6.1.2 Stability of expli
it and impli
it s
hemes

We shall study the stability of the s
hemes (6.10) and (6.11) simultaneously, by embedding

them into a one-parameter family of �nite di�eren
e s
hemes:

�nd U

m

j

; 0 � j � N; 0 � m �M; su
h that

U

m+1

j

� U

m

j

�t

= D

+

x

D

�

x

(�U

m+1

j

+ (1� �)U

m

j

) + f(x

j

; t

m+�

);

1 � j � N � 1;

0 � m �M � 1;

U

m

0

= 0; U

m

N

= 0; 0 � m �M; (6.13)

U

0

j

= u

0

(x

j

); 0 � j � N;

where 0 � � � 1. Re
all that

(V;W )

h

=

N�1

X

j=1

hV

j

W

j

;

kV k

h

= (V; V )

1=2

h

:

Taking the inner produ
t of (6.13) with

U

m+�

:= �U

m+1

+ (1� �)U

m

;

we get

�

U

m+1

� U

m

�t

; U

m+�

�

h

� (D

+

x

D

�

x

U

m+�

; U

m+�

)

h

= (f

m+�

; U

m+�

)

h

;

where f

m+�

j

= f

m+�

(x

j

) = f(x

j

; t

m+�

). Let

jjV ℄j

h

=

 

N

X

j=1

h jV

j

j

2

!

1=2

:
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Noting that U

m+�

0

= 0, U

m+�

N

= 0, it follows from Lemma 3.1 that

�(D

+

x

D

�

x

U

m+�

; U

m+�

)

h

=

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

:

Thus,

�

U

m+1

� U

m

�t

; U

m+�

�

h

+

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

= (f

m+�

; U

m+�

)

h

:

Sin
e

U

m+�

= �t(� �

1

2

)

U

m+1

� U

m

�t

+

U

m+1

+ U

m

2

;

it follows that

�t(� �

1

2

)













U

m+1

� U

m

�t













2

h

+

kU

m+1

k

2

h

� kU

m

k

2

h

2�t

+

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

= (f

m+�

; U

m+�

)

h

: (6.14)

Suppose � 2 [1=2; 1℄; then, � � 1=2 � 0, and therefore

kU

m+1

k

2

h

� kU

m

k

2

h

2�t

+

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

� (f

m+�

; U

m+�

)

h

�







f

m+�







h







U

m+�







h

:

A

ording to the dis
rete Poin
ar�e{Friedri
hs inequality (3.9),







U

m+�







2

h

�

1

2

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

:

Thus

kU

m+1

k

2

h

� kU

m

k

2

h

2�t

+ 2







U

m+�







2

h

�

1

2







f

m+�







2

h

+

1

2







U

m+�







2

h

;

so that







U

m+1







2

h

� kU

m

k

2

h

+�t







f

m+�







2

h

:

Summing through m,







U

k







2

h

�







U

0







2

h

+

k�1

X

m=0

�t







f

m+�







2

h

; (6.15)

for all k, 1 � k �M .

The inequality (6.15) 
an be thought of as the dis
rete version of (6.6). If follows from (6.15)

that

max

1�k�M







U

k







2

h

�







U

0







2

h

+

M�1

X

m=0

�t







f

m+�







2

h

;
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i.e.

max

1�k�M







U

k







h

�

"







U

0







2

h

+

M�1

X

m=0

�t







f

m+�







2

h

#

1=2

; (6.16)

whi
h expresses the 
ontinuous dependen
e of the solution of the �nite di�eren
e s
heme

(6.13) on the initial data and the right-hand side. This property is 
alled stability.

Thus we have proved that for � 2 [1=2; 1℄, the s
heme (6.13) is stable without any limitations

on the time step in terms of h. In other words, the s
heme (6.13) is un
onditionally stable

for � 2 [1=2; 1℄.

Now let us 
onsider the 
ase � 2 [0; 1=2). First suppose that f � 0: Then, a

ording to

(6.14),

kU

m+1

k

2

h

� kU

m

k

2

h

2�t

+

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

= �t(

1

2

� �)













U

m+1

� U

m

�t













2

h

: (6.17)

Re
alling (6.13) and the fa
t that f � 0, it follows that

U

m+1

� U

m

�t

= D

+

x

D

�

x

U

m+�

:

Moreover, a simple 
al
ulation based on the inequality (a� b)

2

� 2a

2

+ 2b

2

shows that







D

+

x

D

�

x

U

m+�







2

h

�

4

h

2

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

: (6.18)

Thus, (6.17) implies that

kU

m+1

k

2

h

� kU

m

k

2

h

2�t

+

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

�

4�t

h

2

(

1

2

� �)

