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Abstract. Motivated by the enhanced gauge symmetry phenomenon of the physics
literature and mirror symmetry, this paper constructs an action of an Artin group on the
derived category of coherent sheaves of a smooth quasiprojective threefold containing a
configuration of ruled surfaces described by a finite type Dynkin diagram. The action ex-
tends over deformations of the threefold via a compatible action of the corresponding re-
flection group on the base of its deformation space. All finite type Dynkin diagrams are
realized.

Introduction

The purpose of this work is to construct actions of finite type Artin groups on derived
categories of coherent sheaves of complex threefolds. The construction is motivated by a
correspondence between Calabi-Yau threefolds containing ruled surfaces and Lie algebras,
which arises in type II string theory; see [12], [1], [7] and references in these works, as well as
[6] which also considers some of the geometries studied in this paper. I explain the con-
nection further in [21]; it su‰ces to say here that the threefolds I consider are of the most
simple kind for which the physics correspondence works, and the main theorem of this
paper says that in these cases the derived category of coherent sheaves of the threefold is
acted on by an Artin group which covers the Weyl group of the corresponding Lie algebra.

The main result of this paper can also be viewed in the context of homological mirror
symmetry, representing a generalization of a result of Seidel and Thomas [16]. They con-
struct representations of the classical (type A) braid group on derived categories of coher-
ent sheaves of a much larger class of varieties than those considered here. However, their
construction is more algebraic in flavour, whereas the Artin group actions in this paper are
governed in a very precise geometric way by deformation theory. As explained in [21], the
two constructions coincide in dimension two; the braid group actions on derived categories
of threefolds obtained in this paper are new even in the type A case.

Autoequivalences of derived categories for threefolds containing ruled surfaces were
first constructed by Horja in [9]–[10]. In [20] it was observed that these equivalences are
essentially given by classical correspondences (structure sheaves of subschemes in the prod-



uct), and also that they deform to derived equivalences given by flops first found by Bondal
and Orlov [2]. The proof of the braid relations uses in an essential way both of these facts.

In certain cases, the Artin group acts faithfully on the derived category. The proof of
this statement will be reduced to the injectivity statement of Seidel-Thomas [16] for type A,
using a hyperplane section argument.

Structure of the paper. Section 1 deals with Dynkin diagrams, reflection groups and
braid groups. In Section 2, I first recall some results about resolutions of Kleinian surface
singularities, and then turn to the construction of certain quasiprojective threefolds and
their deformations. Section 3 discusses generalities about families of Fourier-Mukai func-
tors. Section 4 contains the main results. Families of Fourier-Mukai functors constructed
in Section 4.1 are shown to satisfy braid relations in Section 4.2, where faithfulness is also
proved in some cases. The paper is concluded in Section 4.3 by a brief discussion of the
projective case.

Conventions. A smooth family means a smooth morphism e : X! S of smooth
varieties over C with X quasiprojective over S. The base S will always be very simple in
this paper, typically a‰ne space Ar or an open set thereof. For a brief period in Section
2, r can be infinite, but this will cause no complications. The fiber e�1ðsÞ over s A S will be
denoted by Xs. By definition a Dynkin diagram D means an irreducible diagram of finite
type An . . .G2. Nodes of D will be denoted i; j; . . . ; for i3 j, mij ¼ mji A f2; 3; 4; 6g is the
label associated to the pair of nodes ði; jÞ. As usual, the pair ði; jÞ is said to span an edge if
mij > 2. The diagram D is simply laced (type ADE) if mij A f2; 3g.

Acknowledgement. I thank Roger Carter, Mark Gross, Sheldon Katz and János
Kollár for helpful remarks and correspondence. I especially thank Ian Grojnowski for his
help in clarifying old ideas and coming up with new ones, during many conversations on
a joint project which grew out of the present paper. Finally I wish to acknowledge that I
learned the importance of structure sheaves from Tom Bridgeland’s beautiful paper [4].

1. Dynkin diagrams and Artin groups

1.1. The reflection group and the Artin group. Take an arbitrary Dynkin diagram
D with n nodes. Let SD H hD;R be the corresponding root system, where ðhD;R; h ; iÞ is a
Euclidean inner product space of dimension n. Fix sets of simple and positive roots

S0
D ¼ fl1; . . . ; lngHSþD HSD:

The reflections ri : hD;R ! hD;R ð1e ie nÞ defined by the simple roots generate a finite
reflection group

WD ¼ hrii < GLðhD;RÞ:

As an abstract group,

WD G hri : i A NodesðDÞi=hr2
i ¼ 1; ðrirjÞmij ¼ 1i

with one relation for every node i and one for every pair of di¤erent nodes ði; jÞ with label
mij. The set of reflections in WD is in one-to-one correspondence with the set SþD . The
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group WD also acts on the complex vector space hD ¼ hD;R nC; for a reflection w A WD, let
Pw H hD denote the fixed hyperplane of w.

Define the Artin group (also called generalized braid group) BD by generators and
relations as

BD ¼ hRi : i A NodesðDÞi=hRiRj . . .|fflfflfflffl{zfflfflfflffl}
mij

¼ RjRi . . .|fflfflfflffl{zfflfflfflffl}
mij

ið1Þ

with one relation for every pair of di¤erent nodes ði; jÞ of D, the braid relation. There is a
group homomorphism BD !WD sending Ri to ri.

1.2. Quotiens of Dynkin diagrams. Let D be a simply laced Dynkin diagram
and A a non-trivial subgroup of its automorphism group AutðDÞ, excluding the case
ðD;AÞ ¼ ðA2n;Z=2Þ. Then A permutes the set of simple roots in hD which forms a basis;
hence A also acts on hD. Let hX ¼ ðhDÞA and let SX ¼ SD X hX be the set of invariant roots.
It is well known that, as the notation suggests, SX is a root system for a Dynkin diagram X,
the ‘‘quotient’’ diagram D=A. For D ¼ A2n�1;Dn;E6, X is the non-simply laced diagram of
type Cn;Bn�1;F4 respectively; in the case D ¼ D4, X is either G2 or C3 according to whether
A acts transitively on the outer nodes of D4 or not. The set of nodes of X is in one-to-one
correspondence with the set of orbits of nodes of D under the action of A; there is a corre-
sponding set of simple and positive roots

S0
X ¼ fm1; . . .gHSþX HSX

and a reflection group

WX ¼ hri : i A NodesðXÞi

acting on hX. Finally X also defines an Artin group BX.

Lemma 1.1. The group A acts naturally on the Artin group BD and the reflection

group WD equivariantly with respect to the map BD !WD. The fixed subgroups are iso-

morphic to BX and WX respectively.

Proof. For a A A, the action is defined on generators of BD by Ri 7! RaðiÞ. This
action clearly leaves the relations invariant and descends to an action on WD. If fkjg is an
A-orbit of nodes of D corresponding to a node k of X, then Rkj

A BD commute by the braid
relations and their product Rk ¼

Q
Rkj

is invariant under the action. It is an easy check to
show that the Rk satisfy the braid relations of the group BX. By [13], Corollary 4.4, these
elements generate the fixed subgroup and they do not satisfy any further relations. r

Remark 1.2. The proof also shows that the action of A on the reflection group WD is
simply the conjugation action of A < GLðhDÞ on WD < GLðhDÞ.

2. Surfaces, threefolds and deformations

2.1. Finite subgroups of SL(2,CCC). Fix a finite subgroup G of SLð2;CÞ together with
its canonical two-dimensional representation rc. Following McKay, consider the diagram
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~DD consisting of a node for every irrep (irreducible representation) rj of G and an edge be-
tween irreps rj; rk whenever rj is a direct summand of rk n rc. It is well known that this
defines a symmetric relation and ~DD is an a‰ne Dynkin diagram of type ~AAn; ~DDn or ~EEn with

distinguished a‰ne node corresponding to the trivial rep r0. Let D ¼ ~DDnfr0g be the corre-
sponding finite diagram.

Lemma 2.1. There exists an exact sequence of groups

1! CG !
g

NG !
d

AutðDÞ ! 1;ð2Þ

where NG ¼ NGLð2;CÞðGÞ=G and CG ¼ CGLð2;CÞðGÞ=ZG are the normalizer of G in GLð2;CÞ
modulo G and the centralizer of G modulo the center ZG of G respectively, and AutðDÞ is the

automorphism group of the diagram D.

Proof. For an irrep r : G! GLðVÞ and an element g A NGLð2;CÞðGÞ, define a new
irrep rg of G by rgðhÞ ¼ rðg�1hgÞ. The isomorphism class of the irrep rg only depends
on the class of g in NG. For all g A NGLð2;CÞðGÞ, rg

0 is isomorphic to r0 and rg
c to rc, so the

diagram D is mapped to itself by the action of g. So r 7! rg defines a map d : NG ! AutðDÞ.
The proof of the surjectivity of this map as well as the computation of its kernel are easy on
a case-by-case basis. r

2.2. The surface Y. For a finite subgroup G < SLð2;CÞ, let g : Y ! C2=G be the

minimal resolution of the Kleinian quotient singularity with exceptional locus E ¼
Sn
j¼1

Ej.

