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Conjugate Gradient Iterative Hard Thresholding:
Observed Noise Stability for Compressed Sensing

Jeffrey D. Blanchard, Jared Tanner, and Ke Wei

Abstract—Conjugate Gradient Iterative Hard Thresholding
(CGIHT) for compressed sensing combines the low per iteration
computational cost of simple line search iterative hard thresh-
olding algorithms with the improved convergence rates of more
sophisticated sparse approximation algorithms. This article shows
that the average case performance of CGIHT is robust to additive
noise well beyond its theoretical guarantees, and in this setting
is typically the fastest iterative hard thresholding algorithm
for sparse approximation. Moreover, CGIHT is observed to
benefit more than other iterative hard thresholding algorithms
when jointly considering multiple sparse vectors whose sparsity
patterns coincide.

I. INTRODUCTION

With the advent of compressed sensing [1], [2] and related
questions, there has been significant development of algo-
rithms designed to recover sparse solutions to underdetermined
linear systems of equations. Consider y = Ax + e where
x ∈ Rn is k-sparse (i.e. the number of nonzeros entries
in x is at most k, denoted ‖x‖0 ≤ k), A ∈ Rm×n and
e ∈ Rm representing model misfit between representing y
with k columns of A and/or additive noise. The compressed
sensing recovery question is to identify the minimizer

x̂ = argmin
z∈Rn

‖y −Az‖2 subject to ‖z‖0 ≤ k. (1)

Algorithms for the solution of (1) can, suitably extended,
also be used to solve the row-sparse approximation problem.
For X ∈ Rn×r, X is k-row-sparse when X has at most
k rows containing nonzero values, denoted ‖X‖R0 ≤ k.
This is equivalent to the multiple measurement vector or joint
sparsity settings in compressed sensing where the columns of
X are each k-sparse vectors with a common, joint support set.
Consider the model Y = AX +E, in this case, iterative hard
thresholding algorithms attempt to identify the k-row-sparse
minimizer

X̂ = argmin
Z∈Rn×r

‖Y −AZ‖F subject to ‖Z‖R0 ≤ k. (2)
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Question (1) is the special case of (2) with r = 1.
Most algorithms designed for the solution of (1)-(2) have

recovery guarantees (including stability for the model y =
Ax+e with ‖x‖0 ≤ k) based on the now ubiquitous restricted
isometry constants (RICs) [3]. The lower and upper RICs of
a matrix A ∈ Rm×n are defined as the smallest values which
satisfy

(1− Lck)‖z‖22 ≤ ‖Az‖22 ≤ (1 + Uck)‖z‖22 (3)

for all ck-sparse vectors z ∈ Rn. A partial list of leading
iterative hard thresholding algorithms which, provided A has
sufficiently small RICs, are proven to have uniform recovery
guarantees over all k sparse vectors include: Normalised
Iterative Hard Thresholding (NIHT) [4], Hard Thresholding
Pursuit (HTP) [5], Compressive Sampling Matching Pursuit
(CoSaMP) [6], Subspace Pursuit (SP) [7], the ALPS family
of algorithms [8], and Conjugate Gradient Iterative Hard
Thresholding (CGIHT) [9]. Identical guarantees for the row-
sparse approximation problem are presented in [9]–[11]. The
authors introducing these algorithms, as well as other numer-
ical investigations [11]–[14], have shown that the RIC-based
sufficient conditions establishing uniform recovery over all x
are dramatically more pessimistic than the observed recovery
ability of the algorithms when x is drawn independently from
A. In this manuscript we perform extensive testing of these
algorithms for the model of an exactly (row)-sparse matrix
with relatively moderate additive noise, and observe that in
this setting CGIHT is typically able to recover an approxi-
mate solution to (1)-(2) in less time than the aforementioned
algorithms.

II. CGIHT FOR COMPRESSED SENSING

The relative empirical performance of NIHT, HTP, and an
algorithm denoted CSMPSP (a variant of CoSaMP and SP)
were extensively tested in [14] using the software GAGA: GPU
Accelerated Greedy Algorithms for Compressed Sensing [15],
[16]. In particular, [14] presents algorithm selection maps,
throughout the (δ, ρ) = (m/n, k/m) phase space, to indicate
which algorithm is able to solve (1) to a specified tolerance in
the least time. For values of (δ, ρ) when multiple algorithms
are typically able to solve (1), it is often the least complex
algorithm NIHT which can recover the solution to moderate
accuracy in the least time.

