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Birational Calabi–Yau threefolds in the same deformation family provide a “weak” counter-
example to the global Torelli problem, as long as they are not isomorphic. In this paper,
it is shown that deformations of certain desingularized weighted projective hypersurfaces
provide examples of families containing birational varieties. The constructed examples are
shown to be nonisomorphic using a specialization argument.

0. Introduction

The theory of Calabi–Yau threefolds has received a lot of attention in recent years,

due to its relation to various fields ranging from birational geometry to superstring

theory. One of the important problems in the theory is the:

Torelli Question: Let Y1, Y2 be smooth, deformation equivalent Calabi–Yau three-

folds over C. Assume that there is an isomorphism

(H3(Y1), QY1)
∼= (H3(Y2), QY2)

respecting the Hodge structures polarized by the intersection forms. Are Y1 and Y2

isomorphic?

The answer to this question remained elusive for a long time even in the simplest

case, for general quintic hypersurfaces in P4. However, weak global Torelli in this

case has recently been proved by Voisin [19]. It is possible that the answer is positive

for simply connected Calabi–Yau threefolds with Picard number one.

In this paper, I give some examples of families of threefolds where the answer to

the above question is negative. They are in a sense “weak” examples. They arise
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from a theorem of Kollár, which claims that there is an isomorphism of polarized

Hodge structures as above if Y1, Y2 are birational Calabi–Yau threefolds. In Sec. 1,

I exhibit birational threefolds which are at the same time deformation equivalent,a

based on an idea of [4] and [10]. The varieties arise as deformations of resolutions

Y of Calabi–Yau threefolds with a curve of singularities. The birational isomor-

phisms give an interesting involution on the base of the Kuranishi space of the

resolutions Y .

In order to obtain a counterexample to Torelli, one has to prove that the con-

structed smooth threefolds are not isomorphic. I will introduce three families of

explicit examples in Sec. 2 that exhibit three different sorts of behaviour. The

difference lies in the generic automorphism group and the action of this group on

the Kuranishi space. In particular, Proposition 2.2 shows that in one family the

presence of an involution destroys the counterexample. The main result of the

paper is Theorem 4.1, which gives explicit cases where (weak) global Torelli fails.

In particular, a question posed in [3, Sec. 1.6] is answered. The proof is based on a

specialization argument and a standard result on automorphisms in families.

The construction shows that one can find threefolds with the same Hodge struc-

ture in an arbitrary small disc neighbourhood of the central fibre in the Kuranishi

space of Y . This however does not contradict Infinitesimal Torelli: as explained in

Remark 4.1, the period point of Y in the period domain is fixed by an element of

the arithmetic monodromy group.

Desingularizations of Horrocks-Mumford quintics give another example of bira-

tional, deformation equivalent Calabi–Yau threefolds [2], the Picard number being

four in that case. Indeed, it is reasonable to expect that as the Picard number

increases, Torelli can fail more and more badly, although under a weak condition

there will always be finitely many isomorphism classes with the same Hodge struc-

ture within a deformation family by the main result of [15].

The examples suggest the:

Modified Torelli Question: Let Y1, Y2 be smooth, deformation equivalent

Calabi–Yau threefolds over C, with isomorphic polarized Hodge structures. Are

Y1 and Y2 birationally equivalent?

The example of Aspinwall–Morrison [1], featuring nonsimply connected three-

folds, may provide a counterexample to this more general question, but some details

of that example remain to be worked out.b

My final remark is that the theory of holomorphic symplectic varieties shows

somewhat parallel features. On one hand, there is an example of birational, non-

isomorphic varieties [6]. On the other hand, the polarized Hodge structures (on

second cohomology) of birational varieties are isomorphic, and the natural way to

pose the Torelli problem is exactly the same as above [9]. However, similarities

end here, [9, Thm. 4.6] shows that two birational holomorphic symplectic manifolds

aFor this phenomenon to occur, the Picard number must be greater than one, as in the Picard
number one case the smooth projective birational model is unique.
bA detailed analysis of the example will be given in [16].
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can always be realized as central fibres in families over the disc, the families being

isomorphic over the punctured disc. This phenomenon is special to the holomorphic

symplectic case.

Notation and definitions

A Calabi–Yau threefold is a normal projective threefold Y with canonical Gorenstein

singularities, satisfying KY ∼ 0 and H1(Y,OY ) = 0. The nef cone of Y is the closed

cone generated by ample classes in Pic (Y )⊗ R ∼= H2(Y,R).

