
Information-Bottleneck under Mean Field Initialization

V. Abrol * 1 J. Tanner * 1

Abstract

This work explores the sensitivity of mutual infor-
mation (MI) flow in hidden layers of very deep
neural networks (DNNs) as a function of the ini-
tialization variance. Specifically, we demonstrate
that information-bottleneck (IB) interpretations of
DNNs are significantly affected by their choice of
nonlinearity as well as weight/bias variance. Ini-
tialization on the network mean field (MF) edge
of chaos (EOC) results in maximal information
propagation through layers of even very deep net-
works; consequently their IB plots are effectively
single points which do not vary and high accuracy
is rapidly obtained with training. Alternatively,
initialization away from EOC results in loss of
MI through depth and the more characteristic IB
plots observed in the literature. We also demon-
strate that popular MI estimators give substan-
tially different estimates, especially for sigmoidal
nonlinearity and high weight variance.

1. Introduction
The choice of weight initialization and nonlinearity for a
deep neural network (DNN) has a crucial impact on both the
performance of the model and the overall training dynamics.
Studies in (Schoenholz et al., 2017; Xiao et al., 2018) devel-
oped the mean field (MF) theory to understand the properties
of untrained random DNNs with the aim to avoid the prob-
lem of vanishing/exploding gradients. Further, (Poole et al.,
2016) showed that deep neural networks of arbitrary depth
can be trained for specific choices of initial weight and bias
variance chosen on a operating curve known as the ‘Edge of
Chaos’ (EOC). Prior MF theory has as its focus on enhanc-
ing signal propagation and training in very deep networks.
Here we show that MF theory also plays an important role
in information propagation as viewed through information
bottleneck (IB) theory (Tishby & Zaslavsky, 2015) whose
focus is to explain generalization error of DNNs.
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The IB curve characterizes the set of ‘bottleneck’ hid-
den variables M that achieve maximal hidden-output MI
I(Y ;M) while trying to achieve minimal input-hidden MI
I(X;M), for input and output variables X and Y (Shwartz-
Ziv & Tishby, 2017). Assuming DNNs obeys the Markov
condition Y−X−M , one can perform analysis using the
trade-off between I(Y ;M) and I(X,M) in the information
plane (IP). Study in (Shwartz-Ziv & Tishby, 2017) showed
that during training each layer in the network evolve from 1)
an initial fitting phase maximizing I(Y ;M) to 2) a compres-
sion phase reducing I(X;M). Study in (Saxe et al., 2018)
demonstrated that this compression property occurs only
for specific nonlinearities. Following this, various recent
studies (Hodas & Stinis, 2018; Gabrié et al., 2018; Noshad
et al., 2019; Wickstrøm et al., 2019) based on different
MI estimators have supported the contradictory claims of
either (Shwartz-Ziv & Tishby, 2017) or (Saxe et al., 2018).

Existing works have not study IB for very deep networks
since estimation of MI for DNN is difficult and it is un-
clear if existing estimators are robust and/or computation-
ally tractable in higher dimensions. In this paper we study
the behaviour of popular MI estimators namely replica
estimator (Gabrié et al., 2018), kernel-density estimator
(KDE) (Kolchinsky & Tracey, 2017), and ensemble depen-
dency graph estimator (EDGE) (Noshad et al., 2019), on
DNNs under MF initialization. We demonstrate inconsis-
tencies between different MI estimators; specifically, at
large depths as well as high weight variance existing MI
estimators suffers from MI overestimation which would be
reflected in IB plots as artificially high MI flow through
layers that are inconsistent with inability to train DNNs with
such initialization. For practical regimes, regardless of the
choice of nonlinearity, we advocate in favour of DNN ini-
tialization on EOC for which most MI estimators are well
behaved and MI is maximized in most layers. The reason
could be understood in terms of efficient signal propagation
during both back-propagation (gradient flow) and forward-
propagation (feature learning). We support our claims by
first analysing IB for untrained random DNNs and then via
experiments by training DNNs on real data.

