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Abstract. When describing the anisotropic evolution of microstructures in
solids using phase-field models, the anisotropy of the crystalline phases is usu-

ally introduced into the interfacial energy by directional dependencies of the

gradient energy coefficients. We consider an alternative approach based on a
wavelet analogue of the Laplace operator that is intrinsically anisotropic and

linear. The paper focuses on the classical coupled temperature/Ginzburg–
Landau type phase-field model for dendritic growth. For the model based on

the wavelet analogue, existence, uniqueness and continuous dependence on ini-

tial data are proved for weak solutions. Numerical studies of the wavelet based
phase-field model show dendritic growth similar to the results obtained for

classical phase-field models.

1. Introduction. Since at least the late 1980s, wavelets have been the focus of
intensive research and have developed into an indispensable tool for signal and
image processing. Wavelet compression is used, for example, in the JPEG2000
image compression standard. From the vast literature on the mathematical theory
of wavelets we mention only the ten lectures by Daubechies [8], which provide
a classical introduction to the field, and a more recent overview by Mallat [20].
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Wavelets have also been explored for their use in numerical approximation of partial
differential equations and operator equations [7] through Galerkin type methods
[15], in wavelet collocation methods [30, 29] or as a tool to determine sparse grids
for other common discretization methods [16, 14, 6, 27].

A completely new role of wavelets in the context of partial differential equations
has recently been introduced by Dobrosotskaya and Bertozzi [9, 10, 11] in applica-
tions from image processing. The key idea is to replace the Laplace operator in a
Ginzburg–Landau free energy formulation by a pseudo-differential operator defined
in wavelet space, by using a Besov type seminorm instead of the standard Sobolev
H1 seminorm. In the Euler–Lagrange equation the Laplacian is correspondingly
replaced by a “derivative-free” wavelet analogue. The new approach, intended to
improve results for sharper image reconstructions, also introduced anisotropy of the
solutions with a four- or eight-fold symmetry. In particular, the authors determined
and proved the Γ-limit for the new energy [10, 2], showed the square anisotropy of
the Wulff shape [33, 13, 4], and proved the well-posedness of the wavelet analogue
of the Allen–Cahn equation [11]. In the work presented here, we make use of this
idea to model anisotropic patterns in dendritic growth.

One of the most widely studied model equations of dendritic recrystallization
goes back to the work by Kobayashi [18], and has subsequently been discussed in a
number of studies, see for example Caginalp [5], Penrose and Fife [26], Wang et al.
[31] and McFadden et al. [22]. For reviews we refer to Glicksman [12], Steinbach
[28] and, for a survey from an analytical point of view, to the recent review by
Miranville [23].

The approach introduces a phase-field model where the gradient terms have an
anisotropic weight γ that depends on the direction of the spatial gradient of the
phase-field variable ∇u. Usually, γ is written as a function of the angle θ between
the direction of∇u and a reference direction. A typical choice is γ(θ) = 1+δ cos(nθ),
where n > 0 is an integer parameter that leads to an n-fold symmetry and δ ≥ 0
denotes the strength of the anisotropy.

For this type of anisotropic recrystallization model, existence of solutions has
been shown in Burman and Rappaz [3]. To correctly capture the interfacial insta-
bility various numerical methods have been developed, starting with Kobayashi’s
own work [18], or for example in Wheeler et al. [32], Karma and Rappel [17], Mc-
Fadden [21], Li et al. [19] and more recently in Barrett et al. [1], who also gave an
overview of various numerical approaches to phase-field models and their associated
sharp interface limits.

In this study we present a new anisotropic recrystallization model, where the
leading derivative of the phase field variable is replaced by a wavelet analogue, and
we show that it captures dendritic growth that is similar to the classical recrys-
tallization model. However, while Kobayashi’s classical model is quasilinear in the
phase field variable, the new model does not contain spatial derivatives of the phase
field variable. Moreover, the new wavelet term is linear and has a simple form in
wavelet space, very similar to the diagonal representation of differential operators
in Fourier space. As a consequence, the mathematical analysis and the numerical
approximation of the new system of partial differential equations simplify greatly.

The paper is structured as follows. We begin with a formulation of both models in
Section 2, where we also summarize the essential notions about wavelets and Besov-
type norms, and we introduce a wavelet analogue of the Laplacian. In Section 3,
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we prove well-posedness, in particular we show the existence and uniqueness of so-
lutions. Results from numerical experiments that explore the anisotropic evolution
of these models and comparisons with classical models are discussed in Section 4.
Starting with a simpler, limiting case, the anisotropic Allen–Cahn equation, we first
investigate the different scaling behaviors of the evolution of the original anisotropic
Allen–Cahn equation and its wavelet analogue. Then for the full recrystallization
model the dendritic morphologies are discussed. Finally, in Section 5, we summa-
rize our results and their implications and give an outlook on further directions of
research.

2. Dendritic recrystallization: two approaches to anisotropy.

2.1. Kobayashi’s classical anisotropic model. In one of the first studies to
describe the growth of dendrites from a melt similar to the one observed in exper-
iments, Kobayashi [18] introduced a model that couples an anisotropic evolution
equation for a phase field describing the melt-solid transition with an equation for
the heat generation and diffusion. The phase-field u is 0 in the liquid and 1 in
the solid phase, and the temperature field is denoted by T . Both are assumed to
be functions on the 2-dimensional unit box, Ω := (0, 1)d with d = 2, which are
1-periodic in both spatial co-ordinate directions. The evolution of the phase-field is
obtained from the L2(Ω) gradient flow

τ ut = −δE
δu

(1)

of the Ginzburg–Landau type free energy

E = E(u; ε,m) =

∫
Ω

ε

2
γ(θ)2 |∇u|2 +

1

ε
W (u;m) dx, (2)

with the interface energy

γ(θ) = 1 + δ cos(nθ), (3)

for an anisotropy with an n-fold symmetry and strength δ ≥ 0, and the homogeneous
free energy contribution

W (u;m) =
1

4
u2(u− 1)2 +m

(
1

3
u3 − 1

2
u2

)
. (4)

The positive parameter ε � 1 in (2) controls the width of the interface layer and
the parameter τ > 0 in (1) is a relaxation constant. For x = (x1, x2) ∈ Ω :=
(0, 1)2, the angle θ is defined as θ = arctan (ux1/ux2). For an isotropic system, γ(θ)
is a constant, while in this study we consider weak anisotropies with a four-fold
symmetry by choosing n = 4 and a positive δ so that γ(θ) + γ′′(θ) (with ′ = d/dθ)
is strictly positive for all θ (i.e. δ ∈ (0, 1/15)).