The incidence graph of the components of E can be identified with the (simply laced)
McKay diagram D defined by G in 2.1; fix such an identification.

Proposition 2.2. There is an injection j : NG ,! AutðY Þ. The composite

NG ! AutðY Þ ! AutðDÞ;

where the latter is the map given by permuting exceptional divisors, coincides with the map d

of Lemma 2.1. In particular, an element of NG fixes all the exceptional divisors if and only if

it is in CG.

Proof. By definition, an element h A NGLð2;CÞðGÞ induces an automorphism of C2

normalizing the action of G; hence this automorphism descends to the quotient C2=G and
only depends on the class of h in NG. The resolution f is the unique minimal model of
C2=G, hence every automorphism of C2=G lifts to a unique automorphism of Y . This
defines the injection j : NG ! AutðYÞ. The last statement follows from an explicit compu-
tation on the resolution. r

Next I collect information about the cohomology and deformations of the surface Y .
The first statement is well known.

Proposition 2.3. The second cohomology H 2ðY ;ZÞ of the surface Y is a free Z-module

of rank n, with dual H 2
c ðY ;ZÞ which has a natural Z-basis consisting of the classes f½Ej�g of

the exceptional divisors. Every exceptional divisor Ej HY gives rise to a reflection
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o 7! oþ ð½Ej� � oÞc1

�
OY ðEjÞ

�

on H 2ðY ;CÞ. These reflections generate a finite reflection group. r

Remark 2.4. The data in this proposition can be identified with the Dynkin dia-
gram data as follows. Mapping the class ½Ej� A H 2

c ðY ;CÞ to the simple root lj gives
an isomorphism between the lattice H 2

c ðY ;ZÞ and the root lattice Zhl1; . . . ; lri. Dually,
H 2ðY ;CÞG hD and the reflection defined by Ej is the reflection rj associated to the simple
root lj. Hence the reflection group in (ii) is isomorphic to the reflection group WD. Note
also that the group AutðDÞ acts both on H 2ðY ;CÞ (by acting on a basis) and on hD (as
defined in Section 1.2) and these actions are obviously compatible.

Recall the hyperplanes Pw H hD which are the fixed loci of reflections of WD; in par-
ticular, these include the fixed hyperplanes Prj

¼ fo A hD j ho; lii ¼ 0g of rj.

Proposition 2.5. (i) The universal deformation space of Y is a smooth family

d : Y! Z with central fiber d�1ð0ÞGY . There is a simultaneous contraction G : Y! Y
over Z with central fiber g : Y ! Y . More generally, for any subset I ¼ fEjig of the excep-

tional curves, there exists a contraction GI : Y! YI over Z contracting curves in I in the

central fiber and giving an isomorphism on fibers Yt to which none of the curves in I deform.

(ii) Choosing a generator of the relative canonical bundle oY=Z over Z gives rise to a

period map

j : Z ! H 2ðY ;CÞG hD

which is an isomorphism. Di¤erent choices of the generator give rise to the same isomorphism

up to multiplication by a nonzero constant on hD.

(iii) The group NG acts naturally on the base Z and compatibly on the total space of the

family Y! Z by automorphisms. There is an induced action of NG on hD via j. This action

factors via the morphism

ðd; detÞ : NG ! AutðDÞ � C�

with C� acting on hD with weight one.

(iv) The action of the reflection group WD on hD induces, via the period map j, a WD-
action on Z. This extends compatibly to an action on the total space Y! Z by automor-

phisms. More generally, if w A W is a reflection and I denote the set of nodes corresponding

to positive roots mapped to negative roots by w, then there is a diagram

YI ���!@ YI???y
???y

Z ���!w Z:

There is no WD-action by automorphisms on the total space Y! Z, but for w A WD and t A Z

the fibers g�1ðtÞ; g�1ðtwÞ are isomorphic.
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(v) For a point s A hD, the fiber g�1j�1ðsÞ ¼ Ys contains projective curves if and only

if s A
S

w ASD

Pw; otherwise it is a‰ne. For w A SþD corresponding to the positive root l, write

l ¼
P

j

ajlj. Then s A Pw if and only if Ys contains a rational ( possibly reducible) curve which

is a flat deformation of the e¤ective rational curve
P

j

ajEj on Y. If s A Pwn
S

w 03w

Pw 0 then this

curve is smooth and it is the unique projective curve in Ys.

Proof. (i) is well known. (ii) is proved for example in [17], Section 4. For (iii), note
that by universality, AutðYÞ and hence its subgroup NG act on the family Y! Z, and in
particular on its base Z. By [18], Proposition 8.6ii, the determinant acts by weight one in
the induced action on hD. The action of the reflection group WD on Z and its properties
stated in (iv) go back to Brieskorn, see e.g. [18]. Finally (v) is spelled out in [11], Theorem 1.

r

Remark 2.6. Using (ii), I will identify Z with hD everywhere below. The space hD
carries actions of both NG and WD.

2.3. The group cohomology class a and related constructions. Let B be a smooth, not
necessarily projective curve over C. Fix a cohomology class

a A H 1ðB�eet;NGÞ

in the nonabelian group cohomology set H 1ðB�eet;NGÞ in the étale topology (compare [14],
p. 122). All constructions below depend on this class a; for ease of reading, this dependence
is dropped from the notation.

The exact sequence (2) of Lemma 2.1 gives rise to an exact sequence of pointed sets
([14], Proposition 4.5):

H 1ðB�eet;CGÞ !
g

H 1ðB�eet;NGÞ !
d

H 1
�
B�eet;AutðDÞ

�
:

Consider the class dðaÞ A H 1
�
B�eet;AutðDÞ

�
; let A be the minimal subgroup of AutðDÞ such

that dðaÞ is in the image of

H 1ðB�eet;AÞ ,! H 1
�
B�eet;AutðDÞ

�
:

The preimage of dðaÞ in H 1ðB�eet;AÞ defines a finite étale cover b : ~BB! B. Since the cocycle
cannot be reduced to a smaller subgroup, ~BB is connected.

For the rest of this paper, I fix the type of the simply laced diagram D (equivalently
the finite subgroup G) and the cohomology class a; hence also A and X ¼ D=A are fixed. By
the exact sequence above, A is trivial if and only if a takes values in CG.

Since G is a subgroup of SLð2;CÞ, there is a map det : NG ! C�. Hence a gives rise to
an induced cocycle

detðaÞ A H 1ðB�eet;C
�ÞGPicðBÞ;
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I will denote by M the corresponding line bundle on B. Recall also that Proposition
2.5(iii) defines a map NG ! GLðhDÞ. The image of the cohomology class a A H 1ðB�eet;NGÞ in
H 1

�
B�eet;GLðhDÞ

�
GH 1

�
B;GLðhDÞ

�
induces a locally free sheaf H of rank r on B.

If A is trivial, this construction gives a class in

H 1ðB;C�ÞHH 1
�
B;GLðhDÞ

�
;

and in this case HGMn hD. A positive root l A SþD H hD defines a map l : hD ! C using
the inner product, which globalizes to a map of bundles l : H!M over B and hence to a
map on sections

ml : H 0ðB;HÞ ! H 0ðB;MÞ:ð3Þ

If A is nontrivial, there is an isomorphism b�HG b�Mn hD on the étale cover ~BB of
B. On the other hand, by Leray

H 0ð ~BB; b�HÞGH 0ðB; b�b�HÞGH 0ðB;Hn b�O~BBÞ

and taking A-invariants,

H 0ðB;HÞGH 0ð ~BB; b�HÞA

GH 0ð ~BB; b�MÞA n hA
D GH 0ð ~BB; b�MÞA n hX:

Hence if m A SþX is a positive root in the root system of X, there is an induced map

mm : H 0ðB;HÞ ! H 0ð ~BB; b�MÞA:ð4Þ

2.4. The threefold X. Represent the group cohomology element a A H 1ðB�eet;NGÞ by
a Čech cocycle faij A GðBij;NGÞg with respect to an étale covering fBlg of B. Consider the
product C2 � Bl , its quotient Xl ¼ C2=G� Bl and resolution Xl ¼ Y � Bl ! Xl over Bl .
By étale descent, I can glue the morphisms Xl ! Xl over B using the cocyle a with values in
NG HAutðY Þ (Proposition 2.2) to get a diagram of quasiprojective varieties

X ���!f X

p

???yp

B

������!

which up to isomorphism only depends on the cohomology class of a.