The efficiency of NIHT is a result of its lower per iteration
complexity coupled with its flexible option to change the
subspace in which it is searching. However, the projections
inherent in the iterations of HTP and CSMPSP provide a
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Algorithm 1 CGIHT for compressed sensing
Initialization: Set T−1 = {}, p−1 = 0, w−1 = A∗y, T0 =
PrincipalSupportk(|w−1|),
x0 = ProjT0

(w−1), and l = 1.
Iteration: During iteration l, do

1: rl−1 = A∗(y −Axl−1) (compute the residual)
(set orthogonalization weight)

2: if l = 1,
βl−1 = 0

else

βl−1 = −
〈
AProjTl−1

(rl−1),AProjTl−1
(pl−2)

〉
〈
AProjTl−1

(pl−2),AProjTl−1
(pl−2)

〉
3: pl−1 = rl−1 + βl−1pl−2 (define the search direction)

4: αl−1 =

〈
ProjTl−1

(rl−1),ProjTl−1
(pl−1)

〉
〈
AProjTl−1

(pl−1),AProjTl−1
(pl−1)

〉 (optimal stepsize

if Tl−1 = T∗)
5: wl−1 = xl−1 + αl−1pl−1 (update along search direction)

(support set of k largest entries)
6: Tl = PrincipalSupportk(|wl−1|) entries)
7: xl = ProjTl

(wl−1) (restriction to support set Tl)

Algorithm 2 CGIHT restarted for compressed sensing
Initialization: Set T−1 = {}, p−1 = 0, w−1 = A∗y, T0 =
PrincipalSupportk(|w−1|),
x0 = ProjT0

(w−1), and l = 1.
Iteration: During iteration l, do

1: rl−1 = A∗(y −Axl−1) (compute the residual)
(set orthogonalization weight)

2: if Tl−1 6= Tl−2
βl−1 = 0

else
βl−1 =

‖ProjTl−1
(rl−1)‖2

‖ProjTl−1
(rl−2)‖2 (compute

orthogonalization weight)
3: pl−1 = rl−1 + βl−1pl−2 (define the search direction)

4: αl−1 =
‖ProjTl−1

(rl−1)‖2

‖AProjTl−1
(pl−1)‖2 (optimal stepsize if Tl−1 = T∗)

5: wl−1 = xl−1 + αl−1pl−1 (update along search direction)
(support set of k largest entries)

6: Tl = PrincipalSupportk(|wl−1|) entries)
7: xl = ProjTl

(wl−1) (restriction to support set Tl)

substantially improved convergence rate1 once the supporting
subspace (or support set) is identified. In [9], we present
Conjugate Gradient Iterative Hard Thresholding (CGIHT,
Alg. 1) which combines the two advantages into a single
algorithm2. By allowing the support set to change after each
low complexity iteration, CGIHT is able to rapidly identify the
correct support while exploiting the computational advantages
of a subspace restricted conjugate gradient method when the
current estimate for the support set remains unchanged. This
enables CGIHT to quickly update the current estimate of the
support set while efficiently capturing the correct values on

1The projection in HTP and CSMPSP is implemented as a subspace
restricted conjugate gradient method.

2CGIHT for matrix completion is also presented in [9].

the intersection of the current support estimate and the true
support set. Once the true support is found, CGIHT shares the
same convergence rate as HTP and CSMPSP.