2. Review of Signal Propagation in DNNs
Consider an untrained feed-forward neural network of depth
L with weight matrices Wl ∈ RN×N , bias vectors bl ∈
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Figure 1. (a) EOC phase transition with critical line χ = 1 for
different nonlinearities. Gradients either explodes and vanishes
for (σw, σb) on right and left side of each EOC curve, respectively.
For ReLU EOC is a singleton (

√
2, 0). (b) σw as a function of q∗.

RN , pre-activations hl ∈ RN , and post-activations xl ∈
RN . The signal propagation in DNN is described by:

hl = Wlxl−1 + bl−1, xl = φ(hl), (1)

where φ : R→ R is a pointwise nonlinearity and the input
is x0 (Schoenholz et al., 2017). The biases bl

i are drawn i.i.d.
from a zero-mean Gaussian with variance σ2

b , and weights
Wl

ij are either: (1) drawn i.i.d from a zero-mean Gaussian
with variance σ2

w/N , or (2) drawn from a uniform distribu-
tion over scaled orthogonal matrices i.e., WlTWl=σwI.

2.1. MF Theory: Limiting Behaviour of Variance

Study in (Poole et al., 2016; Sirignano & Spiliopoulos,
2019) established that in large N limit the empirical dis-
tribution of pre-activations converges to a zero mean Gaus-
sian and fixed point variance q∗=σ2

wE[φ(
√
q∗z)2]+σ2

b . The
propagation of a pair of signals through such a network
can be understood in a similar way where the covariance
between different pre-activations follows a recursive rela-
tion (Schoenholz et al., 2017). The covariance has a fixed
point correlation c∗=1 which is stable when the quantity
χ=σ2

wE[φ
′
(
√
q∗z)2]<1, where φ

′
is the derivative of φ.

Thus χ(σw, σb)=1 separates the (σw, σb) plane into chaotic
(χ>1) or ordered (χ<1) regimes, where gradients either
exponentially explode or vanish, respectively, and all inputs
end up asymptotically correlated or decorrelated, respec-
tively (Poole et al., 2016; Schoenholz et al., 2017). Interest-
ingly χ is also the mean singular value of the input-output Ja-
cobian when the pre-activations are at q∗. Fig.1(a-b) shows
the phase diagrams for few nonlinearities for different val-
ues of q∗. Further, for a given q∗ we have different choices
of (σw, σb), and an optimal point on EOC is the one which
results in a well conditioned Jacobian. This translates to sin-
gular values of the Jacobian to concentrate around 1, a prop-
erty known as dynamical isometry in DNNs (Pennington
et al., 2018; Tarnowski et al., 2019), which is achieved for

smaller values of q∗ and orthogonal weights. From Fig.1(b)
it is evident that as q∗→0, σb→0 i.e., with a smaller bias
the information propagates deeper in DNNs.

3. Information-bottleneck Principle
IB aims to find a bottleneck or hidden variable M to quan-
tify the information flow in a DNN via input-hidden MI
I(X;M) and hidden-output MI I(Y ;M), which reflects
how much a given hidden layer M compresses or forgets
about X , and how well it predicts Y (Tishby et al., 1999;
Tishby & Zaslavsky, 2015). In practice, one can observe the
training dynamics using the trade-off between I(Y ;M) and
I(X,M) in the information plane (IP) for all layers in each
epoch. In (Shwartz-Ziv & Tishby, 2017) authors used Tanh
nonlinearity and MI estimation was performed by binning
of the hidden neurons activities. The transformation via
DNNs is usually deterministic and in order to obtain a finite
MI estimate one needs to either use binning or add noise in
output of the nonlinearity (Kolchinsky et al., 2019). Since,
binning/noise is not inherent in the network architecture,
different MI estimators can result in different IB behaviour.