Thus, we have the Ginzburg–Landau type equation

τ ut = ε
[
∇ ·
(
γ(θ)γ′(θ)∇⊥u

)
+∇ · (γ(θ)2∇u)

]
+

1

ε
W ′(u;m), (5)

where ∇⊥u := (−ux2
, ux1

)T is the orthogonal gradient.
This equation is coupled to the equation for the temperature T by the latent

heat contribution arising from the phase change at the interface via

Tt = c∆T +Kut, (6)
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where c is the thermal diffusivity and K is the latent heat, and via the time depen-
dence of m,

m(T ) =
c1
π

arctan (c2 (Te − T )) , (7)

where Te denotes the dimensionless equilibrium (or melting) temperature. We will
typically assume that the scaling for the temperature has been chosen so that Te = 1.
Notice that W and m together with the constants c1 and c2 need to be carefully
chosen so that the function W is always a double-well potential with minima occur-
ring at u = 0 and u = 1 for c1 < 1, so that spatially homogeneous liquid and solid
phases are in equilibrium.

2.2. Anisotropy in wavelet-based models. To prepare for the derivation of
the wavelet-based model, first recall that for the isotropic case, the free energy
functional (2) can be written as

E(u; ζ, ε,m) =
ε

2
|u|2ζ +

∫
Ω

1

ε
W (u;m) dx, (8)

with the H1(Ω) seminorm | · |ζ = | · |H1(Ω), where the Sobolev space Hm is defined
as usual and has the inner product and associated norm

(u, v)Hm(Ω) =
∑
|l|≤m

∫
Ω

Dlu(x)Dlv(x) dx, ‖u‖Hm(Ω) =
√

(u, u)Hm(Ω),

in multi-index notation. In the case of Sobolev spaces of 1-periodic functions on
Ω = (0, 1)d we shall write Hm

p (Ω) instead of Hm(Ω). In the general, anisotropic

case, we can also write E as in (8) with |u|2ζ = |u|2A, where

|u|2A =

∫
Ω

γ(θ)2|∇u|2 dx, (9)

but | · |A is not in general a seminorm, as θ depends on the derivatives of u. We now
follow Dobrosotskaya and Bertozzi in [9, 10, 11], and introduce a new seminorm
| · |B , which gives rise to an anisotropic evolution.

We begin by considering a class of wavelets ψ ∈ L2(Rd) with an associated scaling
function φ ∈ L2(Rd). We define the wavelet mode (j, k) as

ψj,k(x) = 2jd/2ψ(2jx− k), j = 0, 1, 2, . . . ; k ∈ Rd,

and the wavelet transform of a function u ∈ L2(Rd) at the mode (j, k) is defined by

wj,k = 〈u, ψj,k〉,

where 〈·, ·〉 denotes the inner product in L2(Rd). Analogously, we define

φj,k(x) = 2jd/2φ(2jx− k), j = 0, 1, 2, . . . ; k ∈ Rd.

For any function u ∈ L2(Rd), we define the seminorm

|u|B =

 ∞∑
j=0

22j

∫
Rd

|〈u, ψj,k〉|2 dk

 1
2

.

The wavelet Laplacian of u ∈ L2(Rd) is formally defined as

∆wu(x) = −
∞∑
j=0

22j

∫
Rd

〈u, ψj,k〉ψj,k(x) dk.
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A simple (but lengthy) calculation based on Fourier transforms shows that, for
sufficiently regular functions u and v defined on Rd, and any d-component multi-
index α, one has

〈−∆wu,D
αv〉 =

∫
Rd

(−∆wu)∧(ξ) (−ıξ)α v̂(ξ) dξ

= (−1)|α|
∫
Rd

(ıξ)αû(ξ)

∞∑
j=0

22j |ψ̂(2−jξ)|2 v̂(ξ) dξ = (−1)|α|〈−∆wD
αu, v〉.

Thus, for any multi-index α, the wavelet Laplacian ∆w and the differential operator
Dα commute. In particular, for α = 0 and v = u,

〈−∆wu, u〉 =

∫
Rd

|û(ξ)|2
∞∑
j=0

22j |ψ̂(2−jξ)|2 dξ =

∞∑
j=0

22j

∫
Rd

|û(ξ) ψ̂(2−jξ)|2 dξ

=

∞∑
j=0

22j

∫
Rd

|F−1(û(·) ψ̂(2−j ·))(κ)|2 dκ

=

∞∑
j=0

22j

∫
Rd

|2−jd/2F−1(û(·) ψ̂(2−j ·))(2−jk)|2 dk

=

∞∑
j=0

22j

∫
Rd

|〈u, ψj,k〉|2 dκ = |u|2B ,

where in the transition to the penultimate term in this chain of equalities we used
that

〈u, ψjk〉 = 〈û, ψ̂jk〉 = 2−jd/2
∫
Rd

û(ξ)ψ̂(2−jξ) e2πı(2−jk)·ξ dξ

= 2−jd/2F−1(û(·) ψ̂(2−j ·))(2−jk).

Next we define an anisotropic counterpart of | · |B . We shall confine ourselves to
the case of d = 2 dimensions; for d = 3, the construction is similar and is therefore
omitted. Given a univariate wavelet ψ ∈ L2(R) with associated scaling function
φ ∈ L2(Rd), we consider the ‘diagonal’, ‘vertical’ and ‘horizontal’ wavelet functions

ψd(x1, x2) = ψ(x1)ψ(x2), ψv(x1, x2) = ψ(x1)φ(x2), ψh(x1, x2) = φ(x1)ψ(x2),

and we let Ψ̃ = {ψd, ψv, ψh}. With a slight abuse of notation we consider the
bivariate scaling function

φ(x1, x2) = φ(x1)φ(x2),

and we define Ψ = Ψ̃ ∪ {φ}.
With j = 0, 1, 2, . . . , k ∈ R2, x = (x1, x2) ∈ R2, ψ ∈ Ψ̃, one scales and dilates to

get the modes

ψj,k(x) = 2jψ(2jx− k), ψ ∈ Ψ̃.

The corresponding wavelet transform is defined by

wj,k,ψ =

∫
R2

u(x)ψj,k(x) dx, ψ ∈ Ψ̃. (10)

On the bounded domain Ω = (0, 1)2 one uses j = 0, 1, 2, . . . and k ∈ [0, 2j ]2, since
the spatial shifts only make sense when the supports of the wavelets are contained
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in Ω. The wavelet Laplace operator acting on a 1-periodic function u ∈ L2
p(Ω) is

then defined by

∆wu = −
∑
ψ∈Ψ̃

∞∑
j=0

22j

∫
k∈[0,2j ]2

(u, ψj,k)ψj,k dk, (11)

and we further define the seminorm

|u|B =

∑
ψ∈Ψ̃

∞∑
j=0

22j

∫
k∈[0,2j ]2

|(u, ψj,k)|2 dk

 1
2

.

