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ABSTRACT

We consider the problem of localizing point sources on an
interval from possibly noisy measurements. In the absence
of noise, we show that measurements from Chebyshev sys-
tems are an injective map for non-negative sparse measures,
and therefore non-negativity is sufficient to ensure unique-
ness for sparse measures. Moreover, we characterize non-
negative solutions from inexact measurements and show that
any non-negative solution consistent with the measurements
is proportionally close to the solution of the system with ex-
act measurements. Our results substantially simplify, extend,
and generalize the prior work by De Castro et al. [1] and
Schiebinger et al. [2], which relies upon sparsifying penal-
ties, by showing that it is the non-negativity constraint, rather
than any particular algorithm, that imposes uniqueness of the
sparse non-negative measure, and by extending the results to
inexact samples.

Index Terms— Super-resolution, non-negative sparse
measures, feasibility programs, Chebyshev systems.

1. PROBLEM SETUP

Consider an unknown number of point sources, with un-
known locations and amplitudes. A sensing mechanism
provides us with a few (possibly noisy) measurements, from
which we wish to estimate the locations and amplitudes of
these sources. Because of the finite resolution or bandwidth
of the imaging device, poorly separated sources may be vi-
sually indistinguishable from the measurements, but they can
be exactly identified by taking the signal model into account.
This super-resolution problem of localizing point sources
finds various applications in astronomy [3], imaging in chem-
istry, medicine and neuroscience [4, 5, 6, 7, 8, 9, 10, 11],
spectral estimation [12, 13], geophysics [14], and system
identification [15]. The rich literature of super-resolution
which is mostly closely tied to the results herein are briefly
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reviewed in Section 1.1. In this paper, we study the “grid-
free” and non-negative super-resolution in the presence of
inexact samples in one dimension.

To be concrete, consider a non-negative Borel measure
x supported on the interval I “ r0, 1s Ă R. While we of-
ten consider a general measure x, we typically compare these
measures with non-negative discrete measures of finite sup-
port such as

x “
k
ÿ

i“1

ai ¨ δti with ai ą 0 @i. (1)

Consider also real-valued and continuous functions tφjumj“1

and let tyjumj“1 be the possibly noisy measurements collected
from x by convolving against sampling functions φjptq:

yj “

ż

I

φjptqxpdtq ` ηj , (2)

where ηj can represent additive noise, with }η}2 ď δ. Herein
we characterize non-negative measures consistent with mea-
surements (2) in relation to the discrete measure (1). That
is, we consider any non-negative Borel measure z from the
Program (3) 1

find z ě 0 subject to
m
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

yj ´

ż

I

φjptqzpdtq

ˇ

ˇ

ˇ

ˇ

2

ď δ2, (3)

and show that any such z is close to x from (1) in an appro-
priate metric, see Theorems 2 and 5.

1.1. Comparison with other techniques

Our contribution builds on a growing literature of super-
resolution, but differs primarily in that Program (3) does
not implicitly impose a sparsifying penalty beyond non-
negativity. In particular, the majority of results in this
area consider Program (3) augmented to include minimiz-
ing

ş

I
|zpdtq|, the total-variation (TV) of z, see for instance

[16, 17, 18, 19, 20, 21, 22, 23] as examples of such ap-
proaches. Our focus on x which is non-negative builds on

1An equivalent formulation of Program (3) minimizes }y ´
ş

I Φptqzpdtq}2 over all non-negative measures on I (without any con-
straints). In this context, however, we find it somewhat more intuitive to
work with Program (3), particularly considering the importance of the case
δ “ 0.



[1, 2] which proved that no minimum separation condition
was needed to ensure exact reconstruction in the noiseless
case using TV norm minimization.

In contrast to all prior work, we show in this paper that it is
possible to dispense with the TV norm altogether in the case
of non-negative measures. In the setting of noise free mea-
surements, i.e. δ “ 0 in Program (3), the non-negative solu-
tion is in fact unique without requiring a minimum separation,
see Proposition 4. In the case of noisy measurements, one
can look for any solution consistent with the measurements
and it must be similarly proportionally close to the noise free
discrete sparse measure which generates noise free measure-
ments. A more thorough discussion of prior work is given in
[24].