The weighted projective space Pm[w0, . . . , wm] is the quotient of Cn+1 \ {0}
by the C∗-action having the given weights. A weighted hypersurface X = Xd ⊂
Pm[w0, . . . , wm] is defined by the vanishing of a homogeneous polynomial f of

weighted degree d.

If Y is a variety, by a slight abuse of notation I write T0 Def (Y ) for the

linear space classifying first order deformations of Y . This space is isomorphic

to H1(Y,ΘY ). If f : Y → X is a morphism of algebraic varieties, a deformation of

f over S is a commutative diagram

Y −→ Y
↘ f ↙y X → X

yg
↙ ↘ h

0 ↪→ S

where g, h are flat and Y = g−1(0), X = h−1(0). There is a vector space

T0 Def (Y, f,X) classifying the first order deformations, defined defined by Ran [14]

as a complicated Ext group over a Grothendieck topology. There are natural maps

T0 Def (X)← T0 Def (Y, f,X)→ T0 Def (Y )

to the first order deformation spaces of X and Y .

Finally, Hn(X) denotes the integral cohomology of X modulo torsion.

1. The General Framework

The counterexamples to the Torelli problem presented in this paper will be based

on the following result:

Theorem 1.1 [11, Secs. 4.12 4.13]. Assume that Y1, Y2 are smooth Calabi–Yau

threefolds, related by a flop ψ : Y1 99K Y2. Then ψ induces an isomorphism of

polarized Hodge structures

(H3(Y1), QY1)
∼= (H3(Y2), QY2) .

As a first step, I introduce a class of Calabi–Yau threefolds having birational

varieties in their deformation space.

Construction 1.1. Let Y be a smooth Calabi–Yau threefold containing a surface

E ruled over a curve C of genus g ≥ 2, necessarily smooth by [20, 21], which can be

contracted inside Y by a log-extremal contraction given by the divisor H ∈ Pic (Y ):
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ϕ|mH| : Y → X
∪ ∪
E → C .

For the rest of the paper, let π : Y → S be the the Kuranishi family of Y . By

Unobstructedness [17, 18], its base S is smooth. Fix once and for all an identification

between S and an open disc in T0 Def (Y ); this defines a notion of (partial) addition

and scalar multiplication on S. There is an obvious one-to-one correspondence

between vectors v ∈ S and maps from the unit disc fv : ∆→ S, given by fv(z) = zv.

The map fv gives a pullback family πv : Yv → ∆ with smooth Calabi–Yau fibres.

Let

SE = Im (T0 Def (E, k, Y )→ T0 Def (Y ) ∩ S ,
this is a linear subspace of S, corresponding to the deformation directions along

which E deforms together with the deformation. Wilson [20] shows that if E is

smooth, SE ⊂ S is of codimension g.

Let πv : Yv → ∆ be a general one-parameter deformation for v not contained in

SE . Assume that the nef cone is invariant in the family. (This will be proved for

all the discussed examples in Proposition 2.3.) The following is well-known:

Proposition 1.1. There exists a unique relative Cartier divisor H on Yv extend-

ing H on Y. There is a morphism ϕ|mH| : Yv → Xv over ∆, which is the contraction

of E in the central fibre and the contraction of a finite number of rational curves

∪iCit on the general fibre Yt, the number of such curves being 2g− 2 if counted with

appropriate multiplicities. The map Xv → ∆ is flat.

Proof. As h2(OY ) = 0, the divisor H extends uniquely over the family, and by

assumption Ht is a nef and big divisor on all fibres Yt. So πv∗(mH) is a vector

bundle over ∆ and |mH| defines a morphism. The exceptional locus over t ∈
∆∗ is a finite union of rational curves by [20], their expected number (Gromov–

Witten invariant) is calculated in [22, Prop. 2.3]. The last statement follows from

[13, Prop. 11.4]. �

Proposition 1.2 (cf. [22, Prop. 2.3]). There exists a flop of Yv → ∆, i.e. a

diagram

Yv
ψ99K Y+

v

↘ ↙
Xv

over ∆, where the birational map ψt flops the curves Cit on Yt for t ∈ ∆∗ and gives

an isomorphism on the fibre over 0.