As previously, we have that for any, sufficiently smooth, 1-periodic functions u and
v,

(−∆wu, u) = |u|2B and (−∆wu,D
αv) = (−1)|α|(−∆wD

αu, v).

The seminorm | · |B is equivalent to the B1
2,2(Ω) Besov seminorm, whenever the

wavelets ψj,k are twice continuously differentiable with r ≥ 2 vanishing moments,
and to its discretized version, where the integral over k ∈ [0, 2j ]2 is replaced by a
finite sum over k ∈ Z2

j := Z2 ∩ [0, 2j ]2.
In order to simplify the notation, when discussing multidimensional cases, we

shall use ψ as general notation for the wavelet functions, assuming, wherever needed,
summation over all of those.

Note that in numerical implementations one has to treat finite expansions and
hence one incorporates the scaling function to represent the mass, similarly as with
the zeroth mode in a Fourier expansion; hence we change to the extended set Ψ =
Ψ̃ ∪ {φ} and write

f =

N∑
j=0

∑
k∈Z2

j

∑
ψ∈Ψ

wj,k,ψψj,k,

with
wj,k,ψ = 〈u, ψj,k〉, ψ ∈ Ψ.

The L2
p(Ω) gradient flow of E now leads to a new wavelet-based model with a

new evolution equation for the phase field,

τut = ε∆wu−
1

ε
Wu(u;m), (12a)

where ∆w is the wavelet analogue (11) of the Laplacian, while the equation for the
heat diffusion and generation remains unchanged,

Tt = c∆T +Kut. (12b)

In order to understand the intrinsic anisotropy in this formulation we recapitulate
the main result obtained in [10] for the analysis of the energy (8) with ζ = B and
m = 0 (i.e. without temperature dependence) in the limit ε → 0. For compactly
supported wavelets that are r-regular, r ≥ 2, that is∫

Ω

xjψ(x) dx = 0, j = 0, 1, . . . , r,

one can prove the Γ-convergence result E∗ Γ→ G∞ =
√

2
3 R(u)|u|TV (Ω), where |u|TV (Ω)

is the total variation functional [10], and where

E∗(u; ε,B) ≡
{
E(u; ε,B), u ∈ H1(Ω),
∞, u ∈ BV (Ω) \H1(Ω)
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is the extension of E(u; ε,B) to functions of bounded variation (BV).
In the case of the classical Ginzburg–Landau free energy, (8) with m = 0 and

ζ = H1(Ω), the factor R(u) is constant and the minima of G∞ are the characteristic
functions of spheres [24]. Here, R(u) is defined as the limit of the quotient of the
equivalent norms R(u) = limε→0 |uε|B/|uε|H1(Ω), which is unique for all sequences

uε ∈ H1
p (Ω) with uε → u in L1

p(Ω) as ε→ 0. One can show that

G∞(1E) =

∫
∂E

γ(n;ψ) dl(x)

for characteristic functions u = 1E of sets E ⊂ RN with finite perimeter. The
function γ of the normal at the boundary of E turns out to have just the form (3)
with n = 4.

3. Well-posedness of the wavelet based model. As an important prerequisite
for meaningful numerical simulations using the new wavelet-based model, we first
prove existence, uniqueness and continuous dependence on initial data for weak
solutions of the system (12), with initial conditions u(x, 0) = u0(x), T (x, 0) = T0(x),
where we now take Ω = (0, 1)d to be either two or three dimensional (i.e. d = 2
or d = 3). In contrast to Kobayashi’s model, for which proving well-posedness is
quite intricate (see for example [3]), this is relatively straightforward for the new
model and essentially combines a Galerkin approach with a repeated use of the
equivalence of relevant seminorms. The results are formulated in terms of Sobolev
spaces Hm

p (Ω), m ∈ N, of functions f ∈ Hm
loc(Rd) that are 1-periodic in all spatial

directions. In the following, C denotes a generic constant that does not depend on
the relevant quantities.

Theorem 3.1 (Existence and regularity of weak solutions). Let t̄ > 0 and suppose
that

(u0, T0) ∈ H1
p (Ω)×H1

p (Ω).

Then, the above problem, defined via r-regular wavelets with r ≥ 2, has a weak
solution with

u ∈ L∞(0, t̄;H1
p (Ω)) ∩ L2(0, t̄;H2

p (Ω)),

T ∈ L∞(0, t̄;H1
p (Ω)) ∩ L2(0, t̄;H2

p (Ω))

and

ut ∈ L2(0, t̄;L2
p(Ω)), Tt ∈ L2(0, t̄;L2

p(Ω)).

Furthermore, if (u0, T0) ∈ H2
p (Ω)×H2

p (Ω), then

u, T ∈ H1(0, t̄;H1
p (Ω)),

and
u, T ∈ L∞(0, t̄;H2

p (Ω)),

and thus also u, T ∈ L∞(0, t̄;L∞p (Ω)).

Proof. In order to work with weak solutions, we introduce, as in reference [11], the
bilinear form B : H1

p (Ω)×H1
p (Ω)→ R with

B(u, v) = lim
n→∞

(∆wun, v),

where u, v ∈ H1
p (Ω) and (un) is a sequence of H2

p (Ω) functions converging to u in

the norm of H1
p (Ω). It can be shown that the definition of B is independent of the
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choice of the sequence (un). With this definition of B, we state the following weak
formulation of the problem:

(ut, ϕ) = εB(u, ϕ)− 1

ε
(Wu(u;m), ϕ), (13)

(Tt, φ) = −c(∇T,∇φ) +K(ut, φ) for all ϕ, φ ∈ H1
p (Ω), (14)

with

m(t) =
c1
π

arctan(c2(Te − T (t))),

and c1 < 1.
For the Galerkin approximation we insert

un(x, t) =

n∑
j=0

bj(t)ϕj(x), Tn(x, t) =

n∑
j=0

dj(t)ϕj(x),

where the set {ϕj}j forms an orthonormal basis of H1
p (Ω) (e.g., we can consider the

smooth eigenfunctions of the Laplacian on the periodic torus). Then we consider
the weak formulation above in terms of the basis functions, yielding

(unt , ϕk) = εB(un, ϕk)− 1

ε
(Wu(un;mn), ϕk), (15)

(Tnt , ϕk) = −c(∇Tn,∇ϕk) +K(unt , ϕk), (16)

(un, ϕk) = ξk, (17)

(Tn, ϕk) = ηk, k = 0, . . . , n, (18)

with

mn(t) =
c1
π

arctan(c2(Te − Tn(t))),

for c1 < 1. Here ξk = ξk(n) are such that

n∑
j=0

ξjϕj → u0 in H1
p (Ω),

as n→∞, and for ηk(n) as n→∞,

n∑
j=0

ηjϕj → T0 in H1
p (Ω).

