The *j*-invariant Elliptic curves Modular forms Other areas of research

Algebraic number theory

Sarah Zerbes

December 18th, 2010

The *j*-invariant Elliptic curves Modular forms Other areas of research

Number theory produces, without effort, innumerable problems which have a sweet, innocent air about them, tempting flowers; and yet... number theory swarms with bugs, waiting to bite the tempted flower-lovers who, once bitten, are inspired to excesses of effort!

Outline

- 1 The *j*-invariant
- 2 Elliptic curves
- Modular forms
- Other areas of research

Definition

- Upper half-plane $\mathcal{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$
- ullet j is a complex-valued function on ${\cal H}$

•
$$j(z) = 1726 \frac{g_2^3(z)}{\Delta(z)}$$
, where

•
$$\Delta = g_2^3 - 27g_3^2$$
,

•
$$g_2 = 60 \sum_{(m,n)\neq(0,0)} (m+nz)^{-4}$$
,

•
$$g_3 = 140 \sum_{(m,n)\neq(0,0)} (m+nz)^{-6}$$
.

• put $q = e^{2\pi iz}$:

$$j(z) = \frac{1}{a} + 744 + 196884q + 21493760q^2 + 864299970q^3 + \cdots$$

Importance

Modular forms

- j is invariant under $z \to -\frac{1}{z}$ and $z \to z+1$
- ullet \Rightarrow j is invariant under the action of $\mathrm{SL}_2(\mathbb{Z})$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}$$

- \Rightarrow *j* is determined by its values on a *fundamental domain*
- modular form = holomorphic function $\mathcal{H} \to \mathbb{C}$ with certain transformation properties under $SL_2(\mathbb{Z})$
- j is 'almost' a modular form (almost because it has the term q^{-1})

Elliptic curves

- Elliptic curves = algebraic curves defined by a cubic in 2 variables with no singular points
- For $\tau \in \mathcal{H}$, consider the cubic curve

$$E(\tau): y^2 = 4x^3 - g_2(\tau)x - g_3(\tau)$$

- isomorphism class of $E(\tau)$ unchanged by action of $\mathrm{SL}_2(\mathbb{Z})$ on τ
- hence determined by $j(\tau)$
- \Rightarrow *j* classifies isomorphism classes of elliptic curves $/\mathbb{C}$

Class field theory

• j generates certain class of algebraic number fields

Finite group theory

coefficients of q-expansion of j

 \Rightarrow

dimensions of linear representations of the Monster

(moonshine conjecture)

Outline

- 1 The *j*-invariant
- 2 Elliptic curves
- Modular forms
- Other areas of research

Definition

ullet elliptic curve $/\mathbb{Q}=$ nonsingular algebraic plane curve

$$E: y^2 = x^3 + ax + b,$$
 $a, b \in \mathbb{Q}$

Theorem (Mordell-Weil): For K/\mathbb{Q} finite, E(K) is a finitely generated abelian group.

$$\Rightarrow$$
 $E(K) \cong \Delta_K \times \mathbb{Z}^{r_K}$, where

- Δ_K is finite;
- $r_K \ge 0$ is the rank of E over K.

The L-function

• one can associate to E a complex analytic function L(E,s) (analogue of Riemann zeta function)

Birch-Swinnerton-Dyer conjecture:

$$\operatorname{order}_{s=1} L(E, s) = \operatorname{rank}_{\mathbb{Z}} E(\mathbb{Q})$$

BSD-conjecture

Parity conjecture (= BSD-conjecture mod 2):

$$\operatorname{order}_{s=1} L(E, s) = \operatorname{rank}_{\mathbb{Z}} E(\mathbb{Q}) \mod 2$$

- generalisation to number fields
- construction of elliptic curves with fast-growing ranks over lwasawa towers
- People: Dokchitser brothers (Cambridge)

Iwasawa theory

- Idea: study asymptotic growth of r_E(F) as F varies over a tower of number fields
- let p prime, $F_n = \mathbb{Q}(\mu_{p^n})$, $F_\infty = \bigcup F_n$ and $\Gamma = \operatorname{Gal}(F_\infty/\mathbb{Q})$
- Strategy: study natural Γ-modules associated to E (Selmer groups)

Main Conjecture: relate Selmer groups to values of L(E, s)

- ⇒ via BSD, get information about the growth of the rank
 - People: Coates (Cambridge), Burns (Kings College)

Explicit methods

- numercial examples supporting BSD-conjecture and Main Conjecture of Iwasawa theory
- algorithms for determining the rank of elliptic curves
- explicit determination of generators of E(K)
- People: Cremona (Warwick), Fisher (Cambridge)

Outline

- 1 The *j*-invariant
- 2 Elliptic curves
- Modular forms
- 4 Other areas of research

Definition

• a modular form of weight k is an analytic function $f: \mathcal{H} \to \mathbb{C}$ such that

$$f\left(\frac{az+b}{cz+d}\right)=(cz+d)^kf(z) \qquad \forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$$

Examples: Eisenstein series

$$g_k(z) = \sum_{(m,n)\neq(0,0)} \frac{1}{(m+nz)^{2k}}$$

• q-expansion: put $q = e^{2\pi iz}$

$$\Rightarrow f(q) = \sum_{i>0} c_i q^i$$

Basic properties

- the C-vector space of modular forms of weight k is finite-dimensional
- the vector space has a basis consisting of eigenforms (simultaneous eigenvector for a collection of linear operators)

mod p modular forms

- if f is an eigenform, the q-expansion has algebraic integer coefficients
 - \Rightarrow study $f(q) \mod p$ for p prime

Questions:

- (1) Which eigenforms are congruent mod p?
- (2) Which $\sum_{i\geq 0} c_i q^i \in \overline{\mathbb{F}}_p[[q]]$ arise from a modular form?
 - People: Diamond (Kings' College)

p-adic families of modular forms

- Basic question: Which eigenforms are congruent mod pⁱ for i > 1?
- ⇒ construct families of modular forms depending on a p-adic variable
- People: Buzzard (Imperial), Hill (UCL), Kassaei (Kings)

Modularity lifting

- any modular form f gives rise to a 2-dimensional p-adic representation V_f of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$
- Main question: given a representation V, is it modular (i.e. equal to V_f for some modular form f)?
- Idea: show V is congruent mod p to a modular representation, then "lift" this to show V is modular
- Known in many cases (e.g. Taniyama-Shimura conjecture: every elliptic curve /Q is modular)
- People: Diamond (Kings), Jarvis, Berger, Manoharmayum (Sheffield)

p-adic representations

- Idea: restrict the representation associated to f to $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$
- study this local representation using p-adic analysis (p-adic differential equations)
- new results in Iwasawa theory about Selmer groups of elliptic curves and modular forms
- People: Loeffler (Warwick), Zerbes (Exeter)

Outline

- 1 The *j*-invariant
- 2 Elliptic curves
- Modular forms
- Other areas of research

- points on higher-dimensional varieties (Skorobogatov, Siksek,...)
- ramification in number fields (Byott)
- p-adic geometry (Langer, Saidi)
- . . .