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

;

i.e.

kU

m+1

k

2

h

� kU

m

k

2

h

2�t

+

�

1�

2�t(1� 2�)

h

2

�

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

� 0:

Let us assume that

�t �

h

2

2(1� 2�)

; � 2 [0; 1=2); (6.19)

then,







U

m+1







2

h

� kU

m

k

2

h

; m = 0; : : : ;M � 1;

and hen
e,

max

1�k�M







U

k







h

�







U

0







h

:

76



Thus, again, the s
heme is stable, but only if (6.19) holds. In other words, for � 2 [0; 1=2)

the s
heme (6.13) is 
onditionally stable, the 
ondition being (6.19) (when f � 0).

Let us suppose that � 2 [0; 1=2), as before, but 
onsider the general situation when f is

not identi
ally zero. We shall prove that (6.13) is still only 
onditionally stable, and, in

parti
ular, that the expli
it s
heme, 
orresponding to � = 0, is 
onditionally stable.

Re
alling (6.14),

kU

m+1

k

2

h

� kU

m

k

2

h

2�t

+

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

�







f

m+�







h







U

m+�







h

+�t(

1

2

� �)













U

m+1

� U

m

�t













2

h

: (6.20)

By (6.13), for any � 2 (0; 1),













U

m+1

� U

m

�t













2

h

=







D

+

x

D

�

x

U

m+�

+ f

m+�







2

h

�

�







D

+

x

D

�

x

U

m+�







h

+







f

m+�







h

�

2

� (1 + �)







D

+

x

D

�

x

U

m+�







2

h

+ (1 + �

�1

)







f

m+�







2

h

� (1 + �)

4

h

2

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

+ (1 + �

�1

)







f

m+�







2

h

;

where (6.18) has been applied in the last line. Substituting into (6.20),

kU

m+1

k

2

h

� kU

m

k

2

h

2�t

+

�

1��t(

1

2

� �) �

4(1 + �)

h

2

�

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

�







f

m+�







h







U

m+�







h

+�t(

1

2

� �)(1 + �

�1

)







f

m+�







2

h

: (6.21)

A

ording to the dis
rete Poin
ar�e{Friedri
hs inequality (3.9),







U

m+�







2

h

�

1

2

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

;

and therefore,







f

m+�







h







U

m+�







h

�

1

8�

2







f

m+�







2

h

+ 2�

2







U

m+�







2

h

�

1

8�

2







f

m+�







2

h

+ �

2

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

: (6.22)

Substituting (6.22) into (6.21),

kU

m+1

k

2

h

� kU

m

k

2

h

2�t

+

�

1��t

2(1� 2�)(1 + �)

h

2

� �

2

�

�

�

�

�

D

�

x

U

m+�

�

�

�

2

h

�

1

8�

2







f

m+�







2

h

+�t(

1

2

� �)(1 + �

�1

)







f

m+�







2

h

:
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Let us suppose that

�t �

h

2

2(1� 2�)

(1� �); � 2 [0; 1=2);

where � is a �xed real number, � 2 (0; 1). Then

1��t

2(1� 2�)(1 + �)

h

2

� �

2

� 0;

so that







U

m+1







2

h

� kU

m

k

2

h

+

�t

4�

2







f

m+�







2

h

+�t

2

(1� 2�)(1 + �

�1

)







f

m+�







2

h

:

Letting 


�

= 1=(4�

2

) +�t(1� 2�)(1 + �

�1

), upon summation through all m this implies that

max

1�k�M







U

k







2

h

�







U

0







2

h

+ 


�

M�1

X

m=0

�t







f

m+�







2

h

:

Taking the square root of both sides, we dedu
e that for � 2 [0; 1=2) the s
heme (6.13) is


onditionally stable in the sense that

max

1�k�M







U

k







h

�

"







U

0







2

h

+ 


�

M�1

X

m=0

�t







f

m+�







2

h

#

1=2

; (6.23)

provided

�t �

h

2

2(1� 2�)

(1� �); 0 < � < 1: (6.24)

To summarise: when � 2 [1=2; 1℄, the di�eren
e s
heme (6.13) is un
onditionally stable.

In the parti
ular the impli
it s
heme, 
orresponding to � = 1, and the Crank{Ni
olson

s
heme, 
orresponding to � = 1=2, are both un
onditionally stable, and (6.16) holds. When

� 2 [0; 1=2), the s
heme (6.13) is 
onditionally stable, subje
t to the time step limitation

(6.24). In parti
ular the expli
it s
heme, 
orresponding to � = 0; is only 
onditionally stable.