In iteration l, NIHT computes a step size that is the optimal
steepest descent step if the true support T coincides with
the current estimate for the support Tl−1. Similarly, CGIHT
computes an orthogonalization weight, search direction, and
step size that executes a subspace restricted conjugate gradient
(CG) method when the true support is contained in the current
support estimate and the current support estimate remains
unchanged. Since orthogonality is only preserved if the initial
step on a given support estimate is the steepest descent
step, it is natural to restart the subspace restricted conjugate
gradient search when the support changes. Also essential
for low per iteration complexity, implementing CGIHT with
some form of restarting permits one to employ the lower
cost implementation of CG. While the orthogonalization is
lost without restarting, the non-restarted version of CGIHT
(Alg. 1) frequently identifies the true support set in fewer
iterations than the variants of CGIHT which employ restarting.
CGIHT restarted, Alg. 2, exploits the discrete nature of the
support constraint and restarts the conjugate gradient method
each time the current support estimate changes. Alternatively,
CGIHT projected3 employs a restarting condition based on
the fraction of the residual aligned with the search direction
relative to the residual projected onto the current support set.
In Algs. 1–2, the hard thresholding operation is executed by
first determining the support estimate Tl of the k largest
magnitudes in the current approximation xl via the subrou-
tine PrincipalSupportk(|wl−1|), followed by projecting
wl−1 onto Tl denoted ProjTl

(wl−1).
The restarting conditions in CGIHT restarted and CGIHT

projected ensure conjugate orthogonality of the prior search
directions and orthogonality of the residuals on the current
estimate of the support. These orthogonality guarantees are
amenable to analysis using RICs. Both CGIHT restarted and
CGIHT projected are guaranteed to recover an approximate
solution of (1) for the model y = Ax+ e to within a multiple
of ‖e‖2, provided the matrix A has sufficiently small RICs4;
see Thm. 1.

Theorem 1 (CGIHT [9]): Let A be an m × n matrix
with m < n, and y = Ax + e for any x with at
most k nonzeros. Suppose A has sufficiently small restricted
isometry constants as defined in [9]. Then for alg ∈
{CGIHT restarted, CGIHT projected}, there exists constants
µalg, ξalg > 0 such that µalg < 1 and

‖xl − x‖2 ≤
(
µalg

)l ‖x0 − x‖2 + ξalg

1− µalg
‖e‖2 (4)

where xl is the lth iterate of alg.
Though CGIHT’s sufficient RIC conditions are inferior to

known conditions for NIHT and HTP in terms of probability
the condition is satisfied by a Gaussian matrix, as stated previ-
ously it is well known that such uniform recovery conditions

3The empirical performance of CGIHT projected is inferior to that of
Algs. 1–2 for solving (1). Thus the pseudo code, available in [9], is omitted.

4Explicit formulae for bounds on the constants µalg , ξalg and proofs of
the results are available in [9].
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are not indicative of the often more important average case
performance of these algorithms when x is independent of A
[14], [17].

In this paper, we explore the empirical recovery perfor-
mance of CGIHT for measurements corrupted by additive
noise. Utilizing the GAGA software [16], we identify the
empirical recovery phase transitions for the three variants of
CGIHT under multiple levels of ‖e‖2 (Sec. III-B). Further-
more, we compare the algorithms with NIHT, CSMPSP, HTP,
and Fast IHT (FIHT) which is a variant of 1-ALPS(2) [18]
adapting the optimal first order gradient method [19] for the
solution of (1). In Section III-C we present algorithm selection
maps of the phase space which identify the algorithm with the
least recovery time. This can be interpreted as an expansion of
the work in [14] which includes the three variants of CGIHT
and FIHT. Section IV further extends the investigation to the
question (2). The three main findings are:
• CGIHT, CGIHT restarted, and CGIHT projected are

stable in the presence of additive noise, well beyond the
region dictated by Thm. 1;

• typically, CGIHT accurately approximates a sparse vector
from noise corrupted measurements in less time than
other hard thresholding algorithms;

• for the row-sparse approximation problem (2), the com-
putational performance advantages for the CGIHT and
CGIHT restarted are substantially amplified, both in
terms of recovery region and relative computational effi-
ciency.

III. OBSERVED NOISE STABILITY FOR COMPRESSED
SENSING

In this section, we infer an observed stability to additive
noise for all three variants of CGIHT in terms of problem
sizes that are recoverable when solving the compressed sensing
problem (1); this stability is on par with the stability of other
greedy algorithms such as NIHT, CoSaMP, and HTP. The
critical observation is that across three representative matrix
ensembles a variant of CGIHT is typically the algorithm
which successfully recovers the measured vector in the least
computational time. We compare the performance of CGIHT,
CGIHT restarted, and CGIHT projected with FIHT, NIHT,
HTP, and CSMPSP expanding the results presented in [14]
for the last three algorithms. The pseudo code for each of
these algorithms is included in [9], [14].

