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Abstract. In [12] the authors proved an asymptotic sampling theorem for

sparse signals, showing that n random measurements permit to reconstruct
an N-vector having k nonzeros provided

n > 2 · k · log(N/n)(1 + o(1));

reconstruction uses ℓ1 minimization. They also proved an asymptotic rate the-

orem, showing existence of real error-correcting codes for messages of length N
which can correct all possible k-element error patterns using just n generalized
checksum bits, where

n > 2e · k log(N/n)(1 + o(1));

decoding uses ℓ1 minimization. Both results require an asymptotic framework,
with N growing large. For applications, on the other hand, we are concerned
with specific triples k,n, N .

We exhibit triples (k, n, N) for which Compressed Sensing Matrices and
Real Error-Correcting Codes surely exist and can be obtained with high prob-
ability by random sampling. These derive from exponential bounds on the
probability of drawing ‘bad’ matrices. The bounds give conditions effective at

finite-N , and converging to the known sharp asymptotic conditions for large
N . Compared to other finite-N bounds known to us, they are much stronger,
and much more explicit.

Our bounds derive from asymptotics in [12] counting the expected number
of k-dimensional faces of the randomly projected simplex T N−1 and cross-
polytope CN . We develop here finite-N bounds on the expected discrepancy
between the number of k-faces of the projected polytope AQ and its generator
Q, for Q = T N−1 and CN .

Our bounds also imply existence of interesting geometric objects. Thus, we
exhibit triples (k, n, N) for which polytopes with 2N vertices can be centrally
k-neighborly.
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Positivity-Constrained Unconstrained
N n k ǫ θ n k ǫ θ

104 3,529 1,253 10−3 1/5 4,299 1,208 10−3 1/5
106 30,510 4,472 10−3 1/10 31,323 3860 10−3 1/10
106 35,766 5,487 10−10 1/10 36,819 4,722 10−10 1/10
109 1,355,580 113,004 10−10 1/50 1,365,079 102,646 10−10 1/50

Table 1. For the specified (k, n, N) and ǫ, the probability of suc-
cessfully recovering a k-sparse vector x0 ∈ R

N from n samples ex-
ceeds 1−ǫ . θ is a parameter of our method measuring proximity at
(k, n, N) to asymptotic large N , relationships (n·ρ(n/N ; Q), n, N);
see Section 2.

1. Introduction

This paper constructs solutions to three apparently different existence problems
in geometry, coding theory, and sampling theory. In each problem, for a given
triple of integers (k, n, N) where 0 < k < n < N , we would like to know whether a
solution exists for the given (k, n, N); and if so, we would like to construct it.

1.1. Existence of Compressed Sensing Matrices. Ordinarily, to reconstruct
a vector in R

N requires N measurements. The phrase ‘Compressed Sensing’ refers
to the possibility of making fewer than N measurements, by taking nonstandard
measurements and using nonlinear reconstruction to exploit side information about
the sparsity of the vector [7, 3].

Say that a vector is k-sparse if it has only k nonzeros in some fixed, known basis
– without loss of generality, the standard basis. Consider some fixed but unknown
k-sparse vector x0 in R

N . Consider making n measurements b1, . . . , bn, each one
a random linear combination bi =

∑

j aijx0(j) of entries in x0, where the aij are
iid standard Normal random variables. Equivalently, we may write b = Ax0. Now
attempt to reconstruct the unknown x0 by solving

(1.1) min ‖x‖ℓ1 subject to Ax = b.

Here n < N , so the linear system is underdetermined. Nevertheless, it turns out
that if k is sufficiently small, this will work with high probability.

An important variation concerns a nonnegative k-sparse vector x0 in R
N
+ - again

fixed but unknown. We again consider making n measurements b1, . . . , bn, each
one a random linear combination bi =

∑

j aijx0(j) of entries in x0. We attempt to
recover x0 by solving the linear program

(1.2) min 1′x subject to Ax = b, x ≥ 0.

In either situation, we are interested in knowing for which k, n and N the
approach can be successful. Since A is a random matrix, there is also a parameter
ǫ controlling the probability that reconstruction is successful. As an example of
the information our method will generate, see Table 1. It gives some examples of
triples for which reconstruction can be successful with high probability.

1.2. Encoding Matrices for Real Error-Correcting Codes. Consider a styl-
ized problem of data transmission with immunity to occasional transmission errors.
Suppose that we transmit a vector of N numbers but that k of these numbers will
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N m = N − n n k: Almost All k: All
5000 4500 500 23 21
5000 4000 1000 117 56
104 9000 1000 86 45
104 8000 2000 304 117
104 5000 5000 1505 441
105 9 × 104 104 1543 484
105 8 × 104 2 × 104 4246 1202

Table 2. Messages of m real numbers are encoded as blocks of
length N > m using the described random encoder-decoder pair.
All: with probability at least 50%, we draw an encoder-decoder
pair that can correct all patterns of k or fewer errors. Almost All:
We draw an encoder decoder pair that can correct the vast majority
of patterns of k or fewer errors; expected error rate one in 1015.

be received with error. A standard strategy encodes m = N − n < N message
numbers as a redundant block of N numbers, intending that coding redundancy
will help in suppressing the transmission errors. (Note: we work over the field R
of real numbers, not over some discrete alphabet; the relevance to digital settings
will be discussed below).

Let B be an m × N matrix with real-valued entries. Given a vector α ∈ Rm to
be transmitted, encode it as β = BT α ∈ RN and transmit. Assume the receiver
measures µ = β + z where µ ∈ RN and z represents transmission errors. It
is assumed that z contains nonzeros in only k entries – most numbers in µ are
received without error. The receiver in some way decodes the N numbers, hoping
to produce the m entries in α.

Consider a simple encoding decoding scheme based on linear programming [5,
2, 17]. Construct a generalized checksum matrix A (satisfying ABT = 0) that is
n×N , with m+n = N . Given the received data µ, form the generalized checksum
y = Aµ. Solve (1.1). The optimization result x1 is an estimate of z. Reconstruct
by subtracting this estimate of the receiver error out of the received message, and
projecting down from RN to Rm: α1 = B(µ − x1). As (1.1) is a standard convex
optimization problem, this can be considered computationally tractable. How many
errors can this scheme tolerate? This of course depends on A and B.

Letting A and B be respectively the first n rows and the last N − n rows of
a random N × N orthogonal matrix, we get a random encoder-decoder pair. For
which k, n, N triples is this likely to be able to correct k errors? Qualitative results
were given in [4, 2]; the present authors gave asymptotic results valid for large N
in [12]. This paper gives results applicable at finite-N ; see Table 2.

1.3. Existence of Neighborly Polytopes. A polytope P is the convex hull of
a finite point set of N points in Rn. Suppose that P has N vertices. It is called
1-neighborly if, for every pair of vertices, the line segment joining the pair does
not meet the interior of P . More colorfully: P has no diagonals. Despite the
counterintuitive nature of this situation –based on low-dimensional experience, we
would expect there to be many such diagonals, but here there are none– one can
sometimes find more impressive phenomena. The polytope is called k-neighborly
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Neighborly Central Neighborly
N n k n k

200 150 24 150 14
1000 500 61 500 40
104 1,000 56 1,000 45

Table 3. For the specified (k, n, N) there exist k-neighborly (resp.
centrally k-neighborly) polytopes. They can be obtained with pos-
itive probability by sampling N points from the standard Normal
in R

n (resp. followed by symmetrization).

if the convex hull of every k + 1 vertices does not meet the interior of P . Then,
for some special polytopes P in high dimensions, every triple, quad, and quintuple
span a face of P . In some sense, all the points and all their k-th order interactions
are ‘on the boundary’ of such P .

Consider random vectors ai, i = 1, . . . , N drawn iid standard normal in Rn.
Consider the random polytope P = conv({ai}) formed by taking the convex hull
of the points of P . For what k, n, and N can P be expected to be k-neighborly
polytope?