6.1.3 Error analysis of di�eren
e s
hemes for the heat equation

In this se
tion we investigate the a

ura
y of the �nite di�eren
e s
heme (6.13) for the

numeri
al solution of the initial boundary value problem (6.9).

We de�ne the trun
ation error of the s
heme (6.13) by

'

m+�

j

=

u(x

j

; t

m+1

)� u(x

j

; t

m

)

�t

�D

+

x

D

�

x

[�u(x

j

; t

m+1

) + (1� �)u(x

j

; t

m

)℄� f(x

j

; t

m+�

);

1 � j � N � 1;

0 � m �M � 1;
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and the global error by

e

m

j

= u(x

j

; t

m

)� U

m

j

:

It is easily seen that e

m

j

satis�es the following �nite di�eren
e s
heme:

e

m+1

j

� e

m

j

�t

�D

+

x

D

�

x

[�e

m+1

j

+ (1� �)e

m

j

℄ = '

m+�

j

;

1 � j � N � 1;

0 � m �M � 1:

e

m

0

= 0; e

m

N

= 0; 0 � m �M;

e

0

j

= 0; 0 � j � N:

A

ording to the stability results proved in Se
tion 6.1.2,

max

1�m�M

ku

m

� U

m

k

h

�

"

M�1

X

k=0

�t







'

k+�







2

h

#

1=2

; � 2 [1=2; 1℄; (6.25)

by (6.16), and

max

1�m�M

ku

m

� U

m

k

h

�

"




�

M�1

X

k=0

�t







'

k+�







2

h

#

1=2

; � 2 [0; 1=2); (6.26)

provided

�t �

h

2

2(1� 2�)

(1� �); 0 < � < 1; � 2 [0; 1=2):

In either 
ase we have to estimate







'

m+�







h

. Using the di�erential equation, '

m+�

j


an be

written as

'

m+�

j

=

�

u(x

j

; t

m+1

)� u(x

j

; t

m

)

�t

�

�u

�t

(x

j

; t

m+�

)

�

+

�

�

2

u

�x

2

(x

j

; t

m+�

)�D

+

x

D

�

x

(�u(x

j

; t

m+1

) + (1� �)u(x

j

; t

m

))

�

: (6.27)

In order to estimate the size of the trun
ation error, '

m+�

j

, we expand it into a Taylor series

about the point (x

j

; t

m+1=2

).

u

m+1

j

=

"

u+

�t

2

�u

�t

+

1

2

�

�t

2

�

2

�

2

u

�t

2

+

1

6

�

�t

2

�

3

�

3

u

�t

3

+ : : :

#

m+1=2

j

u

m

j

=

"

u�

�t

2

�u

�t

+

1

2

�

�t

2

�

2

�

2

u

�t

2

�

1

6

�

�t

2

�

3

�

3

u

�t

3

+ : : :

#

m+1=2

j

:
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If we subtra
t the se
ond of these expansions from the �rst, all the even-numbered terms

will 
an
el, and we obtain

u(x

j

; t

m+1

)� u(x

j

; t

m

)

�t

=

�

�u

�t

+

1

24

(�t)

2

�

3

u

�t

3

+ : : :

�

m+1=2

j

: (6.28)

Also, sin
e

D

+

x

D

�

x

u(x

j

; t

m+1

) =

�

�

2

u

�x

2

+

1

12

h

2

�

4

u

�x

4

+

2

6!

h

4

�

6

u

�x

6

+ : : :

�

m+1

j

;

expanding the right-hand side about the point (x

j

; t

m+1=2

),

D

+

x

D

�

x

u(x

j

; t

m+1

) =

�

�

2

u

�x

2

+

h

2

12

�

4

u

�x

4

+

2h

4

6!

�

6

u

�x

6

+ : : :

�

m+1=2

j

+

�t

2

�

�

3

u

�x

2

�t

+

h

2

12

�

5

u

�x

4

�t

+ : : :

�

m+1=2

j

+

1

2

�

�t

2

�

2

�

�

4

u

�x

2

�t

2

+ : : :

�

m+1=2

j

:

There is a similar expansion for D

+

x

D

�

x

u(x

j

; t

m

); 
ombining these we obtain:

D

+

x

D

�

x

[�u(x

j

; t

m+1

) + (1� �)u(x

j

; t

m

)℄ =

�

�

2

u

�x

2

+

h

2

12

�

4

u

�x

4

+

2h

4

6!

