Magnetic bubbles & knots

Paul Sutcliffe Department of Mathematical Sciences Durham University

A topological soliton is a particle-like solution of a nonlinear partial differential equation, in which stability is due to some non-trivial topology.

Applications in particle physics, cosmology, nuclear physics, condensed matter physics,

Topology of maps between spheres

N is the degree of the map, and will be identified with the number of solitons.

Stereographic projection

Maps from the plane to the sphere

 $N \in \pi_2(S^2)$

Magnetic bubbles in a planar ferromagnet

Continuum approximation

 $\vec{\varphi}(x, y) = (\varphi_1, \varphi_2, \varphi_3), \quad \vec{\varphi} \cdot \vec{\varphi} = 1$

 $E = \int \left(\frac{\partial \vec{\varphi}}{\partial x} \cdot \frac{\partial \vec{\varphi}}{\partial x} + \frac{\partial \vec{\varphi}}{\partial y} \cdot \frac{\partial \vec{\varphi}}{\partial y} \right) dxdy$

 $\vec{\varphi} = \frac{1}{1+x^2+y^2} (2x, \quad 2y, \quad x^2+y^2-1)$

 $=\frac{1}{1+x^2+y^2}(2x, 2y, x^2+y^2-1)$ **€**φ =

 $E = \int \left(\frac{\partial \vec{\varphi}}{\partial x} \cdot \frac{\partial \vec{\varphi}}{\partial x} + \frac{\partial \vec{\varphi}}{\partial y} \cdot \frac{\partial \vec{\varphi}}{\partial y} \right) dxdy$

Experiments on Magnetic Bubbles

Experiments on Magnetic Bubbles

1 1 0 1 0 1 1

Intel 1981

1P 0 HI 19850

Копаті® © коламі 1985 скеріт оо

Linking number $Q \in Z$ (Hopf charge)

Magnetic smoke ring Twist by $2\pi Q$ bubble $\frac{\partial \vec{\varphi}}{\partial t} = \vec{\varphi} \times \nabla^2 \vec{\varphi}$

Solitons in an *exotic* 3D ferromagnet

 $E = \int \left(\frac{\partial \vec{\varphi}}{\partial x} \cdot \frac{\partial \vec{\varphi}}{\partial x} + \frac{\partial \vec{\varphi}}{\partial y} \cdot \frac{\partial \vec{\varphi}}{\partial y} + \frac{\partial \vec{\varphi}}{\partial z} \cdot \frac{\partial \vec{\varphi}}{\partial z} \right) dx dy dz$

Solitons in an *exotic* 3D ferromagnet

 $E = \int \left(\frac{\partial \vec{\varphi}}{\partial x} \cdot \frac{\partial \vec{\varphi}}{\partial x} + \frac{\partial \vec{\varphi}}{\partial y} \cdot \frac{\partial \vec{\varphi}}{\partial y} + \frac{\partial \vec{\varphi}}{\partial z} \cdot \frac{\partial \vec{\varphi}}{\partial z} \right) dx dy dz$ $+ \int \left(\left(\frac{\partial \vec{\varphi}}{\partial x} \times \frac{\partial \vec{\varphi}}{\partial y} \right) \cdot \left(\frac{\partial \vec{\varphi}}{\partial x} \times \frac{\partial \vec{\varphi}}{\partial y} \right) + cyclic \right) dxdydz$

Q = 1; $A_{1,1};$ $E/Q^{3/4} = 1.204$

Soliton position (preimage of down). Linking (preimage of 2 points).

Q = 2; $A_{2,1};$ $E/Q^{3/4} = 1.170$

Q = 3; $\widetilde{A}_{3,1};$ $E/Q^{3/4} = 1.208$

 $Q = 4; \quad \widetilde{A}_{2,2};$

$E/Q^{3/4} = 1.218$

Q = 5; $\mathbb{L}^{1,1}_{1,2};$ $E/Q^{3/4} = 1.225$

Q = 6; $\mathbb{L}^{1,1}_{2,2};$ $E/Q^{3/4} = 1.213$

$Q = 7; \quad \mathbb{K}_{3,2} \text{ (trefoil knot); } E/Q^{3/4} = 1.218$

Q = 7; $A_{7,1} \rightarrow \mathbb{K}_{3,2}$ (trefoil knot); energy minimization.

Q = 9, $\mathbb{L}^{2,2,2}_{1,1,1}$

Knot transmutation $Q = 12, \quad K_{3,2} \rightarrow K_{4,3}$

 $Q = 16, X_{16}$

 $8\mathcal{L}_{3,3}^{1,1}$

 $8\mathcal{K}_{3,2}$

 $9\mathcal{K}_{3,2}$

 $10 \mathcal{L}_{1,1,2}^{2,2,2}$

 $10\mathcal{L}^{2,2}_{3,3}$

 $10\mathcal{K}_{3,2}$

 $11\mathcal{K}_{3,2}$

 $12\mathcal{K}_{4,3}$

 $13\mathcal{X}_{13}$

 $12\mathcal{K}_{5,2}$

 $13\mathcal{K}_{4,3}$

 $14\mathcal{K}_{4,3}$

 $14\mathcal{K}_{5,2}$

 $16\mathcal{X}_{16}$

 $15\mathcal{X}_{15}$

 $\mathbb{K}_{5,2}$

 $\mathbb{K}_{5,3}$

X

 $\mathbb{K}_{4,3}$

K_{3,2}

Conclusion

Topological solitons are interesting particle-like solutions of nonlinear PDEs.

They arise in many systems in condensed matter physics, particle physics, nuclear physics, cosmology, ...

Also of mathematical interest in their own right.

Solitons in Durham

18 permanent staff in the mathematics department with research interests in particle physics. Many have interests in solitons:

Solitons Piette, Sutcliffe, Ward, Zakrzewski.

Integrable Quantum Field Theory Bowcock, Corrigan, Dorey.

String Theory Peeters, Zamaklar.

Cosmology

Gregory.

Solitons in the UK

Cambridge: Gibbons, Manton, Shellard, Tong.

Edinburgh: Braden, Singer.

Heriot-Watt: Schroers

Kent: Krusch.

Leeds: Speight.

Manchester (Physics): Battye.