A closely related notion is central neighborliness. Consider centrosymmetric
polytopes, formed from N points ai in Rn by symmetrization {a1,−a1, a2,−a2, . . . , aN ,−aN}
and then taking the convex hull. Such a centrally-symmetric polytope is called
centrally k-neighborly if the convex hull of every k + 1 vertices not including an
antipodal pair does not meet the interior of P .

Consider random vectors ai, i = 1, . . . , N drawn iid standard normal in Rn. For
what values of k is there a positive probability that the resulting convex hull is
centrally k-neighborly?

For specific examples, see Table (3). For the (k, n, N) given, one can obtain
k-neighborly (or centrally k-neighborly) polytopes by sampling N points from the
standard Normal in R

n.

1.4. What Else Can be Said? The three existence problems we have just dis-
cussed are closely related. A single method is used in subtly different ways to
produce the various tables given above. The method can of course produce many
other such tables; we make software available to do so.

Our method also provides rigorous memorable formulas that can take the place
of tables. For example, we will see that random coder-decoder pairs with block-
length N and n generalized checksums are able to correct all patterns of k errors,
if (k, n, N) obey1

(1.3) n > 2e · k · log(N/n) + remainder;

here the remainder is easily characterized. We will also see that in the problem
of compressed sensing, we can exactly reconstruct a k-sparse object in RN from n
generalized samples provided

(1.4) n > 2 · k log(N/n)(1 + remainder),

where again the remainder is explicitly characterized.

1All logarithms throughout this article are “natural base-e” logarithms.
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Such statements offer simple, appealing conclusions. They might be helpful to
engineers designing a compressed sensing system; indeed ‘n > 2k log(N/n)’ might
be called the ‘sampling theorem for sparse vectors’; Section 4 contains further
discussions of this interpretation.

1.5. The Paper. Of the three applications presented so far – compressed sensing,
error-correcting codes, and neighborly polytopes – we view the polytope setting
as the fundamental one; the one in which all the questions can be most precisely
stated and their answers most easily obtained.

Most of our paper focuses on counting the number of k-dimensional faces of
certain random polytopes with N vertices in Rn. It turns out that the above
applications all flow from making calculations of the expected number of faces of
random polytopes.

In the remainder of the introduction, we describe existing knowledge about the
counting the faces of random polytopes in an asymptotic, large N setting, and
about the connection to the applications mentioned above.

In Section 2 we state our main results, which give finite-N bounds on the ex-
pected number of faces of random polytopes; Section 3 develops the applications
discussed earlier and explains how the tables presented above were calculated. Sec-
tion 4 develops a precise, finite-N sampling theorem. Sections 5-7 provide proofs
of our main results.

1.6. Counting Faces of Polytopes. Let T N−1 denote the standard unit simplex
in R

N , and CN the standard cross-polytope in R
N :

T N−1 :=

{

x ∈ RN |
n

∑

i=1

xi = 1, xi ≥ 0

}

,

CN :=

{

x ∈ RN |
n

∑

i=1

|xi| ≤ 1,

}

.

Let A be an n × N matrix with n < N ; the image polytopes AT N−1 and ACN lie
in R

n. Quite general polytopes can be constructed in this way; for n fixed and N
varying, any polytope can arise as some AT N−1 for appropriate N and A, and any
centrally-symmetric polytope as some ACN .

Earlier papers by the authors [8, 10, 12] studied random matrices A and ob-
served very different behavior when n and N are both large–behavior with several
surprising implications. For n × N matrices A with iid standard Normal entries
they considered the number of k-faces of the image polytope AQ, fk(AQ). They
considered sequences of triples (k, n, N) indexed by n such that, for fixed fractions
δ, ρ ∈ (0, 1),

(1.5) kn/n → ρ, n/Nn → δ, n → ∞;

the so-called proportional-dimensional asymptotic, and considered the limiting be-
havior as n → ∞. They identified curves ρW (·; Q) marking an abrupt change in
behavior of the expected fraction of faces

(1.6) lim
n→∞

Efk(AQ)

fk(Q)

{

= 1 ρ < ρW (δ; Q),
< 1 ρ > ρW (δ; Q).

Here and below, we follow the convention from [10] that a display like (1.6) con-
taining Q stands for two displays, one in which Q = T N−1 and one where Q = CN .
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Note that the functions ρ(δ; Q) depend on N only through the limit n/N → δ.
Here the limit is taken along sequences (kn, n, Nn) as n → ∞. Evidently, below the
curve there is weak agreement between fk(AQ) and fk(Q), while above the curve
differences are noticeable. They also identified curves ρS(·; Q) such that

(1.7) lim
n→∞

Prob{fk(AQ) = fk(Q)} =

{

1 ρ < ρS(δ; Q),
0 ρ > ρS(δ; Q);

this curve marks strong agreement between fk(AQ) and fk(Q). Informally, although
for general A, the face count fk(AQ) is nearly arbitrary, for random A, each fk(AQ)
is exactly or approximately fk(Q), for all low dimensions k running from 0 up to
a threshold approximately of the form ρ(δ; Q) · n. These four threshold curves are
depicted in Figure 1.1.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ

ρ

Figure 1.1. The phase transition thresholds, from bottom to top,
ρS(δ; C) solid-blue, ρS(δ; T ) solid-black, ρW (δ; C) dash-blue and
ρW (δ; T ) dash-black.

These phenomena imply various existence results connected to Sections 1.1-1.3.

• The relation fk(ACN ) = fk(CN ) implies that the polytope P = ACN is
centrally k-neighborly. It follows from (1.7) that for many combinations
(k, n, N) where k/n < ρS(n/N ; C), the randomly-projected polytope will
be k-centrally neighborly, providing a vast supply of such polytopes.

• The relation fk(ACN ) > .99fk(C
N ) implies that of all systems b = Ax

having a solution with at most k non-zeros, for more than 99% of the
possible sign patterns in x, the minimal ℓ1-norm solution is also the sparsest
solution. It follows from (1.6) that for many combinations (k, n, N) where
k/n < ρW (n/N ; C), the random matrix A will have this property, providing
a vast supply of matrices useful for “compressed sensing”, see Section 3.1.

• The relation fk(ACN ) = fk(CN ) implies that A is a perfect checksum
matrix: a linear programming decoder can use it to decode all patterns
of k or fewer errors. Hence for many combinations (k, n, N) where k/n <
ρS(n/N ; C), such checksum matrices are prevalent. The relation fk(ACN ) >
(1 − 10−12)fk(CN ) implies that the checksum matrix A is nearly per-
fect: able to decode almost all patterns of k or fewer errors – failing
once in 1012 such patterns. Hence many combinations (k, n, N) where
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k/n < ρW (n/N ; Q), offer prevalence of nearly perfect checksum matrices
with error rates better than one part in 1012.

Such asymptotic results however, are not finite-N results: they don’t say what
holds for specific combinations of (k, n, N). The Tables presented in Sections 1.1 -
1.3 require stronger tools.

This paper repackages the inequalities and asymptotic statements developed in
our earlier papers [6, 11, 12] and develops exponential bounds on certain probabil-
ities and expectations which are shown to be effective already at moderate values
of (k, n, N). Moreover, these bounds involve the asymptotic thresholds ρ(·) in an
explicit way, even in this finite-n case. Thus, for a fraction θ ∈ (0, 1), triples
where k/n = (1−θ) ·ρ(n/N) are subject to inequalities depending explicitly on the
sizes of θ and n/N . In consequence there is a clearly defined family of curves in-
dexed by problem size N , converging to the asymptotic threshold curves ρ(·) with
increasing n, and implying lower bounds on the probability of sampling “good”
matrices/polytopes for triples along the curve, at a given N .

These curves are significantly higher than those available by any other finite-n
bounds known to us, and they converge to the right asymptotic limit at the right
rate. As we show, they allow practical answers to problems of reasonable size that
might be of interest in signal processing or other applied fields.