�

6

u

�x

6

+ : : :

�

m+1=2

j

+ (� �

1

2

)�t

�

�

3

u

�x

2

�t

+

h

2

12

�

5

u

�x

4

�t

+ : : :

�

m+1=2

j

(6.29)

+

1

8

(�t)

2

�

�

4

u

�x

2

�t

2

+ : : :

�

m+1=2

j

:

Substituting (6.28) and (6.29) into (6.27):

'

m+�

j

=

�

(

1

2

� �)�t

�

3

u

�x

2

�t

�

h

2

12

�

4

u

�x

4

�

m+1=2

j

+ (�t)

2

�

1

24

�

3

u

�t

3

�

1

8

�

4

u

�x

2

�t

2

�

m+1=2

j

+ h

2

�

1

12

(

1

2

� �)�t

�

5

u

�x

4

�t

�

2

6!

h

2

�

6

u

�x

6

+ : : :

�

m+1=2

j

+ f(x

j

; t

m+1=2

)� f(x

j

; t

m+�

):

Then
e

�

�

'

m+�

j

�

�

�

h

2

12

M

4x

+

�t

2

24

(M

3t

+ 3M

2x2t

) +H:O:T:; � =

1

2

; (6.30)
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�

�

'

m+�

j

�

�

�

�

�

1

2

� �

�

�

�t(M

2t

+ 2M

2x1t

) +

h

2

12

M

4x

+H:O:T:; � 6=

1

2

; (6.31)

where

M

kxlt

= max

(x;t)2

�

Q

�

�

�

�

�

k+l

�x

k

�t

l

u(x; t)

�

�

�

�

:

Substituting (6.30) into (6.25) and (6.31) into (6.25) or (6.26) we obtain the following error

bounds:

max

1�m�M

ku

m

� U

m

k

h

� C

1

(h

2

+�t

2

); � =

1

2

; (6.32)

where C

1

is a positive 
onstant, independent of h and �t;

max

1�m�M

ku

m

� U

m

k

h

� C

2

(h

2

+�t); � 2 (1=2; 1℄; (6.33)

where C

2

is a positive 
onstant, independent of h and �t. Moreover,

max

1�m�M

ku

m

� U

m

k

h

� C

3

(h

2

+�t); � 2 [0; 1=2); (6.34)

where C

3

= (


�

)

1=2

� C

2

, provided that

�t �

h

2

2(1� 2�)

(1� �); � 2 (0; 1); � 2 [0; 1=2):

Thus we dedu
e that the Crank{Ni
olson s
heme (� = 1=2) 
onverges in the norm k�k

h

un-


onditionally, with error O(h

2

+(�t)

2

): For � 2 (1=2; 1℄ the s
heme 
onverges un
onditionally

with error O(h

2

+�t): For � 2 [0; 1=2) the di�eren
e s
heme 
onverges with error O(h

2

+�t),

but only 
onditionally.

The stability and 
onvergen
e results presented here 
an be extended to paraboli
 equations

in more than one spa
e dimension, but the exposition of this theory is beyond the s
ope of

these notes.

6.2 Finite di�eren
e methods for hyperboli
 equations

Let 
 be a bounded open set in R

n

, n � 1, with boundary � = �
, and let T > 0. In

Q = 
� (0; T ℄, we 
onsider the initial boundary value problem

�u

�t

+

n

X

i=1

b

i

(x) �

�u

�x

i

+ 
(x; t)u = f(x; t); x 2 
; t 2 (0; T ℄; (6.35)

u(x; t) = 0; x 2 �

�

; t 2 [0; T ℄; (6.36)

u(x; 0) = u

0

(x) x 2

�


; (6.37)
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b

x

�(x)

�

�

�

+

T

t




Q

�

�

where

�

�

= fx 2 � : b(x) � �(x) < 0g;

b = (b

1

; : : : ; b

n

) and �(x) denotes the unit outward normal to � at x 2 �.

�

�

will be 
alled the in
ow boundary. Its 
omplement, �

+

= �n�

�

, will be referred to

as the out
ow boundary. It is important to note that, unlike paraboli
 equations where a

boundary 
ondition is spe
i�ed on the whole of � � [0; T ℄, in a hyperboli
 initial boundary

value problem the boundary 
ondition is only imposed on part of the boundary, namely on

�

�

� [0; T ℄, or else the problem may have no solution.

We shall assume that

b

i

2 C

1

(

�


); i = 1; : : : ; n; (6.38a)


 2 C(

�

Q); f 2 L

2

(Q); (6.38b)

u

0

2 L

2

(
): (6.38
)

In order to ensure 
onsisten
y between the initial and the boundary 
ondition, we shall

suppose that u

0

(x) = 0, x 2 �

�

.

