
manuscript No.
(will be inserted by the editor)

GPU Accelerated Greedy Algorithms for
Compressed Sensing

Jeffrey D. Blanchard · Jared Tanner

Draft: 03 June 2012 / Accepted: date

Abstract For appropriate matrix ensembles, greedy algorithms have proven to be an
efficient means of solving the combinatorial optimization problem associated with
compressed sensing. This paper describes an implementation for graphics processing
units (GPU) of hard thresholding, iterative hard thresholding, normalized iterative
hard thresholding, hard thresholding pursuit, and a two-stage thresholding algorithm
based on compressive sampling matching pursuit and subspace pursuit. The GPU ac-
celeration of the former bottleneck, namely the matrix-vector multiplications, trans-
fers a significant portion of the computational burden to the identification of the sup-
port set. The software solves high-dimensional problems in fractions of second which
permits large-scale testing at dimensions currently unavailable in the literature. The
GPU implementations exhibit up to 70x acceleration over standard Matlab central
processing unit implementations using automatic multi-threading.

Keywords Combinatorial optimization · Compressed sensing · Sparse approxima-
tion · Greedy algorithms · Graphics processing units · Parallel computing · IHT ·
NIHT · HTP · CoSaMP · Subspace Pursuit

JDB was a National Science Foundation International Research Fellow at the University of Edinburgh
under award NSF OISE 0854991 and is supported by NSF DMS 1112612. JT was supported by the Lev-
erhulm Trust and an Nvidia Professor Partnership.

J.D. Blanchard
Department of Mathematics and Statistics, Grinnell College, Grinnell, IA 50112
Tel.: +1 641.269.3304
Fax: +1 641.269.4984
E-mail: jeff@math.grinnell.edu

J. Tanner
School of Mathematics, Univeristy of Edinburgh, Edinburgh, UK EH9 3JX
Tel.: +44 131.650.5057
Fax: +44 131.650.6553
E-mail: jared.tanner@ed.ac.uk

2 J.D. Blanchard, J. Tanner

1 Introduction

A recent sub-discipline of sparse approximation is the theory of compressed sensing
which gives rise to a particular combinatorial optimization problem. In the past sev-
eral years many algorithms have been introduced with provable guarantees of solving
this combinatorial optimization problem as a linear programming problem or with
relatively efficient polynomial time algorithms. In particular, greedy algorithms have
proven to be effective and efficient algorithms for solving the optimization problem
in appropriate settings. These iterative algorithms are ripe for parallelization and im-
plementation for a graphics processing unit (GPU).

This paper describes a GPU implementation of several greedy algorithms using
three different GPU matrix-vector multiplications. In the remainder of this introduc-
tion, we introduce the combinatorial optimization problem inherent in compressed
sensing and discuss some of the challenges in the GPU implementation. In Sec. 2
we describe the GPU implementation in detail. Section 3 outlines the use of the soft-
ware, GPU Accelerated Greedy Algorithms for Compressed Sensing [5]. We present
a performance evaluation of the software in the form of least squares fits to average
timing values and comparisons to a serial CPU implementation in Sec. 4.

1.1 Combinatorial Optimization in Compressed Sensing

Compressed sensing [9,15] is the study of reconstructing a sparse signal from a re-
duced number of linear measurements. A signal x is k-sparse if it has no more than k
nonzero elements; we say the signal is approximately k-sparse if it has only k signif-
icant coefficients. Traditionally, a signal of length n is measured directly, y = Ix = x
where I is an n× n identity matrix. Under the assumption that a signal is k-sparse,
or approximately k-sparse, the number of measurements required to capture all the
pertinent information in the signal can be significantly reduced. In fact, the number of
measurements, m, can be asymptotically proportional to the sparsity k, i.e. for fixed
ratios δ ,ρ ∈ (0,1), (m

n , k
m)→ (δ ,ρ) as (k,m,n)→∞. More formally, a k-sparse signal

x ∈ Rn is observed through inner products with the m rows of a measurement matrix
A ∈ Rm×n generating the measurements y = Ax ∈ Rm. Having access only to y and
the measurement process A, one seeks to recover the sparsest signal x̂ which would
generate these measurements. This leads to the combinatorial optimization problem

x̂ = argmin
z∈Rn

‖z‖0 subject to y = Az, (1)

where ‖z‖0 counts the number of non-zero entries in z. In general, this combinato-
rial optimization problem is NP hard [29] and significant work over the past several
years has focused on determining tractable algorithms which will produce the same
solution to (1) for various classes of measurement matrices, A.

A large body of work has developed which, under the right conditions, establishes
the convex relaxation of this problem as a suitable alternative, namely

x̂ = argmin
z∈Rn

‖z‖1 subject to y = Az, (2)

GPU Accelerated Greedy Algorithms for Compressed Sensing 3

where ‖z‖1 = ∑
n
i=1 |zi| is the standard `1 norm. In particular, necessary and sufficient

conditions on the measurement matrix A are known [10,11,14,16–18] (among oth-
ers) which ensure that the solutions to (1) and (2) coincide. The computational cost
of obtaining the solution to (2) is clearly dependent on the algorithm used to obtain
the solution. As (2) can be formulated as a linear programming problem, standard
linear programming software can be employed. However, this problem has inherent
structure, namely the sparsity of the signal x, and several algorithms have appeared
over the past several years to exploit this structure [4,12,19–21,24,34,35]. The com-
plexity of some of these algorithms can limit their usefulness when the problem di-
mensions (k,m,n) grow to dimensions similar to real world applications.

A family of low-complexity greedy algorithms, in particular the family of thresh-
olding algorithms, have been brought to bear on this problem. When the measurement
matrix A meets certain sufficient conditions, it is now well-known that these greedy
algorithms can be guaranteed to acquire the solution to (1). The simplest greedy al-
gorithm is Hard Thresholding (HT) which makes an initial guess at the support of
x and then projects the measurements y onto this support. The complexity of this
algorithm is enviable, but the situations in which it is applicable require a large num-
ber of measurements, m ∼ k2. The early greedy algorithms studied in this setting
are Matching Pursuit (MP) [26] and Orthogonal Matching Pursuit (OMP) [32,33].
The low complexity of a single iteration of these algorithms makes them good candi-
dates for solving (1) for low-dimensional problems, but since the number of iterations
required to converge to a k-sparse solution is exactly k iterations, they become im-
practical as the problem dimensions (k,m,n) grow. The combination of ideas from
MP and HT lead one to Iterative Hard Thresholding [7] whose per iteration com-
plexity is higher, but which has the advantage of potentially converging in far fewer
than k iterations. A further improvement to IHT which employs an optimal step in
the proposed subspace leads to Normalized Iterative hard Thresholding [8]. Finally,
combining the orthogonalization of OMP with the selection of a full candidate sup-
port set in HT leads to two-stage greedy algorithms such as Compressive Sampling
Matching Pursuit (CoSaMP) [30], Subspace Pursuit (SP) [13], or Hard Thresholding
Pursuit (HTP) [22]. These two-stage greedy algorithms incorporate a least squares
problem in each iteration which further increases the per iteration complexity but po-
tentially decreases the number of required iterations. These algorithms are more fully
discussed in Section 2.

1.2 GPU Computing in Sparse Approximation

Even with the greedy algorithms outlined above, the total complexity of the algo-
rithms require significant computation time when executed as a serial algorithm on
a central processing unit (CPU). In each iteration of each of the aforementioned al-
gorithms, at least one matrix-vector multiplication and one support set identification
is required. When the problem dimensions are large, the number of iterations causes
the standard CPU implementations to be too slow for practical application or large-
scale testing. With the 2010 introduction of the Fermi architecture on Nvidia’s GPU
designed for high-performance computing, a GPU implementation will be trustwor-

4 J.D. Blanchard, J. Tanner

thy, accurate, and provide a significant acceleration. In this paper, we describe our
implementation of the Hard Thresholding family of greedy algorithms in the form of
a CUDA based heterogeneous CPU-GPU software GPU Accelerated Greedy Algo-
rithms (GAGA) [5]. This software is designed to provide a platform for large-scale
testing of greedy algorithms on problem dimensions ranging from n = 210 to n = 220,
although it is also capable of directly solving a specific problem. The GPU implemen-
tation reveals that the parallelized matrix-vector multiplications place a new emphasis
on efficiently identifying the support set in each iteration. The GAGA implementa-
tion is described in Section 2 with an emphasis on the methods used to accelerate
the support set identification. Section 4 provides an experimental performance anal-
ysis of the software where we observe up to 70x acceleration over standard MatLab
central processing unit implementations using automatic multi-threading.