Proposition 2.7. (i) The singular locus of X is a section of p and is a curve of cDV

singularities of the type of the diagram D. The morphism f is a crepant resolution of singu-

larities. The canonical bundle of X is

oX G p�ðoB nM�1Þ

and H 2ðX ;OX Þ ¼ 0.
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(ii) Assume that ðD;AÞ3 ðA2n;Z=2Þ as usual. The exceptional locus of f is a union of

irreducible divisors Dj indexed by the nodes of X; every such divisor is a smooth geometrically

ruled surface pj : Dj ! Bj. If j is a node of X representing an A-orbit of size one then Bj GB,
otherwise Bj G ~BB. Two divisors Di;Dj intersect if and only if the corresponding nodes i; j of X
are connected by an edge (mij > 2).

(iii) For every subset I of the nodes of X, there exists a morphism

fI : X ! XI

which contracts the divisors Dj for j A I along their rulings and is an isomorphism on

Xn
S
j A I

Dj.

D4D4A3A2

A2 C2 B3 G2

D

X

Figure 1. Dynkin diagrams and configurations of surfaces.

Proof. The first statement of (i) is clear. The statement that f is a crepant resolution
is local and hence follows from the fact that Y ! C2=G is a crepant resolution. To com-
pute the canonical bundle of X , note that with pj : Xj ¼ Y � Bj ! Bj, oXj

¼ p�j ðoBj
Þ, and

these line bundles glue together after a twisting by the inverse of the determinant cocycle.
H 2ðX ;OX Þ ¼ 0 follows from the Leray spectral sequence for p and well-known properties
of Y .

For (ii), recall that X was glued together from étale open subsets Xl ¼ Y � Bl . If a
can be represented by a cocycle with values in CG, in other words if A is trivial, then the
glueing process will not permute the exceptional divisors fEjg in Y by Proposition 2.2.
Hence fEj � Blg will glue for every j to a smooth exceptional divisor Dj ruled over the
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curve B, and these surfaces will intersect as dictated by the diagram X ¼ D. If A is non-
trivial, then the set of exceptional lines fEjg is acted on by monodromy over B, this action
being given by the cocyle dðaÞ with values in A. The lines Ei corresponding to nodes fixed by
the action of A can still be glued globally over B, leading to exceptional divisors in X ruled
over B. However, nontrivial orbits fEjig of exceptional curves under the A-action are glued
together to an irreducible exceptional divisor, where the glueing is governed by the co-
homology class dðaÞ; hence the corresponding surfaces are ruled over the étale cover ~BB of B.
Finally the morphism fI : X ! XI can be glued over B from the morphism GJ : Y ! YJ ,
contracting the exceptional curves on Y given by the A-invariant set J of nodes of D lying
over I . r

Remark 2.8. In the special case ðD;AÞ ¼ ðA2n;Z=2Þ the exceptional divisors Di are
still indexed by nodes of the quotient diagram D=A, defined to be the An-diagram with a
marked node at one end corresponding to the adjacent AutðDÞ-orbit of nodes. However,
the marked node n of X corresponds to a singular exceptional surface. It is an irreducible
non-normal surface pn : Dn ! B whose double locus is a section and whose fiber over any
point b A B is a line pair. The main results of this paper do not apply in this special case; see
[21], Remark 4.5 for further discussion.

2.5. A family of deformations of X. Representing the cohomology class a as a
Čech cocyle again with respect to an étale covering fBlg of B, there are isomorphisms
HjBl

G hD � Bl . Using these isomorphisms, pull back the universal deformation space
Y! hD of Y from Proposition 2.5 to a family of surfaces ~XXl !HjBl

. Glue these families
over B using the identification given by the cocyle with values in NG < AutðYÞ (compare
Proposition 2.5(iii)) to get a global family of surfaces ~XX!H over the total space of the
vector bundle H. Finally use the tautological map B�H 0ðB;HÞ !H to pull back ~XX to a
family X over B�H 0ðB;HÞ. This leads to a diagram

X ���! ~XX???y
???y

B� T ���! H???y
T

with T ¼ H 0ðB;HÞ. The composite of the left-hand vertical maps gives rise to a morphism
e : X! T , which is a smooth family of threefolds by construction. Using the projection to
B shows that for s A T , the fiber Xs ¼ e�1ðsÞ admits a smooth map ps : Xs ! B. The cen-
tral fiber e�1ð0Þ corresponds to the zero section of the bundle H; it is obtained by glueing
varieties Y � Bl , coming from the central fiber of Y! hD, over the curve B as dictated
by the cohomology class a. Thus e�1ð0ÞGX . Note that at this point T may well be infinite
dimensional, but the meaning of the following statements should be obvious also in this
case.

Proposition 2.9. The family e : X! T with central fiber X G e�1ð0Þ has the follow-

ing properties:

(i) The Kodaira-Spencer map of the family is injective at 0 A T .
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(ii) For any set I of nodes of X, there is a contraction morphism FI : X! XI over T

with central fiber fI : X ! XI .

(iii) The group WX acts on the base T with the following properties:

(a) For i a node of the Dynkin diagram X, the fixed locus Ti ¼ FixðriÞ of the

reflection ri A WX acting on T is exactly the locus of points s A T for which the map

fi; s : Xs ! Xi; s (the fiber of Fi at s A T) contracts a surface.

(b) For a reflection w A WX, if I is the set of simple roots reflected by w, there

exists a diagram

X d
yw

X???y
???y

XI ���!@ XI???y
???y

T ���!w T :

The relative birational morphism yw : XaX over T restricts to a birational morphism

yw; s : Xs aXwðsÞ on fibers.

Proof. The Kodaira-Spencer map of the family e : X! T at 0 A T is a map

j : YT ;0 GH 0ðB;HÞ ! H 1ðX ;YX Þ

where YT ;0 is the holomorphic tangent space of T at 0 A T , and YX is the holomorphic
tangent bundle of X . This map sits in a composition

H 0ðB;HÞ ! H 1ðX ;YX Þ ! H 0ðB;R1p�YX Þ ! H 0ðB;R1p�YX=BÞð5Þ

where the second map comes from the Leray spectral sequence, and the last map comes
from the natural map of sheaves YX ! YX=B on X . On the other hand, it is easy to check
from the construction that the Kodaira-Spencer map hD !

@
H 1ðY ;YY Þ for Y globalizes

to an isomorphism between the sheaf H and the sheaf R1p�YX=B on B, and the composite
H 0ðB;HÞ ! H 0ðB;R1p�YX=BÞ of the maps in (5) is the induced isomorphism. Hence the
Kodaira-Spencer map of e : X! T is injective.

For (ii), let J be the subset of exceptional curves in Y corresponding to the set of
nodes I of X, and let GJ : Y! YJ be the corresponding contraction from Proposition
2.5(vi). J is fixed under the monodromy action by A, so I can glue GJ over B according to
the cocycle a to get a morphism FI : X! XI with central fiber fI .

For (iii), note that WX < WD acts on hD and by Remark 1.2 this action commutes
with that of A and of course the scalars. Hence it acts on the vector bundle H over B

(trivial action on B) and so on T ¼ H 0ðB;HÞ.
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To show property (a) of this action, assume first that A is trivial. Fix a section s A T

of H and a node i of X ¼ D. Note that by Proposition 2.5(v), the surface Xs;p ¼ p�1
s ðpÞ

over p A B contains a deformation of the rational curve Ei HY if and only if mri
ðsÞ van-

ishes at p A B, where mri
is the map in (3). The contraction fi; s contracts a surface if and

only if this happens at every point p A B, in other words if mri
ðsÞ ¼ 0. However, this simply

says that in every fiber sðpÞ is on the reflection hyperplane Pri
H hD or equivalently that it

is fixed by ri. Hence the fixed locus of ri acting on T is exactly the locus where fi; s contracts
a surface.

If A is nontrivial, the node i of X corresponds to an A-orbit fijg of nodes of D. For
s A T , the surface fiber Xs;p over p A B will contain deformations of the exceptional curves
Eij of Y if and only if mri

ðsÞ vanishes at the preimages b�1ðpÞH ~BB of p A B, where mri
is the

map in 4. Hence fi; s contracts a surface if and only if mri
ðsÞ ¼ 0; equivalently, if in every

fiber sðpÞ A Hp G hD lies on all reflection hyperplanes Prij
H hD. This however happens if

and only if the section s is fixed by ri ¼
Q

rij A WXHWD.

The isomorphism XI !
@

XI fitting into the diagram of (b) for a reflection w A WX is
the pullback of the diagram of Proposition 2.5(iv) and it naturally induces a birational map
between resolutions; the details are left to the reader. r

Remark 2.10. The WX-action on T will be essential in what follows. I continue
calling an element w A WX a reflection if it is a reflection on hX, that is if it corresponds to a
positive root in SþX. Of course in general the fixed locus of w on T is not a hyperplane.

