Rogers-Ramanujan type identities, knots and UCD

Robert Osburn

School of Mathematical Sciences

University College Dublin

December 19, 2014

Outline

Motivation

Knots, the GLZ conjectures and our work

Opportunities at UCD

Partitions

▶ A partition of a natural number n is a non-increasing sequence of positive integers whose sum is n.

▶ There are 5 partitions of 4, namely

$$4,\ 3+1,\ 2+2,\ 2+1+1,\ 1+1+1+1.$$

Theorem (Rogers (1894), Ramanujan (1913))

The number of partitions of n such that all parts differ by at least 2 is equal to the number of partitions of n such that all parts are congruent to 1 or 4 modulo 5.

q-series

► The analytic version is

$$\sum_{n>0} \frac{q^{n^2}}{(q)_n} = \frac{1}{(q;q^5)_{\infty}(q^4;q^5)_{\infty}}$$

where

$$(a)_n = (a; q)_n = \prod_{k=1}^n (1 - aq^{k-1})$$

valid for $n \in \mathbb{N} \cup \{\infty\}$.

Three comments . . .

q-series

► The RR identities have been generalized in several ways (Andrews, Gordon, Warnaar, Lepowsky, . . .).

▶ On the other hand ...

Theorem (Zagier, 2007)

The q-series

$$\sum_{n>0} \frac{q^{an^2+bn+c}}{(q)_n}$$

is modular if and only if (a,b,c)=(1,0,-1/60), (1,1,11/60), (1/2,0,-1/48), (1/2,1/2,1/24), (1/2,-1/2,1/24), (1/4,0,-1/40), (1/4,1/2,1/40).

q-multisums

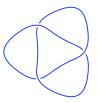
▶ In 1984, Andrews used the "Bailey machinery" to prove

$$\begin{split} \sum_{n_{k-1} \geq n_{k-2} \geq \cdots \geq n_1 \geq 0} \frac{q^{n_{k-1}^2 + n_{k-2}^2 + \cdots + n_1^2}}{(q)_{n_{k-1} - n_{k-2}} \cdots (q)_{n_2 - n_1} (q)_{n_1}} \\ &= \frac{(q^k; q^{2k+1})_{\infty} (q^{k+1}; q^{2k+1})_{\infty} (q^{2k+1}; q^{2k+1})_{\infty}}{(q)_{\infty}}. \end{split}$$

q-multisums also occur in many other areas (combinatorics, statistical mechanics, Lie algebras, group theory, knot theory ...).

Knots

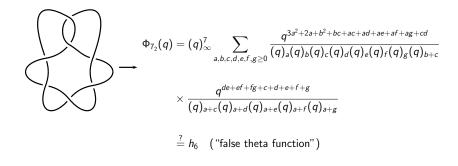
▶ A *knot* K is an embedding of a circle in \mathbb{R}^3 . For example, the trefoil knot 3_1 is given by



▶ We consider *alternating* knots and their recent connection to *q*-series.

GLZ conjectures

- ▶ (Garoufalidis and Lê, 2011): alternating knot $K \rightsquigarrow q$ -multisum $\Phi_K(q)$.
- ▶ For example, for $K = 7_2$,



GLZ conjectures

▶ They (along with Zagier) conjectured 43 Rogers-Ramanujan type identities relating $\Phi_K(q)$ to products of h_b where

$$h_b = h_b(q) = \sum_{n \in \mathbb{Z}} \epsilon_b(n) q^{\frac{bn(n+1)}{2} - n}$$

and

$$\epsilon_b(n) = \left\{ egin{array}{ll} (-1)^n & ext{if } b ext{ is odd,} \ 1 & ext{if } b ext{ is even and } n \geq 0, \ -1 & ext{if } b ext{ is even and } n < 0. \end{array}
ight.$$

• One can show that $h_1(q)=0$, $h_2(q)=1$ and $h_3(q)=(q)_{\infty}$.