As the ϕj form a basis of the above spaces and as u0 ∈ H1
p (Ω), T0 ∈ H1

p (Ω), such
coefficients do exist. Due to the orthogonality of the basis functions we obtain an
ODE system for the coefficients whose system function is locally Lipschitz due to
the boundedness of the bilinear form B. This gives local existence.

We obtain bounds for the Galerkin approximation and then pass to the limit.
Therefore we drop the superscript n from our notation and keep in mind that we
are working with the finite-dimensional approximation until the limiting process is
mentioned.

Testing equation (13) by u yields

1

2

d

dt
‖u‖2 + ε|u|2B = −1

ε
(Wu(u;m), u),

as we can use in the Galerkin approximation that B(u, u) = (∆wu, u) = −|u|2B (see
e.g. [11]).
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The second term reads, noting that by the choice of c1 < 1 we can use that
m ∈ [− 1

2 + δ, 1
2 − δ] for some small number δ � 1,

−1

ε

∫
Ω

Wu(u;m)u dx ≤ 1

ε

∫
Ω

−u4 + (2− δ)u2|u|+
(
m− 1

2

)
u2 dx ≤ 1

2ε
(−‖u‖4 + 2‖u‖2).

We have used that (
∫

Ω
u2 dx)2 ≤

∫
Ω
u4 dx. Hence if ‖u‖ >

√
2, then d

dt‖u‖ ≤ 0,
independently of the value of m (with more care one can derive a sharper bound).
We have thus established the following uniform bound on the L2

p(Ω) norm:

‖u‖ ≤ max{
√

2, ‖u0‖}.
Additionally, as −‖u‖4 + 2‖u‖2 ≤ 1, we get the following t̄-dependent bound, after
integrating over [0, t̄]:

1

2
‖u(t̄)‖2 +

∫ t̄

0

ε|u|2B dt ≤ 1

2
‖u0‖2 +

t̄

2ε
.

As the B seminorm is equivalent to the Besov B1
2,2(Ω) seminorm for sufficiently

regular wavelets, it is equivalent to the H1
p (Ω) seminorm; see the discussions and

references in the papers by Dobrosotskaya and Bertozzi [9, 11]. Thanks to this

equivalence we obtain
∫ t̄

0
ε|u|2H1

p(Ω) dt ≤ C + t̄/(2ε), and hence we have, for any

fixed t̄,

u ∈ L∞(0, t̄;L2
p(Ω)), u ∈ L2(0, t̄;H1

p (Ω)).

Testing equation (13) with ut gives

‖ut‖2 = −ε
2

d

dt
|u|2B −

1

ε
(Wu(u;m), ut). (19)

Integrating over the time interval [0, s], with 0 < s ≤ t̄, yields∫ s

0

‖ut‖2 dt+
ε

2
|u(s)|2B =

ε

2
|u(0)|2B −

1

ε

∫ s

0

(Wu(u;m), ut) dt.

We control the last term on the right-hand side via

−1

ε

∫ s

0

(Wu(u;m), ut) dt =
1

ε

∫ s

0

∫
Ω

−u3ut +

(
3

2
−m

)
u2ut +

(
m− 1

2

)
uut dxdt

≤ − 1

4ε

∫ s

0

d

dt
‖u‖4L4

p(Ω) dt+
1

ε

∫ s

0

(2u2 + |u|, |ut|) dt,

where we have used that |m| ≤ 1/2, which follows from (7) if c1 < 1. Applying first
the Cauchy–Schwarz inequality and then Young’s inequality to the inner product
underneath the last integral, we get

−1

ε

∫ s

0

(Wu(u;m), ut) dt ≤− 1

4ε
(‖u(s)‖4L4

p(Ω) − ‖u(0)‖4L4
p(Ω))

+
1

2ε2

∫ s

0

‖2u2 + |u|‖2 dt+
1

2

∫ s

0

‖ut‖2 dt.

However, ‖2u2 + |u|‖2 ≤ 8‖u2‖2 + 2‖u‖2; thus,

−1

ε

∫ s

0

(Wu(u;m), ut) dt ≤− 1

4ε
(‖u(s)‖4L4

p(Ω) − ‖u(0)‖4L4(Ω)) +
4

ε2

∫ s

0

‖u‖4L4
p(Ω) dt

+
1

2

∫ s

0

‖ut‖2 dt+
1

ε2

∫ s

0

‖u‖2 dt.
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Using the L2(Ω) norm bound on u, inserting into (19) and rearranging yields

1

2

∫ s

0

‖ut‖2 dt+
ε

2
|u(s)|2B +

1

4ε
‖u(s)‖4L4

p(Ω) ≤ C(s) +
4

ε2

∫ s

0

‖u‖4L4
p(Ω) dt.

In particular we have, with F (s) := ‖u(s)‖4L4
p(Ω), the inequality

F (s) ≤ C(s, ε) +
16

ε

∫ s

0

F (t) dt, s ∈ (0, t̄].

Gronwall’s inequality then yields, as C(s, ε) is nondecreasing in s (and therefore
C(s, ε) ≤ C(t̄, ε), that

F (t̄) ≤ C(t̄, ε) e
∫ t̄
0

16
ε dt = C(t̄, ε) e

16t̄
ε = C̃(t̄, ε).

This bound grows exponentially fast with t̄, but it does imply that, for t̄ > 0 fixed,

u ∈ L∞(0, t̄;L4
p(Ω)), ut ∈ L2(0, t̄;L2

p(Ω)), (20)

and thanks to the equivalence of the seminorm |·|B to |·|H1
p(Ω) we have a|u(t̄)|H1

p(Ω) ≤
|u(t̄)|B , where a is a positive constant. We conclude further the bound

u ∈ L∞(0, t̄;H1
p (Ω)). (21)

Now we establish bounds on the temperature. Testing (14) with Tt leads to

‖Tt‖2 +
c

2

d

dt
|T |2H1

p(Ω) = K(ut, Tt) ≤
K2

2
‖ut‖2 +

1

2
‖Tt‖2. (22)

Integrating over time yields, using (20),∫ t̄

0

‖Tt‖2 dt+ c|T (t̄)|2H1
p(Ω) ≤ C(T (0), t̄, K) (23)

and

T ∈ L∞(0, t̄;H1
p (Ω)), Tt ∈ L2(0, t̄;L2

p(Ω)).