1.3 Notation

Throughout the paper, (k,m,n) define the compressed sensing problem dimensions of
recovering a k-sparse vector of length n from m measurements. The measurements,
y, come from the application of an m×n matrix A to the initial vector x, y = Ax. The
algorithms discussed in the paper return an approximation x̂ to the initial vector x. We
will let T denote a set of indices which determine the active components of a vector
or matrix. For example, the matrix whose columns are indexed by T is denoted AT
while xT denotes the active components in the vector. The transpose of the matrix A
is denoted A∗ while the pseudo inverse is A†.

Specific names of functions from the software are designated with the typewriter
font, such as function. Variables in the pseudo code and in the text are written in
italics such as vec or vecd . Here, the subscript d denotes that this variable is exclu-
sively on the device, a common moniker for the GPU. A subscript of h, e.g. vech,
denotes that the variable lives on the CPU or host (for example see Subrout. 3, Line
7). A CUDA kernel is called with triple angle brackets as in the actual code including
the scheduling parameters, kernel <<< blocks, threads >>> (arguments).

2 Algorithms

We have implemented six greedy algorithms for the solution of (1), namely two vari-
ants of Hard Thresholding: ThresholdSD and ThresholdCG; a fixed step size iterative
hard thresholding, IHT; normalized iterative hard thresholding, NIHT; hard thresh-
olding pursuit, HTP; and a two stage projection algorithm that is essentially equiv-
alent to CoSaMP and Subspace Pursuit, CSMPSP. Each of these algorithms follows
a similar basic skeleton: initialization and initial support detection and an iterative
process of updating approximations until a stopping criteria is met. The algorithms
differ in the method by which they update the approximations in each iteration.

The algorithms are listed in a pseudo code (Alg. 1-6) formulation using the fol-
lowing generic functions which are shared by several of the algorithms. The details
of the implementations of these generic functions are described in the subsequent
subsections.

GPU Accelerated Greedy Algorithms for Compressed Sensing 5

– T = DetectSupport(x) returns the index set, T , of the k largest magnitude en-
tries1 of the vector x.

– x = Threshold(x,T) is a hard thresholding operation setting each entry of x to
zero if the index of that entry is not an element of T .

– x = RestrictedSD(x,T,y) performs a single step of steepest descent restricted
to the subspace indexed by T , i.e. this performs a steepest descent step for the
proxy problem y = AT xT .

– x = RestrictedCG(x,T,y) performs a single step of the conjugate gradient method
restricted to the subspace indexed by T , i.e. this performs a conjugate gradient
step for the proxy problem A∗T y = A∗T AT xT .

– x = RSDProjection(x,T,y) computes xT = A†
T y via a subspace restricted steep-

est descent, i.e. the values of x indexed by T are obtained via a steepest descent
projection restricted to the subspace indexed by T while the remaining values of
x are set to zero.

– x = RCGProjection(x,T,y) computes xT = A†
T y via a subspace restricted con-

jugate gradient method, i.e. the values of x indexed by T are obtained via a con-
jugate gradient projection restricted to the subspace indexed by T while the re-
maining values of x are set to zero.

Algorithm 1 ThresholdSD (Hard Thresholding with Steepest Descent)
Input: A, y, k
Output: A k-sparse approximation x̂ of the target signal x

Initialization and Initial Support Detection
1: x0 = A∗y
2: T0 = DetectSupport(x0)
3: x0 = Threshold(x0,T0)

Approximation:
1: x̂ = RSDProjection(x0,T0,y)
2: return x̂

2.1 Subroutines

In this section, we describe the subroutines and CUDA kernels used as standard build-
ing blocks for the implementation of our greedy algorithms. These subroutines are in-
herent to most greedy algorithms and can be used to somewhat painlessly expand the
software to include other greedy algorithms. The main subroutines are listed at the be-
ginning of Sec. 2. They are divided into three topics: hard thresholding (Threshold
and DetectSupport), subspace restricted numerical linear algebra (RestrictedSD
and RestrictedCG with subspace projections based on these functions), and matrix-
vector multiplications (subsampled discrete cosine transform, sparse matrix-vector
multiplication, and a generic matrix-vector multiplication).

1 In our implementation, the number of elements in the index set is not necessarily exactly k based on
the method of support set detection. This is discussed in detail in Sec. 2.1.

6 J.D. Blanchard, J. Tanner

Algorithm 2 ThresholdCG (Hard Thresholding with Conjugate Gradient)
Input: A, y, k
Output: A k-sparse approximation x̂ of the target signal x

Initialization and Initial Support Detection
1: x0 = A∗y
2: T0 = DetectSupport(x0)
3: x0 = Threshold(x0,T0)

Approximation:
1: x̂ = RCGProjection(x0,T0,y)
2: return x̂

Algorithm 3 IHT (Iterative Hard Thresholding [7])
Input: A, y, k, ω (a fixed step size)
Output: A k-sparse approximation x̂ of the target signal x

Initialization and Initial Support Detection
1: x0 = A∗y
2: T0 = DetectSupport(x0)
3: x0 = Threshold(x0,T0)
4: r0 = y−Ax0

Iteration: During iteration l, do
1: xl = xl−1 +ωA∗rl−1
2: Tl = DetectSupport(xl)
3: xl = Threshold(xl ,Tl)
4: rl = y−Axl
5: Update Stopping Parameters
6: if Stopping Criteria then
7: return x̂ = xl
8: else
9: Perform iteration l +1

10: end if

Algorithm 4 NIHT (Normalized Iterative Hard Thresholding [8])
Input: A, y, k
Output: A k-sparse approximation x̂ of the target signal x

Initialization and Initial Support Detection
1: x0 = A∗y
2: T0 = DetectSupport(x0)
3: x0 = Threshold(x0,T0)

Iteration: During iteration l, do
1: xl = RestrictedSD(xl−1,Tl−1,y)
2: Tl = DetectSupport(xl)
3: xl = Threshold(xl ,Tl)
4: Update Stopping Parameters
5: if Stopping Criteria then
6: return x̂ = xl
7: else
8: Perform iteration l +1
9: end if

GPU Accelerated Greedy Algorithms for Compressed Sensing 7

Algorithm 5 HTP (Hard Thresholding Pursuit [22])
Input: A, y, k
Output: A k-sparse approximation x̂ of the target signal x

Initialization and Initial Support Detection
1: x0 = A∗y
2: T0 = DetectSupport(x0)
3: x0 = Threshold(x0,T0)

Iteration: During iteration l, do
1: xl = RestrictedSD(xl−1,Tl−1,y)
2: Tl = DetectSupport(xl)
3: xl = Threshold(xl ,Tl)
4: xl = RCGProjection(xl ,Tl ,y)
5: Update Stopping Parameters
6: if Stopping Criteria then
7: return x̂ = xl
8: else
9: Perform iteration l +1

10: end if

Algorithm 6 CSMPSP (CoSaMP [30], Subspace Pursuit [13])
Input: A, y, k
Output: A k-sparse approximation x̂ of the target signal x

Initialization and Initial Support Detection
1: x0 = A∗y
2: T0 = DetectSupport(x0)
3: x0 = Threshold(x0,T0)
4: x0 = RCGProjection(x0,T0,y)
5: r0 = y−Ax0

Iteration: During iteration l, do
1: Sl = DetectSupport(A∗rl−1)
2: Λl = Tl−1 ∪Sl
3: xl = RCGProjection(xl−1,Λl ,y)
4: Tl = DetectSupport(xl)
5: xl = Threshold(xl ,Tl)
6: rl = y−Axl
7: Update Stopping Parameters
8: if Stopping Criteria then
9: return x̂ = xl

10: else
11: Perform iteration l +1
12: end if

2.1.1 Support Detection and Hard Thresholding

The algorithms included in this software all require a hard thresholding of magnitude
k, where the entries of a vector with the k largest magnitudes are preserved while all
other entries are set to zero. An obvious method for performing this task is to identify
the kth largest magnitude in the vector and then simply set every entry to zero if its
magnitude is smaller than the kth largest magnitude. However, the algorithms require

8 J.D. Blanchard, J. Tanner

more than just the threshold; they also require the indices identifying the set of the k
largest magnitudes in the vector. We call this index set the support set of the vector.
If one knows the kth largest magnitude, identifying the support set is straightforward
by simply recording which elements have a larger magnitude in an additional support
vector.