The existen
e of a unique solution (at least for 
, f 2 C

1

(

�

Q), u

0

2 C

1

(

�


)) 
an be shown

using the method of 
hara
teristi
s. More generally, for b

i

, 
, f , u

0

, obeying the smoothness
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requirements of (6.38), a unique solution still exists, but the proof of this result is beyond the

s
ope of these notes. Let us, instead, 
onsider the behaviour of the solution of (6.35){(6.37)

in time.

We make the additional hypothesis:


(x; t)�

1

2

n

X

i=1

�b

i

�x

i

(x) � 0; x 2

�


; t 2 [0; T ℄: (6.39)

Taking the inner produ
t of (6.35) with u in L

2

(
), we obtain:

�

�u

�t

; u

�

+

 


(�; t)�

1

2

n

X

i=1

�b

i

�x

i

(�); u

2

!

+

1

2

Z

�

+

"

n

X

i=1

b

i

(x)�

i

(x)

#

u

2

(x; t) ds(x) = (f; u); (6.40)

where �(x) = (�

1

(x); : : : ; �

n

(x)) is the unit outward normal ve
tor to � at x 2 �. By virtue

of (6.39) and noting that

�

�u

�t

; u

�

=

Z




�u

�t

(x; t) � u(x; t) dx

=

Z




1

2

�

�t

u

2

(x; t) dx =

1

2

d

dt

Z




u

2

(x; t) dx

=

1

2

d

dt

ku(�; t)k

2

;

it follows from (6.40) that

1

2

d

dt

ku(�; t)k

2

+

1

2

Z

�

+

"

n

X

i=1

b

i

(x)�

i

(x)

#

u

2

(x; t) ds(x) � (f; u):

By the Cau
hy{S
hwarz inequality,

(f; u) � kf(�; t)k � ku(�; t)k

�

1

2

kf(�; t)k

2

+

1

2

ku(�; t)k

2

;

and therefore,

d

dt

ku(�; t)k

2

+

Z

�

+

"

n

X

i=1

b

i

(x)�

i

(x)

#

u

2

(x; t) ds(x)� ku(�; t)k

2

� kf(�; t)k

2

; t 2 [0; T ℄:

Multiplying both sides by e

�t

, this 
an be rewritten as follows:

d

dt

e

�t

ku(�; t)k

2

+ e

�t

Z

�

+

"

n

X

i=1

b

i

(x)�

i

(x)

#

u

2

(x; t) ds � e

�t

kf(�; t)k

2

; t 2 [0; T ℄:

83



Integrating this inequality with respe
t to t yields

e

�t

ku(�; t)k

2

+

Z

t

0

e

��

Z

�

+

"

n

X

i=1

b

i

(x)�

i

(x)

#

u

2

(x; �) ds(x) d�

� ku

0

k

2

+

Z

t

0

e

��

kf(�; �)k

2

d�; t 2 [0; T ℄:

Hen
e

ku(�; t)k

2

+

Z

t

0

e

t��

Z

�

+

"

n

X

i=1

b

i

(x)�

i

(x)

#

u

2

(x; �) ds(x) d�

� e

t

ku

0

k

2

+

Z

t

0

e

t��

kf(�; �)k

2

d�; t 2 [0; T ℄: (6.41)

This, so 
alled, energy inequality expresses the 
ontinuous dependen
e of the solution to

(6.35){(6.37) on the data. In parti
ular it 
an be used to prove the uniqueness of the

solution. Indeed, if u

1

and u

2

are solutions of (6.35){(6.37), then u := u

1

� u

2

also solves

(6.35){(6.37), with f � 0 and u

0

� 0. Thus, by (6.41), ku(�; t)k = 0, t 2 [0; T ℄ and therefore

u � 0, i.e. u

1

� u

2

.

Let us 
onsider a parti
ularly important 
ase when


 � 0; f � 0; and div b =

n

X

i=1

�b

i

�x

i

� 0;

where b(x) = (b

1

(x); : : : ; b

n

(x)): Then, by virtue of (6.40),

1

2

d

dt

ku(�; t)k

2

+

1

2

Z

�

+

[b(x) � �(x)℄ u

2

(x; t) ds(x) = 0;

and therefore,

ku(�; t)k

2

+

Z

t

0

Z

�

+

[b(x) � �(x)℄ u

2

(x; �) ds(x) d� = ku

0

k

2

; (6.42)

whi
h expresses the 
onservation of energy in the physi
al system modelled by (6.35){(6.37).