This article focuses on the most demanding sparse vec-
tor ensemble for (1), namely vectors with equal magnitude
nonzero entries. The algorithms considered here are able
to successfully recover vectors with a greater number of
nonzero entries from alternate vector ensembles. Moreover, we
focus on hard thresholding algorithms and do not explicitly
compare soft thresholding algorithms tailored to solve (1).
The restricted focus of this study is supported by previous
empirical studies [12]–[14] from which indirect comparisons
are easily made.

A. Empirical Testing Environment for Compressed Sensing
The testing is conducted with the algorithm implementations

and testing suites in the software GAGA [16]. The testing was

conducted on a Linux machine with Intel XEON E5-2643
CPUs @ 3.30 GHz, NVIDIA Tesla K10 GPUs, and executed
from Matlab R2013a. The algorithms are tested with three
random matrix ensembles:
• N : dense Gaussian matrices with entries drawn i.i.d. from
N (0,m−1);

• S7: sparse matrices with 7 nonzero entries per column
drawn with equal probability from {−1/

√
7, 1/
√
7} and

locations in each column chosen uniformly;
• DCT : m rows chosen uniformly from the n×n Discrete

Cosine Transform matrix.
These three random matrix ensembles are representative of
the random matrices frequently encountered in compressed
sensing: N represents dense matrices, S7 represents sparse
matrices, and DCT represents subsampling structured matri-
ces with fast matrix-vector products.

The measured vectors are taken from the random binary
vector distribution, B, and are formed by uniformly selecting
k locations for nonzero entries with values {−1, 1} chosen
with equal probability. For noisy measurements, we denote the
sparse vector distribution by Bε. In Bε, the vectors are drawn
from the sparse vector ensemble B and the measurements
are corrupted by a misfit vector e drawn from the sphere of
radius ε‖Ax‖2; ε is referred to colloquially as the “noise level”
for the model y = Ax + e. A problem class consists of a
matrix ensemble and a sparse vector ensemble and is denoted
(Mat, vec) with Mat ∈ {N ,S7, DCT} and vec ∈ {B,Bε}
with ε ∈ {0.1, 0.2}. The problem classes Bε with ε = 0 and
B are equivalent and are used interchangeably.

For each problem class (Mat,Bε), problem instances of
size (k,m, n) are generated by selecting n = 213 for Mat =
N and n = 217 for Mat ∈ {S7, DCT}, defining m = dδ ·ne
and k = dρ ·me, and using sampling ratios (δ, ρ) chosen as
follows. For testing the compressed sensing problem (1), the
parameter δ ∈ (0, 1) takes on thirty values

δ ∈{0.001, 0.002, 0.004, 0.006, 0.008, 0.01,
. . . , 0.02, 0.04, 0.06, 0.08, 0.1, . . . , 0.99} (5)

with 18 additional uniformly spaced values of δ between 0.1
and 0.99. The parameter ρ ∈ (0, 1) is sampled in two different
ways, one to identify the recovery phase transition for each
algorithm and the second for direct performance comparison
throughout the recovery regions.

A standard theoretical stability result for an algorithm
approximately solving (1) with the model y = Ax + e
where ‖x‖0 ≤ k has the form (4) for some constants µalg

and ξalg depending on the algorithm and RIC constants of
A. For the model y = Ax + e considered here, ‖e‖2 =
ε‖Ax‖2 ≤ ε‖AT ‖2‖x‖2 where AT is the submatrix formed
by the columns of A with indices in T = supp(x). In this
empirical study, we consider an approximate solution to be
a successful approximation when the relative approximation
error satisfies

‖x̂− x‖2
‖x‖2

< .001 + 2ε. (6)

The success condition (6) roughly captures the form of the
theoretical recovery bound (4).
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Fig. 1. Compressed sensing (1). 50% recovery probability logistic regression
curves for problem classes (Mat,Bε). Left column: ε = 0.1. Right column:
ε = 0.2. (a–b) Mat = N , n = 213; (c–d) Mat = S7, n = 217; (e–f)
Mat = DCT , n = 217.