Standard implementations of these recovery algorithms employ a sorting routine
in order to extract both the kth largest magnitude and the support set. In a traditional
serial (CPU) implementation, the cost of the matrix-vector multiplications are signif-
icantly greater than that of identifying the support set. As such, the apparent waste in
sorting the vector is mitigated by its relative cost to the matrix-vector multiplication.
In our parallel implementations, the computational cost of the matrix-vector multipli-
cations are dramatically reduced, and the computational costs for support detection
via sorting and a matrix-vector multiplication are now on par. Thus, it is important to
reduce the cost of support detection in our GPU implementation.

Subroutine 1 FindSupport sort
Input: vecd , supportd , k
Output: A thresholded version of vecd and the support identification vector supportd .

1: thrust::sort(abs(vecd))
2: b = abs(vecd [n− k])
3: one vector <<< blocks, threads >>> (suppd)
4: threshold and support <<< blocks, threads >>> (vecd ,supportd ,b)

one vector: (CUDA Kernel)
Input: supportd
1: Set id as the thread identifier
2: supportd [id] = 1

threshold and support: (CUDA Kernel)
Input: vecd , supportd , b
1: Set id as the thread identifier
2: if (abs(vecd [id]) < b) then
3: vecd [id] = 0
4: supportd [id] = 2
5: end if

For comparative and expository purposes, we have implemented the sorting method
of support detection and thresholding and describe it here. Sorting algorithms for
GPU computing are now rather mature with the most efficient sorting routine a radix
sort by Merrill and Grimshaw [27]. This highly efficient radix sort is now included as
thrust::sort in the Thrust library [23] which is included in the CUDA 4.0 release
[31]. Once the absolute value vector is sorted, the kth largest magnitude is easily ex-
tracted. The act of thresholding and identifying the support set can be accomplished
simultaneously. For consistency with our default implementation, the support identi-
fication vector used with sorting is an integer vector with a 1 identifying a member
of the support and a 2 identifying an off-support element.

One common method for improving performance over sorting is to use a k-
selection algorithm which reduces the computational complexity of identifying the

GPU Accelerated Greedy Algorithms for Compressed Sensing 9

kth largest element. At the beginning of our work on this software, no selection algo-
rithm implementations existed for the GPU which were superior in performance to
thrust::sort. In 2011, four GPU k-selection algorithms were introduced [1,3,28]
which could be used to replace the sorting step in Subrout. 1. While these selection
algorithms gain a significant advantage over thrust::sort as the vector gets very
large they have essentially equivalent performance for vectors of length 220 or less.

Our method to identify the support set is an approximate k-selection based on
a linear projection of the entries in the vector into linearly spaced bins, similar to
a selection based on distributive partitioning [2]. The approximate k-selection tech-
nique requires only a single examination of the entries in the vector and is amenable
to parallelization in that the linear projection of each entry in the vector requires no
communication with any other element. Furthermore, this method increases the like-
lihood of identifying the correct support in a given iteration as it permits elements
of the vector with magnitude slightly smaller than the kth largest magnitude to be
included in the support.

The support set is identified by projecting the elements of the vector, vecd , into
bins. The bins are determined by linearly partitioning the interval [0,max(abs(vecd))]
into a certain number of bins, numBins = max(1000,n/20) where n is the length of
the vector. As the elements of the vector are projected into the bins a counter is up-
dated in a separate vector bincounterd . This is implemented as the CUDA kernel
LinearBinning described in Subrout. 3 where we note that larger magnitude en-
tries are assigned to smaller numbered bins. (In other words, the largest element is
assigned to bin 0 and the smallest to bin numBins− 1.) At this point, a cumulative
sum of the counter vector is performed to identify which bin contains the kth largest
magnitude; we call this bin kbin. Now the set of entries in the vector whose mag-
nitude is larger than the kth largest has been identified along with any entry whose
magnitude is close enough in value to the kth largest magnitude to fall in kbin.

Subroutine 2 Threshold(CUDA Kernel)
Input: vecd , bind , kbin
Output: A thresholded version of vecd .

1: Set id as the thread identifier
2: if (bind [id] > kbin) then
3: vecd [id] = 0
4: end if

The support set is now identified by the bin vector bind and the identifier kbin.
The support set can be used in any subsequent function which requires restriction to
the support. For example, we frequently want to hard threshold a vector to the support
set. This is described in Subrout. 2.

The serial nature of counting suggests that we count the entries in each bin using
atomic functions, in particular atomicAdd. When two or more threads wish to incre-
ment the count at precisely the same time, atomic functions eliminate the conflict by
forming a queue for the counter. If a single bin contains a large number of elements,
the long queue causes a degradation in performance. Our first decision is to refuse

10 J.D. Blanchard, J. Tanner

Subroutine 3 FindSupport
Input: vecd , binsd , bincounterd , bincounterh, k, α , numBins, maxBin, minValue, maxChange
Output: The support of roughly the k largest magnitude entries of vecd in the form of a vector binsd and
and a support identifier kbin.

1: if (minValue > maxChange) then
2: minValue = minValue−maxChange
3: else
4: max = maxMagnitude(vecd)
5: slope = (numBins−1)/max
6: LinearBinning <<< blocks, threads >>> (vecd ,binsd ,bincounterd ,k,maxBin,slope,max)
7: copyToCPU(bincounterd ,bincounterh)
8: sum = 0, kbin = 0
9: while (sum < k) && (kbin < maxBin) do

10: sum = sum+bincounterh[kbin]
11: kbin = kbin+1
12: end while
13: kbin = kbin−1
14: if (sum < k) then
15: α = .5α

16: maxBin = b(1−α)numBinsc
17: end if
18: minValue = max− (kbin+1)/slope
19: end if

LinearBinning: (CUDA Kernel)
Input: vecd , binsd , bincounterd , k, maxBin, slope, max
1: Set id as the thread identifier
2: temp = abs(vecd [id])
3: if (temp > 10−6max) then
4: bind [id] = bslope∗ (max− temp)c
5: if (bin[id] < maxBin) then
6: atomicAdd(bincounterd [bind [id]],1)
7: end if
8: else
9: bind [id] = dslop∗maxe+1

10: end if

to count entries whose magnitude is less than 10−6 times the maximum magnitude
in the vector. In fact, we assign these to a dummy bin which is never counted. Sec-
ond, in early iterations the error in our approximation in the vector produces a large
number of small values in the off-support entries after a matrix-vector multiplication.
However, as the algorithms progress toward convergence, the errors from the off-
support matrix-vector multiplication begin to vanish and the correct support begins
to separate from the small values caused by these errors. Also, since the algorithms
are iterative, it is perfectly acceptable to first identify a subset of the support and then
proceed to expand the proposed support to the appropriate size in subsequent itera-
tions. Our implementation does just this by introducing a parameter α ∈ [0,1) which
reduces the number of bins to be counted. Rather than count every bin we count
only a subset of the bins which will contain the largest magnitudes. Since our linear
projection labels the bins containing the largest magnitudes with the smaller indices,
we do so by setting a maximum bin and count only those bins up to the maximum

GPU Accelerated Greedy Algorithms for Compressed Sensing 11

bin; let maxBin = (1−α)numBins so that only the first (1−α) fraction of the bins
are counted. The default setting for α is 0.25. If the size of the proposed support is
smaller than k, α is reduced by a factor of 0.5 and if needed will ultimately converge
to counting every bin. This ensures that the final support set will have at least k en-
tries. If one wishes to enforce identification of at least k elements in the support at
every iteration one can simply set α = 0.