3.1. Mutual Information vs Signal Propagation

Under the data processing inequality (DPI) (Cover &
Thomas, 1991) we have I(X;M)≥I(Y ;M). Also
for a deterministic mapping (X−Ml−1−Ml), we have
I(Ml;Ml−1)=I(X;Ml) and I(X;Ml−1)≥I(X;Ml),
where Ml is the variable at layer l. In other words, as
input propagates the hidden representation forgets about
input X and learns more about output Y . MF initialization
suggest another regime where M forgets very slowly, and is
in-fact necessary if one wishes to train a very deep network.
This is not surprising as the bottleneck variable now has
to propagate the information about inputs and gradients
through its full depth in order to be able to train a network,
while at the same time learning meaningful features for a
task. Study in (Schoenholz et al., 2017) showed that only
for a specific choice of hyperparameters (initialization at
EOC) the information stored in the correlation between
inputs can propagate infinitely far in random networks, and
some nonlinearities like Tanh and ELU are much better
than others e.g., ReLU in signal propagation.

IB for Different Nonlinearities
IB trajectory is a function of nonlineary and weight/bias
variance. In particular, double-sided saturating nonlinear-
ities like Tanh yield a reduction in MI for larger weights,
whereas unbounded nonlinearities such as ReLU/ELU do
not show this phenomena (Saxe et al., 2018). While this
provides an important insight about the behaviour of a non-
linearity, it is still not evident what is the impact of depth
on MI estimation (and higher dimension) as most of the
existing works have not study IB for very deep networks.
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4. MI Estimation for Deep Random Networks
The replica estimator recently proposed in (Gabrié et al.,
2018), see Fig.2(a-b), is specifically designed to compute
MI in stochastic DNNs. The analytical MI computation
for a three neuron network presented in (Saxe et al., 2018)
(see Fig.5(a) in section A.1) is consistent with the replica
estimator (Gabrié et al., 2018) at layer 2 in Fig.2(a-b). As
the depth of the network increases, Fig.2(a) shows the MI
for Htanh DNN converging to a curve which increases ini-
tially with σw up to the value σw = 1 which coincides with
value indicated for stable MF information propagation for
Htanh; and the MI decreases monotonically as σw is in-
creased beyond 1. Similarly, Fig.2(b) shows the MI for the
ReLU activation whose limiting distribution is a stable fixed
point near σw =

√
2, the value indicated for stable mean

field information propagation for ReLU, and converges to 0
below this value and increases as value of σw increases.

4.1. Non-parametric estimates of MI

The MI estimator (Gabrié et al., 2018) gives robust esti-
mate but is restricted to a specific class of models, and
computationally expensive to apply in practice. In contrast,
while non-parametric estimators can approximate MI just
from samples, study in (Gabrié et al., 2018) showed that
they tend to over estimate MI. Various existing works based
on IB theory employed non-parametric estimators to com-
pute IB trajectory. Popular methods include kernel-density
estimation (KDE) (Kolchinsky & Tracey, 2017), nearest
neighbour (KNN) (Kraskov et al., 2004), ensemble depen-
dency graph estimator (EDGE) (Noshad et al., 2019) and
differential entropy estimator (Goldfeld et al., 2019). How-
ever, the behaviour of such estimators can be unstable in
higher dimension as even for a known distribution the en-
tropy computation is intractable in most cases. Also, in
higher dimension as depth increases there are estimation
errors, which are more prominent for large values of σw
as entropy diverges and one needs to increase the noise to
avoid such divergence. Another source of error is the choice
of nonlinearity e.g., for ReLU MI increases without bound
and most estimators are incapable of providing a stable es-
timate. As an illustration, Fig.2(b) shows the MI estimate
for a ReLU network at large depths with replica estimator.
Interestingly, the increase in MI is near exponential as depth
increases from 2 to 6. However, at large values of σw one
can also observe estimation errors. We believe this explains
the inconstancy among arguments linking generalization
and MI flow in DNNS in recent works of (Shwartz-Ziv &
Tishby, 2017; Hodas & Stinis, 2018; Gabrié et al., 2018;
Noshad et al., 2019; Wickstrøm et al., 2019), due to MI
estimation errors in contrast to what theory suggests.