As described in [14], the algorithms terminate when any one
of several stopping criteria are met: the residual is small, the
residual is no longer improving, the algorithm is diverging, or
the convergence rate is near 1. Through empirical testing, it
was observed that when noise is present in the measurements
the iterative hard thresholding algorithms tested frequently
cycle between multiple limit points, often with distinct support
sets. A simple additional stopping criterion alleviates this
problem: if the `2 norm of the residual is identical (to single
precision) to the `2 norm of one of the previous fifteen resid-
uals, a cycle is declared and the algorithm terminates5. For
comparison of recovery times, all algorithms utilize identical
stopping criteria including the detection for cycling between
multiple limit points.

5While this will fail to find a cycle of length greater than fifteen, and could
theoretically stop prematurely for two different approximations with identical
residual norms, this stopping criterion is empirically robust.
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Fig. 2. Compressed sensing (1). 50% recovery probability logistic regression
curves for problem classes (Mat,Bε) with ε = 0, 0.1, 0.2. Left column:
CGIHT. Right column: CGIHT restarted. (a–b) Mat = N , n = 213; (c–d)
Mat = S7, n = 217; (e–f) Mat = DCT , n = 217.

B. Recovery Phase Transitions for Compressed Sensing

For each problem class, the empirical recovery phase tran-
sitions are identified by first determining a phase transition
region [kmin, kmax] where an algorithm successfully recovers
each of 10 random vectors at kmin but fails to recover any
of 10 random vectors at kmax. The phase transition region is
then extensively tested and the recovery phase transition is the
curve defined by a logistic regression for a 50% success rate.
The recovery region is the region below the recovery phase
transition and identifies the region of the phase space where an
algorithm is typically able to recover randomly drawn vectors.

In Fig. 1, we compare the empirical recovery phase transi-
tions of the seven algorithms. In the most interesting region of
the phase space for compressed sensing, namely δ = m/n <
0.5, the recovery phase transitions for CGIHT and CGIHT
restarted are superior to NIHT, HTP, CGIHT projected and
FIHT for all three matrix ensembles. For matrix ensembles
N and S7, CSMPSP boasts the highest (best) recovery phase
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Fig. 3. Compressed sensing (1). Algorithm selection maps for problem classes (Mat,Bε). Left column: ε = 0. Center column: ε = 0.1. Right column:
ε = 0.2. (a-c) Mat = N , n = 213; (d-f) Mat = S7, n = 217; (g-i) Mat = DCT , n = 217.

transition for all values of δ = m/n with the advantage
increasing as δ → 1. As the noise level ε increases, the
differences between these phase transition curves decrease. In
terms of location of the recovery phase transition, we claim
the empirical recovery phase transition of CGIHT, CGIHT
restarted, and CGIHT projected is competitive with the other
algorithms.

In Fig. 2, we observe that the areas below the recovery phase
transition curves for CGIHT and CGIHT restarted smoothly
decrease as the noise level ε increases. Moreover, for the
moderate noise level ε = 0.1, the recovery phase transition
curves for CGIHT closely track the recovery phase transitions
for ε = 0 with the relative discrepancy decreasing in the
most significant region of δ � 1. Even for ε = 0.2, the
recovery region captures a significant portion of the noise
free (ε = 0) recovery region. Thus, we claim that through
the majority of the noise-free recovery region, the relative
`2 norms of the approximations from both the restarted and
non-restarted variants of CGIHT scale with the noise level
ε. This observation holds over three representative matrix
ensembles. These empirical observations show that the average
case recovery of CGIHT is substantially beyond the region

where the uniform recovery condition of Thm. 1 is valid, and
show that the recovery regions degrade slowly with additive
noise. Similar plots to those in Fig. 2 for the other five
algorithms are available in the supplementary material [20],
and show a similar smooth decrease in the area of the recovery
regions relative to noise level ε.