Proof. Xv has only cDV singularities, so the existence of the flop can be seen

by taking hyperplane sections and using [13, Thm. 11.10]. Y+
v is smooth, so the

birational map Yv 99K Y+
v is an isomorphism in codimension 1, which shows that

ψ0 is an isomorphism. �

The family Y+
v → ∆ has central fibre Y , so corresponds to some vector α(v) ∈

H1(Y, TY ). Shrinking S if necessary and defining α as the identity on SE, one

obtains a map α : S → S which is clearly an involution. The following is a tautology:
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Proposition 1.3. The map α is linear in the obvious sense. Its fixed locus is

exactly SE .

Proof. Let v1, v2 ∈ S \ SE such that v = v1 + v2 ∈ S also, then the maps fvi
together with the linear structure on S give a map ∆2 → S. The map fv coincides

with the composite map ∆ → ∆2 → S where the first map is the diagonal one.

The flop can just as well be constructed over ∆2 which shows linearity immediately.

The obvious modification of this argument works also if some vi ∈ SE .

Now suppose v is not in SE but it is fixed by α. By universality of the Kuranishi

family, this means that the birational map ψ is the identity on all fibres. This is

clearly nonsense. �

2. Particular Families

In this section, I will briefly investigate the geometry of three families which fit

into the framework described above. The singular variety X will be a general

hypersurface X8 ⊂ P4[12, 23], X12 ⊂ P4[12, 22, 6] or X14 ⊂ P4[1, 23, 7], respectively.

X has Picard number one, canonical singularities along curves and by adjunction,

trivial canonical sheaf.

2.1.

First assume that X = X8 ⊂ P4[12, 23], a variety discussed at length from the

point of view of mirror symmetry in [4], deformations of which also featured in

[3, Sec. 1.6]. X is singular along the locus C = {xi = 0}, a plane curve of genus 3.

The linear system O(2) embeds P4[12, 23] as a quadric Q3 = {z1z3 = z2
2} of rank

3 in P5, where zi are the coordinates on the P5. The hypersurface X becomes a

complete intersection of Q3 with a quartic F4 in P5. The singularities of the quadric

Q3 can be resolved by the map F (2, 0, 0, 0) → Q3, where F (2, 0, 0, 0) is a rational

scroll. F (2, 0, 0, 0) generically deforms to the scroll F (1, 1, 0, 0). The contraction

ϕ : F (1, 1, 0, 0)→ Q4 ⊂ P5 maps the scroll to a quadric Q4 = {z1z3 = z2
2 − tz2

4} of

rank 4. Intersections of Q4 with F4 give deformations Xt of X , with four isolated

cA1 points at {z1 = · · · = z4 = 0}. The resolution Yt → Xt replaces these points

by the rational curves Cit . The following diagram summarizes the state of affairs:

F (1, 1, 0, 0) ⊃ Yt ; Y ⊂ F (2, 0, 0, 0)
↓ ↓ ↓ ↓

P5 ⊃ Q4 ⊃ Xt ; X ⊂ P4[12, 23] ∼= Q3 ⊂ P5 .

F (1, 1, 0, 0) is a quotient of (C2 \ {0})× (C4 \ {0}) by the group (C∗)2, where

the two multiplicative actions have weights (1, 1;−1,−1, 0, 0) and (0, 0; 1, 1, 1, 1)

respectively. If ti, ui denote the coordinates on the affine spaces, then the map ϕ

is given by

ϕ : (t1, t2;u1, . . . , u4)

7→
(
u1t1 :

1

2
(u1t2 + u2t1) : u2t2 :

1

2
√
t
(u1t2 − u2t1) : u3 : u4

)
,
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having the quadric Q4 as its image. There is however an ambiguity in the choice

of the sign of the square root. This does not matter in P5, as the two choices are

isomorphic under the map σ : P5 → P5, z4 7→ −z4, z1 ↔ z3. However, taking the

intersection with the quartic F4, the two choices give different resolutions as long

as σ is not an automorphism of F4. This gives the two resolutions related by a flop.

Note that if σ is an automorphism of F4, then it gives an automorphism j ∈
Aut (Y ) and the map α acting on the base of the Kuranishi space S of Y equals j∗.

For such special points in the moduli space, the families Yv, Yα(v) are isomorphic.

2.2.

Next consider the other two families X12 ⊂ P4[12, 22, 6] and X14 ⊂ P4[1, 23, 7].

These varieties are singular along the curves given by the vanishing of the variables

of odd degrees, of genus 2,15 respectively.