These observations are consistent with non-parametric en-
tropy estimators which are the usual practical choice for
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Figure 2. Mutual Information I(X,M) with Gaussian input (N =
1000) as a function of weight scale σw for a random DNN without
bias. (a-b) Replica; (c-d) KDE and (e-f) EDGE estimator. Each
curve corresponds to a DNN with fixed number of layers. Vertical
lines in each plots corresponds to estimation errors.

IB analysis of DNNs. For instance, Fig.2(c-d) and (e-f)
shows the MI estimates for a network with Tanh and ReLU
nonlinearity as a function of depth L using KDE and EDGE
methods. It can be observed that for Tanh MI attains a
maximum around σw = 1 and the behaviour converges as
depth increases. However, for σw > 1 MI estimates of
replica, KDE and EDGE method in Fig.2 (a), (c) and (e),
respectively are very different. This observation is inter-
esting as in contrast to the argument made in (Saxe et al.,
2018) that saturating nonlinearities like Tanh yield a re-
duction in MI for larger weights; the actual MI estimation
using KDE approach (also employed in their study) results
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(a) σ2
w = 1.2; ACC=10.4% (b) σ2

w = 1.7; ACC=93.5% (c) σ2
w = 2; ACC=95.6% (d) σ2

w = 2.3; ACC=95.1%

Figure 3. IB dynamics using KDE method at initialization (epoch 0) for a ReLU network of depth 30, width 300 with different values of
σ2
w and σ2

b=0. Plot (c) is zoomed and MI for last layer in each plot is discarded for better visualization.

in saturated outputs. The MI estimation is also difficult
for non-saturating nonlinearities like ReLU as shown in
Fig.2(d) and (f), respectively. It can observed both KDE and
EDGE methods result in large estimation errors for large
values of σw, where now estimates in case of EDGE enters
a saturation zone. This explains why contradictory IB plots
one obtains when switching from the binning method used
in (Shwartz-Ziv & Tishby, 2017) to KDE or KNN in (Saxe
et al., 2018) and EDGE in (Noshad et al., 2019).

4.2. Experiments on MNIST

Reading IB plots: IB plots show MI between input, hidden
and output layer. On x-axis we plot MI between each layer
and the input, while on y-axis we plot MI between each layer
and the output. Each layer produces a curve with the input
layer at far right, output layer at far left, and different layers
at the same epoch connected by fine lines. For instance, in
Fig.3(b) points (3,0.45) and (13.8,3.4) corresponds to MI
values at last and the first layer, respectively.

Impact of initialization on EOC: As demonstrated earlier
initialization on EOC should maximise MI in DNN i.e.,
MI estimates in most layers should be close enough even
without training and one should see closely concentrated
values in IB plot. As an illustration, we visualize IB plots
for a fixed σb and σw chosen to be on the EOC, as well as
values of σw greater than and less than advocated by EOC.
Also reported is the classification accuracy on MNIST test
set after 100 epochs for each initialization.

Fig.3 shows the results for a 30 layer ReLU network with
EOC being singleton at (σw, σb =

√
2, 0). It can be ob-

served that as expected, MI values with initialization on
EOC are very close across layers. These MI estimates be-
comes nearly indistinguishable for larger values of σw. At
value of σw below EOC, we observe a MI curve demonstrat-
ing different MI between input, hidden and output layers.
Finally note that only the network trained on EOC achieves
the best classification accuracy. Further, in Fig.4 we demon-
strate IB plot for a very deep 200-layer network initialized

Gaussian Initialization

Figure 4. IB trajectories using KDE method for networks initial-
ized on EOC and trained on MNIST. Each plot is overlaid with a
zoomed version around coordinate (13,3.2) in IB plot.

on EOC with Gaussian initialization. See supplementary
section for experimental details and results with orthogo-
nal initialization. It can be observed that for ReLU except
the last layer, MI for most layers quickly converges to a
maximum attainable limit. In case of Tanh, the IB dynam-
ics of the last layer rapidly increases from approximately
(1.7,0.75) to (3.2,2.8), while the remaining layers start and
remain at nearly maximum values of I(X,M) and I(Y,M).