A different asymptotic studied by the authors in [12] involved sequences of triples
(kn, n, Nn) where Nn is much larger than n (but not exponentially larger) so that
the projection lowers dimension drastically. For a random n × Nn matrix A with
entries are drawn iid from the standard Gaussian, it was found that eventually
fk(AQ) = fk(Q) provided

(1.8) n > 2e · k · log(N/n)(1 + o(1)),

with an appropriate o(1) term.2 Moreover, it was found that fk(AQ) = fk(Q)(1 +
o(1)) provided

(1.9) n > 2 · k log(N/n)(1 + o(1)),

with appropriate o(1) terms. Such asymptotic results have greater force if known
to hold for specific combinations of (k, n, N). In Section 4, we develop inequalities
valid for finite (k, n, N) having the same leading terms but replacing the o(1) terms
by simple and explicit remainders.

2. Main results

2.1. Absolute Agreement of Face Numbers. In [8, 10] the authors established
bounds on the absolute face deficit fk(Q) − Efk(AQ) for A with entries drawn iid
Gaussian and for Q = CN and T N−1. They defined functions Ψnet(δ, ρ; Q) affording
the inequalities
(2.1)

πl(N ; Q)eNΨnet(n/N,k/n;Q) < fk(Q) − Efk(AQ) < πu(N ; Q)eNΨnet(n/N,k/n;Q),

where πl(N ; Q) and πu(N ; Q) are known polynomial functions in N .
In display (2.1), the exponents Ψnet are overwhelmingly more important for

large N than the polynomial terms. For any triple (k, n, N) set ρ = k/n and
δ = n/N . This pair of coordinates (δ, ρ) drives all of the asymptotic large N
behaviour of Efk(AQ). In the portion of the (δ, ρ)-plane where Ψnet(δ, ρ; Q) < 0,

2o(1) indicates a term tending to zero as n → ∞.
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the face deficit tends to zero with increasing N , and in the portion of the (δ, ρ)-
plane where Ψnet(δ, ρ; Q) > 0, the face deficit grows with N . The level curve
{Ψnet(δ, ρ; Q) = 0} is the boundary between these two “phases”. As it turns
out, for each fixed δ ∈ (0, 1), Ψnet(δ, ρ; Q) is monotone increasing in ρ, and has
a unique zero crossing; call this ρS(δ; Q). The two curves ρS(δ; T ) and ρS(δ; C) are
displayed in Figure 1.1; the are both smooth and monotone increasing. “Below”
ρS(δ; Q), the face deficit fk(Q) − Efk(AQ) tends to zero exponentially fast in N ;
“above” ρS(δ; Q), the face deficit grows exponentially fast. Of course, the notion of
“exponentially fast” is qualitative. We now supply an effective quantitative notion,
valid for specific triples (k, n, N).

Theorem 2.1 (Exponential Bounds for Face Deficit). Let ΩS(δ; Q) denote the
function defined in (5.5) below and displayed in Figure 2.1, panel (a). Let cS(T ) :=

15
32π3/2

and cS(C) := 25
16π2 . Let A be a random matrix with iid standard Normal en-

tries, and fk(Q) denote the number of k-dimensional faces of polytope Q. Consider
a triple (k, n, N) obeying k/n ≤ (1 − θ)ρS(δ; Q), where θ ∈ (0, 1) and δ = n/N .
Then

(2.2) fk(Q) − Efk(AQ) < cS(Q) · N2(N + 2)3 exp(−nθΩS(δ; Q)).

In this inequality, the driving factor is nθ, with θ the fractional distance from
the asymptotic phase transition ρS(δ; Q).

The exponent function ΩS(δ; Q) can be seen in Figure 2.1 Panel (a) to be strictly
positive, in fact always at least 1/2; see subsection 2.3.
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0.55
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0.65
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(a) (b)

Figure 2.1. Panel (a) ΩS(δ; Q); panel (b) ΩW (δ; Q) for Q = T
(black) and Q = C (blue).

2.2. Relative Agreement of Face Numbers. Also in [8, 10, 12] the authors
established bounds on the fractional face deficit (fk(Q)−Efk(AQ))/fk(Q) for Q =
T N−1 and CN . They defined functions Ψface(δ, ρ; Q) giving the inequalities

πl(N ; Q) max
ν∈(0,k/n]

eN(Ψnet−Ψface)(n/N,ν;Q) <
fk(Q) − Efk(AQ)

fk(Q)

< πu(N ; Q) max
ν∈(0,k/n]

eN(Ψnet−Ψface)(n/N,ν;Q),(2.3)
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where πl(N ; Q) and πu(N ; Q) are known polynomials (different from those in (2.1)).
Again, the exponents are overwhelmingly more important for large N than the

polynomial terms. Because fk(AQ) must be less than fk(Q), it follows that (Ψnet−
Ψface)(δ, ρ; Q) ≤ 0 everywhere in the (δ, ρ) parameter space for each Q = T and
Q = C, and that each function Ψnet − Ψface reaches its maximum only along
the corresponding curve ρW (δ; Q), also displayed in Figure 1.1. Controlling the
fractional face deficit is a weaker notion than controlling the absolute face deficit; we
call ρW (δ; Q) the weak phase transition. Consider parameters (δ, ρ) falling “below”
the curve ρW (δ; Q) and a sequence of triples (k, n, N), the fractional face deficit
decays to zero exponentially fast. We now quantify this effect.

Theorem 2.2 (Exponential Bounds on Fractional Face Deficit). Let ΩW (δ; Q) be
the function defined in (6.2) below and displayed in Figure 2.1, panel (b). Let

cW (T ) = 375
√

2
512π and cW (C) = 625

√
2

512π3/2
. Let A be a random matrix with iid standard

Normal entries, and fk(Q) denote the number of k-dimensional faces of polytope
Q. Consider a triple (k, n, N) where k/n ≤ (1 − θ)ρW (n/N ; Q) for θ ∈ (0, 1). Set
δ = n/N . Then

(2.4)
fk(Q) − Efk(AQ)

fk(Q)
< cW (Q) · N3(N + 2)3 exp(−nθ2ΩW (δ; Q)).

In this inequality, the driving factor is nθ2; again, θ is the fractional distance
below phase transition.

The exponent function ΩW (δ; Q) can be seen in Figure 2.1 Panel (b) to be strictly
positive, in fact always at least 1/4; see subsection 2.3.

2.3. Convenient Simplifications. Theorems 2.1 and 2.2 give the strongest known
finite-N bounds on the expected discrepancy between the number of k-faces of the
polytopes in question and the corresponding randomly-projected polytope. How-
ever, because they involve rate exponents ΩS(δ; Q) and ΩW (δ; Q) they are not
completely explicit and transparent. One can develop simplified results which are
slightly weaker, but more memorable. These follow from numerical evaluation of
the rate exponents which are consequently framed as ‘Findings’ rather than as
theorems or lemmas.

We first develop a simplified form of (2.2), in which ΩS(δ; Q) does not appear.

Finding 2.1 (Lower bound of ΩS(δ; Q)). ΩS(δ; Q) ≥ 1/2 for all δ ∈ [0, 1].

Demonstration of Finding 2.1. Lemma 5.2 shows that the lower bound 1/2 is
approached from above as δ → 0. In the limit as δ → 1, all factors comprising
ΩS(δ; Q) approach finite values, and those values, numerically evaluated, imply the
coresponding limit of ΩS(δ; Q) is greater than 1/2, see Figure 2.1 Panel (a). For
moderate values of δ, ΩS(δ; Q) is again observed in Figure 2.1 Panel (a) to be
greater than 1/2. �

Corollary 2.1 (Exponential Bounds Uniform in θ). Under the same conditions and
notation as in Theorem 2.1, assuming the validity of Finding 2.1. Then

(2.5) fk(Q) − Efk(AQ) < cS(Q) · N2(N + 2)3 exp(−nθ/2).