If the linear system M on B is small, then the family e : X! T can be rather unin-
teresting (for example, T could be a point). Under an extra assumption, a lot more geom-
etry emerges.

Proposition 2.11. Assume that M is a moving linear system on B.

(i) For a general point s A T , the exceptional locus of fs : Xs ! Xs consists of a finite

number of disjoint smooth rational curves, naturally indexed by positive roots m A SþX, with

normal bundle OP1ð�1;�1Þ.

(ii) For such general s A T and a reflection w A WX, the birational map yw; s : XsaXwðsÞ
is a flop, flopping exactly those ð�1;�1Þ-curves which are indexed by positive roots mapped

to negative roots by w.

(iii) For w ¼ ri with i a node of the Dynkin diagram X, there are two possibilities:
either s A Ti and yri; s : Xs aXriðsÞ is the identity isomorphism, or s A TnTi and the birational

map yri ; s : Xs aXriðsÞ flops a disjoint union of rational curves indexed by the simple root mi,
with normal bundle OP1ð�1;�1Þ or OP1ð0;�2Þ.

Proof. To prove (i), assume first that A is trivial. Let p A B a closed point and
Xs;p ¼ p�1

s ðpÞ the corresponding surface. According to Proposition 2.5, the surface Xs;p is
a‰ne if and only if sðpÞ A hD ¼Hs does not lie on any reflection hyperplane Pw, and it
contains a single smooth rational curve if it lies in a unique such hyperplane. Said invari-
antly, using the map (3), Xs;p is a‰ne if and only if mlðsÞ does not vanish at p for any
l A SþD , and it contains a unique curve if mlðsÞ vanishes at p for a unique l A SþD .
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I claim that for general s A T , there is a finite set of p A B such that mlðsÞ vanishes at
p for some positive root l, and at such a p there is a unique l A SþD with mlðsÞðpÞ ¼ 0. This
shows that for such s there is a finite number of disjoint rational curves in Xs, which are
indexed by positive roots.

To show the claim, take two sections t; t 0 A H 0ðB;MÞ which have a disjoint set of
simple zeroes; as jMj has no base points, this is possible. Choose also h; h 0 A hD so that for
l; l 0 A SþD di¤erent positive roots,

hl; hihl 0; h 0i� hl; h 0ihl 0; hi3 0:ð6Þ

Setting s ¼ hn tþ h 0n t 0, the section mlðsÞ of M vanishes only at finitely many points
of B for any positive root l. Also, if mlðsÞ vanishes at the same point p A B for two dif-
ferent roots, then by condition (6), I get that tðpÞ ¼ t 0ðpÞ ¼ 0 which contradicts the choice
of t; t 0.

The proof in the general case, when A is nontrivial, is similar. In this case, the claim is
that for general s A T there is a finite number of points p A B such that mlðsÞ A H 0ð ~BB; b�MÞ
vanishes at a point q A ~BB lying over p A B and for a positive root m A SþX, and at such points
p, vanishing happens for a unique m. The claim follows by considering

b�tn hþ b�t 0n h 0 A H 0ð ~BB; b�MÞA n hXGH 0ðB;HÞ

for su‰ciently general h; h 0 A hX and t; t 0 A H 0ðB;MÞ with no common zeros.

By construction and the discussion above, a small analytic neighbourhood of every
rational curve on the general fiber Xs looks like the standard one-dimensional deforma-
tion of a ð�2Þ-curve in a surface, the deformation direction being transversal to the hy-
perplane along which the curve deforms. In other words, locally near the curve, the three-
fold looks like a small resolution of the ordinary threefold double point fxy ¼ z2 � t2g.
It is well known that the normal bundle of such a curve is OP1ð�1;�1Þ. This also proves
statement (ii): by Proposition 2.9(iii), the birational map yw; s factors as Xs ! XI ; s  XwðsÞ,
where the first map contracts exactly those ð�1;�1Þ-curves which are indexed by positive
roots mapped to negative ones by w; locally analytically the two maps give the two small
resolutions of the resulting ordinary double points, in other words the flop.

To prove (iii), note that one possibility is mri
ðsÞ ¼ 0, hence s A Ti and the birational

map yri; s is the identity. Otherwise mri
ðsÞ vanishes at a finite set of points fplgHB, and the

map Xs ! Xi; s contracts a finite number of disjoint rational curves contained in the surfa-
ces Xs;pl

. If at pl the section mri
ðsÞ meets the zero-section of M transversally, then the sin-

gularity on Xi; s is analytically isomorphic to fxy ¼ z2 � t2g and the corresponding rational
curve has normal bundle OP1ð�1;�1Þ. If the intersection of the two sections is tangential
of order n > 1 then the singularity on Xi; s is analytically isomorphic to fxy ¼ z2 � t2ng and
the normal bundle is OP1ð0;�2Þ. In any case, yri; s flops all these curves (compare [15]). r

Remark 2.12. Points s A T in the base with fs having an exceptional locus consisting
of a disjoint union of smooth ð�1;�1Þ-curves as in (i) will be called su‰ciently general; on
Figure 2, s A T is a su‰ciently general point but t A T is not. As the proof shows, the locus
of su‰ciently general points is a non-empty Zariski open subset of T .
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Figure 2. Possible exceptional loci for type A2.

Note also that it can perfectly well happen that M is the trivial line bundle on B and
its only sections are the constants. All the statements of the above discussion remain true,
with the small proviso that the maps yw; s flop an empty set of curves, in other words they
are isomorphisms for all s. This phenomenon (in the projective case) is well known in the
literature; the nontrivial birational contraction f : X ! Xi on the central fiber deforms to
an isomorphism fs : Xs !

@
Xi; s, hence the cone of ample divisors jumps in the family. The

variety X is Calabi-Yau if and only if MGoB by Proposition 2.7(i), hence such surfaces
are elliptic ruled surfaces in Calabi-Yau threefolds. Compare [22]–[23].

3. Derived categories and equivalences in families

3.1. Kernels and Fourier-Mukai functors. If X is a smooth quasiprojective variety,
let DbðX Þ denote the bounded derived category of coherent sheaves on X . A kernel (de-
rived correspondence) between smooth quasiprojective varieties Xi ði ¼ 1; 2Þ is an object
U A DbðX1 � X2Þ, whose support is proper over both factors. There is a composition prod-
uct on kernels given for U A DbðX1 � X2Þ and V A DbðX2 � X3Þ by the standard formula

U � V ¼ Rp13�
�

p�23ðVÞnL p�12ðUÞ
�
A DbðX1 � X3Þ;

here pij : X1 � X2 � X3 ! Xi � Xj are the projection maps and the pullbacks are ordi-
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nary pullbacks since pij is flat. A kernel U A DbðX1 � X2Þ is invertible, if there is a kernel
V A DbðX2 � X1Þ such that the products U � V and V �U are isomorphic in DbðXi � XiÞ
to ODXi

, the (complexes consisting of ) the structure sheaves of the diagonals. A kernel

U A DbðX1 � X2Þ defines a functor

CU : DbðX2Þ ! DbðX1Þ

by

CUð�Þ ¼ Rp1�
�
U nL p�2 ð�Þ

�
;

with pi : X1 � X2 ! Xi the projections. If U is invertible then CU is a Fourier-Mukai

functor, an equivalence of triangulated categories. Let AuteqðXÞ denote the group of in-
vertible kernels on X .

3.2. Kernels in families. Suppose that pi : Xi ! Si, i ¼ 1; 2 are smooth families. A
relative kernel for ðp1; p2Þ is a pair ðU ; jÞ, where

. j : S1 ! S2 is an isomorphism, giving rise to the fiber product diagram

X1 �j X2 ���!p2
X2???yp1

p12

???yj�1�p2

X1 ���!p1
S1

������!

and

. U A DbðX1 �j X2Þ, whose derived restriction to the fiber of p12 over every s A S1 is
isomorphic to an object in DbðX1; s � X2;jðsÞÞ with proper support over both factors.

