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PROGRAMME OF STUDY

Supervised research project leading to thesis (3-3.5 years full time)

Postgraduate lecture courses (100 credits):
MAGIC (Mathematics Access Grid Instruction and Collaboration) - 20 UK Universities;
NATCOR (National Taught Course Center in Operational Research) - 13 UK Universities.

Annual progress review conducted by a panel consisting of project supervisor
and two other faculty members

Final viva voce examination conducted by one internal and one external examiner

Graduation
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RESEARCH ENVIRONMENT

Individual Workplace and Computing Facilities

Participation in Scientific Meetings (seminars, national and international conferences),
including the Annual Welsh Mathematics Colloquium at Gregynog Hall

SIAM (Society for Industrial and Applied Mathematics) Student Chapter

Postgraduate Seminar Programme (organised by students)

Cardiff University Graduate College Training Courses
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APPLICATION PROCESS

Appropriate Undergraduate Degree (1 or 2:1 class) or Master Degree Required

Academic Supervisor for Research Project Available

Funding Obtained (EPSRC/Cardiff University Scholarship, Supervisor’s Research Grant,
Other sources)

On-Line Application via Cardiff University Website:
http://www.cardiff.ac.uk/maths/degreeprogrammes/postgraduate/research/application/

Entry dates: 1 October, 1 January, 1 April, 1 June
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Biogenic Load-Bearing Structures
Modelling, Analysis, Computations

L Angela Mihai
(Cardiff University)
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Historical Background

Galileo Galilei (1564-1642) ⋄ bones must be
hollow to afford maximum strength to weight
ratio ⋄ bones of larger animals must be
thicker in proportion to their size than those
of smaller animals.

Robert Hooke (1635-1703) ⋄ introduced the
word ‘cell’ to describe the microscopic
structure of cork ⋄ as well as the famous law:
‘as the force, so the extension’.
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Soft Wood

(a) (b)

Japanese cedar wood (a) before and (b) after densification at Hida Sangyo (one of the most
historic woodwork furniture manufacturers in Japan).

L Angela Mihai (MihaiLA@cardiff.ac.uk), Oxford, 18-19.XII.2014 – p. 3/??



Paws and Plantar Pads
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Biogenic Cellular Structures

The following main factors determine the magnitude of stress level in biogenic cellular
structures [Scanlon 2005]:

⋄ Poisson’s ratio ⋄ Cell wall thickness ⋄ Cell inclusions

Large deformation near the tip of a knife
slicing a carrot: (a) fresh carrot, (b)

one-week-old carrot, (c) three-week-old
carrot [Thiel & Donald 1998]. Stress-strain curves collected during in situ

compression of carrot specimens
[Warner et al. 2000].
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Mathematical Modelling of Cellular Solid Materials

⋄ At low stresses or strains, the mechanism
which dominates the deformation of cellular
solids is that of bending of the cell walls (e.g.
metal foams) [Gibson & Ashby 1997].

(a)

(b) (c) (d)

⋄ At large strains, the deformation of cellular
bodies is inherently nonlinear, and the
corresponding stresses depend on both the
position and the underlying material
properties [AM & Goriely 2014, 2015].
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Finite Elastic Deformations

Changes of length, area, and volume in the deformation x = χ(X) are governed by the
deformation gradient F = ∇χ, such that J = detF > 0.

Various nonlinear strain measures:
Left Cauchy-Green strain B = FFT ;
Right Cauchy-Green strain C = FTF ;
Green-Lagrange strain E = (C − I) /2;
Logarithmic strain lnC1/2.

For a homogeneous, isotropic, incompressible hyperelastic material characterised by the
strain energy density W(X,F ), the internal force per unit of deformed area acting within the
deformed solid is given by the Cauchy (true) stress tensor:

σ = −pI + β1B + β−1B
−1, −p (hydrostatic pressure), β1 > 0, β−1 ≤ 0
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Bending of a Pre-Stressed Elastic Cell Wall

T1. For a cell wall
(X,Y, Z) ∈ [C1, C2]× [−Y0, Y0]× [−Z0, Z0]

bent into a sector of a circular cylindrical
tube (annular wedge) by the deformation:
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The radial elastic modulus is greater in
the closed cell filled with an
incompressible fluid than in the open
cell, and the gap between the moduli
increases as cell pressure increases:
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Straightening of a Pre-Stressed Annular Wedge

T2. When an annular wedge
(R,Θ, Z) ∈ [R1, R2]×[−Θ0,Θ0]×[−Z0, Z0]

is ‘straighten’ into a rectangular block by the
deformation:

x =
AB2a

2
R2, y =

Θ

AB
, z =

Z

Ba

Open cell Closed cell

The elastic modulus in the first and
second direction is greater in the
closed cell filled with an
incompressible fluid than in the open
cell, and the gap between the moduli
increases as cell pressure increases:
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Since σxx/ lnC
1/2
xx and σyy/ lnC

1/2
yy

increase as x increases, these elastic
moduli increase when the thickness of
the cell wall increases.

L Angela Mihai (MihaiLA@cardiff.ac.uk), Oxford, 18-19.XII.2014 – p. 9/??