Notice that these varieties always have nontrivial automorphisms. If z denotes

the variable of highest degree and xi, yi the other variables, then changing variables

X = {z2+fd(xi, yi) = 0} and then z 7→ −z gives an involution i. The automorphism

i of X extends to an involution j on the resolution Y . j induces a natural linear

action j∗ on the space T0 Def(Y ); denote its fixed locus by T+
0 Def (Y ). This is

the subspace of T0 Def (Y ) corresponding to deformation directions along which the

involution j also deforms. Notice that by universality of the Kuranishi family, the

families Yv → ∆, Yj∗(v) → ∆ are isomorphic under an isomorphism induced by j.

The following is again a tautology:

Proposition 2.1. The actions of α, j∗ on S commute.

Proof. The following diagram obviously commutes:

Yv
ψ99K Y+

vy y
Yj∗(v)

ψ99K Y+
j∗(v) .

Thus Yj∗α(v) = Y+
j∗(v) = Yαj∗(v). �

In the two cases, the involution j∗ behaves very differently:

Proposition 2.2. If Y is the resolution of X12 ⊂ P4[12, 22, 6], then j∗ is trivial.

If Y is the resolution of X14 ⊂ P4[1, 23, 7], then j∗ = α as maps acting on the base

of the Kuranishi space of Y.

Proof. Let X = X12 ⊂ P4[12, 22, 6], a double cover X → P3[12, 22] ∼= Q3 ⊂ P4

of a quadric of rank 3 in P4, branched over a sextic. The quadric is resolved by

the scroll F (2, 0, 0) → Q3, and Y is a branched double cover of this scroll. The

variety Y appears in a paper of Fujita [8], where it is denoted by
∑3

(2, 0, 0)+
3,0. By

[8, Prop. 7.13], the action of j∗ on S is trivial. This proves the first statement.

Now let X = X14 ⊂ P4[1, 23, 7]. The fixed locus of the involution i : z → (−z)
is in this case reducible; the quotient is X/〈i〉 ∼= P3[1, 23] ∼= P3. The image of
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the curve C is {t1 = 0} ∩ {g7(t1, . . . , t4) = 0} = γ. The involution extends

to the resolution Y as an involution j. The quotient upstairs is Y/〈j〉 ∼= W = BγP3,

the blowup of P3 along the curve γ. One obtains a diagram

E −→ E′

k
y yl
Y −→ W = BγP3

f
y yπ
X −→ P3

∪ ∪
C −→ γ .

Let ΘW be the tangent bundle ofW , Nγ/P3 the normal bundle of γ in its ambient

space. Standard arguments show:

Lemma 2.1. The natural map H0(γ,Nγ/P3)→ H1(W,ΘW ) is surjective, i.e. any

(first-order) deformation of W comes from a deformation of γ in P3.

Lemma 2.2. There is an inclusion

T+
0 Def (Y ) ⊂ Im (T0 Def (E, k, Y )→ T0 Def(Y )) .

Proof. Consider

T0 Def (E, k, Y )
λ←− F −→ T0 Def (E′, l,W )

ν
y β

y yδ
T0 Def (Y )

ψ←− T+
0 Def (Y )

µ−→ T0 Def (W ) .

Here µ, δ, ν are the obvious maps and ψ is the inclusion. Let F be the fibre

product; its elements are pairs of vectors giving a first-order deformation Y →
B = Spec C[ε]/(ε2) of Y with an involution J on Y, and a first-order deformation

(W , E ′)→ B of the inclusion l : E′ →W , with compatible image in T0 Def (W ). In

other words, elements of F give a diagram

E ′y
Y q→ Y/〈J〉 =W
↘

y
B

where q is the quotient map and all maps overB are flat. q is finite, so E = q−1(E ′) is

a relative Cartier divisor on Y , flat over B, hence one obtains a deformation E → Y
of E → Y . This defines the map λ in the previous diagram. By construction, the

left square becomes commutative.

Lemma 2.1 shows that δ is surjective, so β must also be surjective. Then the

commutativity of the left square shows that the image of the inclusion ψ must be

contained in the image of ν. This proves Lemma 2.2. �
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To complete the proof of Proposition 2.2, notice that j∗ = α would follow from

the equality of fixed loci, as the two maps are commuting involutions, linear with

respect to the partial linear structure on S. The fixed locus of α is SE , whereas

the fixed locus of j∗ is by definition T+
0 Def (Y ) ∩ S. By the previous lemma,

SE ⊃ T+
0 Def (Y ) ∩ S and it suffices to show that the dimensions here are equal.

The dimension of SE is h2,1(Y ) − g(C) = 107. On the other hand, by a standard

dimension count, the hypersurface X14 ⊂ P4[1, 23, 7] depends on 107 parameters.