This finding shows that, everywhere on or below the curves (1 − θ)ρ⋆
S(δ), the

exponential term in (2.2) is bounded by exp(−nθ/2); this follows from Theorem 2.1
and Finding 2.1.
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Clearly, the face deficit bounds (2.2) and (2.5) become effective at moderately
large N . As a simple example, we have

Corollary 2.2. Let nS(ǫ; N0, θ0, Q) denote the solution to the equation

log ǫ = log cS(Q) + 5 log(N0 + 2) − nθ0/2.

Assume the validity of Finding 2.1. Then for every triple (k, n, N0) where k/n ≤
(1 − θ0)ρS(n/N ; Q),

n ≥ nS(ǫ; N0, θ0, Q) implies fk(Q) − Efk(AQ) ≤ ǫ.

This simple result directly makes the point that our bounds become effective for
many triples (k, n, N) where n and N are not very large. It is not best possible
- Theorem 2.1 yields stronger bounds than Corollaries 2.1 and 2.2. More precise
information and examples will be given in Section 3 below.

We now develop a simplified form of (2.4), in which ΩW (δ; Q) does not appear.

Finding 2.2 (Lower bound of ΩW (δ; Q)). ΩW (δ; Q) ≥ 1/4 for all δ ∈ [0, 1].

Demonstration of Finding 2.2. Lemma 6.2 shows that the lower bound 1/4 is
approached from above as δ → 0. In the limit as δ → 1, all factors comprising
ΩW (δ; Q) approach finite values, and those values, numerically evalueated, imply
the corresponding limit of ΩW (δ; Q) is greater than 1/4, see Figure 2.1 Panel (b).
For moderate values of δ, ΩW (δ; Q) is again observed in Figure 2.1 Panel (b) to be
greater than 1/4. �

Corollary 2.3 (Exponential Bounds uniform in θ). Under the same conditions and
notation of Theorem 2.2, assume also the validity of Finding 2.2. Then

(2.6)
fk(Q) − Efk(AQ)

fk(Q)
< cW (Q) · N3(N + 2)3 exp(−nθ2/4).

In Corollary 2.3, everywhere on or below the curves (1 − θ)ρW (δ; Q), the expo-
nential term in (2.4) is bounded by exp(−nθ2/4); this follows from Theorem 2.2
and Finding 2.2. While the dependence on θ2 is markedly different than in the
earlier case, we still see that these fractional face deficit bounds become effective
at moderately large N .

Corollary 2.4. Let nW (ǫ; N0, θ0, Q) denote the value of n solving the equation

log ǫ = log cW (Q) + 6 log(N0 + 2) − nθ2
0/4.

Assume the validity of Finding 2.2. Then for every triple (k, n, N0) where k/n ≤
(1 − θ0)ρW (n/N0; Q),

n ≥ nW (ǫ; N0, θ0, Q) implies
fk(Q) − Efk(AQ)

fk(Q)
≤ ǫ.

3. Corollaries and applications

The explicit bounds in Theorems 2.1 and 2.2 allow us to make non-asymptotic
statements concerning specific triples (k, n, N), producing the tables in introduc-
tion. We now review the meaning of those tables; it is convenient to do so in
reversed order. We also provide figures summarizing a large range of other triples.
We also describe the computational approach, the software which implements it,
our philosophy towards reproducibility, and make comparisons to previous work.
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3.1. Existence of Compressed Sensing Matrices. Table 1 arose from consid-
ering the following questions.

Q1: Compressed Sensing Matrices. A random matrix A will be called accept-
able for Compressed Sensing at failure fraction ǫ > 0 if, among all k-sparse
problem instances x0, sensing b = Ax0 then solving (1.1) perfectly recovers
x0 in at least a fraction (1 − ǫ) of such instances. Can we set a thresh-
old n ≥ nCS(k, N, ǫ; C) implying that n × N iid Gaussian matrices are
acceptable for CS?

Q2: Compressed Sensing with positivity. A random matrix A will be called
acceptable for Compressed Sensing of positive objects at failure probability
ǫ > 0 if, among all nonnegative k-sparse problem instances x0, sensing
b = Ax0 then solving (1.2) perfectly recovers x0 in at least a fraction (1− ǫ)
of such instances. Can we set a threshold n ≥ nCS(k, N, ǫ; T ) implying that
n × N iid Gaussian matrices are acceptable for CS of positive objects?

These questions can be answered for ǫ = 0.01 by establishing the bounds [6, 11]

Efk(AT N−1)

fk(T N−1)
≥ 0.99, for (Q2); or

Efk(ACN )

fk(CN )
≥ 0.99, for (Q1);

for the given (k, n, N) of interest. Such inequalities can be developed using our
bounds on the fractional face deficit. (Equivalence of the recovery of sparse vectors
from linear measurements by solving (1.1)-(1.2) and the face counts of the convex
hull of A and its associated cross-polytope were proven by the authors in [6, 11].)

Figures 3.1(c-d) provide graphical answers to Q1-Q2. They show the domain
in the phase diagram in which, on average, 99% of faces survive the prescribed
dimension reduction. Let Bound(Q, k, n, N) denote the right-hand side of (2.4) for
the given values of k,n, and N and the specific binding Q. The Figures display the
level sets Bound(Q, k, n, N) = 10−2 for N = 200, 1000, and 5000.

Corollary 3.1. For a given N ∈ {200, 1000, 5000}, consider values of k and n such
that (n/N, k/n) lies strictly beneath the curve for that N depicted in Figures 3.1(c).
Fix a given face F of T N−1 independently of A. There is at least a 99% chance
that AF is a face of AT N−1. Again, we refer to A generated by random sampling
from the standard Gaussian distribution.

Consider values of k and n such that (n/N, k/n) lies strictly beneath the curve
for that N depicted in Figures 3.1(d). Fix a given face F of CN independently of
A. There is at least a 99% chance that AF is a face of ACN . Here probability
refers to random sampling from the standard Gaussian distribution on Rn×N .

For specific numerical values, see Table 1.

3.2. Encoding Matrices for Error-Correcting Codes. Consider again the en-
coding/decoding scheme described in Section 1.2. Let U be a random orthogonal
matrix, drawn uniformly from the distribution on orthogonal N × N matrices,

O(N), and partition it as U =

(

A
B

)

where the encoding matrix B is m × N and

the generalized checksum matrix A is n × N , with m + n = N . Given the re-
ceived data µ, form the generalized checksum y = Aµ. Solve (1.1). Reconstruct
by subtracting this estimate of the receiver error out of the received message, and
projecting down from RN to Rm: α1 = B(µ − x1).
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Q3: Perfect ECC Matrices. Call the pair (A, B) a perfect k-error correcting
code (k-ECC) if the above encoder-decoder correctly decodes every received
message corrupted by an error vector with k or fewer nonzeros. For par-
ticular values of k, N and n, is the probability at least 50% that random
sampling of U = (A, B) from the uniform distribution on O(N) yields a
perfect ECC?

Q4: Almost-Perfect ECC Matrices. Call an error pattern a configuration of
k nonzeros with specified signs. Say that the pair (A, B) is almost perfect,
with failure rate ǫ > 0, if the above encoder-decoder pair can correct all
but a fraction ǫ of k-error patterns. For a given failure rate ǫ = 10−15, at
what specific values of k, N and n do we expect an almost-perfect k-ECC
code by random sampling U?

These questions can be answered by establishing the bounds [6]

fk(CN )−Efk(ACN ) < 1/2, for (Q3) or
fk(CN ) − Efk(ACN )

fk(CN )
< 10−15, for (Q4)

Exemplar values of (k, n, N), with m = N − n, were given in Table 2.

Corollary 3.2. For a given N ∈ {200, 1000, 5000}, consider values of k and n such
that (n/N, k/n) lies strictly beneath the curve corresponding to that N depicted in
Figure 3.1(b). There exist perfect ECC matrix pairs for that (k, n, N). They can be
obtained with positive probability by a random draw from the uniform distribution
on O(N).