Finally, we also impose a means of skipping the support identification whenever
possible which we refer to as dynamic support detection. In each iteration the algo-
rithms provide information about how a vector was updated. Using this information
allows us to answer the question, “Is it possible that the support set has changed?”
If not, we simply skip the support identification altogether. Answering this question
exactly in each iteration introduces an unnecessary computational cost as it would
require finding the minimum magnitude in the support set. However, a proxy to the
minimum value in the support, namely the endpoint of the bin containing the kth
largest magnitude (stored as minValue), is provided for free. Rather than comput-
ing the change in each entry, we simply identify the largest possible change in the
update step, maxChange. The worst case situation is that the smallest magnitude on
the support was decreased by maxChange while an entry off of the support was in-
creased by maxChange. Hence, if minValue > 2maxChange, the support could not
have changed and we skip the support identification. For the subsequent iteration, we
simply enforce the worst case update by reducing minValue by 2maxChange. In the
early iterations when the algorithm is searching for the correct vector, the support de-
tection step is implemented frequently. However, a considerable savings is realized in
later iterations when the algorithm is converging to a solution and the updates rarely
change the support.

A full description of our dynamic support detection, FindSupport, is detailed in
Subrout. 3 where maxChange already includes the scaling by 2 from elsewhere, for
example Subrout. 4, Step 6. Clearly, dynamic support detection can also be imple-
mented when using sorting or selection to find the kth largest magnitude. We omit
the pseudo code in this paper but have implemented and tested these ideas in the soft-
ware. Performance comparisons for sorting, sorting with dynamic support detection,
and FindSupport, both with α = 0.25 and α = 0, are available in Sec. 4.

2.1.2 Subspace Restricted Iterative Numerical Linear Algebra

After the work to identify the support set has been completed in a given iteration,
we operate under the belief that this is the correct support set. In other words, we
believe that any update to the vector should occur in the lower dimensional subspace
associated with the support set rather than in the full ambient n-dimensional space.
Again, we represent the support set, called T in the early part of Sec. 2, with the
vector of bin assignments, binsd and kbin, the identity of the bin containing the kth
largest element. The algorithms in this software rely on iterative numerical linear
algebra routines, the method of steepest descent and the conjugate gradient method.
For example, IHT chooses the search direction as the negative gradient, computed as
grad = A∗(resid) = A∗(y−Ax). This is of course the correct direction for an optimal
step, but IHT performs this step with a fixed step size. While this works often, it is

12 J.D. Blanchard, J. Tanner

not the optimal step size and can cause the algorithm to converge very slowly or even
to fail completely.

Subroutine 4 RestrictedSD
Input: vecd , binsd , kbin
Output: The updated vector vecd and the worst case change to vecd from this update.

1: resid = y−A(vecd)
2: grad = A∗(resid) (steepest descent direction)
3: grad thresh = Threshold(grad,binsd ,kbin) (restrict the SD direction to the subspace)

4: µ = ‖grad thresh‖2
2

‖A(grad thresh)‖2
2

(optimal step size in restricted subspace)

5: vecd = vecd + µgrad (update via the restricted SD step)
6: maxChange = 2µmax(abs(grad)) (record maxChange for dynamic support detection)

Subroutine 5 RSDProjection
Input: vecd , binsd , kbin, y
Output: The projection of y onto the subspace defined by binsd and kbin.

Initialization:
1: vecd = A∗y (use the transpose as an approximate inverse)
2: (binsd ,kbin) = FindSupport(vecd ,binsd ,k,control parameters) (find the support set)
3: vecd = Threshold(vecd ,binsd ,kbin) (restrict the vector to the support set)

Projection:
1: while stopping criteria are not met do
2: vecd = RestrictedSD(vecd ,binsd ,kbin) (one restricted steepest descent step)
3: vecd = Threshold(vecd ,binsd ,kbin) (threshold to the support set)
4: update the stopping parameters
5: end while
6: return vecd

NIHT also chooses the gradient direction based on the residual from our approx-
imation which has been thresholded to our support set. Rather than take a fixed-size
step, NIHT takes the optimal single step under the assumption that we have found
the correct support set. In other words the step size is computed only in our restricted
subspace defined by our support set, T := (binsd ,kbin). In each iteration of NIHT,
a single step of steepest descent is performed to update the vector. This subspace
restricted steepest descent is implemented as the function RestrictedSD. In Sub-
rout. 4 we outline the mathematics of a restricted steepest descent step. The actual
CUDA based implementation relies heavily on cuBLAS, the GPU-accelerated version
of the complete standard Basic Linear Algebra Subroutines (BLAS) library.

An alternative to the update in NIHT is to compute a projection of y on the cho-
sen subspace via a pseudo inverse, xT = A†

T y. For example, in ThreshholdSD, the
support is detected only one time and then the measurement vector y is projected
onto this set. One method for iteratively accomplishing this projection is to itera-
tively run RestrictedSD on the chosen support set until some stopping criterion is

GPU Accelerated Greedy Algorithms for Compressed Sensing 13

met. In our implementation, we did not explicitly write the function RSDProjection
(Subrout. 5), but we include it here for reference from Alg. 1.

Subroutine 6 RestrictedCG
Input: vecd , grad, grad previous, binsd , kbin
Output: The updated vector vecd and the historical direction grad previous.

1: resid = A(grad)

2: µ = ‖grad previous‖2
2

‖resid‖2
2

(optimal step size in restricted subspace)

3: vecd = vecd + µgrad (update via the restricted CG step)
4: grad new = A∗(resid) (determine new CG direction)
5: grad new = Threshold(grad new,binsd ,kbin) (restrict CG direction to the subspace)
6: grad new = grad previous+ µgrad new (update new CG direction in the restricted subspace)

7: β = ‖grad previous‖2
2

‖grad new‖2
2

8: grad = grad new+βgrad (update next CG direction in the restricted subspace)
9: grad previous = grad new (record the previous CG direction)

Subroutine 7 RCGProjection
Input: vecd , binsd , kbin, y
Output: The projection of y onto the subspace defined by binsd and kbin.

Initialization:
1: vecd = A∗y (use the transpose as an approximate inverse)
2: (binsd ,kbin) = FindSupport(vecd ,binsd ,k,control parameters) (find the support set)
3: vecd = Threshold(vecd ,binsd ,kbin) (restrict the vector to the support set)

Initial CG Direction:
1: grad = A∗(y−A(vecd)) (determine initial gradient direction)
2: grad = Threshold(grad,binsd ,kbin) (restrict the gradient to the support set)
3: grad previous = grad

Projection:
1: while stopping criteria are not met do
2: (vecd ,grad,grad previous) = RestrictedCG(vecd ,grad,grad previous,binsd ,kbin)
3: update the stopping parameters
4: end while
5: return vecd

The two-stage greedy algorithms, such as HTP or CSMPSP (CoSaMP/Subspace
Pursuit), also require a projection in each iteration. As is well known, convergence
can be accelerated by using the conjugate gradient method (CG). Here we discuss
the projection on a support set using a restricted CG. For consistency in our imple-
mentation, we include a function, RestrictedCG (Subrout. 6), which performs a
single conjugate gradient (CG) step in the restricted subspace. To perform the pro-
jection, we wrap the single step of CG in a while loop and detail this procedure as
RCGProjection in Subrout. 7.

Unlike steepest descent, a CG step requires information pertaining to the previous
step. For simplicity in the code, the initial conjugate gradient direction is computed

14 J.D. Blanchard, J. Tanner

mat A mat AT mat
gen (out, in,A,m,n) (out, in,A,m,n)
dct (out, in,rows,m,n) (out, in,rows,m,n)
smv (out, in,rows,cols,vals,m,n,nz) (out, in,rows,cols,vals,m,n,nz)

Table 1 Input arguments for matrix-vector multiplication and transpose matrix-vector multiplications.
(For smv, nz denotes the total number of nonzero entries.)

outside of this function as grad = A∗(y−A(vecd)) while the function returns the most
recent direction as grad previous. Hence, the history is passed to the function via
grad and grad previous. All of the vectors, vecd , grad, grad previous, must already
have been thresholded to the restricted subspace when passed to RestrictedCG. As
this single CG step is used only in projection in our current implementation, it can
not determine the maximum change to the vector in the update step. In fact, if CG
is permitted to converge in a restricted subspace, this CG projection will provide the
minimum `2 solution in this subspace. Hence, if the support set has been correctly
identified, the algorithm returns the correct solution.