Resolutions of such hypersurfaces are always double covers, so dimT+
0 Def (Y ) ≥

107. This concludes the proof. �

Thus in the last case, the varieties Yt, Yα(t) are isomorphic for all t. For the rest

of the paper, restrict attention to the first two families. The last statement in this

section describes the nef cone of Y in these cases; this description will be needed

below.

Proposition 2.3. The nef cone of the resolution Y is generated by the flopping

face and the face corresponding to a fibration with base P1. It is constant on any

deformation of Y.

Proof. The first statement is clear from the above discussion; the map to P1 comes

from the structural map of the rational scrolls. As for the second part, by the

main result of [20], the nef cone is invariant on all deformations if no deformation

of Y contains a surface which is (quasi-) ruled over an elliptic curve. A sufficient

condition for this is that there is no class F ∈ H2(Y,Q) satisfying F 3 = c2(Y )·F = 0.

H,E ∈ H2(Y,Q) are not linearly dependent, so they give a Q-basis of the rank-two

space H2(Y,Q) and the existence of the class F is equivalent to ((c2(Y ) · H)E −
(c2(Y ) ·E)H)3 = 0. A routine calculation shows that this fails in both cases. �

Remark 2.1. The families investigated in this section belong to a larger set of

examples that can be found using a systematic search based on the theory of graded

rings of weighted complete intersection varieties. For details, consult [16].

3. The Automorphism Group of the General Variety

Proposition 3.1. The general X8 ⊂ P4[12, 23] has trivial automorphism group,

whereas the general X12 ⊂ P4[12, 22, 6] has automorphism group Z/2Z.

Proof. Assume that σ is a nontrivial element of the automorphism group of the

hypersurface X = {F8(x,y) = 0} ⊂ P4[12, 23],

F8(x,y) = f8(x) + g1(y)f6(x) + g2(y)f4(x) + g3(y)(x2
1 + x2

2) + g4(y) ,

where x = (xj),y = (yj) are the homogeneous coordinates of degrees 1, 2 respec-

tively. The Picard group of X is of rank one, which implies that σ comes from a

projective automorphism of P4[12, 23]. Hence by [5, Cor. 4.7],

σ(x) = Ax ,

σ(y) = By + C(S2x) ,
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where A is a 2 × 2 matrix, B,C are 3 × 3 matrices and S2x is a shorthand for

(x2
1, x1x2, x

2
2)
t.

The singular locus of X is the genus three plane curve {g4 = 0} ⊂ P2. This has

to be mapped isomorphically by σ, so if g4 is general, then after fixing an overall

constant, B = I. Writing out the conditions for the invariance of the cubic yi terms,

one obtains C = 0 for general choice of F . Finally, the automorphism has to fix the

octic f8(x) = 0, so for general f8, the only possibility is A = δI and then clearly

δ = ±1. Thus up to constant, A = ±I, B = I, C = 0, where the final sign is part of

the C∗-action in the definition of weighted projective space.

The proof for a general X12 ⊂ P4[12, 22, 6] is completely analogous, so it

is omitted. �

4. Conclusion

I will need the following rather standard result:

Proposition 4.1. Let X → B be a family of Calabi–Yau threefolds with canonical

singularities over a complex space B, having a simultaneous resolution Y → X over

B. Let L be a relatively ample relative Cartier divisor on X . Let AutB(X ,L) be

the scheme of relative automorphisms in the family. Then AutB(X ,L) is finite and

unramified over B.

Proof. AutB(X ,L) is unramified over B, as the fibres of the family X → B

are varieties without infinitesimal automorphisms. Quasi-finiteness is clear, and

properness follows from the valuative criterion (see e.g. [7, Lemma 4.2]). �

Proposition 4.2. Let X be a general member of one of the two families, Y the

Calabi–Yau resolution. Let v ∈ S \ SE be a deformation direction as in Sec. 1, and

Y → ∆ the corresponding family with flop Y+ → ∆. Assume that for all t ∈ U

in a dense set U ⊂ ∆∗, there exists an isomorphism Yt ∼= Y +
t . Then the variety

X has nontrivial automorphism group, respectively automorphism group larger than

Z/2Z.

Lemma 4.1. Assume that for some t ∈ ∆∗, there exists an isomorphism Yt ∼= Y +
t .

Then Aut (Xt) is nontrivial, respectively larger than Z/2Z.