2. STABILITY FOR GAUSSIAN WINDOW

Recall that I “ r0, 1s and consider a sequence of source and
sample locations T and S respectively as given in (4):

T “ ttiu
k
i“1 Ă intpIq and S “ tsjumj“1 Ď I, (4)

with arbitrary k-sparse non-negative measure x supported on
T , namely x as given in (1), sampled by windows

φjptq “ gpt´ sjq “ e´
pt´sjq

2

σ2 . (5)

The Gaussian window (5) can be interpreted as the “point
spread function” of the sensing mechanism at location sj and
the set S as the “sampling points” in the sense that

ypsjq “

ż

I

φjptqxpdtq “

ż

I

gpt´ sjqxpdtq, (6)

for all j P rms, where rms “ t1, 2, . . . ,mu. The stability
of Program (3) is determined by the source and sample con-
figuration as given in (4), the relative number of sources to
samples k and m, and properties of the window φptq. The
conditions we impose to ensure stability are as follows:

Conditions 1. (Gaussian window conditions) When the

window function is a Gaussian φptq “ e´
t2

σ2 , we require
its width σ, the source locations and sampling locations to
satisfy the following conditions:

1. Boundary samples: s1 “ 0 and sm “ 1,

2. Samples near sources: for every i P rks, there exists a
pair of samples s, s1 Ă S such that |s ´ ti| ď η and
s1 ´ s “ η, for η small enough; which is quantified in
[24].

3. Sources away from the boundary: σ
a

logp1{η3q ď

ti, sj ď 1 ´ σ
a

logp1{η3q for every i P rks and
j P r2 : m´ 1s,

4. Minimum separation of sources: σ ď
?

2 and ∆pT q ą

σ
b

log p3` 4
σ2 q, where the minimum separation ∆pT q

of the sources is defined in Definition 1.

Definition 1. (Minimum separation) For finite T̃ “ T Y
t0, 1u Ă I , let ∆pT q ą 0 be the minimum separation between
the points in T along with the endpoints of I , namely

∆pT q “ min
Ti,TjPT̃ ,i‰j

|Ti ´ Tj |. (7)

The four properties in Conditions 1 can be interpreted as
follows: Property 1 imposes that the sources are within the in-
terval defined by the minimum and maximum sample; Prop-
erty 2 ensures that there are a pair of samples near each source
which translates into a sampling density condition in relation
to the minimum separation between sources and in particular
requires the number of samples m ě 2k ` 2; Property 3 is a
technical condition to ensure sources are not overly near the
sampling boundary; and Property 4 relates the minimum sep-
aration between the sources to the width, σ, of the Gaussian
window.

To make Property 2 of Conditions 1 more transparent we
introduce the distance λ∆pT q between each source and its
closest sample, namely for λ P p0, 1

2 q and each source loca-
tion ti we have

|ti ´ slpiq| ď λ∆pT q, (8)

where slpiq is the sample that is the closest to the source ti.
That is, λ, ∆pT q and η defined in Conditions 1 are related
by λ∆pT q ď η{2. We can now present stability bounds for
Program (3) for the Gaussian window in terms of the error
near sources, on Ti,ε “ pti ´ ε, ti ` εq, and away from the

sources, on TCε “
´

Ťk
i“1 Ti,ε

¯C

.

Theorem 2. (Stability of Program (3) for Gaussian φptq)
Let I “ r0, 1s and consider a k-sparse non-negative measure
x supported on T and sample locations S as given in (4) and
for positive σ, let tφjptqumj“1 as defined in (5). If the Condi-
tions 1 hold, then, in the presence of additive noise, Program
(3) is stable and it holds that, for any solution x̂ of Program
(3):

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Ti,ε

x̂pdtq ´ ai

ˇ

ˇ

ˇ

ˇ

ˇ

ď

„

pc1 ` F2q ¨ δ ` c2
}x̂}TV
σ2

¨ ε



F3,

(9)
ˇ

ˇ

ˇ

ˇ

ˇ

ż

TCε

x̂pdtq

ˇ

ˇ

ˇ

ˇ

ˇ

ď F2 ¨ δ, (10)

where the exact expressions of F2 “ F2pk,∆pT q,
1
σ ,

1
ε q and

F3 “ F3p∆pT q, σ, λq are given in [24], provided that λ, ∆ “



∆pT q and σ satisfy

φpλ∆q “ φp∆´ λ∆q ` φp∆` λ∆q (11)