2.1.3 Matrix-vector Multiplication

The greedy algorithms, in particular the subspace restricted numerical linear algebra,
rely heavily on matrix-vector products. This software deals with the matrix-vector
multiplication in three ways. First of all, any complete matrix can be passed to the
algorithms which we refer to as a generic matrix-vector multiplication, or gen. To
model a fast matrix-vector multiplication, we use the discrete cosine transform, dct.
Finally, a sparse matrix enjoys some advantages in multiplication and thus we have
implemented a sparse mat-vec, smv.

The matrix and transpose multiplications are written so that one may easily call
the multiplication in the form of a function: A mat(out, in,matrix info). The function
A mat performs a matrix-vector multiplication for the matrix of type mat where mat
is one of {gen,dct,smv}. If A is a matrix of type mat, then providing the appropriate
information about the matrix to A mat will complete the matrix-vector multiplication
out = A(in). In compressed sensing, we are dealing with matrices with fewer rows
than columns. Thus, the transpose multiplication is equally important. Optimizing a
certain type of multiplication along the rows would not pay off in the long run as
there are roughly an equal number of matrix transpose multiplications as matrix mul-
tiplications. The transpose multiplications out = A∗(in) are executed with functions
AT mat(out, in,matrix info).

Clearly, each of these matrix-vector multiplications have their own input require-
ments. The generic matrix-vector multiplication simply takes the complete matrix A
and its dimensions m,n as the input for the matrix information. The subsampled DCT
requires the dimensions m,n and the subset of rows from the full n× n DCT which
form our m× n matrix. Finally the sparse mat-vec is given the dimensions m,n, the
locations and values of the nonzero elements in the form of the rows, columns, and
values, and finally the total number of nonzeros. Table 1 details the input and output
parameters for these functions.

GPU Accelerated Greedy Algorithms for Compressed Sensing 15

2.2 Problem Generation

Although the functions in this software package are capable of taking a problem
directly from MatLab, the primary motivation for building this software is the abil-
ity to perform large-scale testing on randomly generated problems. To create a ran-
dom problem for compressed sensing one must create both a random input vector,
vec input, and a random matrix, A. A random k-sparse vector requires both a ran-
dom choice for the values of the entries and random support set for these nonzero
values. In standard MatLab implementations this involves not only the generation of
a large quantity of random numbers, but support sets are generally chosen with a
sorting based selection routine. The random problem generation package in this soft-
ware exploits both the parallel generation of pseudo random numbers via the built-in
function cuRAND and the computational savings from our GPU support detection,
FindSupport. Similar computational savings are obtained for the generation of the
matrix A.

2.2.1 Randomly Generated Input Vectors

The input vectors for testing the greedy algorithms are obviously k-sparse vectors of
length n. One must randomly generate both the locations and values for the k nonzero
entries in the vector. Due to cuRAND’s rapid ability to generate pseudo random num-
bers, this is accomplished by generating 2n random numbers, and then using the first
half to determine the locations and the other half to determine the values. To identify
the support set, n uniformly distributed random numbers are generated and the ran-
dom support set is identified by finding the locations of the k largest values in this
vector of length n via our support detection function FindSupport. The remaining n
random numbers are determined according to an input parameter which chooses the
distribution from which the values are drawn. The software is currently equipped to
create a vector with entries from three distributions: a sign pattern {−1,1}, a uniform
distribution U (0,1), and a Gaussian distribution N (0,1). Using the support set ob-
tained from the other n random numbers, the vector of values is thresholded to this
support set and recorded as the input vector. This is outlined in Subrout. 8.

Subroutine 8 Random Vector Creation
Input: k, n, vecDistribution
Output: The k-sparse vector vec input with random support and random values from vecDistribution.

1: vec support = cuRAND(n,U (0,1)) (n random numbers for support creation)
2: (binsd ,kbin) = FindSupport(vec support,binsd ,k,control parameters) (find the support set)
3: vec input = cuRAND(n,vecDistribution) (n random values from vecDistribution)
4: vec input = Threshold(vec input,binsd ,kbin) (create k-sparse vector)
5: return vec input

16 J.D. Blanchard, J. Tanner

2.2.2 Randomly Generated Measurement Matrices

As discussed in Sec. 2.1.3, the software is equipped with three variants of matrix-
vector multiplication, the randomly subsampled discrete cosine transform (DCT),
sparse matrices (SMV), and a generic matrix (gen).

Generating the Rows for the DCT. Randomly selecting the rows for the DCT requires
the generation of n random numbers which is performed on the GPU using cuRAND.
A vector of row indices, integers from 1 to n, is also created on the GPU. We then
randomly shuffle the index set on the host by transferring both the n random values
from U (0,1), rand values, and the index set back to the host. A straightforward
shuffle is executed by swapping the index in position j with the index in position
b j ∗ rand values[j]c. The m indices are then transferred back to the device.

Executing a shuffle of m integers on the host requires exactly m multiplications,
3m reads, and 2m writes plus the transfer of the data from the device to the host and
back again. At first glance, this might seem inefficient and one might instead wish
simply execute FindSupport on the n random values to determine the locations of
the largest m values. This would certainly return a random selection of rows. Since the
number of rows ranges from 1 to n, 1≤m≤ n, the use of FindSupport, which is also
a heterogeneous function, is in fact burdensome as m → n. For small values of m the
performance of these two routines is comparable while the CPU shuffle outperforms
the use of FindSupport as m → n. Executing a shuffle on the device would require
the use of an atomic function to avoid duplication of a single row in the selection. The
GPU shuffle is advantageous for large m but the CPU shuffle is superior for small m.
Our use of the CPU shuffle is a compromise between these competing strategies over
the full range of m.

Generating a Sparse Matrix. The sparse matrices available for random generation
have a fixed number, p, of nonzero entries per column2. There are two sparse matrix
ensembles, namely every nonzero has the value 1 or the entries have a random sign
pattern {−1,1} followed by normalizing the columns by dividing by

√
p. Therefore

we generate the values on the GPU in the vector vals of length np where n is again
the number of columns of the matrix. The only remaining task is to randomly assign
the p rows in each of the n columns which hold the nonzero values. This is easily
performed by creating a vector rows of length np. For each segment of length p
in rows we assign the row index bm∗ rand values[j]c where j is the index of the
vector rows and rand values is a vector populated with np entries from U (0,1). The
implementation actually generates more than np random values and checks to ensure
that a single column is actually assigned p distinct rows indices for the nonzeros. If
the random assignment of rows fails to generate p distinct rows for each column an
error flag is returned and the test is aborted.

2 The software does not require a fixed number of nonzeros per column when passing a known problem
using a sparse matrix directly to the algorithms.

GPU Accelerated Greedy Algorithms for Compressed Sensing 17

Generating a Generic Matrix. The software creates two variants of a generic matrix,
a Gaussian matrix with entries populated from N (0,m−1) and a dense matrix with
entries drawn from a normalized sign pattern {−1/

√
m,1/

√
m}. To create an m× n

matrix simply requires the creation of mn random values. For the Gaussian matrix the
entries of the matrix are derived from cuRAND’s normal distribution. The alternative
ensemble is created by forming mn elements with cuRAND’s uniform distribution,
shifting by 0.5, and recording the sign of each entry.

2.2.3 Initial Measurement Vector

Finally, we must create the vector of measurements we wish to pass to the algorithms.
Having created vec input as described in Sec. 2.2.1 and an appropriate measurement
matrix Amat as described in Sec. 2.2.2, we simply perform the matrix-vector mul-
tiplication y = Amat(vec input) as described in Sec. 2.1.3. One important aspect of
testing compressed sensing algorithms is the consideration of noisy measurements.
A set of problem generation functions which add noise to the measurements is in-
cluded. A noise vector is produced by passing these functions a noise level parameter
noise level, creating m random values from N (0,1), scaling the noise vector to have
`2 norm noise level · ‖y‖2, and adding this noise vector to the measurements y.