The recovery phase transition curves from Figs. 1 and 2
show the location of the 50% success rate for each of the
algorithms. These clearly delineate the recovery region for
each algorithm and inform practitioners if an algorithm is
likely to succeed in recovering a sparse vector. In the region
of the phase space between the algorithm with the highest
phase transition and the next highest phase transition curve,
one should clearly employ the only successful algorithm. In
the region of the phase space below the phase transition curves
for multiple algorithms, one must choose which algorithm best
serves their application.

C. Algorithm Selection Maps for Compressed Sensing

When selecting from multiple algorithms, a natural choice
is to select the algorithm able to reliably solve the question
in the least time. In [14], the first two authors introduced
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Fig. 4. Compressed sensing (1). Minimum average recovery time and ratios of average recovery time to the minimum for problem classes (Mat,Bε),
ε = 0.1: (a-c) Mat = N , n = 213; (d-f) Mat = S7, n = 217; (g-i) Mat = DCT , n = 217. Left column: minimum average recovery time over all
algorithms. Ratios of average recovery time over minimum average recovery time for CGIHT (Center Column) and FIHT (Right Column).

algorithm selection maps which identify the algorithm with
the least computational recovery time. In that empirical study,
the dominant algorithms under consideration were NIHT, HTP,
CSMPSP. While the noise-free algorithm selection maps in-
cluded a mix of these algorithms, NIHT was the overwhelming
selection in the presence of additive noise with ε = 0.1. In this
section, we extend the algorithm selection maps to consider
the three variants of CGIHT and FIHT. To generate data on
a mesh for direct comparison, the parameter ρ ∈ (0, 1) takes
the values

ρ ∈ {0.02j : j = 1, . . . , 50}. (7)

For each algorithm and each value of δ from (5), ten problem
instances of size (k,m, n) are tested for each value of ρ until
the algorithm fails to successfully recover the measured vector
for all ten tests.

In Fig. 3, we present algorithm selection maps for all three
matrix ensembles and noise levels ε ∈ {0, 0.1, 0.2}. In the
noise-free setting (Fig. 3(a),(d),(g)) FIHT often recovers the
measured vector in the least time when ρ = k/m . 0.15
or δ = m/n . 0.1. In the region where CSMPSP is the
only successful algorithm, it is marked as the recommended

algorithm, though in all other regions it typically requires more
time to converge. For all three matrix ensembles, a variant
of CGIHT is often the algorithm requiring the least time
for problem instances (k,m, n) with (δ, ρ) = (k/m,m/n)
just below the phase transition. This is a similar finding to
the recovery behavior of NIHT for noiseless measurements
presented in [14]. Essentially, for noiseless signals, CGIHT
or FIHT replaces NIHT in the algorithm selection maps of all
three matrix ensembles. When the measurements are corrupted
with the additive misfit vector e, CGIHT and CGIHT restarted
mark the overwhelming majority of the phase space for
matrix ensembles N and S7. For matrix ensemble DCT and
δ . 0.5, CGIHT and CGIHT restarted continue to dominate
the selection maps.

The trends established by the algorithm selection maps
delineate regions of the phase space where a particular algo-
rithm has the least average time for recovery. When selecting
an algorithm, the additional information provided in Fig. 4
is equally important. The left column of Fig. 4 shows the
minimum average recovery time from all tested algorithms.
Note that the GPU accelerated implementations from GAGA
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[16] find the solution to (1) for the problem class (Mat,Bε)
with ε = 0.1 in a small fraction of a second: less than 200
milliseconds (ms) for Mat = N with n = 213, 60 ms for
Mat = S7 with n = 217, and 30 ms for Mat = DCT with
n = 217. Similar timings are observed for ε ∈ {0, 0.2} with
plots available in the supplementary material [20].

It is also important to understand the relative performance
of each algorithm compared to the best time among all
algorithms. The center and right columns of Fig. 4 show the
ratio of the average recovery time for CGIHT (center) and
FIHT (right) compared to the best time. The two algorithms
were selected for Fig. 4 as the variant of CGIHT and the
non-CGIHT algorithm with the smallest variation from the
least time. Throughout the preponderance of the phase space,
CGIHT is within a tiny fraction of the best time, even when
not marked as the fastest algorithm on the selection map.
Similarly, the time required for FIHT is usually within a small
multiple of the minimal time. While CIGHT restarted, CGIHT
projected, and NIHT are competitive, HTP and CSMPSP often
require more than ten times the minimal computation time.
Ratio plots for all algorithms and for ε ∈ {0, 0.2} are available
in the supplementary material [20].