If pi : Xi ! Si, i ¼ 1; 2; 3 are smooth families and ðU ; jÞ; ðV ;cÞ relative kernels
for ðp1; p2Þ; ðp2; p3Þ, then there is a composition on kernels defined as follows. Let
w ¼ c � j : S1 ! S3, and let

p123 : ~XX ¼ ðX1 �j X2Þ �w X3 ! S1ð7Þ

be the twice-fiber product. There are maps p12 : ~XX! X1 �j X2 and p13 : ~XX! X1 �w X3

which commute with the maps to S1. On the other hand, it is easy to check that
ðX1 �j X2Þ �w X3 GX1 �j ðX2 �c X3Þ hence there is a map p23 : ~XX! X2 �c X3 which
satisfies p23 � p23 ¼ j � p123. Hence finally I can put

W ¼ Rp13�
�

p�23ðVÞnL p�12ðUÞ
�

and set

ðV ;cÞ � ðU ; jÞ ¼ ðW ; wÞ:

It is easy to see that ðW ; wÞ is a relative kernel for ðp1; p3Þ.
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For reference I record the composition of three kernels, leaving the obvious general-
ization to the reader. Let pi : Xi ! Si be families for i ¼ 1; . . . ; 4, and ðU ; jÞ; ðV ;cÞ; ðT ; hÞ
relative kernels for ðp1; p2Þ; ðp2; p3Þ and ðp3; p4Þ. Let

X̂X ¼ X1 �j

�
X2 �c ðX3 �h X4Þ

�

with maps s12 : X̂X! X1 �j X2, s23 : X̂X! X2 �c X3, s34 : X̂X! X3 �h X4 and

s14 : X̂X! X1�h�c�j X4:

Then

Lemma 3.1.

ðT ; hÞ � ðV ;cÞ � ðU ; jÞG ð ~UU ; h � c � jÞ;

where

~UU ¼ Rs14�
�
s�34ðTÞnL s�23ðVÞnL s�12ðUÞ

�
: r

A relative kernel ðU ; jÞ for ðp1; p2Þ is called invertible, if there is a relative kernel
ðV ; j�1Þ for ðp2; p1Þ, with the property that the compositions ðU ; jÞ � ðV ; j�1Þ and
ðV ; j�1Þ � ðU ; jÞ are isomorphic to the relative kernels ðODXi

; idÞ.

Let Us A DbðX1; s � X2;jðsÞÞ denote the derived restriction of the relative kernel U to
fibers of p12.

Proposition 3.2. If a relative kernel U A DbðX1 �j X2Þ for ðp1; p2Þ is invertible

then the restricted kernel Us A DbðX1; s � X2;jðsÞÞ is invertible for every s A S1. Conversely

if the restricted kernel is invertible for every s A S1, then every s A S1 has a neighbour-

hood s A T HS1 such that the relative kernel restricted to the families p�1
1 ðTÞ ! T and

p�1
2

�
jðTÞ

�
! jðTÞ is invertible.

Proof. If xi; s : Xi; s ,! Xi denotes the inclusion, then

Lx�i; sODXi
GODXi; s

as the maps pi are flat. Hence if U is invertible with inverse V , then Us is invertible with
inverse Vs.

Conversely, take a relative kernel U A DbðX1 �j X2Þ and suppose that the restrictions
are all invertible. Let

V ¼ RHomðU ;OX1�jX2
Þn p�1oX1=S1

½n� A DbðX2 �j X1Þ

where n is the dimension of the fibers Xi; s. Then by standard adjunctions the functor

CðV ;j�1Þ is right adjoint to the functor CðU ;jÞ. Hence CVs is right adjoint to CUs on the
fibers. However, adjoints are unique, so Vs is the inverse of the kernel Us. In other words,

Lz�1; sðU � VÞGUs � Vs GODX1; s
A DbðX1; s � X1; sÞ;

Szendrői, Artin group actions on derived categories of threefolds 153



where z1; s : X1; s � X1; s ! X1 �S X1 is the inclusion. By [3], Lemma 4.3, this implies that
U � V is a sheaf on X1 �S X1, flat over S. Take s A S1, then the natural map

H 0ðX1 �S X1;U � VÞ ! H 0ðX1; s � X1; s;Us � VsÞ

is surjective, hence there is a map of sheaves

OX1�SX1
! U � V

which is surjective at s A S1. So this map is surjective over a neighbourhood T of s A S1 and
restricted to that neighbourhood, U � V is a structure sheaf of a subscheme, fiberwise iso-
morphic to the diagonal DX1; s

HX1; s � X1; s. By Lemma 3.5 below, U � V restricted over T

is isomorphic to the structure sheaf of the relative diagonal in the fiber product X1 �S X1.
To conclude, repeat the argument with V �U and take the intersection of the resulting
open sets. r

Let now p : X! S be a fixed smooth family, and consider relative kernels ðU ; jÞ
where j : S ! S is an automorphism of the base. Let MðX=SÞ be the set of such pairs up
to isomorphism. MðX=SÞ has a monoid multiplication given by composition with a two-
sided unit ðidS;ODX

Þ. Let AuteqðX=SÞ be the group of invertible elements of the monoid
MðX=SÞ, the group of relative equivalences of the family X! S.

3.3. Three lemmas. I record some auxiliary results on sheaves and kernels.

Lemma 3.3. Suppose that p : X! S is a smooth family,

ðU ; jÞ; ðV ;cÞ A MðX;SÞ

are relative kernels with composite ðW ; wÞ and assume further that the sheaf V is isomorphic

to the structure sheaf i�OY of a subscheme i : Y ,! X�c X. Then every map OX�jX ! U in

DbðX�j XÞ induces a map OX�wX !W in DbðX�w XÞ.

Proof. Since V is the structure sheaf of a subscheme, p�23ðVÞG j�O ~YY is also the
structure sheaf of the subscheme j : ~YY ,! ~XX, where ~XX is the fiber product of (7). But by the
projection formula

p�23ðVÞnL p�12ðUÞG j�O ~YYnL p�12ðUÞG j�
�
Lj �p�12ðUÞ

�
:

On the other hand, by functoriality, a map OX�jX ! U induces a map O ~XX ! p�12ðUÞ, hence
a map O ~YY ! Lj �p�12ðUÞ and hence a map j�ðO ~YYÞ ! j�

�
Lj �p�12ðUÞ

�
. Composing this with

the natural map O ~XX ! j�ðO ~YYÞ I get a map O ~XX ! p�23ðVÞnL p�12ðUÞ. But O ~XXG p�13ðOX�wXÞ,
so by adjunction I finally get a map

OX�wX ! Rp13�
�

p�23ðVÞnL p�12ðUÞ
�
¼W : r

Lemma 3.4. Let f : X ! Y be a projective morphism of quasiprojective varieties. Let

i : Z ,! X be a reduced subscheme of X and j : T ,! Y its reduced image under f . Assume

that all fibers of f jZ : Z ! T are projective spaces. Then R f�ði�OZÞG j�OT .
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Proof. As i and j are closed immersions, the Grothendieck spectral sequences for
Rð f � iÞ� and Rð j � f jZÞ� degenerate, hence

R f�ði�OZÞGRð f � iÞ�ðOZÞGRð j � f jZÞ�ðOZÞG j�ðR f jZ�OZÞ:

On the other hand, f jZ�OZ GOT since fibers of f jZ are connected, and Rif jZ�OZ ¼ 0 for
i > 0 by the Theorem on Formal Functions and the fact that the higher cohomologies of
O on projective spaces vanish. This proves the statement. r

Lemma 3.5. Let e : X! S be a smooth family. Assume that U1;U2 are sheaves on

X, flat over S, with surjective maps gi : OX ! Ui for i ¼ 1; 2 (i.e. the Ui are structure sheaves

of subschemes). Suppose further that for some dense open S0 HS, if s A S0 then there is an

isomorphism U1; s GU2; s which is compatible with the maps gi; s : OXs
! Ui; s. Then U1 GU2

as sheaves on X, compatibly with the maps gi.

Proof. For i ¼ 1; 2 the structure sheaves Ui of subschemes of X give rise to mor-
phisms

ji : S ! HilbðX=SÞ

over S, where HilbðX=SÞ ! S represents the Hilbert functor of the quasiprojective mor-
phism X! S (this is constructed using a projective completion X ,! X! S along the fi-
bers), such that the morphisms gi are pullbacks of a universal surjection OX�S HilbðX=SÞ ! U.
By the condition on restrictions, j1jS0 ¼ j2jS0 . But the Hilbert scheme is separated, so the
maps j1 and j2 coincide. Hence U1 GU2 compatibly with the maps gi, since they are
pullbacks of U along the same map. r

4. Artin group actions on derived categories

4.1. Relative equivalences for threefolds containing ruled surfaces. Recall the family
of threefolds e : X! T constructed in Section 2.4 together with the action of the reflec-
tion group WX on the base T . Note that T can a priori be infinite dimensional. For any
finite dimensional WX-invariant vector subspace QHT , I can consider the restricted family
eQ : XQ ! Q which I will simply denote by e : X! Q. The central fiber of this family is

still e�1ð0ÞGX . Restrict all contractions and the WX-action to Q.

For every node i of the diagram X there is a contraction Fi : X! Xi and a map
ri : Q! Q fitting into a diagram

X�Xi;ri
X

X d
yri

X???y Xi

???y
Q ���!ri

Q

 ��
��

 ��
��

 ���  ���

 ���  ���

which is just the diagram from Proposition 2.11(iii) re-drawn and completed to a fiber
product on the top. Let
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Ui ¼ OX�
Xi ; ri

X A DbðX�ri
XÞ

be the structure sheaf of this fiber product.