2.3 GPU Implementation

In CUDA, functions are written for the GPU in the form of kernels which take control
parameters to seamlessly assign the parallel tasks to the cores. The work for a kernel
is divided into blocks where each block is assigned the same number of threads.
The maximum number of threads, maxT hreadsPerBlock, for a given GPU is easily
obtained with a built-in device query function from CUDA. The preponderance of
kernels in this software execute a task on a single element of a vector. Thus, a vector
of length L requires L threads. Empirically we observe that minimizing the number
of blocks produces the best performance.

The vectors consider by the algorithms in this software have length L where L
is one of m, n, mn, np, or numBins. Different scheduling parameters are determined
based on the length of the vector passed to the kernel. The kernels are executed with
the scheduling parameters numBlocks and threadsPerBlock where

threadsPerBlock = min(L,maxT hreadsPerBlock);

numBlocks =
⌈

L
threadsPerBlock

⌉
.

In this way, we are guaranteed at least L threads, and all kernels ensure that any thread
with index greater than L remains idle.

Alternatively, one may adopt the convention of writing kernels so that the number
of blocks is a multiple of the number of multiprocessors on the GPU. This requires
writing kernels that execute tasks on multiple elements in a vector. On the surface,
this ensures full parallelization by employing every core. Our convention has the

18 J.D. Blanchard, J. Tanner

potential for assigning blocks to a fraction of the multiprocessors. However, as our
kernels are executing a single task on a single element, we still achieve the same level
of parallelization. Suppose the length L is not a multiple of the number of cores. Then
the convention of assigning blocks as a multiple of the number of multiprocessors
requires R threads which act on one more element than the other threads where

R = L−
⌊

L
number of multiprocessors

⌋
.

These R threads will perform the extra task on exactly R cores. Our convention of
maximizing the number of threads will require the execution of R̃ threads on R̃ cores
where

R̃ = L−
⌊

numBlocks
number of multiprocessors

⌋
∗(number of multiprocessors)∗threadsPerBlock.

Even though R and R̃ may not be identical, they are both smaller than the number of
cores and therefore require the full use of the GPU.

3 Software

The software, GPU Accelerated Greedy Algorithms for Compressed Sensing [5], is
currently enabled to solve compressed sensing problems with five greedy algorithms:
Thresholding, Iterative Hard Thresholding [7], Normalized Iterative Hard Threshold-
ing [8], Hard Thresholding Pursuit [22], and CoSaMP/Subspace Pursuit [30,13]. The
software, written in CUDA-C, compiles Matlab executable files which define three
functions to be executed as standard Matlab functions3. Since the source is written in
CUDA-C, a user can readily alter the parent functions to create C/C++ executables
rather than Matlab executables.

There are two main functionalities. First, the functions are capable of taking a
problem directly from Matlab and employing the GPU to obtain the solution. This
is especially useful for applications. The primary motivation for writing the software
is the need for large-scale testing of these algorithms on large problems. Therefore,
the software includes a significant testing suite for randomly generated problems.
Information about the performance of the algorithm is written to a text file and Matlab
scripts for reading and analyzing the output are also included. The random seed used
to generate each random problem is included in the performance data so that each of
the problems tested can be reproduced. For comparison to CPU performance, each
function has an equivalent Matlab version which does not employ the GPU.

As described in Sec. 2.1.3, the software currently contains three matrix-vector
multiplications, generic matrices (gen), subsampled discrete cosine transform (dct),
and sparse matrices (smv). As these matrices require different input to describe the
matrix, there are three distinct version of each of the main functions. In the follow-
ing, we let mat ∈ {gen,dct,smv} denote the suffix which describes the matrix-vector
multiplication.

3 While this software requires a CUDA enabled GPU, it is independent from Matlab and does not
require the parallel processing toolbox.

GPU Accelerated Greedy Algorithms for Compressed Sensing 19

The main functions compiled are gaga dct, gaga smv, and gaga gen. A user
may call these functions directly, or they can be accessed through a parent function
gaga cs. These functions are overloaded to have two main functionalities: testing
and application. The algorithm testing variant generates a random problem to test a
specified algorithm and matrix class and returns algorithm performance characteris-
tics. The application variant returns an estimated sparse solution to a specific problem
passed from the Matlab workspace with the sparse solution obtained by applying a
user specified algorithm along with the measurement matrix, measurements, and al-
gorithm options.

When used to test algorithm performance on randomly generated problems4, the
function automatically generates the problem using options matrixEnsemble and
vecDistribution to specify the distribution of the random m× n measurement ma-
trix and random k nonzeros in the sparse vector measured. The algorithm then solves
the generated problem and returns to the Matlab workspace the following algorithm
performance characteristics: errors, times, iterations, support identification, conver-
gence rate, and the output of the algorithm. The function also records more detailed
information to a date stamped text file. The input and output arguments for executing
these functions are given in Tab. 2.

Random Problem
matrix class output input

gen [errors, times, iterations,checkSupport,convRate, x̂] gaga cs('alg', 'gen',k,m,n,options)
smv [errors, times, iterations,checkSupport,convRate, x̂] gaga cs('alg', 'smv',k,m,n, p,options)
dct [errors, times, iterations,checkSupport,convRate, x̂] gaga cs('alg', 'dct',k,m,n,options)

Table 2 Input arguments and output for generating and solving a random problem with gaga cs. (For
smv, p denotes the number of nonzero entries per column.) The options argument may be omitted in
which case all variables take on their default values.

The fuction gaga cs is also capable of taking a problem directly from Matlab,
passing it to the GPU, and returning the solution to the Matlab workspace. In this
case, there is no data written to a text file and the output to Matlab is the approxi-
mate solution vector, iterations, and convergence rate. The function always requires
inputs specifying the algorithm to be used to recover the sparse vector, the type of
the matrix that is being passed, the number of nonzeros k in the output vector, and
the vector of measurements y. When passing a general matrix, class gen, the matrix
A is passed directly. Sparse matrices, class smv, are passed in coordinate list (COO)
format of rows, cols, and values. For discrete cosine transform matrices, class dct,
the measurement matrix is passed by specifying its size m×n and the subset rows of
the full discrete cosine transform matrix.

Admissible values for alg are the following strings: 'ThresholdSD', 'ThresholdCG',
'IHT', 'NIHT', 'HTP', and 'CSMPSP'. Algorithms 'NIHT' and 'HTP' support a further
'timing' option (described below). Options are set using the gagaOptions function

4 The random sparse matrix generator is designed to be fast for p�m, and outside this regime can fail
to construct the sparse matrix appropriately, resulting in a warning and the function terminating.

20 J.D. Blanchard, J. Tanner

Direct Problem
matrix class output input

gen [x̂, iterations,convRate] gaga cs('alg', 'gen',k,y,A,options)
smv [x̂, iterations,convRate] gaga cs('alg', 'smv',k,y,rows,cols,values,options)
dct [x̂, iterations,convRate] gaga cs('alg', 'dct',k,m,n,y,rows,options)

Table 3 Input arguments and output for solving a direct problem with gaga cs.

by passing pairs indicating a variable name followed by its specified value (which
may be an integer, float, or string). For example,

>> options = gagaOptions('tol',0.0001,'maxiter',400,'vecDistribution','gaussian');

>> [err, tim, itr,supp,cnv,xout] = gaga cs('NIHT','dct', k, m, n, options);

will generate a random problem with a m× n subsampled DCT matrix and a vector
with k nonzeros from N (0,1), and then solve the problem using NIHT, with stop-
ping criteria depending on a tolerance of 0.0001 and a maximum of 400 iterations.
Options should be set using gagaOptions for typecasting and necessary ordering. A
complete list of admissible options is presented in Tab. 4.

To generate timings data for performance comparisons of the subroutines, when
the timing option is active, the function gaga cs produces additional output to a text
file reporting timings per iteration of FindSupport, RestrictedSD, and RCGProjection.
Since the subroutines are consistent across the algorithms, timing the subroutines is
available for NIHT and HTP.