In algorithm development for compressed sensing (1), one
seeks an algorithm which can rapidly recover a problem of
size (k,m, n) with m � n and k as close to m as possible;
this translates to the phase space as (δ, ρ) pairs with δ � 1 and
ρ as large as possible. From this point of view, the recovery
region near the phase transition is the critical region of the
(δ, ρ) phase space. From the data presented in Figs. 1–4 and
[20], we observe that for any reasonable undersampling ratio
δ . 0.5, CGIHT is the recommended algorithm for matrix
ensembles N and DCT especially in the presence of noise.
For the matrix ensemble S7 with 0.1 . δ . 1, CGIHT is
also the dominant algorithm. However, for δ . 0.1 FIHT is
the dominant algorithm for the matrix ensemble S7. While
other algorithms are competitive in various regions of the
phase space for solving (1), CGIHT demonstrates a consistent
computational performance advantage throughout the phase
space.

IV. OBSERVED NOISE STABILITY FOR ROW-SPARSE
APPROXIMATION

In this section we observe an even more substantial com-
putational advantage for CGIHT and CGIHT restarted when
solving the row-sparse approximation problem (2). The results
presented as Figs. 5–7 are generated in a similar fashion as
those reported in Sec. III with natural extensions to row-
sparse approximation. The recovery phase transitions are again
computed as a logistic regression of the 50% success rate, the
algorithm selection maps identify the algorithm with the least
computational recovery time, and the timings and ratios are
computed in the same fashion as in Fig. 4.

A. Empirical Testing Environment for Row-Sparse Approxi-
mation

Currently, there is no available GPU software for testing
the row-sparse approximation problem. In this section, the

algorithms were implemented by extending the Matlab version
of GAGA [15], [16] to the row-sparse approximation problem.
The testing was conducted on a Linux machine with two Intel
Xeon E5620 CPUs using Matlab R2013a with inherent multi-
threading.

The problem classes (Mat,Bε) are also extended to
row-sparse approximation. The three matrix enxembles,
{N ,S7, DCT}, are identical to those defined in Sec. III-A.
The row-sparse matrix ensemble Bε is a natural extension
of the sparse vector ensembles defined in Sec. III-A. A
matrix X ∈ Rn×r from the row-sparse ensemble B has
its row support set chosen uniformly from {1, . . . , n} with
all nonzero values in these rows drawn from {−1, 1} with
equal probability. The misfit model E ∈ Rm×r is formed by
selecting each column Ei from the sphere of radius ε‖Ỹi‖2
where {Ỹi : i = 1, . . . , r} are the columns of Ỹ = AX . When
testing the problem class (Mat,Bε) the algorithms are given a
matrix A drawn from the measurement matrix ensemble Mat
and the measurements Y = AX + E.

For testing the row-sparse approximation problem (2), the
parameter δ ∈ (0, 1) takes on fifteen values

δ ∈ {0.01, 0.02, 0.04, 0.06, 0.08, 0.1, . . . , 0.96} (8)

with 13 additional uniformly spaced values of δ between 0.1
and 0.96. Again, the parameter ρ ∈ (0, 1) is sampled in two
different ways, one to identify the recovery phase transition
for each algorithm and the second for direct performance
comparison throughout the recovery regions. Throughout this
section we fix n = 210 and define m = dδ · ne, k = dρ ·me.
All results are presented for row-sparse matrices with r = 10
columns.

The definition of success is the natural extension to the
relative Frobenius norm. An algorithm has successfully re-
covered the solution to (2) when the relative approximation
error satisfies

‖X̂ −X‖F
‖X‖F

< .001 + 2ε. (9)

The stopping criteria described in Sec. III-A utilize the Frobe-
nius norm where appropriate.