`
1

∆

ż 1{2´λ∆

∆´λ∆

φpxqdx`
1

∆

ż 1{2`λ∆

∆`λ∆

φpxqdx,

In particular, for σ ă 1?
3

, ∆pT q ą σ
b

log 5
σ2 and λ ă 0.4,

we have F3 ă c5 and:

F2pk,∆pT q,
1

σ
,

1

ε
q ă c3

kC2p1{εq

σ2

„

c4
σ6p1´ 3σ2q2

k

.

Above, c1, c2, c3, c4, c5 are universal constants and C2p1{εq
is given in [24].

Theorem 2 is a particular case of the more general the-
orem2 which allows for other sampling windows and source
sample configurations. In particular, the more general The-
orem 5 is valid for any windows φptq which are Chebyshev
systems as defined in Definition 3, of which the Gaussian win-
dow in (5) is an example.

Definition 3. (Chebyshev system [25]) Real-valued and
continuous functions tφjumj“1 form a Chebyshev system on
the interval I if themˆmmatrix rφjpτlqsml,j“1 is nonsingular
for any increasing sequence tτluml“1 Ď I .

We pose the more general extension of Theorem 2 in
terms of minimum separation in Definition 1, rather than the
more restrictive Conditions 1.

While the limiting case of δ approaching zero in Theorem
2 is suggestive that the solution z of Program (3) approaches a
discrete measure, the proof of this result follows more directly
and is so stated separately in Proposition 4.

Proposition 4. (Uniqueness of exactly sampled sparse
non-negative measures) Let x be a non-negative k-sparse
discrete measure supported on I , see (1). Let δ “ 0 and,
with m ě 2k ` 1, assume that tφjumj“1 form a Chebyshev
system on I . Then x is the unique solution of Program (3)
with δ “ 0.

Proposition 4 states that Program (3) successfully local-
izes the k impulses present in x given only 2k ` 1 measure-
ments when tφjumj“1 form a T-system on I .

Lastly, the more general variant of Theorem 2 bounds the
error using the norm of the vector of coefficients of the dual
polynomial rather than explicitly in terms of the parameters
of the problem.

Theorem 5. (Stability of Program (3) for general φptq) Let
x̂ be a solution of Program (3) and ∆pT q the minimum sep-
aration of T as defined in Definition 1. If for each source ti
there exists a closest sampling location si as defined in (8)

2 All proofs of results herein and numerous substantial extensions are
available in [24].

for λ “ λ0 P r0, 1{2q which satisfies (11) then, for a given
ε P p0,∆pT q{2q and for all i P rks,

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Ti,ε

x̂pdtq ´ ai

ˇ

ˇ

ˇ

ˇ

ˇ

ď r2p1`
φ8}b}2
f̄

q ¨ δ` (12)

L}x̂}TV ¨ εs
k
ÿ

j“1

pA´1qij ,

ˇ

ˇ

ˇ

ˇ

ˇ

ż

TCε

x̂pdtq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2}b}2
f̄

δ, (13)

where:

• φ8 “ maxs,tPI |φps´ tq|,

• L is the Lipschitz constant of φptq,

• A P Rkˆk is the matrix

A “

»

—

—

—

—

–

|φ1pt1q| ´|φ1pt2q| . . . ´|φ1ptkq|
´|φ2pt1q| |φ2pt2q| . . . ´|φ2ptkq|

...
...

. . .
...

´|φkpt1q| ´|φkpt2q| . . . |φkptkq|

fi

ffi

ffi

ffi

ffi

fl

,

(14)
with φiptiq “ φpti´slpiqq is evaluated at slpiq from (8).

• and b P Rm are the coefficients of a dual polynomial
qptq “

řm
i“1 biφiptq which satisfies

qptq ě F ptq :“

#

f pt´ tiq , when t P rti ´ ε, ti ` εs
f̄ , elsewhere on I,

where the equality holds on T .