5. Conclusion
Regardless of the choice of nonlinearity, in very deep net-
works initialization on EOC maximizes the MI in most
layers which even prevails during actual training in practice.
Thus, the link between generalization and mutual informa-
tion in hidden representations is still elusive. For instance,
ReLU and ELU has similar MI dynamics. Hence, while
trainability issue due to ReLU at large depths can be solved
for nonlinearities like ELU, IB theory can not explain its
better generalization behaviour. We argue the reason for this
is the inability of various MI estimators to provide reliable
MI estimates in higher dimensions, large weight variance
and large network depths.
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A. Supplementary Material
A.1. Replication of Experiment from (Saxe et al., 2018)

This section presents a replication of three neuron network
experiment from (Saxe et al., 2018), where MI can be esti-
mated exactly using cumulative density function for mono-
tonic nonlinearities. It can be observed from Fig.5(a) that
for Tanh nonlinearity MI increases for small weights while
it decreases for large ones, because outputs starts to satu-
rate for large inputs. Hence, extreme bins concentrate more
and more probability mass resulting in information loss. In
contrast, MI for ReLU/ELU increases as weight variance
increases.

The above result is validated using replica estimator
from (Gabrié et al., 2018) for a two layer stochastic DNN
without bias. Fig.5(b), compares the entropy estimates
H(M) of hidden representation for a DNN with linear,
Htanh or ReLU nonlinearities. As observed in Fig.5(a), the
entropy of hidden representation in case of Htanh nonlin-
earity increases with σw till reaching a maximum, whereas
it always increases for ReLU. Similar observations can be
made for estimates of I(X;M) as shown in Fig. 5(c).

A.2. MI estimation for HTanh and ELU nonlinearity
using KDE

We observe similar MI behaviour for a random DNN with
Htanh and ELU nonlinearity as in case of Tanh and ReLU
nonlinearity, respectively using KDE approach1 as shown
in Fig.6.

1Similar results are obtained using KNN based MI estimator.

A.3. Additional Experiments on MNIST

A.3.1. IMPACT OF INITIALIZATION ON EOC FOR A
TANH NETWORK

Similar to the case of ReLU (Fig.3), with initialization on
EOC we expect MI estimates for most layers to be maxi-
mized. Fig.8 shows the IB plots for a 30 layer Tanh network
with EOC chosen at (σw, σb = 1.68, 0.038) corresponding
to q∗=.5. It can observed that with values of σw on EOC
and higher, all layers have the same MI in IB plots. Again
the network trained on EOC achieves the best classification
accuracy which decreases as σw increases. In line with ob-
servation in Fig.2 we observe the network doesn’t train for
σw < 1 due to approximately no flow of MI. Note that ini-
tialization on EOC (also value of q∗ except in case of ReLU)
is even more crucial for a sigmoidal type nonlinearity in
order to train a very deep network.

A.3.2. TRAINING AT LARGE DEPTH

We train networks of depth L=200 and width N=400 for
100 epochs with a batch size of 64, and we set the op-
timal learning rate through grid search. For ReLU and
Tanh nonlinearity we set q∗=1, and q∗=.5, respectively.
The network achieved an accuracy of 93.60±.15%(25)
and 95.21±.17%(20) with ReLU; 95.86±.24%(06) and
96.45±.23%(05) with Tanh nonlinearity for Gaussian and
orthogonal initialization, respectively. To demonstrate train-
ing acceleration due to different initialization scheme, values
in the bracket depict the average number of epochs required
to achieve an accuracy of 90% on test set.