Consider values of k and n such that (n/N, k/N) lies strictly beneath the curve
corresponding to that N depicted in Figure 3.1(d). There exist almost-perfect ECC
matrix pairs for that (k, n, N), at error rate ǫ = 10−2. They can be obtained with
positive probability by a random draw from the uniform distribution on O(N). �

Note that the ECC matrix pairs referred to in Corollary 3.2 have real-valued
rather than integer-valued entries. Empirically, various ensembles of random ma-
trices with rational entries behave similarly; compare [13]. Theorems 2.1 and 2.2
supply triples (k, n, N) that satisfy specified bounds for A with entries drawn Gauss-
ian iid, and we can empirically test if these bounds are also satisfied for other ran-
dom matrix ensembles. For instance, consider checksum matrices A with entries
drawn the Bernoulli ensemble: iid uniform on {−1, 1}:

• Our answer to Q3 implies prevalence of perfect ECC pairs (A, B) with
real-valued matrices at (k = 7, n = 85, N = 100), but not at k = 8 for
the same n, N . An integer-valued checksum matrix A, 85 by 100, was
generated with entries iid from the uniform distribution on {−1, 1}. It
was consistently able to correct errors corrupting 7 entries of the encoded
vector β; when challenged with 100,000 instances of uniformly distributed
patterns of errors, this A allowed to correct every set of errors – consistent
with the prediction of Theorem 2.1.

• Our answer to Q4 furnishes triples (k, n, N) for which almost perfect ECC
pairs (A, B) with ǫ = .01 are prevalent. We selected triples (20, 150, 200),
(20, 200, 400), and (20, 250, 400) at the edge of this regime, and for each
triple generated a random integer-values matrix A with entries iid uniform
{−1, 1}; in each case the A so obtained was challenged 1000 times with an
encoded message corrupted by a k-error pattern. In each case, the decoder
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was able to correct each set of errors - consistent with the predictions of
Theorem 2.2.

3.3. Neighborly Polytope Existence Questions. Table 3 arose from these the-
oretical questions:

Q5: Random Neighborly Polytopes. At a particular choice of N and n, for
what values of k is there a positive chance that a standard Gaussian point
cloud of N points in Rn has a k-neighborly convex hull?

Q6: Random Centrally Neighborly Polytopes. For a particular choice of n
and for a given value of N , consider random vectors ai, i = 1, . . . , N iid
standard normal in Rn. Consider the symmetrized point cloud with N
points {a1,−a1, a2,−a2, . . . , aN ,−aN}. For what values of k is there a
positive probability that the resulting convex hull is centrally k-neighborly?

These questions can be answered by establishing the bounds [6, 11]

fk(T N−1)−Efk(AT N−1) < 1, for (Q5) or fk(CN )−Efk(ACN ) < 1, for (Q6)

The existence of k-neighborly polytopes follows from these bounds, as the expected
number of lost faces is less than one, implying that there must exist projected
polytopes AQ which have exactly as many k−1 dimensional faces as Q. Tightening
the discrepancy even further than one, say to 1− ǫ, implies that such polytopes not
only exist, but can even be found with positive probability (at least) ǫ when drawn
at random from the distribution of AQ. In polytope theory random projection is
the most powerful known way to generate highly centrally neighborly polytopes
having many vertices. (Other techniques exist for few vertices).

Figures 3.1(a-b) are relevant to Q5 and Q6. Let Bound(Q, k, n, N) denote the
right-hand side of display (2.2), for a given choice of k, n, N , and binding Q = T
and Q = C. The figures portray the unit level set Bound(Q, k, n, N) = 1 for
N = 200, 1000, and 5000.

Corollary 3.3. For a given N ∈ {200, 1000, 5000}, consider values of k and n such
that (n/N, k/n) lies strictly beneath the curve corresponding to that N in Figure
3.1(a). There exist n × N matrices A such that AT N−1 is k-neighborly. One can
be obtained with positive probability by iid random sampling from the standard
Gaussian distribution on Rn×N .

Consider values of k and n such that (n/N, k/n) lies strictly beneath the curve
corresponding to that N depicted in Figure 3.1(b). There exist n×N matrices A so
that ACN is centrally k-neighborly. One can be obtained with positive probability
by iid random sampling from the standard Gaussian distribution on Rn×N .

�

Specific examples were given in Table 3. For the (k, n, N) given, one can obtain
k-neighborly (resp. centrally k-neighborly) polytopes by sampling N points from
the standard Normal in R

n (resp. then symmetrizing).

3.4. About the Calculations. The graphical and numerical results presented in
this section were obtained by plugging specified triples (k, n, N) into the expressions
in Theorems 2.1 and 2.2. We have developed computational tools to evaluate
ΩS(δ; Q), ΩW (δ; Q), ρS(δ; Q), and ρW (δ; Q). These allowed us to obtain specific
numerical results.

Less precise results can be obtained by hand using Corollaries 2.1 and 2.3.
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Although some calculations assumed specific thresholds ǫ on fractional face
deficits, the results are relatively robust against changes in those thresholds. Due
to the exponentiality of the bounds in Theorems 2.1 and 2.2, there would be barely
perceptible changes in Figure 3.1 if the specified levels used in calculating those fig-
ures were changed moderately. Thus if we changed from 99% success rate to 50%
success rate in panels (c-d), or from existence (|Bound(k, n, N)| = 1) to prevalence
(|Bound(k, n, N)| = 1/2) or even highly prevalent (|Bound(k, n, N)| = 1/1000) in
panels (a-b), the figures would not change substantially.

It should also be noted from Figure 3.1 that even for small N , say 200, when
δ = n/N is relatively large there is already a large region below the level curves.
However, for N and n/N simultaneously small, the bounds in Theorems 2.1 and
2.2 become weak or useless. For instance, the N = 200 contour in Figure 3.1(a)
reaches zero at about n/N = 0.17, corresponding to n = 34. In such instances,
as a method of last resort, more accurate results can be obtained for particular
triples by resorting to the full (δ, ρ) dependent exponents Ψnet(δ, ρ; Q) in (2.1) and
Ψface(δ, ρ; Q) in (2.3); however, significant gains are only obtained when N and/or
n/N are small.

3.5. Computational Epistemology. Our existence claims can be verified em-
pirically: one can take a specific triple we identify and, by random sampling and
subsequent testing, attempt to verify/falsify our claim.

To facilitate such empirical work we follow the principle of reproducible com-
putational science [9]. Software is available [1] that can reproduce our numerical
results or can empirically test specific triples.

The tabulated values we publish here offer information about a small selection
of triples (k, n, N). We make it possible to study other triples. Matlab software
available for download [1] allows users to set parameters for use in a variety of
situations. The ability to accurately evaluate the functions ΩS(δ; Q) and ΩW (δ; Q)
is the central contribution of this article. Less accurate but simplified bounds are
provided: Corollaries 2.1-2.4 and 4.2-4.3. Making the software for our calculations
publicly available also allows further investigations into how Findings 2.1 and 2.2
were obtained.

Reproducibility of computational results helps to allow errors to be easily identi-
fied and corrected; to ensure that results are widely applied; and to provide precise
numerical benchmarks which future research can aim to outperform. In particular,
our article and software provide a collection of known good finite-N triples that
others may now try to expand.

3.6. Comparison to Other Approaches. Rudelson and Vershynin (RV) raised
the issue of developing finite-sample bounds in a presentation at Princeton in 2006.
Their recent publication [18] developed bounds that can be interpreted as enabling
finite-N statements concerning CN . Table 4 lists values derived from their ap-
proach allowing for direct comparison. Comparing our tabulated values with those
of Rudelson and Vershynin, it seems that the approach developed here is generally
much stronger. For similar values of n and N , their bounds have implications only
for significantly smaller values of k; for similar values of k they require a substan-
tially larger n than ours. It should be noted that Rudelson and Verhsynin were not
aiming for sharp numerical bounds. Their motivation was economy of argument;
they gave short proofs using existing techniques from geometric functional analysis.
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Here RV [18]
N n k n k

103 500 40 652 1
104 1,000 45 1,089 3
105 1,000 27 4,377 27
107 100,000 2,993 100,090 895

Table 4. Comparison of existence results implied by the approach
of this paper with those implied by work of Rudelson and Ver-
shynin.