6.2.1 Expli
it �nite di�eren
e s
heme

In this se
tion we des
ribe a simple expli
it �nite di�eren
e s
heme for the numeri
al solution

of the 
onstant-
oeÆ
ient hyperboli
 equation in one spa
e dimension:

�u

�t

+ b

�u

�x

= f(x; t); x 2 (0; 1); t 2 (0; T ℄; (6.43)
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subje
t to the boundary and initial 
onditions

u(x; t) = 0; x 2 �

�

; t 2 [0; T ℄; (6.44a)

u(x; 0) = u

0

(x); x 2 [0; 1℄: (6.44b)

If b > 0 then �

�

= f0g, and if b < 0 then �

�

= f1g. Let us assume, for example, that b > 0.

Then the appropriate boundary 
ondition is

u(0; t) = 0; t 2 [0; T ℄: (6.45)

To 
onstru
t a �nite di�eren
e approximation of (6.43){(6.45) let h = 1=N be the mesh-size

in the x-dire
tion and �t = T=M the mesh-size in the time-dire
tion, t. Let us also de�ne

x

j

= jh; j = 0; : : : ; N; t

m

= m ��t; m = 0; : : : ;M:

At the mesh-point (x

j

; t

m

), (6.43) is approximated by the expli
it �nite di�eren
e s
heme

U

m+1

j

� U

m

j

�t

+ b �D

�

x

U

m

j

= f(x

j

; t

m

); j = 1; : : : ; N; (6.46)

m = 0; : : : ;M � 1;

U

m

0

= 0; m = 0; : : : ;M; (6.47)

U

0

j

= u

0

(x

j

); j = 0; : : : ; N: (6.48)

Equivalently,

U

m+1

j

= (1� �)U

m

j

+ �U

m

j�1

+�tf(x

j

; t

m

); j = 1; : : : ; N;

m = 0; : : : ;M � 1;

U

m

0

= 0; m = 0; : : : ;M;

U

0

j

= u

0

(x

j

); j = 0; : : : ; N;

where

� =

b�t

h

;

� is 
alled the Courant number.

Suppose that 0 � � � 1; then,

�

�

U

m+1

j

�

�

� (1� �)

�

�

U

m

j

�

�

+ �

�

�

U

m

j�1

�

�

+�t jf(x

j

; t

m

)j

� (1� �) max

0�j�N

�

�

U

m

j

�

�

+ � max

1�j�N+1

�

�

U

m

j�1

�

�

+�t max

0�j�N

jf(x

j

; t

m

)j

= max

0�j�N

�

�

U

m

j

�

�

+�t max

0�j�N

jf(x

j

; t

m

)j :

85



Hen
e

max

0�j�N

�

�

U

m+1

j

�

�

� max

0�j�N

�

�

U

m

j

�

�

+�t max

0�j�N

jf(x

j

; t

m

)j :

Let us de�ne the mesh-dependent norm

kUk

1

= max

0�j�N

jU

j

j ;

then,







U

m+1







1

� kU

m

k

1

+�t kf(�; t

m

)k

1

; m = 0; : : : ;M � 1:

Summing through m, we get

max

1�k�M







U

k







1

�







U

0







1

+

M�1

X

m=0

�t kf(�; t

m

)k

1

;

whi
h expresses the stability of the �nite di�eren
e s
heme (6.46){(6.48) under the 
ondition

0 � � =

b�t

h

� 1:

Thus we have proved that (6.46){(6.48) is 
onditionally stable in the k�k

1

norm, the 
ondition

being that the Courant number, �, is in the interval [0; 1℄.

It is possible to show that the s
heme (6.46){(6.48) is also stable in the mesh-dependent

L

2

-norm, jj�℄j

h

. Re
all that

jjV ℄j

2

h

=

N

X

i=1

hV

2

i

:

The asso
iated inner produ
t is

(V;W ℄

h

=

N

X

i=1

hV

i

W

i

:

Sin
e

U

m

j

=

U

m

j

+ U

m

j�1

2

+

U

m

j

� U

m

j�1

2

;

and U

m

0

= 0, it follows that

(U

m

; D

�

x

U

m

℄

h

=

N

X

j=1

hU

m

j

U

m

j

� U

m

j�1

h

=

1

2

N

X

j=1

f(U

m

j

)

2

� (U

m

j�1

)

2

g+

h

2

N

X

j=1

h

�

U

m

j

� U

m

j�1

h

�

2

(6.49)

=

1

2

(U

m

N

)

2

+

h

2

�

�

�

�

D

�

x

U

m

�

�

�

2

h

:
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In addition, sin
e

U

m

j

=

U

m+1

j

+ U

m

j

2

�

U

m+1

j

� U

m

j

2

; m = 0; : : : ;M � 1;

we have that

�

U

m+1

� U

m

�t

; U

m

�

h

=

1

2�t

�

�

�

�

�

U

m+1

�

�

�

2

h

� jjU

m

℄j

2

h

�

(6.50)