To obtain a bound on higher-order Sobolev norms of u, we test with −∆u and
we obtain

d

dt
|u|2H1

p(Ω) = ε(∆w∇u,∇u) +
1

ε

∫
Ω

Wu(u;m)∆udx

≤ −ε|∇u|2B + C(ε, ε̄)

∫
Ω

u6 dx+
εε̄

2
|∇u|2H1

p(Ω) + C(ε, ε̄)

≤ −C̃|∇u|2H1
p(Ω) + C‖u‖6H1

p(Ω) + C(ε, ε̄).

Here we have used a small ε̄ to get rid of the second-order term with the wrong
sign. As u ∈ L∞(0, t̄;H1

p (Ω)), we obtain by integration that

|u(t̄)|2H1
p(Ω) + C

∫ t̄

0

‖∆u(t)‖2 dt ≤ Ct̄,

and we have the desired result u ∈ L2(0, t̄;H2
p (Ω)).

Similarly we test the heat equation (12b) with −∆T to deduce that

1

2

d

dt
|T |2H1

p(Ω) + c‖∆T‖2 = −K(ut,∆T ) ≤ C(K, c)‖ut‖2 +
c

2
‖∆T‖2.

Using the bound on ut and integrating gives that T ∈ L2(0, t̄;H2
p (Ω)).

A usual limiting process (following e.g. [34], Chapter 3) yields global existence.
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It remains to show that u ∈ L∞(0, t̄;L∞p (Ω)). We shall confine ourselves to the
case of d = 3 space dimensions; for d = 2 the proof is simpler, as the embedding
theorem used in the argument below is stronger for d = 2 than for d = 3.

Taking the inner product (on the Galerkin level throughout the rest of this proof)
of the phase field equation with −∆ut yields that

(ut,−∆ut) + εB(u,−∆ut) = −1

ε
(Wu(u;m),−∆ut).

Hence,

‖∇ut‖2 +
ε

2

d

dt
|∇u|2B = −1

ε

∫
Ω

Wuu(u;m)∇u · ∇ut +Wum(u;m)∇m · ∇ut dx,

which implies the inequality

‖∇ut‖2 +
ε

2

d

dt
|∇u|2B ≤

1

ε

∫
Ω

|Wuu(u;m)∇u · ∇ut|+ |Wum(u;m)∇m · ∇ut|dx.

Since

W (u;m) =
1

4
u2(u− 1)2 +m

(
1

3
u3 − 1

2
u2

)
=

1

4
(u4− 2u3 +u2) +m

(
1

3
u3 − 1

2
u2

)
,

we have that

Wuu(u;m) = 3u2 − 3u+
1

2
+m(2u− 1)

and

Wum(u;m) = u2 − u.
As |m(T )| ≤ c1/2, it follows that

|Wuu(u;m)| ≤ C(u2 + 1) and |Wum(u;m)| ≤ C(u2 + 1).

Thus (with now C signifying a constant that may depend on ε and other constants
in the statement of the problem, but is independent of u, m, T and the dimensions
of the Galerkin subspaces from which u, m and T are picked),

‖∇ut‖2 +
ε

2

d

dt
|∇u|2B ≤ C

∫
Ω

(u2 + 1)|∇u| |∇ut|dx+ C

∫
Ω

(u2 + 1)|∇m| |∇ut|dx.

Thanks to Hölder’s inequality,

‖∇ut‖2 +
ε

2

d

dt
|∇u|2B ≤ C‖u2 + 1‖L3

p(Ω)‖∇u‖L6
p(Ω)‖∇ut‖

+ C‖u2 + 1‖L3
p(Ω)‖∇m‖L6

p(Ω)‖∇ut‖.

By noting that ‖u2 + 1‖L3
p(Ω) ≤ C(‖u‖2L6

p(Ω) + 1), ‖∇m‖L6
p(Ω) ≤ C‖∇T‖L6

p(Ω), and

invoking the continuous embedding of the Sobolev space H1
p (Ω) into L6

p(Ω) (recall
that, by hypothesis, d = 3), we have that

‖∇ut‖2 +
ε

2

d

dt
|∇u|2B ≤ C(‖u‖2H1

p(Ω) + 1)‖∇u‖H1
p(Ω)‖∇ut‖

+ C(‖u‖2H1
p(Ω) + 1)‖∇T‖H1

p(Ω)‖∇ut‖.

Hence, by Cauchy’s inequality (ab ≤ η
2a

2 + 1
2η b

2 for any a, b ≥ 0 and η > 0),

1

2
‖∇ut‖2 +

ε

2

d

dt
|∇u|2B ≤ C(‖u‖2H1

p(Ω) + 1)2
(
‖∇u‖2H1

p(Ω) + ‖∇T‖2H1
p(Ω)

)
. (24)
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Now, thanks to eq. (6), upon taking the inner product with −∆Tt, we have that

‖∇Tt‖2 +
c

2

d

dt
‖∆T‖2 = K(∇ut,∇Tt).

Thus, again by Cauchy’s inequality,

1

2
‖∇Tt‖2 +

c

2

d

dt
‖∆T‖2 ≤ 1

2
K2‖∇ut‖.

Adding this last inequality to the inequality (24) multiplied by 2K2, we deduce that

1

2
K2‖∇ut‖2 +K2ε

d

dt
|∇u|2B +

1

2
‖∇Tt‖2 +

c

2

d

dt
‖∆T‖2

≤ C(‖u‖2H1
p(Ω) + 1)2

(
‖∇u‖2H1

p(Ω) + ‖∇T‖2H1
p(Ω)

)
. (25)

Let us consider the terms appearing in the last pair of brackets in (25). We note
that by Poincaré’s inequality for a 1-periodic function w ∈ H1

p (Ω) on Ω = (0, 1)3,

with integral average over Ω equal to zero, ‖w‖2 ≤ C|w|2H1
p(Ω). As each of the

partial derivatives of u can be taken, in turn, as such a function w (note that by
the divergence theorem

∫
Ω
∂u/∂xi dx = 0, i = 1, 2, 3, thanks to the periodicity of

u), we have that ‖∇u‖2 ≤ C|∇u|2H1
p(Ω), and therefore

‖∇u‖2H1
p(Ω) = ‖∇u‖2 + |∇u|2H1

p(Ω) ≤ C|∇u|
2
H1

p(Ω).