Proof. Assume that Yt ∼= Y +
t , then the flop corresponds to a nontrivial birational

automorphism ψ ∈ Birat (Yt), not the identity on the complement of the excep-

tional locus (and not the involution j). So it descends to a nontrivial birational

automorphism ψ̄ ∈ Birat (Xt). On the other hand, using the fact that any isomor-

phism Yt ∼= Y +
t must identify faces of the nef cones of the same type, it is easy

to check that ψ̄ must fix a suitable multiple of the ample generator of the Picard

group of Xt. Hence ψ̄ is biregular by [12, Prop. 2.1.6]. �

Proof of Proposition 4.2. Let X → ∆ be the contracted family, N a relatively

ample sheaf on X . If there exists an isomorphism Yt ∼= Y +
t for all t ∈ U , there is
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a nontrivial element in AutU (X ,N ) for all t ∈ U . The statement now follows from

Proposition 4.1. �

Let D denote the period domain parameterizing polarized Hodge structures on

the Z-module H3(Y ). Let

Γ = Aut (H3(Y ), QY )

be the corresponding arithmetic monodromy group. The following is the main result

of the paper:

Theorem 4.1. Let Y be a resolution of a general X8 ⊂ P4[12, 23] or X12 ⊂
P4[12, 22, 6]. Then (weak) global Torelli fails for Y: the period map is finite of degree

at least two from the deformation space of Y modulo isomorphisms onto its image

in D/Γ, the period domain modulo monodromy.

Proof. Finiteness of the period map follows from [15, Thm. 4.3], keeping in mind

Proposition 2.3 above. The rest follows from Theorem 1.1, Proposition 3.1 and

Proposition 4.2. �

Remark 4.1. Fixing a marking of the cohomology of Y and using the Gauss–

Manin connection in the bundle R3π∗C over the base of the Kuranishi space S, one

obtains the (local) period map ϕ : S → ∞. By the Infinitesimal Torelli theorem,

ϕ is an embedding. However, this does not contradict the above result: the period

map is not invariant under the involution α acting on S, it is only equivariant with

respect to an element γ ∈ Γ fixing the period point of the central fibre Y . To

conclude the paper, I give a geometric description of γ.

There is a split exact sequence of Hodge structures

0→ H3(X)→ H3(Y )→ H1(C)[−1]→ 0

where the first map is pullback, whereas the second is the dual of the cylinder

homomorphism given by the family E → C of rational curves in Y . Note that the

Hodge structure on H3(X) is pure, as X has only quotient singularities.

Proposition 4.3. The element γ ∈ Γ is the involution of the Hodge structure

H3(Y ) that fixes H3(X) and reflects the sub-Hodge structure H1(C)[−1] generated

by the family E → C of rational curves.

Proof. By construction, the image of H3(X) is fixed by the involution γ. On the

other hand, it is clear that γ induces the same action as α on the space H2,1(Y ) ∼=
H1(Y, TY ), the latter isomorphism being well-defined up to a constant. Thus the

corank of the submodule fixed by γ is at least 2g by Proposition 1.3. Hence the

fixed submodule is exactly H3(X) and this concludes the proof. �
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16. B. Szendrői, Calabi–Yau threefolds and the Torelli problem, Ph.D. Thesis, Univ.

Cambrige, 1999.
17. G. Tian, Smoothness of the universal deformation space of compact Calabi–Yau

manifolds and its Peterson–Weil metric, in Mathematical Aspects of String Theory,
ed. S.-T. Yau, World Scientific, Singapore, 1987, pp. 629–646.

18. A. Todorov, The Weil–Petersson geometry of the moduli space of SU(n ≥ 3) (Calabi–
Yau) manifolds. I., Comm. Math. Phys. 126 (1989), 325–346.

19. C. Voisin, A generic Torelli for the quintic threefold, in New Trends in Algebraic
Geometry Warwick, 1996, eds. K. Hulek, et al., Cambridge Univ. Press, Cambridge,
1999.

20. P. M. H. Wilson, The Kähler cone on Calabi–Yau threefolds, Inv. Math. 107 (1992),
561–583; 114 (1993), 231–233.

21. P. M. H. Wilson, Symplectic deformations of Calabi–Yau threefolds, J. Diff. Geom. 45
(1997), 611–637.

22. P. M. H. Wilson, Flops, Type III contractions and Gromov-Witten invariants on
Calabi–Yau threefolds, in New Trends in Algebraic Geometry, Warwick, 1996, eds.
K. Hulek, et al., Cambridge Univ. Press, Cambridge, 1999.