B. Phase Transitions for Row-Sparse Approximation

The data for the phase transitions is generated in the same
manner as detailed in Sec. III-B where the phase transition
region is identified by determining the interval [kmin, kmax]
and then extensively testing the phase transition region. The
increased phase transitions for the row-sparse approximation
problem with r = 10 columns compared to the phase
transitions for r = 1 in Sec. III-B is consistent with other
other empirical investigations of (2). In particular, the phase
transition curves reported in [11] demonstrated that CSMPSP
has a considerably larger recovery region than NIHT and HTP
for the solving (2) with r > 1. In Fig. 5 it is clear that CGIHT
and CGIHT restarted have substantially larger recovery regions
than CSMPSP, especially for the most interesting region of
the phase space with δ < 0.5. At the same time, Fig. 5 shows
that the recovery regions for CGIHT projected and FIHT are
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Fig. 5. Row-sparse approximation (2). 50% recovery probability logistic
regression curves for problem classes (Mat,Bε) with n = 210 and r = 10.
Left column: ε = 0.1. Right column: ε = 0.2. (a–b) Mat = N ; (c–d)
Mat = S7; (e–f) Mat = DCT .

roughly equivalent to that of NIHT. The significantly improved
phase transition for CGIHT and CGIHT restarted suggest they
are the preferred iterative hard thresholding algorithms for
solving the row-sparse aprroximation problem (2).

C. Algorithm Selection Maps for Row-Sparse Approximation

Similar to Sec. III-C, the problem instances of size (k,m, n)
are drawn from the problem class (Mat,Bε) with ρ chosen
from a grid. In this section, ρ takes the values

ρ ∈ {0.04j : j = 1 : 25} (10)

with ten tests performed for each algorithm at each (δ, ρ) until
the algorithm fails to recover a single row-sparse matrix in any
of the ten tests.

In Fig. 6, CGIHT and CGIHT restarted cover essentially all
of the algorithm selection maps for matrix enxembles N and
S7, particularly near the phase transition. For problem classes
(Mat,Bε) with ε ∈ {0.1, 0.2} and Mat ∈ {N ,S7}, CGIHT

restarted is the overwhelming choice for solving (2). However,
for the problem classes (DCT,Bε) with ε ∈ {0.1, 0.2},
CGIHT has the least computation time for successfully ap-
proximating the solution to (2). In Fig. 7, the minimal time
for recovery is presented in the left column where we observe
that the fastest algorithm solves the problem in less than
170 ms for Mat = N , 100 ms for Mat = S7, and 260
ms for Mat = DCT . The ratio of average recovery time
to the minimum average recovery time is again given for
the variant of CGIHT and the non-CGIHT algorithm with
smallest variation from the minimal time. CGIHT restarted
is the fastest of the CGIHT family of algorithms for solving
(2) with problem classes (Mat,Bε) for Mat ∈ {N ,S7}. For
Mat = DCT , CGIHT is presented in Fig. 7(h). For all three
matrix ensembles the non-CGIHT algorithm presented is FIHT
whose average recovery time is often twice that of the CGIHT
algorithm, especially near the phase transition.

Based on the data presented in Figs. 5–7 and [20], CGIHT
restarted is the recommended hard thresholding algorithm for
solving the row-sparse approximation problem (2) for problem
classes (Mat,Bε) with Mat ∈ {N ,S7}, ε ∈ {0, 0.1, 0.2},
and r = 10. CGIHT is the recommended algorithm for
the problem class (DCT,Bε) with ε ∈ {0, 0.1, 0.2} and
r = 10. Similar performance results extend to other values of
r > 1. The supplementary material [20] contains plots for all
algorithms, all problem classes, and all noise levels discussed
in this section.
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Fig. 7. Row-sparse approximation (2). Minimum average recovery time and ratios of average recovery time to the minimum for problem classes (Mat,Bε),
ε = 0.1, n = 210, and r = 10: (a-c) Mat = N ; (d-f) Mat = S7; (g-i) Mat = DCT . Left column: minimum average recovery time over all algorithms.
Ratios of average recovery time over minimum average recovery time for CGIHT restarted (b,e), CGIHT (h) and FIHT (c,f,i).