The software package includes a mirror copy of the Matlab GPU software imple-
mentation written exclusively in Matlab using only the CPU. The primary purpose
of this duplication of the code is to compare the performance of the GPU enabled
functions to CPU only equivalent, and as a secondary feature to serve as a template
to the CUDA-C code for those unfamiliar with this language. This software is in-
cluded in the directory GAGA/gaga matlab with the main function gaga matlab cs
having the same input and output as given in Tab. 2 for random problem gener-
ation and evaluation. The CPU only function also records the pertinent informa-
tion in date stamped text files whose names include matlab. The Matlab only vari-
ant is capable of having a measurement matrix and vector passed, but in that case
the algorithms should be directly called as the Matlab function from the directory
GAGA/gaga matlab/algorithms.

4 Subroutine Timings

In this section we present least squares fits to average timings of the subroutines from
Sec. 2.1 and the random problem generation described in Sec. 2.2. Rather than record
the timings of each subroutine separated from their intended use in the greedy Algo-
rithms 1 to 6, the timings we present are recorded from implementations of Alg. 4
and 5, which are sufficient to test each subroutine. Moreover, for conciseness and to
ensure that all aspects of the algorithms tasks are included, we often report timings

GPU Accelerated Greedy Algorithms for Compressed Sensing 21

Admissible options
variable name value type and default

'tol' specifying convergence rate stopping conditions, positive float, default 0.001.
'maxiter' maximum number of iterations, positive integer, default 300 for HTP and

CSMPSP, 5000 for other algorithms.
'vecDistribution' distribution of the nonzeros in the sparse vector for the test problem instance,

string options: 'binary' for±1 with equal probability (default), 'gaussian' for Nor-
mal N (0,1), and 'uniform' for uniform from the interval zero to one, U (0,1).

'matrixEnsemble' distribution of the nonzeros in the measurement matrix (not used for dct) for the
test problem, string options: 'binary' for ±1/

√
p with equal probability (default

for smv), 'gaussian' for Normal N (0,1) (only valid for gen, default for gen), and
'ones' for all nonzeros all equal to one (only valid for smv).

'seed' seed for random number generator, unsigned int, default clock().
'numBins' number of bins to use for order statistics, positive integer, default to

max(n/20,1000)
'kFixed' flag to force the k used in the problem generate to be that specified, string options:

'off' (default) and 'on'.
'noise' level of additive normally distributed noise as a fraction of the ‖Ax‖2, non-

negative float, default to 0.
'convRateNum' number of the last iterations to use when calculating average convergence rate,

positive integer, default 16.
'gpuNumber' identify GPU to be used, non-negative integer, default to 0.

'threadsPerBlockn' number of threads per block for kernels acting on vectors of length n, positive
integer, default to min(n,max threads per block).

'threadsPerBlockm' number of threads per block for kernels acting on vectors of length m, positive
integer, default to min(m,max threads per block).

'threadsPerBlocknp' number of threads per block for kernels acting on vectors of length n · p (for smv),
positive integer, default to min(np,max threads per block).

'threadsPerBlockBin' number of threads per block for kernels acting on vectors of length numBin,
positive integer, default to min(numBins,max threads per block).

'timing' indicates that times per iteration should be recorded, string options: 'off' (default)
and 'on'.

'alpha' specifying fraction (1−α) of bins counted in early support set identification
steps, float between (0,1), default to 0.25 which counts 75% of the bins initially.
(only valid with 'timing' set to 'on'.).

'supportFlag' method by which the support set is identified, integer options (only valid with
'timing' set to 'on'): 0 (default) for dynamic binning where binning is conducted
only when the support set could have changed, 1 for binning at every iteration,
2 for using thrust::sort to find the largest entries when the support set could
have changed, and 3 for using thrust::sort at every iteration.

Table 4 Optional arguments for gaga cs set using gagaOptions.

not of single subroutines, but instead combinations of subroutines that compose Al-
gorithms 1 to 6. For instance, in Section 4.1 we report the timings of RestrictedSD
as implemented in NIHT along with the time to update the stopping criteria. Timings
are presented for the matrix ensembles and problem size n listed in Tab. 5, with the
n selected based upon memory constraints and the time taken to complete the tests
(just over five days for the data presented here). The values of p tested for smv are
selected to balance speed and efficacy of the algorithms [6]. All tests are conducted
for randomly generated input vectors as described in Section 2.2.1 with the random
sign pattern {−1,1} distribution.

22 J.D. Blanchard, J. Tanner

mat n tested Matrix generation

gen 210,212,214 N (0,m−1)
dct 210+2 j for j = 0,1, . . . ,5 Uniform at random

smv 210+2 j for j = 0,1, . . . ,4
Uniform ±p−1/2 for

GPU p = 3, . . . ,7 and CPU p = 4,7

Table 5 Matrix ensembles tested with list of large problem size n.

For each n listed in Tab. 5, tests are conducted for each value of m = dnδe and
each δ from (3) that results in m ≥ 100.

δlist = 10−3∪{2 j ∗10−3}5
j=1∪{2 j ∗10−2}5

j=1∪
{

0.1+ j
0.89
19

}19

j=1
(3)

For each (m,n) pair, tests are conducted with the GPU implementation for each inde-
pendent value of k = d jm/49e starting with j = 1 and increasing by one until NIHT or
HTP with one of the matrix ensembles in Tab. 5 fails to recover the measured vector
within an `∞ error of 10−3 in each of ten consecutive attempts. Tests are conducted
similarly for the CPU implementation but for k = d(2 j−1)m/49e and are terminated
after five consecutive failures recovering the measured vector.

NIHT and HTP are tested with the same stopping criteria, terminating when one
of the following is achieved:

1. Scaled convergence ‖y−Axl‖2 ≤ 10−3 m
n ,

2. Divergence ‖y−Axl‖2 > 100‖y−Ax0‖2,
3. Convergence to an incorrect solution or small additive change

max
j=0,...15

∣∣‖y−Axl− j‖2−‖y−Axl− j−1‖2
∣∣ < 10−6

4. Convergence to an incorrect solution or slow geometric convergence rate(
‖y−Axl‖2

‖y−Axl−15‖2

)1/15

> 0.999

if l > 750 for NIHT and l > 125 for HTP.
5. Number of iterations exceeds 5000 for NIHT or 300 for HTP.

For each n in Tab. 5, NIHT and HTP are applied for many (k,m,n) as described in
Section 4, with random problem instances generated as described in 2.2.1. The ran-
dom problem generation does not ensure that the measured vector has the requested
sparsity k, though typically it is very close. Each (k,m,n) tested is associated with
the value of k from d jm/49e that is nearest, and for each of these proxy (k,m,n) all
recorded timings are included in lists to be used for the reported values in the sub-
sequent sections. Scripts are included with the software to produce similar data and
presented tables and plots in the following sections.

All tests were conducted on a GPU workstation including dual Intel Xeon X5650
CPUs with 24GB of 1333MHz RAM and a single NVIDIA c2050 GPU. The CUDA

GPU Accelerated Greedy Algorithms for Compressed Sensing 23

software was compiled using the 4.0 compiler [31] and all MatLab tests used ver-
sion R2011b with automatic multi-threading. Average time-per-iteration values for
RestrictedSD are presented in Section 4.1 with values recorded including the times
for NIHT iteration lines 1 and 4 combined. Average times for Threshold combined
with either FindSupport or FindSupport sort, with values recorded from NIHT
iteration lines 2 and 3 combined, are presented in Section 4.2. Average times for
the projection portion of RCGProjection divided by the number of CG iterations
conducted, to approximate the average time of RestrictedCG, with values recorded
from the interior of HTP iteration line 4 are presented in Section 4.3. Average times
for random problem generation and all initial memory allocations are presented in
Section 4.4 with the values recorded coming from the above mentioned testing of
NIHT. In each of the above tests, times are presented for both the GPU and CPU
variants. The multiplicative increase in the median speed of the GPU timings as com-
pared with the CPU timings are presented in Section 4.5.