Note that f̄ typically decreases with ε and the ratio }b}2
f̄

increases as ε approaches zero, see [24]. As such, we can set
ε „ δ1{p and then the overall bound given by the right hand
side of (12) is Opδ1{pq for an appropriately chosen p ą 1, so
the discrepancy goes to zero as the samples become consistent
with a sparse measure, e.g. as δ goes to zero. Moreover, while
Theorem 5 explicitly states that the location of the closest
samples to each source is less than λ0∆pT q, this is achieved
without knowing the locations of the sources by placing the
samples uniformly at interval 2λ0∆pT q which gives a sam-
pling complexity of m “ p2λ0∆pT qq´1.

3. SOURCE LOCATIONS FOR GAUSSIAN AND
POLYNOMIAL WINDOW FUNCTIONS

The source and sample conditions of Theorems 2 and 5 are
determined by condition (11) used to ensure the matrix A in
(14) is diagonally dominant. In this section we explore fur-
ther when the sufficient bound (11) is satisfied for both the
Gaussian window φ as defined in (5) and the function

φ̂ptq “ p1´ |t|qγ , γ ą 1. (15)



as an example of a function that is non-differentiable, has
more rapid initial decay and slower decay far from the ori-
gin, and moreover is not known to be a Chebyshev system.

Figure 1 shows the relationships between λ, ∆pT q and
the window localization parameters γ and σ, in the left and
right panels respectively, by solving equation (11) numeri-
cally; recall that (11) considers the worst sampling locations
consistent with bound (8). The first row of Figure 1 (panels
(a) and (b)) shows the degree to which samples are needed
to become closer, that is λ to decrease, as the window func-
tion becomes wider (for small values of γ in (a) and large
values of σ in (b)). This also depends on the minimum dis-
tance between sources ∆pT q with λ decaying more quickly
for small ∆pT q. The second row of Figure 1, in panels (c)
and (d), shows the dependence between the width and ∆pT q.
When sources are closer to each other, the window function
must be narrow for the same value of λ. In both plots we also
show the case when λ “ 0, namely when we have samples
at the locations of the sources. Going beyond this curve (bot-
tom left in (c) and top left in (d)) leads to not being able to
reconstruct the signal. Approximation to these curves as λ
approaches zero by taking leading Taylor series in (11) gives
the following relationships between ∆pT q and the localiza-
tion parameters of the windows: ∆pT q « 2´2´γ

1`γ for (15) and
∆pT q «

?
πσ erf

`

1
2σ

˘

for the Gaussian window (5).
Finally, in the bottom row of Figure 1, we fix the param-

eters γ and σ of the windows and show the dependence be-
tween λ and ∆pT q. As expected, when the minimum distance
between sources is greater, the distance between sources and
samples can also be greater.

We show a few examples of parameters that satisfy (11)
in Table 1 and signals with sources and sampling locations
that have these parameters in Figure 2. Here we see k “ 5
sources generated using the window function φ̂ in (a), (c),
(e) and using the window function φ in (b), (d), (f). We
start with the sources placed at t1 “ 0.1, t2 “ 0.4, t3 “
0.5, t4 “ 0.66, t5 “ 0.78 in (a) and (b) so that we have the
minimum distance between sources ∆pT q “ 0.1, then in (c)
and (d) we keep the same source locations and we increase
the width of the window functions, and in (e) and (f) we have
the same width as in (a) and (b) but we move the sources to
t1 “ 0.1, t2 “ 0.25, t3 “ 0.4, t4 “ 0.63, t5 “ 0.78 so that
we increase the minimum distance to ∆pT q “ 0.15. For each
of these configurations, we place the samples uniformly at in-
tervals 2λ∆pT q, so that the distance between each source and
its closest sample is at most λ∆pT q.

γ ∆pT q λ
25 0.1 0.4245
15 0.1 0.2401
25 0.15 0.4720

σ ∆pT q λ
0.07 0.1 0.4292

0.085 0.1 0.3386
0.07 0.15 0.4833

Table 1. Examples of parameter values that satisfy (11) for φ̂
(left) and φ (right). Rows correspond to rows in Figure 2.
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Fig. 1. Dependence of λ on ∆pT q and the width of the win-
dow function as given by (11) for (15) (left), and (5) (right).
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Fig. 2. Examples from Table 1 for (15) (left) and (5)
(right), where sampling points are located uniformly at in-
terval 2λ∆pT q.
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