As expected, in Fig.9, we observe similar IB plots as in
Fig.4. For lower values of q∗ we have a better conditioned
Jacobian in case of Tanh nonlinearity, and orthogonality
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Figure 5. (a) Mutual information I(X,M) with Gaussian input as a function of weight size ‘w’ in a three neuron network for different
nonlinearities. (b-c) Entropy H(M) and Mutual Information I(X,M) with Gaussian input as a function of weight scale σw in a two
layer random DNN (N = 1000) for different nonlinearities.
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Figure 6. Mutual information I(X;M) with Gaussian input as a
function of weight scale σw for DNN (N = 1000) with different
nonlinearity using KDE method. Each curve corresponds to a
DNN with fixed number of layers.

bringing additional benefits of dynamical isometry too. Note
that although orthogonality induces faster training times
it does not achieves significantly better IB dynamics or
training in case of ReLU nonlinearity. This is because first
it is impossible to achieve dynamical isometry for ReLU
even with orthogonal weights (Pennington et al., 2018), and
secondly after subsequent updates, the network parameters
deviates thus violating orthogonality criteria.

A.4. A note on differential entropy estimator

During submission we came across a recent study in (Gold-
feld et al., 2019) which used differential entropy estimator
to study information flow in stochastic DNNs. It argued that
as the network trains, the clustering of the learned features at
output layers is the underlying reason behind the reduction
in MI across epochs. They demonstrated that prior works
were in fact measuring this clustering through the lens of MI
estimator based on binning. In terms of MF theory, as long

as the information stored in the correlation between inputs
propagates (without achieving the fixed point c∗), one can
train a deep network i.e., learning useful clustered repre-
sentations. As an illustration, Fig.9 shows the evolution of
correlation cl as inputs propagate through layers and a slow
rate is desirable for deeper information propagation. Inter-
estingly, while it seems the geometric phenomena described
by (Goldfeld et al., 2019) relates to the limiting behaviour
of correlations under MF initialization, we argue that this is
tricky to observe in practice because lower dimensions may
suppress it, yet most existing MI estimators are incapable of
capturing it in higher dimension, especially when network
depth is very large. Hence, in this work we restrict our study
to the analysis of MI dynamics under MF initialization for
specific choices of nonlinearities rather than the clustering
behaviour.

Further, the authors of (Goldfeld et al., 2019) are still in
process of publishing an implementation publicly and hence,
a comparison with their proposed estimator could not be
made.
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Figure 7. Convergence of the correlations on EOC for different
nonlinearities.

A.5. Reproducible Research

For reproducible-research purposes, a GPL Python imple-
mentation and related data to reproduce the figures in this
work is available on request from authors. Alternatively, im-
plementation of MI estimators proposed in existing works
from respective authors is available at:

Replica: https://github.com/sphinxteam/dnner

Binning: https://github.com/ravidziv/IDNNs

KDE: https://github.com/artemyk/ibsgd/tree/iclr2018

EDGE: https://github.com/mrtnoshad/EDGE

https://github.com/sphinxteam/dnner
https://github.com/ravidziv/IDNNs
https://github.com/artemyk/ibsgd/tree/iclr2018
https://github.com/mrtnoshad/EDGE
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(a) σ2
w = 0.85; ACC=11.5% (b) σ2

w = 1.2; ACC=11.5%

(c) σ2
w = 1.68; ACC=96.8% (d) σ2

w = 2; ACC=94.2%

Figure 8. IB dynamics using KDE method at initialization (epoch 0) for a Tanh network of depth 30, width 300 with different values of
σ2
w, q∗=.5 and a fixed bias. Last layer is discarded for better visualization.

Orthogonal Initialization

Figure 9. IB trajectories using KDE method for networks initialized on EOC and trained on MNIST.
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