GLZ conjectures

K	$\Phi_K(q)$	$\Phi_{-K}(q)$	K	$\Phi_K(q)$	$\Phi_{-K}(q)$
31	h ₃	1	75	h_3h_4	h ₄
41	h ₃	h ₃	76	h_3h_4	$h_3^2 h_3^2$
51	h_5	1	7 ₇	h_3^3	h_3^2
5 ₂	h_4	h ₃	81	h ₇	h_3
61	h_5	h ₃	82	h_3h_6	h_3
62	h_3h_4	h ₃	8 ₃	h_5	h_5
63	h_3^2	h_3^2	84	<i>h</i> ₃	$h_4 h_5$
7 ₁	h_7	1	85	?	h_3
7 ₂	h_6	h ₃	K_p , $p>0$	h_{2p}	h_3
7 ₃	h_5	h_4	$K_p, p < 0$	$h_{2 p +1}$	h_3
74	h_4^2	h ₃	T(2, p), p > 0	h_{2p+1}	1

Theorem (-, Keilthy, 2014)

All of the above identities are true.

Algebra and Number Theory at UCD

Permanent members:

```
Vincent Astier (Quadratic forms, Model theory),
Eimear Byrne (Coding theory),
Kevin Hutchinson (K-theory, Homology),
Gary McGuire (Elliptic curves, coding and cryptography),
– (Number theory, combinatorics),
Helena Smigoc (Matrix theory),
Masha Vlasenko (Number theory, Mirror symmetry).
```

- ▶ Weekly seminar: in 2013-2014, 20 talks including international visitors (Essen, Berkeley, Tokyo, Max Planck, Paris, Baton Rouge, Bordeaux).
- ► International Conferences/Workshops:

```
Workshop on Coding and Cryptography (2007, 2008, 2009, 2010, 2011), Workshop on Elliptic Curves and Cryptography (2007) Finite Fields 9 (2009), The Lewisfest (2009), IEEE Information Theory Workshop (2010), Prospects in q-series and modular forms (2010), Representations and Finite Fields (2013), Automorphic Forms Workshop (2013).
```

Opportunities at UCD

"Research Demonstratorships" (4 years, 15K per year, 2K for travel funds, 50% fees covered), deadline is April 1, 2015. See

http://www.ucd.ie/mathsciences/research

or

http://www.ucd.ie/mathsciences/graduatestudents

"IRC Postgraduate Scholarship Scheme" (4 years, 16K per year, 2,250 for travel funds (per year), all fees paid), deadline is February 11, 2015. See

http://research.ie/funding/postgraduate-funding

Questions? Contact

simon.williams@ucd.ie

Thank you!

Comments

 There is no (known) conjectural evaluation for the 85 knot. In this case, we have

$$\begin{split} \Phi_{8_5}(q) := (q)_\infty^8 \sum_{\substack{a,b,c,d,e,f,g,h \geq 0 \\ a+f \geq b}} (-1)^{b+f} \frac{q^{2a+3a^2 - \frac{b}{2} - 2ab + \frac{3b^2}{2} + c + ac + d + ad}}{(q)_a(q)_b(q)_c(q)_d(q)_e(q)_f(q)_g(q)_h} \\ \times \frac{q^{cd+e+ae+de+\frac{3f}{2} + 4af - 4bf + ef+\frac{5f^2}{2} + g + ag - bg + eg + fg + h + ah - bh + fh + gh}}{(q)_{a+c}(q)_{a+d}(q)_{a+e}(q)_{a-b+f}(q)_{a-b+f}(q)_{a-b+ef}(q)_{a-b+f+g}(q)_{a-b+f+h}} \\ = (q)_\infty^2 \sum_{a,b>0} \frac{q^{a^2+a+b^2+b}(q)_{a+b}}{(q)_a^2(q)_b^2} \quad \rightsquigarrow \quad ? \end{split}$$

- ▶ (Zagier's question) Is the list of 43 conjectural identities complete?
- ▶ Generalizations? RR-type identities for HOMFLY polynomials or superpolynomials?