Theorem 4.1. There is a WX-invariant open subset 0 A S HQ, such that the restriction

of each pair ðUi; riÞ to the pullback family eS : XS ! S is in the group of relative equi-

valences AuteqðXS=SÞ.

The proof of this theorem relies on the following fact, which will be very important
also later.

Proposition 4.2. The morphism ei : X�Xi ;ri
X! Q is flat and has reduced fibers.

Proof. Using the notation and constructions of Section 2.5, X! Q factors through
a morphism X! B�Q. Hence ei factors through X�Xi;ri

X! B�Q which is the pull-
back of a morphism ~XX� ~XXi;ri

~XX!H along the natural map B�Q!H. It is clearly
enough to prove that this latter morphism is flat with reduced fibers. However, this state-
ment is (étale) local over the base, hence it su‰ces to prove it over the étale open set
hD � Bl of H; recall that fBlg is an étale open covering of the curve B. Over hD � Bl ,
everything is a pullback along the map hD � Bl ! hD, so finally it is enough to show that
the morphism

dI : Y�YI ; rI
Y! hD

has the stated properties. Here I is the A-orbit of nodes of D corresponding to the node i of
X, and rI is the corresponding A-fixed element of WD.

Since the morphism dI is surjective with smooth target hD, by [8], 15.2.3 and Remark
(v), using also [8], 14.4.2, it is flat once its fibers are reduced and its domain Y�YI ; rI

Y irre-
ducible and equidimensional over hD. Equidimensionality is clear, so the issue is to prove
that the fibers are reduced and the domain irreducible.

Assume first that I ¼ i is a single node of D. Then the central fiber YI of YI ! hD is a
surface with an ordinary surface double point, and the total family is a deformation family
of this surface, where the double point survives on a codimension one subspace PH hD.
The map ri : hD ! hD is the reflection in P. Finally the family Y! hD is a simultaneous
resolution of YI ! hD, constructed simply by blowing up the singular locus. Hence near the
singularity, up to a local analytic change in coordinates I can simply write

Yi Gfxy ¼ z2 � t2
1gHAnþ3

x;y; z; t1;...; tn???y
???y

hD ¼ An
t1;...; tn

with singular locus SingðYiÞ ¼ fx ¼ y ¼ z ¼ t1 ¼ 0g mapping to P ¼ ft1 ¼ 0gH hD, the
fixed locus of ri : t1 7! �t1. The resolution Y can be constructed explicitly as the graph of
the rational map Yi aP1 defined by ðx; y; z; t1; . . . ; tnÞ 7!

�
x : ðz� t1Þ

�
. Using the a‰ne

variable s ¼ x=ðz� t1Þ, one a‰ne piece of this graph is

Yð1ÞG fys ¼ zþ t1gHAnþ3
y; z; s; t1;...; tn

:
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Hence the fiber product has an a‰ne open piece

ðY�Yi; ri
YÞð1;1Þ ¼

ys1 ¼ zþ t1

ys2 ¼ z� t1

s2ðzþ t1Þ ¼ s1ðz� t1Þ

8<
:

9=
;HAnþ4

y; z; s1; s2; t1;...; tn

which is isomorphic to the hypersurface

fyðs1 � s2Þ ¼ 2t1gHAnþ3
y; s1; s2; t1;...; tn

:ð8Þ

The map to hD is still given by projection to the ti coordinates. The equation in (8), together
with similar equations for the other a‰ne pieces, show that Y�Yi; ri

Y is irreducible, and

the map to hD has reduced fibers. This concludes the proof for the case when i ¼ I is a
single node of D. The other cases reduce to this, since locally the morphism Y ! YI con-
tracts a union of disjoint rational curves to ordinary double points. r

Proof of Theorem 4.1. By Proposition 3.2, it is enough to show that the fiberwise
restricted kernels

Ui; s ¼ Ly�s Ui A DbðXs � XriðsÞÞ

are invertible, where ys : Xs � XriðsÞ ,! X�ri
X is fiber inclusion. By Proposition 4.2, Ui is

a flat family of structure sheaves over Q, and hence the derived restriction Ly�s Ui is iso-
morphic to the ordinary restriction y�s Ui, which in turn is isomorphic to the structure sheaf
OXs�Xs

XriðsÞ
. The statement that this sheaf defines an invertible kernel is already contained in

the literature. There are two cases.

Suppose first that s A QXTi. Then by Proposition 2.9(iii), s is a fixed point of ri,
hence

Ui; s GOXs�Xi; s
Xs

A DbðXs � XsÞ:

On the other hand, the contraction fi; s : Xs ! Xi; s contracts a single ruled surface Di; s

inside Xs to a smooth curve Bi; s (which is either B or ~BB). There is an exact sequence of
sheaves on Xs � Xs

0! Ui; s ! ODXs
lODi; s�Bi; s

Di; s
! ODDi; s

! 0;

where DXs
and DDi; s

are respective diagonals in Xs � Xs. Hence the kernel Ui; s is isomorphic
to the kernel

ConefODXs
lODi; s�Bi; s

Di; s
! ODDi; s

g A DbðXs � XsÞ:ð9Þ

This kernel was introduced in [9], (4.31) and its invertibility proved in [10], Theorem 2.9
and Remark 2.12.

Next suppose that s A QX ðTnTiÞ. Then by Proposition 2.11(iii), the birational map

yri; s : Xs aXriðsÞ
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is a flop of a disjoint union of smooth rational curves with normal bundle OP1ð�1;�1Þ or
OP1ð0;�2Þ. The kernel Us is the structure sheaf of the graph of this flop. This kernel was
shown to be invertible in [2], Theorem 3.6 and Remark. r

Remark 4.3. I sketch an alternative proof of the invertibility of the kernel Ui; s,
which avoids a case division and also throws some light on the origin of this kernel. The
claim is that Ui; s is the universal perverse coherent point sheaf on Xs � XriðsÞ with respect to
the contraction fi; s : Xs ! Xi; s, and hence it is invertible. In particular, the variety XriðsÞ is
the fine moduli space of perverse point sheaves on Xs for the contraction fi; s. Here I am
using the terminology of [4]; the essential point is that fi; s has fibers of dimension at most
one, so Bridgeland’s theory applies. The proof of the claim is not very di‰cult given the
machinery of [4].

For purposes of brevity I will denote the family over the open set S HQ also by
X! S, and restrict all contractions, the WX-action and the relative kernels ðUi; riÞ to this
family without further notice. The properties spelled out in Propositions 2.9–2.11 continue
to hold; the latter of course under the assumption that S contains a su‰ciently general
point of T .

4.2. The main results. The first main result of the paper is that the derived category
of the threefold X and that of its deformation space carry an action of an Artin group.

Theorem 4.4. Let X! S be a finite-dimensional deformation space of the threefold X

satisfying the conclusion of Theorem 4.1. Then there are homomorphisms

BX ! AuteqðX=SÞð10Þ

and

BX ! AuteqðXÞ:ð11Þ

Proof. Define the map (10) by mapping the generators ri of the Artin group BX to
the element ðUi; riÞ of Theorem 4.1. Since WX fixes 0 A S, I can define (11) by restricting
these kernels to the central fiber. The point is to prove that the braid relations of (1) defin-
ing BX are satisfied for these kernels. Since (derived) restriction commutes with kernel
composition in smooth families, it is enough to show that (10) is a group homomorphism.

Take a pair of nodes ði; jÞ of the Dynkin diagram X. Set

ðVl ; jlÞ ¼ ðUi; riÞ � ðUj; rjÞ � � � �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mij

for the left hand side of the braid relation of (1) for the pair of nodes i; j and similarly
ðVr; jrÞ for the right hand side. One part is easy: the automorphisms ri and rj of the base S

satisfy the relations of the Coxeter group WX, and consequently also the braid relation;
hence jl ¼ jr which I will denote simply by j.

Next note that for k ¼ i; j, the sheaf Uk is the structure sheaf of a subscheme of
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X�rk
X, in other words there is a surjective morphism OX�rk

X ! Uk. By a repeated use of
Lemma 3.3, this implies that there are induced arrows

OX�jX

ð12Þ

 �
��

 �
��

Vl Vr

in DbðX�j XÞ.