Consequently, by the norm equivalence | · |H1
p(Ω) ∼ | · |B , it follows that

‖∇u‖2H1
p(Ω) ≤ |∇u|

2
B . (26)

Further, by the definition of the Sobolev norm ‖ · ‖H2
p(Ω) and the elliptic regularity

estimate ‖T‖H2
p(Ω) ≤ C‖∆T‖ for 1-periodic functions on Ω, we have that

‖∇T‖2H1
p(Ω) = ‖∇T‖2 + |∇T |2H1

p(Ω) ≤ ‖T‖
2
H2

p(Ω) ≤ C‖∆T‖
2. (27)

By substituting (26) and (27) into (25), we deduce that

1

2
K2‖∇ut‖2 +K2ε

d

dt
|∇u|2B +

1

2
‖∇Tt‖2 +

c

2

d

dt
‖∆T‖2

≤ C(‖u‖2H1
p(Ω) + 1)2

(
|∇u|2B + ‖∆T‖2

)
.

Upon integration of this inequality with respect to the temporal variable, we have
that, for any t ∈ (0, t̄],

1

2

(∫ t

0

(
K2‖∇ut(s)‖2 + ‖∇Tt(s)‖2

)
ds

)
+K2ε|∇u(t)|2B +

c

2
‖∆T (t)‖2

≤ K2ε|∇u(0)|2B +
c

2
‖∆T (0)‖2

+ C

∫ t

0

(‖u(s)‖2H1
p(Ω) + 1)2

(
‖∇u(s)‖2B + ‖∆T (s)‖2

)
ds.
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Let c0 := min(K2ε, c2 ) and c1 := max(K2ε, c2 ), and multiply the last inequality by
1/c0 to deduce that

1

2c0

(∫ t

0

(
K2‖∇ut(s)‖2 + ‖∇Tt(s)‖2

)
ds

)
+
(
|∇u(t)|2B + ‖∆T (t)‖2

)
≤ c1
c0

(
|∇u(0)|2B + ‖∆T (0)‖2

)
+
C

c0

∫ t

0

(‖u(s)‖2H1
p(Ω) + 1)2

(
‖∇u(s)‖2B + ‖∆T (s)‖2

)
ds ∀t ∈ (0, t].

Thus, by Gronwall’s inequality,

1

2c0

(∫ t

0

(
K2‖∇ut(s)‖2 + ‖∇Tt(s)‖2

)
ds

)
+
(
|∇u(t)|2B + ‖∆T (t)‖2

)
≤ c1
c0

(
|∇u(0)|2B + ‖∆T (0)‖2

)
exp

(
C

c0

∫ t

0

(‖u(s)‖2H1
p(Ω) + 1)2 ds

)
∀t ∈ (0, t].

As already established in (21), u ∈ L∞(0, t;H1
p (Ω)), so it follows that the argument

of the exponential appearing in the last inequality in bounded by a constant. Thus,
in conjunction with norm equivalence and elliptic regularity, in precisely the same
way as in (26) and (27) above, we deduce from the last inequality that

u, T ∈ H1(0, t;H1
p (Ω)),

u, T ∈ L∞(0, t;H2
p (Ω)) ⊂ L∞(0, t;L∞p (Ω)),

provided that u0, T0 ∈ H2(Ω).

Theorem 3.2 (Uniqueness and continuous dependence on the initial data). The
solutions from Theorem 3.1 are uniquely defined and depend continuously on the
initial data u0, T0 in H2

p (Ω), assuming that d ≤ 3 and that the temperature stays

below the melting temperature. In particular we then have, for all u0
i , T

0
i , i = 1, 2,

in H2
p (Ω), that

‖u1−u2‖2H1
p(Ω)+‖T1−T2‖2H1

p(Ω) ≤ C
[
‖u0

1 − u0
2‖2H1

p(Ω) + ‖T 0
1 − T 0

2 ‖2H1
p(Ω)

]
eCt. (28)

Remark 1. The proof of the inequality (28) presented below relies on bounding ui,
i = 1, 2, in the L∞(0, t̄;L∞p (Ω)) norm, which is deduced by bounding ui, i = 1, 2, in

the L∞(0, t̄;H2
p (Ω)) norm and using the continuous embedding ofH2

p (Ω) into L∞p (Ω)

for d ≤ 3. The derivation of the L∞(0, t̄;H2
p (Ω)) norm bound on ui, i = 1, 2, in

turn rests on assuming that u0
i , T

0
i , i = 1, 2, belong to H2

p (Ω). In particular, the

constant C appearing in (28) depends on the H2
p (Ω) norms of u0

i , T
0
i , i = 1, 2, even

though the expression in the square bracket on the right-hand side of (28) only
involves their H1

p (Ω) norms.

Proof. We define two solutions (u1, T1), (u2, T2) and their difference (w, v) = (u1−
u2, T1 − T2). That leads to the weak system

(wt, ϕ) = ε(∆ww,ϕ)− 1

ε
(Wu(u1;m1)−Wu(u2;m2), ϕ), (29)

(vt, ψ) = c(∆v, ψ) +K(wt, ψ), (30)
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for all ϕ, ψ in H1
p (Ω). Testing with (ϕ,ψ) = (w, v) yields

1

2

d

dt
‖w‖2 = −ε|w|2B −

1

ε
(Wu(u1;m1)−Wu(u2;m2), u1 − u2), (31)

1

2

d

dt
‖v‖2 = −c‖∇v‖2 +K(wt, v). (32)

Under the assumptions on the initial data, both u1 and u2 belong to L∞(0, t̄;L∞p (Ω)).
Then, for mi ∈ [−1/2 + δ, 1/2 − δ], the polynomials Wu(ui,mi) are Lipschitz con-
tinuous and we can choose a suitable positive constant C such that

1

2

d

dt

(
‖w‖2 + ‖v‖2

)
+ ε|w|2B + c|v|2H1

p(Ω) ≤ C‖w‖
2 +K

∫
Ω

wtv dx. (33)

Testing the phase field equation with ϕ = wt and the temperature equation with
−∆v yields additionally

‖wt‖2 + ε
d

dt
|w|2B = −1

ε

∫
Ω

(Wu(u1;m1)−Wu(u2;m2))wt dx ≤ C‖w‖‖wt‖,

C1
d

dt
‖∇v‖2 + C2‖∆v‖2 ≤

1

4
‖wt‖2.

Adding these inequalities gives

1

4
‖wt‖2 +

d

dt

[
ε|w|2B + C1‖∇v‖2

]
≤ C‖w‖2.