In comparison, our approach is asymptotically completely precise, at the expense
of much more involved analysis.

Other results considering neighborliness of polytopes can in some instances also
offer finite dimensional examples. For instance, in an investigation primarily focus-
ing on the rough asymptotics of “How neighborly can a centrally symmetric poly-
tope be?”, Linial and Novik [15] also established that there exist n

400 -neighborly
centrally symmetric polytopes in R

n with 4n vertices (N = 2n). Focusing on the
same parameter ratio, n/N = 1/2, our bounds in Theorem 2.1 show the existence of
0-neighborly polytopes for n ≥ 37; moreover, for n ≥ 600 there exist n

12 -neighborly
centrally symmetric polytopes in R

n with 4n vertices.
In principle, finite-sample implications can also be drawn from Restricted Isom-

etry Principle arguments, [4]; however, there does not appear to have been a con-
certed effort to obtain effective quantitative bounds for finite dimensions, and our
calculations show that they are generally weaker in finite samples than the approach
of Rudelson and Vershynin, [18].

4. The Sampling Theorem for Sparse Signals

As the introduction pointed out, displays (1.3) and (1.4) provide an appealing
pair of easily-memorable asymptotic ‘laws’ about the behavior of face lattices of
random projections. They also have applications: (1.3) implies the prevalence of
k-neighborly polytopes and perfect checksum matrices; (1.4) implies the prevalence
of compressed sensing matrices and almost-perfect checksum matrices.

Thus for example we can design a practical system able to reconstruct almost all
vectors of length N , whose entries have at most k nonzeros; we only need to draw a
Gaussian random matrix with N columns and roughly n > 2k log(N/k) rows, obtain
the vector of n measurements b = Ax, and apply minimum ℓ1 reconstruction. This
amounts to 2k log(N/k) generalized samples – dramatically fewer than N samples
when N is much larger than k. This formula is simple and memorable. Similarly,
in linear programming decoding with long blocklengths, we can successfully correct
every pattern of k errors if we devote roughly n out of the N entries in a block to
generalized checksums, where n ≥ 2e · k log(N/n).

Unfortunately, the word ‘roughly’ appears in the previous paragraph, meaning
that in both statements there are some loose items that still need to be made
precise. It would be preferable to have precise statements effective at specific finite
n, but maintaining essentially the same form.
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Figure 3.1. Panels (a) and (b): Unit level curves
(|Bound(k, n, N)| = 1) for the upper bounds in Theorem
2.1 for N = 200 (blue), 1000 (green), and 5,000 (red); Q = T N−1

(left) and Q = CN (right). The asymptotic, N → ∞, limits
ρS(δ; Q) are also shown, (black). Panels (c) and (d): The 10−2

level curves for the lower bounds (|Bound(k, n, N)| = 10−2) in
Theorem 2.2 again for N = 200 (blue), 1000 (green), and 5,000
(red); Q = T N−1 (left) and Q = CN (right). The asymptotic,
N → ∞, limits ρW (δ; Q) are also shown, (black).

We develop such statements, in two simple steps. First, we show that the as-
ymptotic thresholds have effective finite n implications of the form n > k/ρ(n/N)+
remainder and n > k/ρ(n/N)(1 + remainder).

Corollary 4.1 (Bounds Using Asymptotic Thresholds and Remainders). Set δ =
n/N . For ǫ > 0 and for Q ∈ {T N−1, CN} set

RS(ǫ, n, N ; Q) :=
log(cS(Q) · (N + 2)5/ǫ)

ΩS(δ; Q)

where cS(Q) was defined in Theorem 2.1; (cS(Q) < 1/6). Then for

(4.1) n > k/ρS(n/N ; Q) + RS(ǫ, n, N ; Q),
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we have

Prob{fk(Q) = fk(AQ)} ≥ 1 − ǫ.

For ǫ > 0 and for Q ∈ {T N−1, CN} set

RW (ǫ, n, N ; Q) :=

[

log(cW (Q) · (N + 2)6/ǫ))

nΩW (δ; Q)

]1/2

where cW (Q) was defined in Theorem 2.2; (cW (Q) < 4). Then for RW (ǫ, n, N ; Q) <
1,

(4.2) n > k/ρW (n/N ; Q) · (1 − RW (ǫ, n, N ; Q))−1,

we have
fk(Q) − Efk(AQ)

fk(Q)
≤ ǫ.

Proof. By Theorem 2.1, if nθ > RS(ǫ, n, N ; Q), the expected face deficit is bounded
by ǫ for all k ≤ n(1−θ) ·ρS(n/N ; Q). Rewriting the bound as nθ < n−k/ρS(δ; Q),
we obtain the inequalities

n − k/ρS(δ; Q) > nθ > RS(ǫ, n, N ; Q),

which implies (4.1).

By Theorem 2.2, if nθ2 > log(cW (Q)(N+2)6/ǫ)
ΩW (δ;Q) , the expected relative face deficit

is bounded by ǫ for all k ≤ n(1 − θ) · ρW (n/N ; Q). Rewriting this as θ < 1 −
k/(nρW (n/N ; Q)), and employing the condition on nθ2 we have

1 − k

nρW (n/N ; Q)
> θ > RW (ǫ, n, N ; Q).

Dropping the intermediate θ and solving for n we arrive at (4.2). �

Remarks.

• Notice once again an explicit appearance of the asymptotic thresholds in a
finite-sample bound; this reaffirms the significance of the asymptotic thresh-
olds.

• By inspection, the remainders in this corollary are small if N is not expo-
nentially larger than n, i.e. if log(N) is small relative to n.

• The reader may be concerned that the upper bounds presented could be ex-
cessively pessimistic; in fact, this is not the case. These explicit conditions
on (k, n, N) for the ‘strong agreement’ differ from the asymptotic limit n >
k/ρS(δ; Q) by a logarithmic additive term asymptotically negligible com-
pared to the the asymptotic limit; for the ‘weak agreement’ these explicit
conditions on (k, n, N) differ from the asymptotic limit n > k/ρW (δ; Q) by
a multiplicative term tending to 1.

Corollary 4.1 gives the best known, finite dimensional, sampling theorem for k-
sparse vectors from Gaussian measurements. This bound is given in terms of the
asymptotic phase transitions ρS(n/N ; Q) and ρW (n/N ; Q) and the special functions
ΩS(δ; Q) and ΩW (δ; Q). The following Corollaries 4.2 and 4.3 are simplifications
of Corollary 4.1 which are independent of all of the above special functions. They
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follow from Corollary 4.1, the bounds on ΩS(δ; Q) and ΩW (δ; Q) in Findings 2.1
and 2.3, and the asymptotic behaviour of the phase transitions [12],

ρS(δ; Q) ∼ [2e log(1/δ)]−1

ρW (δ; Q) ∼ [2 log(1/δ)]−1;

here, by f(δ) ∼ g(δ) we mean that the ratio tends to 1 as δ → 0.
To get bounds in place of limit statements for ρS(δ; Q) and ρW (δ; Q), we add a

‘constant offset’.

Finding 4.1 (Lower bounds on ρS(δ; Q) and ρW (δ; Q)). We find numerically that

ρS(δ; Q) > [2e log(1/δ) + dS(Q)]−1

for all δ ≥ 10−12 with ds(T ) := 6, ds(C) := 10; and we find numerically that

ρW (δ; Q) > [2 + 2 log(1/δ)]−1

is valid for all δ.

Corollary 4.2 (Sampling Theorem - Strong Agreement). Define R̃S(ǫ, n, N ; Q) :=
2 · log(cS(Q) · (N +2)5/ǫ). Conditional on ρS(δ) > [2e log(1/δ)+dS(Q)]−1 (Finding
4.1), the relation,

n > 2ek · [log(N/n) + ds(Q)] + R̃S(ǫ, n, N ; Q)

implies, for n/N > 10−12,

Prob{fk(Q) = fk(AQ)} ≥ 1 − ǫ.