To continue, assume that mij ¼ 3; this will only simplify notation, the other cases
being identical. Let rij ¼ rj � ri. Let also

~XX ¼ X�ri

�
X�rj

ðX�ri
XÞ

�

with maps p12 : ~XX! X�ri
X etc. For s A S, let

xs : ~XXs ¼ Xs � XriðsÞ � XrijðsÞ � XjðsÞ ,! ~XX

and

ys : Xs � XjðsÞ ,! OX�jX

be inclusion maps of fibers, with projection maps p14s : ~XXs ! Xs � XjðsÞ etc. The derived
restriction of diagram (12) is a diagram

OXs�XjðsÞ

ð13Þ
 ��

�
 ��

�
Vl; s Vr; s

in DbðXs � XjðsÞÞ. Now compute:

Vl; s GLy�s
�
Rp14�

�
p�34ðUiÞnL p�23ðUjÞnL p�12ðUiÞ

��
ð14Þ

GRp14s�
�
Lx�s

�
p�34ðUiÞnL p�23ðUjÞnL p�12ðUiÞ

��

GRp14s�ðOXs�XriðsÞ�Xrij ðsÞ�Xi; rij ðsÞ
XjðsÞ n

L OXs�XriðsÞ�Xj; riðsÞ
Xrij ðsÞ�XjðsÞ

nL OXs�Xj; s
XriðsÞ�Xrij ðsÞ�XjðsÞ Þ:

The first isomorphism uses Lemma 3.1, the second follows from a slight generalization of
[2], Lemma 1.3 to the quasiprojective case, and the last uses the flatness result Proposition
4.2. There is a similar computation for Vr; s.

I now distinguish two cases. First assume that s A S is su‰ciently general. It is easy to
see that the three subschemes of ~XXs appearing in the last expression of (14) are transversal,
so the (derived) tensor product of their intersections is isomorphic in Dbð ~XXsÞ to the struc-
ture sheaf of their intersection

~CCl; s ¼ Xs �Xi; s
XriðsÞ �Xj; riðsÞ

XrijðsÞ �Xi; rij ðsÞ
XjðsÞ
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in ~XXs. To understand this intersection, consider the diagram

Xs d XriðsÞ d XrijðsÞ d XjðsÞ

ð15Þ  
��

 ��  
��

 ��  
��

 ��

Xi; s X j;riðsÞ Xi;rijðsÞ:

The support of ~CCl; s in ~XXs is the set of quadruples ðp1; . . . ; p4Þ A ~XXs such that pi; piþ1 have
the same images under appropriate arrows in the diagram (15).

Since s is su‰ciently general, the variety Xs contains a disjoint union of ð�1;�1Þ
curves indexed by positive roots. The chain of birational maps in (15) flops, consecutively,
the disjoint rational curves on Xs indexed by the positive roots mi; mi þ mj; mj A SþX. In other
words, the composition of the three flops, the map Xs aXjðsÞ, is the flop of the disjoint set
of all these curves. Hence a quadruple ðp1; . . . ; p4Þ is determined by the pair ðp1; p4Þ, and
in particular p14s restricted to the reduced subscheme ~CCl; s of ~XXs is an isomorphism onto its
image in Xs � XjðsÞ.

On the other hand, the set of positive roots fmi; mi þ mj; mjg is exactly the set of all
positive roots of the sub-root system of type A2 of the root system of X spanned by the
nodes ði; jÞ (remember mij ¼ 3). The reflection j A WX maps exactly these roots to negative
roots. So the map Xs aXjðsÞ factors as Xs ! Xij; s  XjðsÞ in the notation of Proposition
2.11(iii)(b). Hence the image of ~CCl; s under p14s is the reduced subscheme

Cl; s ¼ Xs �Xij; s
XjðsÞ ,! Xs � XjðsÞ:

So finally

Vl; s G p14s�O~CCl; s
GOCl; s

and the argument also shows that the map on the left hand side of diagram (13) is just the
natural surjection OXs�XjðsÞ ! OCl; s

.

Repeating this argument also for Vr; s, I obtain that in this case the diagram (13) is
isomorphic to the diagram

OXs�XjðsÞ

ð16Þ
 ��

�
 ��

�
OXs�Xij; s

XjðsÞ ���!@ OXs�Xij; s
XjðsÞ

of sheaves on Xs � XjðsÞ, with the vertical arrows being surjective.

The other case is when s A S is not su‰ciently general. Transversality of the sub-
schemes in (14) still holds, hence the tensor product in the last expression of (14) is iso-
mophic to the structure sheaf of a subscheme ~CCl; s of ~XXs, a correspondence subscheme with
respect to the diagram (15). It is not longer true that the horizontal birational maps in (15)
modify Xs on a set of disjoint loci, but in any case p14s restricted to ~CCl; s factors as

p14sj ~CCl; s
: ~CCl; s !! Cl; s ,! Xs � XjðsÞ:
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The fibers of p14s�j ~CCl; s
are quadruples ðp1; . . . ; p4Þ mapping to a given pair

ðp1; p4Þ A Xs � XjðsÞ and pi; piþ1 mapping to the same image under the appropriate maps in
(15). There are several possible configurations, depending on s and the exceptional loci; for
example if s A Ti XTj then one possibility is that p1, p2 ¼ p3 and p4 all lie in the same fiber
of fi; s. However, it is easy to check that in all cases when the reduced fiber of p14s�j ~CCl; s

is not
a point, it is isomorphic to a fiber of either fi; s or fj; s, in other words to a projective line.
Hence by Lemma 3.4,

Vl; s GRp14s�O~CCl; s
GOCl; s

A DbðXs � XjðsÞÞ:

Using the same reasoning also for Vr; s, the diagram (13) is isomorphic to a diagram of
sheaves on Xs � XjðsÞ

OXs�XjðsÞ

ð17Þ
 ��

�
 ��

�
OCl; s

OCr; s

with surjective arrows.

Diagrams (16) and (17) imply by [3], Lemma 4.3 that Vl and Vr are sheaves on
X�j X, flat over S. Moreover, since pullback is right exact, the arrows in diagram (12) are
necessarily surjective maps of sheaves; in other words, Vl and Vr are structure sheaves of
subschemes of X�j X. If I further assume that

ð?Þ M is a moving linear system on B, and the finite-dimensional family e : X! S

contains su‰ciently general deformations of X ,

then su‰ciently general points form an open dense subset of S. Hence Lemma 3.5, together
with (16), allows me to conclude that (12) can be extended to a diagram

OX�jX

 �
��

 �
��

Vl ���!@ Vr:

So composition of the relative kernels ðUi; riÞ and ðUj; rjÞ in the two di¤erent ways
gives isomorphic relative kernels; hence, assuming ð?Þ, the braid relation holds up to iso-
morphism.

To remove assumption ð?Þ, let B ¼
S

Bb be a finite decomposition into quasipro-
jective (e.g. a‰ne) curves so that the restriction Mb ¼MjBb

moves on Bb. For every b, let

pb : Xb ! Bb be the restriction of p over Bb, and let eb : Xb ! H 0ðBb;MbÞ be the family
of deformations of Xb constructed in Proposition 2.9. There is a WX-equivariant natural
injection

nb : H 0ðB;MÞ ,! H 0ðBb;MbÞ:

Let Sb be a WX-invariant finite-dimensional subspace of H 0ðBb;MbÞ containing both the
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image of S under the injection nb and a su‰ciently general point of H 0ðBb;MbÞ. There is
an induced family eb : Xb ! Sb with central fiber Xb.

By construction, the family eb : Xb ! Sb satisfies assumption ð?Þ for each b. On the
other hand, the natural injection nbjS : S ,! Sb is WX-equivariant by construction, so if
I restrict to families eb;S : Xb;S ! S then the above discussion applies to these families. In
particular, the restriction of diagram (12) to Xb;S �j Xb;S can be extended to a diagram of
sheaves

OXb; S�jXb; S

ð18Þ  ��
�

 ��
�

Vl;b;S ���!@ Vr;b;S

with the vertical maps being surjective. The horizontal isomorphisms in (18) are compatible
with surjections from a fixed sheaf, so they can be glued to an isomorphism

OX�jX

ð19Þ  �
��

 �
��

Vl ���!@ Vr

of sheaves on X�j X extending (12). Hence the braid relation holds between ðUi; riÞ and
ðUj; rjÞ with no extra assumption.

The proofs in the cases mij ¼ 4; 6 are, up to writing out longer expressions, identical.
The proof for mij ¼ 2 is in fact easier, since the exceptional loci of fi; s and fj; s are disjoint
for all s, hence there is no need for a case distinction and assumption ð?Þ. These cases cor-
respond to sub-digrams of X type B2;G2 and A1 � A1 respectively. The proof of Theorem
4.4 is complete. r

The next result shows that in certain cases, the Artin group action on the derived
category of X is faithful.

Theorem 4.5. Assume that the diagram X describing the configuration of exceptional

surfaces in X is of type An or Cn. Then the map BX ! AuteqðXÞ is injective.

Proof. Take any point b A B and let jb : Yb ! X be the fiber of p : X ! B over
b. Rational exceptional curves Ej;b in the surface Yb are indexed by nodes j of the simply
laced Dynkin diagram D lying over X.