Together with the estimate (33) we then deduce that

1

2

d

dt

(
‖w‖2 + 2ε|w|2B + ‖v‖2 + 2C1‖∇v‖2

)
+ ε|w|2B + c|v|2H1

p(Ω) ≤ C‖w‖
2 +

K2

2
‖v‖2.

An application of Gronwall’s inequality thus yields

‖w‖2 + 2ε|w|2B + ‖v‖2 + 2C1‖∇v‖2 ≤ C
[
‖w0‖2 + |w0|2B + ‖v0‖2H1

p(Ω)

]
eCt.

In particular we can use the equivalence of the Besov seminorm | · |B to the Sobolev
seminorm | · |H1

p(Ω) and estimation of constants to deduce the assertion (28).

Remark 2. In the proof we have used that the temperature stays below the melting
temperature (slightly above is also permissible) and this assumption requires that
the initial temperature profile is also below this value.

4. Numerical methods and comparisons. The simulations are carried out with
a pseudospectral method for both equations, the classical model and its wavelet
analogue. While the definition of ∆w suggests a natural discretization in wavelet
space, we use a Fourier spectral method for the discretization of T with 1-periodic
Fourier modes in both spatial directions. In terms of these expansions, the system
is written as the following system of ODEs:

N∑
j=0

∑
k∈Z2

j

∑
ψ∈Ψ

(wj,k,ψ)tψj,k = ε

N∑
j=0

∑
k∈Z2

j

∑
ψ∈Ψ

−22jwj,k,ψψj,k +

N∑
j=0

∑
k∈Z2

j

∑
ψ∈Ψ

cj,k,ψψj,k,

∑
j

(T̂j)t exp(ijx2π) =
∑
j

−j24π2T̂j exp(ijx2π) +K
∑
j

(ξ̂j)t exp(ijx2π).

The coefficients cj,k,ψ are related to the cubic polynomial

Wu(u;m) = u(1− u)
(
u− 1

2 +m
)
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by a stationary wavelet transform and the Fourier coefficients ξ̂j are determined by

transforming
∑N
j=0

∑
k,ψ∈Ψ(wj,k,ψ)tψj,k into discrete Fourier space. We discretize

in time by a semi-implicit Euler scheme that treats the linear parts implicitly:

w+
j,k,ψ − wj,k,ψ

∆t
= −22jw+

j,k,ψ + cj,k,ψ, (34a)

T̂+
j − T̂j

∆t
= −j24π2T̂+

j +Kξ̂j , (34b)

where the superscript + indicates the new, updated coefficients. We employ convex
splitting to ensure stability, which is also reflected in the update (see below). We
update the wavelet coefficients first and then use the resulting approximation for

ut to calculate the coefficients ξ̂j . Also note that the coefficients cj,k,ψ in (34a) are

evaluated by using the coefficients of the temperature approximations T̂j at the old
time level.

The update for the temperature is completely standard for spectral methods.
For the order parameter, however, we shall provide additional details. The sta-
tionary wavelet transform yields four fields for the scaling function coefficients
A, and H,V,D for the horizontal, vertical and diagonal wavelet coefficients, re-
spectively. In Matlab with the corresponding ordering, to calculate the wavelet
Laplacian we multiply the jth scale by 22(N−j). For the jth coefficient level, let
Rj ∈ {Aj , Hj , Vj , Dj} be one of the coefficient arrays, and R3,j the same kind
of coefficients for the cubic expression; then we update, with the convex splitting
parameter C,

R+
j =

Rj + (∆t/τ)(R3,j + CRj)

1 + (∆t/τ)(22(N−j)ε+ C)
.

4.1. Limiting case: Allen–Cahn model. Before we investigate the evolution
of the new model numerically and compare it with the classical recrystallization
model, it is instructive to probe the models in a simpler setting, so we consider
a special case where the models introduced in Section 2 reduce to scalar Allen–
Cahn type equations. Specifically, we set the latent heat parameter K = 0 and let
the initial temperature field to be uniformly equal to the equilibrium temperature
T (x, 0) = Te, where Te is a nonnegative constant. Then, the temperature remains
constant, m = 0, and the homogeneous free energy contribution is symmetric,

W (u) =
1

4
u2(u− 1)2, (35)

and Kobayashi’s model (4)–(7) reduces the anisotropic Allen–Cahn equation

ut = ε
[
∇ ·
(
γ(θ)γ′(θ)∇⊥u

)
+∇ ·

(
γ(θ)2∇u

)]
− 1

ε
W ′(u). (36)

The new model (12) with (4), (7) reduces to the “wavelet Allen–Cahn equation”,

ut = ε∆wu−
1

ε
W ′(u). (37)

The above are L2
p(Ω) gradient flows of the free energy (8), with ζ = H1

p (Ω) for
the isotropic Allen–Cahn model, ζ = A for the anisotropic Allen–Cahn model, and
ζ = B for the wavelet Allen–Cahn equation. For all numerical results in this section,
the initial condition for u was a small uniformly distributed random perturbation
of u = 1.
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Figure 1. Panel (a) shows the numerical results for the isotropic
Allen–Cahn model ((36) with δ = 0) for ε = 0.001 on a 1024×1024
grid at t = 0.1, and (a’) shows the absolute values of the cor-
responding two-dimensional discrete Fourier transform. In panel
(b), we see the numerical results for the anisotropic Allen–Cahn
model (36) with δ = 0.065, with the same grid and values for t and
ε. Again, panel (b’) shows the absolute values of the corresponding
Fourier transform. The zoom (c) highlights anisotropic features of
the pattern in (b) in the spatial domain.

Figure 2. Numerical results for the wavelet-Allen–Cahn model
(37) for ε = 0.005 on a 1024×1024 grid in a unit square at three
different times. Panels (a’), (b’) and (c’) show the absolute values
of the corresponding two-dimensional discrete Fourier transform.

10
1

10
2

10
1

t

<
L>

~t−2/5

Figure 3. Coarsening diagram for the wavelet-Allen–Cahn equa-
tion, using the same parameters as in Figure 2. The figure shows
the average length scale 〈L〉, versus t as a solid line, where 〈L〉 is
defined in (38).
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In Figure 1 we observe the well-known emergence of a coarsening pattern for
the Allen–Cahn equation, which evolves isotropically as can be seen from the ra-
dial symmetry of the Fourier spectrum (a’), We also show the evolution for the
anisotropic Allen–Cahn equation for n = 4 and δ = 0.065, where the anisotropy
is still in the weak regime. The resulting patterns show a directional dependence
that is in accordance with a four-fold symmetry for γ, which is also reflected in the
characteristic shape of the Fourier spectrum (b’).