�

�t

2

�

�

�

�

�

�

�

�

U

m+1

� U

m

�t

�

�

�

�

�

2

h

; m = 0; : : : ;M � 1: (6.51)

Thus, taking the (�; �℄

h

-inner produ
t of (6.46) with U

m

and using (6.49) and (6.51),

�

�

�

�

U

m+1

�

�

�

2

h

+ �t � b(U

m

N

)

2

+ bh�t

�

�

�

�

D

�

x

U

m

�

�

�

2

h

� jjU

m

℄j

2

h

� �t

2

�

�

�

�

�

�

�

�

U

m+1

� U

m

�t

�

�

�

�

�

2

h

= 2�t(f

m

; U

m

℄

h

; m = 0; : : : ;M � 1: (6.52)

First suppose that f � 0; then,

U

m+1

� U

m

�t

= �b �D

�

x

U

m

;

so that

�

�

�

�

U

m+1

�

�

�

2

h

+�t � b jU

m

N

j

2

+ bh�t(1� �)

�

�

�

�

D

�

x

U

m

�

�

�

2

h

= jjU

m

℄j

2

h

; m = 0; : : : ;M � 1:

Summing through m,

�

�

�

�

U

k

�

�

�

2

h

+

k�1

X

m=0

�t � b jU

m

N

j

2

+ bh(1� �)

k�1

X

m=0

�t

�

�

�

�

D

�

x

U

m

�

�

�

2

h

=

�

�

�

�

U

0

�

�

�

2

h

; k = 1; : : : ;M;(6.53)

whi
h proves the stability of the s
heme in the 
ase when f � 0 under the assumption that

0 � � =

b�t

h

� 1:

In parti
ular, if � = 1, we have that

�

�

�

�

U

k

�

�

�

2

h

+

k�1

X

m=0

�t � b jU

m

N

j

2

=

�

�

�

�

U

0

�

�

�

2

h

; k = 1; : : : ;M;

whi
h is the dis
rete version of the identity (6.41), and expresses 
onservation of energy in

the dis
rete sense. This is equality is also trivially valid when � = 0 (i.e. when b = 0).

More generally, for 0 � � � 1, (6.53) implies

�

�

�

�

U

k

�

�

�

2

h

+

k�1

X

m=0

�t � b jU

m

N

j

2

�

�

�

�

�

U

0

�

�

�

2

h

; k = 1; : : : ;M;
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with stri
t inequality when 0 < � < 1. Therefore, when 0 < � < 1 the dis
rete energy

dissipates even through, as we have shown in (6.42), the 
ontinuous 
ounterpart of the

dis
rete energy is 
onserved. This feature of the �rst-order upwind s
heme is also quite

evident in numeri
al experiments: as time evolves, the numeri
al solution will be seen to be

smeared in 
omparison with the analyti
al solution.

Now let us 
onsider the question of stability in the jj�℄j

h

-norm in the general 
ase of f 6� 0:

Sin
e

�

�

�

�

�

�

�

�

U

m+1

� U

m

�t

�

�

�

�

�

2

h

=

�

�

�

�

f

m

� bD

�

x

U

m

�

�

�

2

h

� fjjf

m

℄j

h

+ b

�

�

�

�

D

�

x

U

m

�

�

�

h

g

2

�

�

1 +

1

�

0

�

jjf

m

℄j

2

h

+ (1 + �

0

)b

2

�

�

�

�

D

�

x

U

m

�

�

�

2

h

; �

0

> 0;

and

(f

m

; U

m

℄

h

� jjf

m

℄j

h

jjU

m

℄j

h

�

1

2

jjf

m

℄j

2

h

+

1

2

jjU

m

℄j

2

h

;

it follows from (6.52) that

�

�

�

�

U

m+1

�

�

�

2

h

+�t � b jU

m

n

j

2

+ bh�t

�

1� (1 + �

0

)

b�t

h

�

�

�

�

�

D

�

x

U

m

�

�

�

2

h

� �t

��

1 +

1

�

0

�

�t+ 1

�

jjf

m

℄j

2

h

+ (1 + �t) jjU

m

℄j

2

h

:

Letting � = 1� 1=(1 + �

0

) 2 (0; 1), and assuming

0 � � =

b�t

h

� 1� �;

we have, for m = 0; : : : ;M � 1,

�

�

�

�

U

m+1

�

�

�

2

h

+�t � b jU

m

N

j

2

� jjU

m

℄j

2

h

+�t

�

1 +

�t

�

�

jjf

m

℄j

2

h

+�t jjU

m

℄j

2

h

:

Upon summation,

�

�

�

�

U

k

�

�

�

2

h

+

 

k�1

X

m=0

�t � b jU

m

N

j

2

!