Let kb : Yb � Yb ! X � X ; for nodes i of X, let Ui;b ¼ Lk�b ðUi;0Þ be the restriction to
Yb � Yb of the kernel Ui;0 (note X ¼ X0 for 0 A S). By standard arguments, there is a com-
mutative diagram of functors

DbðX Þ ���!Lk �
b

DbðYbÞ???yC
Ui; 0

???yC
Ui; b

DbðX Þ ���!Lk �
b

DbðYbÞ
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and maps

BX ! AuteqðXÞ ! AuteqðYbÞ

where the second arrow is restriction to the fiber over b.

Suppose now that X is of type An. Then the following holds (for a proof, see below):

Lemma 4.6. The kernel Ui;b A DbðYb � YbÞ is isomorphic to the kernel defining the

(inverse) twist functor T 0Ei
of [16] for the sheaf Ei ¼ OEi; b

ð�1Þ, where Ei;b HYb is the excep-

tional rational curve corresponding to the node i of D.

The map BX ! AuteqðYbÞ defined by mapping the Artin group generators to the
twist functors TEi

is injective by [16], Theorem 2.18. Hence the map BX ! AuteqðX Þ must
be injective as well.

If X is of type Cn, then it has two kinds of nodes: one representing a single node of the
simply laced diagram D, and the other representing an orbit fi1; i2g of nodes. For the first
type of node, Lemma 4.6 continues to hold; for the second, it gets replaced by

Lemma 4.7. The kernel Ui;b A DbðYb � YbÞ is the composite of the commuting ker-

nels defining the (inverse) twist functors T 0Ei1
and T 0Ei2

.

Hence, recalling the proof of Lemma 1.1, in this case there is a commutative diagram

BX ���! AuteqðXÞ???y
???y

BD ���! AuteqðYbÞ:

The bottom horizontal arrow is injective by [16], Theorem 2.18 again; the left hand vertical
arrow is injective by Lemma 1.1. Hence the composite is injective; so BX ! AuteqðX Þ must
be injective as well. r

Proof of Lemmas 4.6 and 4.7. Suppose first that A is trivial. Since all sheaves ap-
pearing in (9) are flat with respect to the projection X � X ! B, the kernel Ui;b on Y is
isomorphic to the kernel

ConefODYb
lOEi; b�Ei; b

! ODEi; b
g A DbðYb � YbÞ

where recall Ei;b HYb is one of the exceptional rational curves. Let y : Ei;b ,! Yb denote
the inclusion of the rational curve in the surface, and let x : Ei;b � Ei;b ,! Yb � Yb be the
induced inclusion. Then up to isomorphism in DbðYb � YbÞ,

Ui;b GConefODYb
! ðx�OEi; b�Ei; b

! x�ODEi; b
Þg

GCone
�
ODYb

! x�
�
OEi; b�Ei; b

ð�1;�1Þ
��

GCone
�
ODYb

! x�
�
q�2
�
RHomOEi; b

�
OEi; b
ð�1Þ;oEi; b

��
nL q�1

�
OEi; b
ð�1Þ

���
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where q1; q2 : Ei;b � Ei;b ! Ei;b are projections. It is easiest to conclude now using results
of [10]. Comparing the above expression with [10], (2.7) and (2.23) shows that Ui;b is iso-
morphic to the invertible kernel on Yb defined by the relatively spherical sheaf OEi; b

ð�1Þ
with respect to the diagram

Ei;b H
y���! Yb???y

?

a kernel which by [10], Example 4.1 is isomorphic to the kernel which gives rise to the (in-
verse) twist functor of [16] defined by the spherical sheaf y�OEi; b

ð�1Þ. This proves Lemma
4.6. Lemma 4.7 follows also on noting that in that case the contraction fi restricts to Yb as
the contraction of two disjoint exceptional curves. r

4.3. Projective examples. Let X be a projective threefold with a curve of singular-
ities

B ¼ SingðXÞ ,! X ;

such that along the curve, X has compound du Val singularities of uniform ADE type. The
iterated blowup of the singular locus f : X ! X is a resolution of singularities, cf. [15], and
the exceptional locus consists of a set of geometrically ruled surfaces fpj : Dj ! Bjg inter-
secting in one of the configurations X ¼ D=A described in Section 2.4.

Theorem 4.8. Assume as usual that ðD;AÞ3 ðA2n;Z=2Þ. The derived category DbðX Þ
carries an action of the Artin group BX. In case X is of type An or Cn, this action is

faithful.

Proof. For j a node of the diagram X, define a kernel Uj on X by

Uj ¼ ConefODX
lODj�Bj

Dj
! ODDj

Coneg A DbðX � XÞ;

this is just the kernel of [9], (4.31), proved to be invertible in [10]. The point is that this
definition makes sense whether or not there is a contraction morphism on X contracting Dj

alone. Define the map

BX ! AuteqðX Þ

by mapping the generator Rj of BX to the kernel Uj on X . The issue is again to prove
the braid relations. As before, take a pair of nodes ði; jÞ of X and let Vl ;Vr A DbðX � X Þ be
the composite kernels on the two sides of the braid relation for the pair ði; jÞ. Note that the
interesting part of the computation of all these kernels takes place in an étale neighbour-
hood of the exceptional set; away from such a neighbourhood, Vl and Vr are obviously
isomorphic to the structure sheaf of the diagonal. There is an étale open covering of a
neighbourhood of BHX , such that on the inverse image of this covering on X the restric-
tions of Vl and Vr are isomorphic by the proof of Theorem 4.4, these isomorphisms being
compatible on intersections. Hence by descent, there is an isomorphism Vl GVr on X � X ,
and so the braid relations hold up to isomorphism.
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To prove faithfulness, argue as in the proof of Theorem 4.5: take a quasiprojective
surface Ys HX intersecting the singular locus BHX transversally at p A B and in no other
points, let Ys HX be its resolution, restrict the kernels Ui to Ys using Lemmas 4.6 and 4.7
and appeal to the faithfulness result of [16]. r

Examples of varieties X with a curve of singularities of uniform type An can be found
among hypersurfaces or complete intersections in weighted projectice spaces; compare for
example [12]. The resolution X is then embedded in a (partial) resolution of the ambient
space, typically with n distinct divisors over the relevant singular locus; hence the configu-
ration in X is still of type An. Such varieties can be found and in low codimension classified
using the graded ring method pioneered by Reid; see the (from the present point of view
not very interesting) A1 case in [19] and the general case in [5]. Examples of type ðAn;Z=2Þ
can be constructed as quotients; see [21], Examples 4.3 for an explicit example. In favour-
able cases, the local deformations described in Proposition 2.11 are realized as actual pro-
jective deformations. In such cases, the action of the Artin group on DbðXÞ can be extended
to an action by relative equivalences over its local universal family, in an analogous way to
the statement of Theorem 4.4. I leave it to the reader to formulate the precise statement.

Remark 4.9. The action of the Artin group BX on the derived category of the three-
fold X gives rise to actions on even and odd cohomology, using the Chern class map. In the
case when X has trivial canonical bundle, H 2;1ðX ÞGH 1ðX ;YX Þ is a direct summand of
odd cohomology, and it is preserved by the action. Hence the braid group acts on the tan-
gent space to the deformation space, and it is easy to see that this action factors through
the reflection group WX. The action on even cohomology can in turn be restricted to the
Picard group to get an action of WX there. Some of these actions were known before; e.g.
[23] discusses the case of elliptic ruled surfaces, whereas [12] has a symmetric group action
in the case of type A. The action of the Artin group on the derived category shows the
common origin of all these actions.

References

[1] P. Aspinwall, S. Katz and D. Morrison, Lie groups, Calabi-Yau threefolds, and F-theory, Adv. Theor. Math.

Phys. 4 (2000), 95–126.

[2] A. Bondal and D. Orlov, Semi-orthogonal decompositions for algebraic varieties, math.AG/9506012.

[3] T. Bridgeland, Equivalences of derived categories and Fourier-Mukai functors, Bull. London Math. Soc. 31

(1999), 25–34.

[4] T. Bridgeland, Flops and derived categories, Inv. Math. 147 (2002), 613–632.

[5] A. Buckley, Orbifold Riemann-Roch for 3-folds and applications to Calabi-Yaus, University of Warwick

Ph.D. thesis, 2003.

[6] F. Cachazo, B. Fiol, K. Intriligator, S. Katz and C. Vafa, A geometric unification of dualities, Nucl. Phys. B

628 (2002), 3–78.

[7] A. Grassi and D. Morrison, Group representations and the Euler characteristic of elliptically fibered Calabi-

Yau threefolds, J. Alg. Geom. 12 (2003), 321–356.
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[19] B. Szendrői, Calabi-Yau threefolds with a curve of singularities and counterexamples to the Torelli problem

II, Math. Proc. Cam. Phil. Soc. 129 (2000), 193–204.
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Szendrői, Artin group actions on derived categories of threefolds166