Corollary 4.3 (Sampling Theorem - Weak Agreement). Define R̃W (ǫ, n, N ; Q) :=
2[n−1 log(cW (Q) · (N + 2)6/ǫ)]1/2. Conditional on ρW (δ; Q) > [2 + 2 log(1/δ)]−1

(Finding 4.1), R̃W (ǫ, n, N ; Q) < 1 and

(4.3) n > 2k · [log(N/n) + 1] · (1 − R̃W (ǫ, n, N ; Q))−1

imply

fk(Q) − Efk(AQ)

fk(Q)
≤ ǫ.

5. Analysis of Face Deficit

Both sides of the expected face deficit bound (2.1) are of interest, but only the
upper bound has positive implications for existence questions - our focus in this
paper. We would like the upper bound to be small, and so wish to document the
extent to which the exponent Ψnet(δ, ρ; Q) is negative at ρ below the zero crossing
ρS(δ; Q). The partial derivative of Ψnet(δ, ρ; Q) with respect to ρ has a simple
multiplicative form,

(5.1)
∂

∂ρ
Ψnet(δ, ρ; Q) = δF (ρ);

here we define
(5.2)

F (ρ) := log
(

ρ−2(1 − ρ)yρ

√
2π

)

+(1−ρ) ·
(

ρ−1 − ẏρ

yρ
− 1 + ρ

2ρ2
y2

ρ + (ρ−1 − 1)ẏρyρ

)

,
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where yρ is a quantity considered in our earlier papers [12] and defined implicitly
by

(5.3)
1 − ρ

ρ
yρ = sρ, and sρ solves R(sρ) = 1 − ρ;

with R(s) also considered in our earlier papers, and defined by

(5.4) R(s) := ses2/2

∫ ∞

s

e−y2/2dy.

R is closely associated to a famous quantity in probability theory, the Mills’ ratio
of the standard Normal distribution [14, Sec 5.38].

Functions yρ and F (ρ) are depicted in Figure 5.1, panels (a) and (b) respectively.
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Figure 5.1. Panel (a) yρ and, panel (b) F (ρ).

Lemma 5.1. Define

(5.5) ΩS(δ; Q) := ρS(δ; Q) min
0<ρ≤ρS(δ;Q)

F (ρ).

Then for θ ∈ (0, 1)

(5.6) Ψnet(δ, (1 − θ)ρS(δ; Q); Q) < −θδΩS(δ; Q).

Proof. For fixed δ ∈ (0, 1), consider the univariate Taylor series of G(ρ) ≡
Ψnet(δ, ρ; Q), expanded at ρ = ρS(δ; Q). At some point ξ(δ) ∈ [(1−θ)ρS(δ; Q), ρS(δ; Q)]
we have the equality:

Ψnet(δ, (1 − θ)ρS(δ; Q); Q) = Ψnet(δ, ρS(δ; Q))

− θρS(δ; Q)
∂

∂ρ
Ψnet(δ, ρ; Q)

∣

∣

∣

∣

ρ=ξ(δ;Q)

≤ −θδρS(δ; Q) min
0<ρ≤ρS(δ;Q)

F (ρ)(5.7)

By definition of ρS(δ; Q) as the zero level curve of Ψnet(δ; ρ; Q) the first term is
zero.

Lemma 5.1 implies the form of the exponential term in Theorem 2.1. The poly-
nomial term in Theorem 2.1 follows directly from bounds previously obtained by
the authors in [12].



20 DAVID L. DONOHO AND JARED TANNER

Finding 5.1 (Monotonicity of F ). dF
dρ < 0 for all ρ ∈ [0, 1].

Demonstration of Finding 5.1. See Figure 5.1 Panel (b). �

Corollary 5.1. Conditional on the Monotonicity of F (Finding 5.1),

ΩS(δ; Q) = ρS(δ; Q)F (ρS(δ; Q)).

We now focus attention on the behavior of ΩS(δ; Q).

Lemma 5.2. limδ→0 ΩS(δ; Q)(δ) → 1/2 from above.

Proof. That ΩS(δ; Q) → 1/2 from above as δ → 0 follows from an asymptotic
expansion of the behavior of F (ρ) summarized in Lemma 5.3. From the definition
of ΩS(δ; Q) in (5.5) and the asymptotic behaviour of F (ρ) in (5.8), the asymptotic
expansion of ΩS(δ; Q) as δ → 0 has a leading term 1/2; the additive remainder is
asymptotically negligible, but strictly positive for all sufficiently small δ → 0. �

Lemma 5.3. For ρ ≤ 1/100,

(5.8) F (ρ) =
1

2
ρ−1 − 3

2
log(ρ)+

1

2
(log(2π)− 3)+ r5(ρ), with |r5(ρ)| < 60.4ρ.

and

(5.9)
d

dρ
F (ρ) =

−1

2
ρ−2 − 3

2
ρ−1 + r6(ρ), with |r6(ρ)| < 40.1.

Lemma 5.3 follows from Lemma 7.1 and the definition of F (ρ) in (5.2).

6. Analysis of Fractional Face Deficit

The phase transitions in fractional face deficit occur at the zero crossings in ρ of

(6.1)
∂

∂ρ
(Ψnet − Ψface)(δ, ρ; Q) ≡ δ (F (ρ) + log(δρ) − log(1 − δρ) − c(Q)) .

where c(Q) =

{

0 Q = T
log 2 Q = C

.

Level sets of (6.1) for Q = T are depicted in Figure 6.1 (a); the zero set is
decorated with a dashed line and the log 2 level set is indicated by the solid line.
These sets define ρW (δ; Q) for Q = C and Q = T respectively.

Lemma 6.1. Define

(6.2) ΩW (δ; Q) := −1

2
(ρW (δ; Q))2 max

0<ρ≤ρW (δ;Q)

[

∂

∂ρ
F (ρ) + ρ−1 +

δ

1 − δρ

]

Then for θ ∈ (0, 1)

(Ψnet − Ψface)(δ, (1 − θ)ρW (δ; Q); Q) ≤ −δθ2ΩW (δ; Q).

Proof. Consider the Taylor series of the univariate function G(ρ) = (Ψnet −
Ψface)(δ, ρ; Q) at ρ = ρW (δ; Q). At any point ξ(δ) ∈ [(1 − θ)ρW (δ; Q), ρW (δ; Q)]
we have the equality

(Ψnet − Ψface)(δ, (1 − θ)ρW (δ; Q); Q) = (Ψnet − Ψface)(δ, ρW (δ; Q); Q)

−θρW (δ; Q)
∂

∂ρ
(Ψnet − Ψface)(δ, ρ; Q)

∣

∣

∣

∣

ρ=ρW (δ;Q)

(6.3)

+
1

2
(θρW (δ; Q))2

∂2

∂ρ2
(Ψnet − Ψface)(δ, ρ; Q)

∣

∣

∣

∣

ρ=ξ(δ)
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The definition of ρW (δ; Q) as the zero of (6.1) yields ∂
∂ρ (Ψnet−Ψface)(δ, ρW (δ; Q); Q) =

0. By definition (Ψnet − Ψface)(δ, ρ; Q) ≤ 0 for all (δ, ρ) ∈ (0, 1)2. Hence the first
two out of three lines in the previous display are bounded above by zero. The

definition of ΩW (δ; Q) and ∂2

∂ρ2 (Ψnet − Ψface)(δ, ρ; Q) bounds the third line by

−δθ2ΩW (δ; Q). �

Lemma 6.1 determines the form of the exponential factor in Theorem 2.2. The
polynomial factor in Theorem 2.2 follows directly from bounds previously obtained
by the authors in [12].

Level sets of

∂2

∂ρ2
(Ψnet − Ψface)(δ, ρ; Q) = δ

(

∂

∂ρ
F (ρ) + ρ−1 +

δ

1 − δρ

)

can be studied in Figure 6.1 (b). The level set of the maximum value is decorated
in magenta, while ρW (δ; Q) for Q = T is depicted by the black curve and for Q = C
by the blue curve.