Stretching and Twisting of a Pre-Stressed Circular Tube

T3. When a circular tube
(R,Θ, Z) ∈ [R1, R2]×[−Θ0,Θ0]×[−Z0, Z0]

is subjected to the combined stretch and
torsion:

r =
√

AaR2 +B, θ = Θ+
τZ

a
, z =

Z

Aa

The radial elastic modulus is greater in
the closed tube filled with an
incompressible fluid than in the open
tube, and the gap between the moduli
increases as cell pressure increases:
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−
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lnC
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≥ 0.

This elastic modulus increases when
the thickness of the tube wall
increases:
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Honeycombs and Cellular Pads in Vertical Tension or Compression

Vertical component of the Green-Lagrange (engineering) strain tensor E22 = (C22 − 1) /2

under prescribed vertical displacement of 0.75 (left) and -0.14 (right) at the top boundary
[FEBio 2012].
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Mechanical Behaviour in Vertical Tension

⋄ The apparent elastic modulus of cell walls EL = σ22/ lnC
1/2
22

is higher in cellular pads
than in honeycombs.
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⋄ The apparent Poisson’s ratio νL = − lnC
1/2
11

/ lnC
1/2
22

decreases as the vertical tension
increases.

L Angela Mihai (MihaiLA@cardiff.ac.uk), Oxford, 18-19.XII.2014 – p. 12/??



Mechanical Behaviour in Vertical Compression

⋄ The apparent elastic modulus of cell walls EL = σ22/ lnC
1/2
22

is higher in cellular pads
than in honeycombs.
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⋄ The apparent Poisson’s ratio νL = − lnC
1/2
11

/ lnC
1/2
22

increases as the vertical
compression increases.
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Combined Tension and Shear

T4. For a horizontal cell wall under combined tension and shear:

x = λ1X, y = Kλ1X + λ2Y, z = λ3Z,

where λ1,2,3 > 0 independent of K > 0, and λ2 > 1:
The apparent elastic modulus:

EL =
σ22

lnC
1/2
22

=
−p+ β1

(

e−νL lnλ2
2 − λ2

1
+ λ2

2

)

+ β−1/λ2
2

lnλ2

⋄ is greater in a filled cell than in an
empty cell;
⋄ increases as the thickness of the cell
wall increases;

⋄ increases as the shear increases if
β1 > 0, β−1 ≤ 0 are constants;
⋄ increases as νL decreases if β1 > 0,
β−1 ≤ 0 are constants.

The apparent Poisson’s ratio decreases as the shear increases:

νL = −
lnC

1/2
11

lnC
1/2
22

= −
lnλ2

1
(K2 + 1)

lnλ2
2
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Combined Compression and Shear

T5. For a horizontal cell wall under combined compression and shear:

x = λ1X, y = Kλ1X + λ2Y, z = λ3Z,

where λ1,2,3 > 0 independent of K > 0, and λ2 < 1:
The apparent elastic modulus:

EL =
σ22

lnC
1/2
22

=
−p+ β1

(

e−νL lnλ2
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1
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2

)
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⋄ is greater in a filled cell than in an
empty cell;
⋄ increases as the thickness of the cell
wall increases;

⋄ decreases as the shear increases if
β1 > 0, β−1 ≤ 0 are constants;
⋄ decreases as νL increases if β1 > 0,
β−1 ≤ 0 are constants.

The apparent Poisson’s ratio increases as the shear increases:
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Honeycombs with Different Cell Geometries in Vertical Tension or Compression

Vertical component of the Cauchy (true) stress tensor σ22 under prescribed vertical
displacement of 1 (left) and -0.12 (right) at the top boundary [FEBio 2012].
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Mechanical Behaviour in Vertical Tension or Compression

⋄ In tension, the hexagonal cells are the most flexible, followed by the diamond cells.
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⋄ In compression, the diamond cells are the most flexible, followed by the hexagonal cells.

L Angela Mihai (MihaiLA@cardiff.ac.uk), Oxford, 18-19.XII.2014 – p. 17/??



Influence of Oblique Cell Walls

T6. For a cell wall inclined by an angle Ψ ∈ (0,π/2) from the horizontal and subject to
vertical shear, the apparent Poisson’s ratio νL = − lnC

1/2
11

/ lnC
1/2
22

decreases as Ψ

increases.

Consider the successive
decomposition procedure (SDP):

F =
dχ(X)

dX
, F ′ =

dχ′(X)

dX
, F ′′ =

dχ′′(x′)

dx′

where detF ′ > 0, detF ′′ > 0, and
F ′ = cst. Then F = F ′′F ′.
The SDP is formally the same as in
the constitutive theories of
thermoelasticity, elastoplasticity, and
growth kinematics.
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Quantitative Challenges

For the computational models,
rigorous bounds on quantities of
physical interest are needed!

Ec(F ) ≤ Ec(F
∗) = Ep(u∗) ≤ Ep(u)

u ∈ K, F ∈ S

Ep(u) =

∫

Ω

W(F (u))dV −
∫

ΓN

gN · udA

Ec(F ) =

∫

ΓD

∂W
∂F

uD ·NdA−
∫

Ω

Wc(F )dV

⋄ [Lee & Shield 1980] (finite elasticity)
⋄ [AM & Ainsworth 2009] (linear elastic
block structures)
⋄ [Livesley 1978] (pioneered the use of
linear mathematical programs for rigid
block structures)

Different constitutive materials may
behave differently in tension or
compression, and hence when subject
to more general loading conditions!
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