�

�

�

�

�

U

0

�

�

�

2

h

+

�

1 +

�t

�

�

k�1

X

m=0

�t jjf

m

℄j

2

h

+

k�1

X

m=0

�t jjU

m

℄j

2

h

:

(6.54)

for k = 1; : : : ;M: The next lemma is easily proved by indu
tion.

Lemma 6.1 Let (a

k

), (b

k

), (


k

) and (d

k

) be four sequen
es of non-negative numbers su
h

that the sequen
e (


k

) is non-de
reasing and

a

k

+ b

k

� 


k

+

k�1

X

m=0

d

m

a

m

; k � 1; a

0

+ b

0

� 


0

:
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Then

a

k

+ b

k

� 


k

exp

 

k�1

X

m=0

d

m

!

; k � 1:

Applying this lemma to (6.54) with

a

k

=

�

�

�

�

U

k

�

�

�

2

h

; k � 0;

b

k

=

k�1

X

m=0

�t � b jU

m

N

j

2

; k � 1; b

0

= 0;




k

=

�

�

�

�

U

0

�

�

�

2

h

+

�

1 +

�t

�

�

k�1

X

m=0

�t jjf

m

℄j

2

h

; k � 1; 


0

=

�

�

�

�

U

0

�

�

�

2

h

;

d

k

= �t; k = 1; 2; : : : ;M;

we obtain,

�

�

�

�

U

k

�

�

�

2

h

+

k�1

X

m=0

�t � b � jU

m

N

j

2

� e

t

k

 

�

�

�

�

U

0

�

�

�

2

h

+

�

1 +

�t

�

�

k�1

X

m=0

�t jjf

m

℄j

2

h

!

; k = 1; : : : ;M;

and hen
e stability:

max

1�k�M

 

�

�

�

�

U

k

�

�

�

2

h

+

k�1

X

m=0

�t � b � jU

m

N

j

2

!

� e

T

 

�

�

�

�

U

0

�

�

�

2

h

+

�

1 +

�t

�

�

M�1

X

m=0

�t jjf

m

℄j

2

h

!

: (6.55)

An error estimate for the di�eren
e s
heme (6.46){(6.48) is easily derived from stability.

We de�ne the global error, e, and the trun
ation error, ', by

e

m

j

= u(x

j

; t

m

)� U

m

j

;

'

m

j

=

u(x

j

; t

m+1

)� u(x

j

; t

m

)

�t

� bD

�

x

u(x

j

; t

m

)� f(x

j

; t

m

):

It is easily seen that

e

m+1

j

� e

m

j

�t

+ bD

�

x

e

m

j

= '

m

j

; j = 1; : : : ; N; m = 0; : : : ;M � 1;

e

m

0

= 0; m = 0; : : : ;M;

e

0

j

= 0; j = 0; : : : ; N:

By virtue of the stability inequality established in the �rst part of this se
tion,

max

1�m�M

ke

m

k

1

�

M�1

X

k=0

�t k'

m

k

1

: (6.56)
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By Taylor series expansion of '

m

j

about the point (x

j

; t

m

),

'

m

j

=

1

2

�t

�

2

u

�t

2

(x

j

; �

m

) +

1

2

bh

�

2

u

�x

2

(�

j

; t

m

); �

m

2 (t

m

; t

m+1

); �

j

2 (x

j�1

; x

j

);

so that

�

�

'

m

j

�

�

�

1

2

(�tM

2t

+ bhM

2x

);

where

M

kxlt

= max

(x;t)2

�

Q

�

�

�

�

�

k+l

�x

k

�t

l

(x; t)

�

�

�

�

:

De�ning M = max(M

2t

;M

2x

), we have

�

�

'

m

j

�

�

�

1

2

M(�t + bh) (= O(h+�t)): (6.57)

Thus, by (6.56),

max

1�m�M

ku

m

� U

m

k

1

�

1

2

TM(�t + bh);

so the s
heme (6.46){(6.48) is �rst-order 
onvergent.

Analogously, using the stability result (6.54) in the dis
rete L

2

-norm jj�℄j

h

, (6.57) implies that

max

1�m�M

ku

m

� U

m

k

h

� 


?

�

� (�t+ bh);

where 


?

�

=

1

2

e

T=2

(1 + T=�)

1=2

T

1=2

M .

The analysis presented here 
an be extended to linear �rst-order hyperboli
 equations with

variable 
oeÆ
ients and to hyperboli
 problems in more than one spa
e-dimension, as well

as to di�eren
e s
hemes on non-uniform meshes.
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