For a given fixed δ, the maximum in (6.2) occurs at ρ = ρW (δ; Q) provided
0 < δ < 0.549 and Q = C or provided 0 < δ < 0.886 and Q = T . For δ outside
those intervals, the maximum in (6.2) occurs at the maximum level set depicted in
Figure 6.1 (b) (dash-dot).
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Figure 6.1. Panel (a): Contours of ∂
∂ρ (Ψnet − Ψface)(δ, ρ; T ).

Panel (b): Level sets of − ∂2

∂ρ2 (Ψnet − Ψface)(δ, ρ; T )) (log10 scale).

The magenta curve in Panel (b) indicates the location (δ, ρ) of
minimum value attained in each constant-δ section. Both panels
include overlays of ρW (δ; C) (blue) and ρW (δ; T ) (black).

We now focus attention on the behaviour of ΩW (δ; Q).

Lemma 6.2. limδ→0 ΩW (δ; Q) → 1/4 from above.

Proof. From the definition of ΩW (δ; Q) in (6.2) and the asymptotic behaviour

of ∂F (ρ)
∂ρ in (5.9), the asymptotic expansion of ΩW (δ; Q) as δ → 0 has a leading

term 1/4; the additive remainder is asymptotically negligible, but strictly positive
for all sufficiently small δ → 0. �
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7. Appendix: asymptotic behaviour of yρ

The asymptotic properties of sρ, (5.3), as ρ → 0 (and hence also of yρ) were
studied in [8] using properties of an asymptotic series due to Laplace. We refine
that approach to obtain

Lemma 7.1. For ρ ≤ 1/100,

(7.1) yρ = ρ1/2

(

1 − 1

2
ρ +

11

8
ρ2 + r2(ρ)

)

, with |r2(ρ)| < 48.4ρ3,

(7.2) ẏρ :=
d

dρ
yρ = ρ−1/2

(

1

2
− 3

4
ρ + r3(ρ)

)

, with |r3(ρ)| < 28.62ρ2,

and

(7.3)
d2

dρ2
yρ =

−1

4
ρ−3/2 (1 + r4(ρ)) , with |r4(ρ)| < 79ρ.

These results are developed below in the following order. Expansion (7.1) is
obtained in Section 7.1 from properties of Laplace’s asymptotic series. Once (7.1)
has been established, we invoke the exact expressions for ṡρ and ẏρ:

ẏρ =
sρ(1 − ρ) + ρṡρ

(1 − ρ)2
with ṡρ = (ρsρ − (1 − ρ)s−1

ρ )−1.

(These follow from the definitions of sρ and yρ in (5.3)). We obtain the bound (7.2)
by simply combining (7.1) and bounds for (1 − ρ)−α with these expressions.

The bounds for (7.3), (5.8), and (5.9) are arrived at similarly. We made no effort
to carefully control the size of the constants in remainder terms in Lemmas 7.1 and
5.3. We have observed numerically that setting the remainder terms to zero yields
approximations which are surprisingly accurate over ranges of ρ much larger than
might be expected for such asymptotic approximations.

7.1. Proof of (7.1). We develop (7.1) in two stages. Initially, we develop the
asymptotic behavior of sρ as ρ → 0; then we substitute it into equation (5.3). Our
approximation of sρ uses the asymptotic series for R(s)

R(s) := ses2/2

∫ ∞

s

e−y2/2dy = 1 − 1

s2
+

1 · 3
s4

− 1 · 3 · 5
s6

+
1 · 3 · 5 · 7

s8
+ · · · ;

appropriate for the regime of s large. To obtain this series, note that R(s) =
s·Mills(s) for s > 0, where Mills(s) is the usual Mills’ ratio for the standard normal
distribution. The corresponding asymptotic series for Mills’ ratio is developed in
[14, Secs 5.37,5.38]; H. Ruben [16] credits this series to Laplace. In [14, Eq. (5.106)]
it is shown that the error in truncating the series for Mills() at the s-th term is at
most as large as the s-th term itself. R() inherits this property.

Now define L(s, ρ) := R(s) − 1 + ρ and note that sρ is defined so L(sρ, ρ) = 0.
The asymptotic series for R, combined with the Taylor series of L(s, ρ) in variable
s, suggest the asymptotic approximation

(7.4) sρ ≈ s̃ρ := ρ−1/2

(

1 − 3

2
ρ +

15

8
ρ2

)

.
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To quantify the error in this approximation, invoke the mean value theorem;
given a smooth function G(x), there is always a point ξ ∈ [min(x, y), max(x, y)]
satisfying

(7.5) G(y) = G(x) + (y − x)
d

dy
G(y)|y=ξ.

Hence we can bound |y − x| if we have suitable bounds on |G(y) − G(x)| and
d
dyG(y)|y=ξ. Apply this principle to G(s) = L(s, ρ) about sρ, getting

(7.6) |s̃ρ − sρ| ≤
∣

∣

∣

∣

L(s̃ρ, ρ)

/

∂

∂s
L(s, ρ)|s=smid

∣

∣

∣

∣

,

for some point smid ∈ [min(sρ, s̃ρ), max(sρ, s̃ρ)].
Adapting bounds from [14, Eq. (5.106)] for Mills’ ratio gives the following bound

on R(·): for s > 9.8,

(7.7) 1− s−2 + 3s−4 − 15s−6 + 96s−8 < R(s) < 1− s−2 + 3s−4 − 15s−6 + 105s−8.

Inserting s̃ρ into the above upper bound and recalling L(s, ρ) = R(s)− 1+ ρ yields

(7.8) |L(s̃ρ, ρ)| < 46.4ρ4, for ρ < 1/100.

To bound the denominator, note that

∂

∂s
L(s, ρ) = [s + s−1] · R(s) − s,

which is a positive decreasing function of s; this attains its lower bound on the
interval s ∈ [min(sρ, s̃ρ), max(sρ, s̃ρ)] at one of the endpoints {sρ, s̃ρ}. At s̃ρ we
again make use of a lower bound on Mills’ ratio, a simplified variant of equation
(7.7) that R(s) > 1 − s−2 + 5

2s−4 for s > 9.8 is sufficient,

∂

∂s
L(s, ρ)|s=s̃ρ

= [s̃ρ + s̃−1
ρ ]R(s̃ρ) − s̃ρ

> [s̃ρ + s̃−1
ρ ](1 − s̃−2

ρ +
5

2
s̃−4

ρ ) − s̃ρ

=
3

2
s̃−3

ρ +
5

2
s̃−5

ρ >
3

2
ρ3/2.(7.9)

For the lower bound at sρ we first note that for each ρ, L(s, ρ) is a strictly increasing
function of s, equaling zero at sρ. Employing a simpler variant of (7.7), R(s) >

1 + s−2 + 2s−4 for s > 3.9, we note that L(ρ−1/2(1 − ρ), ρ) ≥ 4ρ2 for ρ < 1/100
which then implies the upper bound sρ ≤ ρ−1/2−ρ1/2. From this we have the lower
bound,

∂

∂s
L(s, ρ)|s=sρ

= [sρ + s−1
ρ ] · (1 − ρ) − sρ = (1 − ρ)s−1

ρ − ρsρ

≥ (1 − ρ) · 1

ρ−1/2 − ρ1/2
− ρ(ρ−1/2 − ρ1/2) = ρ3/2.(7.10)

Using bounds (7.8) and (7.10) in equation (7.6) we have,

(7.11) |sρ − s̃ρ| ≤ 46.4ρ5/2, for ρ ≤ 1/100,

and obtain the estimate

sρ = ρ−1/2

(

1 − 3

2
ρ +

15

8
ρ2

)

+r1(ρ), with |r1(ρ)| ≤ 46.4ρ5/2, for ρ ≤ 1/100;

Combined with (5.3), this yields the claimed (7.1) of Lemma 7.1. �
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