We now carry out a numerical study to investigate the emergence of anisotropy
and its long-time evolution in the wavelet-Allen–Cahn equation. As has been shown
in [10], volume constrained minimizers of the free energy using the Besov seminorm
lead to Wulff shapes with a clear four-fold symmetry for the new wavelet-Allen–
Cahn equation. Figures 2 (a)–(c) depict a typical evolution that compares well
to the numerical results for the anisotropic Allen–Cahn equation (36). The white
and black regions correspond to the order parameter being approximately 0 or 1.
Coarsening takes place in a similar fashion as for the classical anisotropic Allen–
Cahn model. Figures (a’)–(c’) show the absolute values of the Fourier transforms
corresponding to the patterns in Figures (a)–(c). One clearly sees the emergence of
an anisotropic pattern with a four-fold symmetry. Having said this, we emphasize
that the observed similarities are merely qualitative; in particular, the time scales
for the two sets of simulations are different (t = 0.1 for the classical model and
t = 5, 20, 198 for wavelet-based model); the corresponding values of ε are also
different (ε = 0.001 for the classical model and ε = 0.005 for the wavelet-based
model). We have not, so far, made any attempts to calibrate the wavelet-based
model so as to ensure that spatial and temporal scales quantitatively match those
in the classical model.

In Figure 3 we show a coarsening diagram for the wavelet Allen–Cahn equation
in a doubly logarithmic plot, for the same parameters as in Figure 2. For each line
i of grid points parallel to the x-axis, we counted the number of domains Ni(t) and
averaged the Ni over all these lines, which gives a measure 〈L〉 for the inverse of
the typical domain size:

〈L〉 =
1

ny

ny∑
i=1

Ni(t). (38)

The numerical results show that the coarsening rate approaches a power law be-
haviour 〈L〉 ∼ t−2/5 for the isotropic Allen–Cahn equation and also for the wavelet
Allen–Cahn equation as t→∞. Only the latter is shown in Figure 2.

4.2. Recrystallization with thermal coupling. While for the wavelet-Allen–
Cahn case we have used small scaled uniformly distributed random noise as initial
datum, here we instead insert a very narrow Gaussian into the domain as a nucle-
ation site to start the recrystallization process, similarly to what happens in physical
experiments. For comparison we note first a recent study [1] on numerical methods
and conditions regarding the accurate numerical description of dendritic patterns.
For our numerical implementation of the original model by Kobayashi, we consider
the system (5) and (6) with

γ(θ) = 1 + δ cos(4(θ + π/6)). (39)

Figures 4 and 5 show that the growing nucleus develops a branching structure
with both models. In Figure 4 the branches are seen to align more closely with
two mutually orthogonal directions, reflecting the four-fold symmetry imposed in
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Figure 4. Numerical results for Kobayashi’s model, (5) and (6),
using γ as in (39) with δ = 0.15.

Figure 5. Dendritic growth based on the intrinsic anisotropy of
the wavelet-Laplacian.

the Kobayashi model by γ. For the wavelet-based model the results are shown
in Figure 5. The initial Gaussian nucleus exhibits faster growth in four preferred
directions, which are now aligned with the co-ordinate axes. We also observe the
onset of side-branching. As in the case of the numerical experiments presented in
the previous subsection, we emphasize that the observed similarities between the
results obtained with the two models are merely qualitative, and we have not, so
far, made any attempts to calibrate the wavelet-based model so as to ensure that
spatial and temporal scales quantitatively match those of the Kobayashi model.

5. Conclusions and outlook. This work explores the possibility of using the
anisotropic nature of a wavelet analogue for a differential operator to construct
mathematical models that describe anisotropic pattern formation in material sci-
ence. For a standard model of dendritic crystal growth, we have demonstrated that
simply replacing the H1 seminorm representation for the interface contribution to
the underlying free energy by a wavelet-based Besov seminorm produces an L2 gra-
dient flow with preferred growth directions that have four-fold symmetry. A wavelet
Laplacian appears in the equation instead of the usual Laplacian.

Kobayashi’s original model requires an explicit dependence of the surface tension
coefficient on the phase field gradient to obtain anisotropy, thus leading to a quasi-
linear PDE for the phase-field. In contrast, the wavelet-based approach uses a linear
and derivative-free operator with an intrinsic anisotropy. Our results confirm that
the evolution of the phase field for the new model exhibits anisotropy with four-fold
symmetry, as suggested in [10] for the Allen–Cahn equation. Also, the coarsening
rates compare well with those seen for the classical models.
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Moreover, the new formulation lends itself naturally to numerical solutions via
wavelet or hybrid e.g. wavelet-spectral methods. The fully discrete scheme uses
convex splitting where the implicit terms are linear and is easily implemented in
Matlab with the help of the available wavelet tools.

We also note that the model is easily generalized to 3D and in fact our well-
posedness result applies also to this case. It would be interesting to see if an efficient
3D implementation is possible that would be competitive with existing simulations
using classical PDE models.

An issue that has been intensively discussed in connection with phase field models
like Kobayashi’s is the question whether these are formulated in a thermodynami-
cally consistent way, see for example Caginalp [5], Penrose and Fife [25, 26], Wang
et al. [31] and in the anisotropic case by McFadden et al. [22]. The focus of our
paper has been to derive a wavelet-based analogue for one of the simplest models
of dendritic growth. Concerning thermodynamical consistency of wavelet-based re-
crystallization models we remark that the coupled energy and phase-field equations
are obtained via

τut = −δE
δu

= ε∆wu−
1

ε
Wu(u;m),

et = −∇ ·
(
M∇ δ

δe

∫
Ω

e

T
dx

)
= −∇ ·

(
M∇ 1

T

)
= ∇ ·

(
M

T 2
∇T
)
,

where E is the energy functional (8) with the wavelet seminorm, i.e. ζ = B, and e is
the internal energy density, e = T +K(1−u). By setting M = cT 2, we deduce (12).
We recall that in the “classical” context, thermodynamical consistency requires a
relation between e and W , namely (cf. [23, 31]),

∂(W/T )

∂(1/T )
= e.

Upon extending our models and analysis to these situations it will be interesting
to discuss whether thermodynamical consistency with respect to a corresponding
wavelet-based entropy remains a useful concept, and this is subject to further in-
vestigations.

There are, of course, a number of other open problems and directions for fu-
ture research, such as extending our investigations to anisotropic surface energies
with other symmetries. This may require using generalizations of wavelets such as
shearlets, for example.
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