4.1 RestrictedSD

The timings presented here are the combination of NIHT iteration lines 1 and 4, which
include both a call to RestrictedSD and an update to the stopping criteria conditions
which are calculated on the CPU. RestrictedSD includes two applications of the
matrix-vector product A and one application of A∗, in addition to thresholding and
vector operations. For each (k,m,n) tested as described in Section 4, the average of
the recorded times for the combination of NIHT iteration lines 1 and 4 is evaluated
and used to construct least squares fits of the average time per iteration. Least squares
fits of the average times are calculated for each of four models: a constant time,
constant plus linear in δ , constant plus linear in ρ , and constant plus linear in δ and
ρ , which we refer to as the bilinear model. For conciseness we report values for only
one of the models. If the least squares error for the bilinear model is less than 70%
of the smaller of the two least squares errors of the linear models then we report
the bilinear model coefficients; if this is not the case and one of the linear models
has a least squares error that is less than 90% of the constant model then we report
the coefficients of the more accurate of the linear models; otherwise we report the
constant model coefficient. Scripts are included with the software that both replicate
the below presented tables and which generate full tables with each of the four least
squares models. All times presented are reported in milliseconds.

The least squares models for the dct matrix ensemble are presented in Tab. 6. The
GPU implementation has an approximate minimum time of half a millisecond for
n = 210. The time increases with n, exhibiting a δ dependence for n ≥ 214, and the
largest time for n = 220 and δ = 0.99 showing a near four-fold increase in the time
as compared to n = 218. The largest time for the GPU implementation is just over
10ms. The CPU implementation similarly shows a near constant minimum time of
approximately 33ms for smaller values of n, and again exhibits a linear dependence
in δ for the largest value of n.

The least squares models for the gen matrix ensemble are presented in Tab. 7.
Both the GPU and CPU implementations show a strong linear dependence on δ with

24 J.D. Blanchard, J. Tanner

Table 6 Least squares model Const.+ αδ for the average time in milliseconds of NIHT iteration lines 1
and 4 using the dct matrix ensemble. This time includes both a call to RestrictedSD as well as updating
the stopping criteria.

n Const. α `∞ error

gpu

210 0.545 - 0.113
212 0.577 - 0.106
214 0.648 0.048 0.0846
216 0.861 0.167 0.0798
218 1.87 0.816 0.0775
220 6.05 4.68 0.378

cpu

210 33.9 - 6.39
212 36 - 7.68
214 39.5 - 8.2
216 57.9 - 8.24
218 119 15.5 10.8
220 490 - 324

a small constant component, and have rapid increases with n. In particular, for n = 214

the gen ensemble can take approximately 43ms whereas corresponding tests for the
dct ensemble take under 0.7ms. For the smallest values n = 210 the CPU imple-
mentation is roughly as fast as the GPU implementation, but for n = 214 the GPU
implementation is approximately sixteen times faster than the CPU implementation;
further comparisons are presented in Section 4.5.

Table 7 Least squares model Const.+ αδ for the average time in milliseconds of NIHT iteration lines 1
and 4 using the gen matrix ensemble. This time includes both a call to RestrictedSD as well as updating
the stopping criteria.

n Const. α `∞ error

gpu
210 0.765 - 0.0823
212 0.666 2.59 0.0922
214 0.625 42.8 1.44

cpu
210 0.227 1.21 1.08
212 -0.00994 42.9 10.3
214 -22 860 163

The least squares models for the smv matrix ensemble are presented in Tab. 8.
The GPU implementation has an approximate minimum time of 0.62ms for n = 210.
The GPU implementations exhibit a ρ dependence for larger n, which is increasingly
dominant for larger values of the number of nonzeros per column, p. The GPU imple-
mentation also exhibits a less pronounced δ dependence for the largest values of n. In
contrast, the CPU implementation has a substantial dependence on δ and essentially
no ρ dependence. The GPU implementation shows a slow growth but consistent in-
crease in the time as p is increased, and begins to exhibit a linear increase with n for
the largest values of n. The CPU variant appears to have a superlinear increase with
n. For small problem sizes the smv ensemble has times similar to the dct ensemble,
with dct taking nearly twice as long for the largest values of n.

GPU Accelerated Greedy Algorithms for Compressed Sensing 25

Table 8 Least squares model Const.+ αδ + βρ for the average time in milliseconds of NIHT iteration
lines 1 and 4 using the smv matrix ensemble. This time includes both a call to RestrictedSD as well as
updating the stopping criteria.

n Const. α β `∞ error

gpu p=3

210 0.624 - - 0.102
212 0.654 - - 0.107
214 0.674 - 0.285 0.103
216 0.81 - 0.851 0.16
218 1.3 0.613 1.78 0.418

gpu p=4

210 0.622 - - 0.0807
212 0.66 - - 0.0872
214 0.696 - 0.348 0.082
216 0.878 0.137 0.548 0.106
218 1.68 0.586 1.83 0.173

cpu p=4

210 0.238 - - 1.07
212 0.431 - -0.532 0.482
214 0.93 0.231 - 0.0896
216 3.42 1.72 - 0.678
218 17.5 9.9 - 2.51

gpu p=5

210 0.624 - - 0.244
212 0.648 - 0.181 0.0913
214 0.71 - 0.431 0.109
216 0.928 0.162 0.676 0.13
218 1.92 0.663 2.25 0.157

gpu p=6

210 0.624 - - 0.128
212 0.652 - 0.218 0.085
214 0.733 - 0.478 0.0812
216 1.01 0.155 0.783 0.111
218 2.21 0.693 2.66 0.207

gpu p=7

210 0.627 - - 0.127
212 0.657 - 0.261 0.186
214 0.753 - 0.553 0.0946
216 1.15 - 1.25 0.145
218 2.5 0.741 3.14 0.25

cpu p=7

210 0.306 - -0.356 0.144
212 0.506 - -0.307 0.14
214 1.3 0.437 - 0.407
216 4.98 3.55 - 0.839
218 25.8 17 - 5.48

4.2 Support set identification via FindSupport and FindSupport sort

Whereas the computational time of RestrictedSD and RestrictedCG are domi-
nated by the matrix-vector multiplications with predictable dependence on δ and ρ ,
FindSupport has a far less predictable behavior and is not well represented by sim-
ple linear regressions. Rather, the timings recorded for FindSupport are presented
as plots. For conciseness we present only the plots for the dct ensemble using the
GPU implementation of NIHT. Scripts are included with the software that both repli-
cate the below presented plots and generate plots for the smv and gen ensembles as
well as HTP and CPU implementations.

26 J.D. Blanchard, J. Tanner

FindSupport differs from the more standard FindSupport sort in two ways:
rather than sorting the vector it only identifies the support set needed for Threshold,
and FindSupport only computes a new support set if the update to the vector is suf-
ficiently large that the support set could have changed. Both of these features result
in reduced execution times. Fig. 1 - 3 show average times for the proxy (k,m,n) as de-
scribed in Section 4.1 for n = 216,218, and 220. In each plot: Panel (a) is FindSupport,
Panel (b) uses FindSupport with minValue set to maxValue to force the support set
identification at each call, Panel (c) uses sorting but only when the update is suffi-
ciently large that the support set could have changed, Panel (d) uses sorting at each
iteration, Panel (e) is the ratio of the times in Panel (a) over those in Panel (b), and
Panel (f) is the ratio of the times in Panel (a) over those in Panel (c).

Contrasting Panels (d) and (c) as well as (b) and (a) shows the reduction in time
achieved by only applying the support set identification when the support set could
have changed. Panel (e) show the gain for only identifying the support set when
needed. Panel (f) show the gain for using the linear binning approach of FindSupport
as opposed to sorting. Fig. 3 shows that for n = 220 the sorting at each iteration takes
approximately 2.5ms but FindSupport takes between 0.3ms and 0.6ms. In contrast,
Tab. 6 shows that for the same problem size RestrictedSD takes between 6ms and
10ms. For dct and n = 220 sorting at each iteration can take between 25% and 40%
of the time per iteration, whereas FindSupport takes between 5% and 10%. Though
a modest reduction in time, the result is the time per iteration of the GPU implemen-
tation of the greedy algorithms being almost exclusively the time for the necessary
matrix-vector multiplications.

4.3 RestrictedCG

The timings presented here are the projection portion of RCGProjection divided by
the number of CG iterations conducted with values recorded from the interior of HTP
iteration line 4. Each average includes both a call to RestrictedCG and an update to
the CG stopping criteria, which is calculated on the CPU, similar to the NIHT stop-
ping criteria. RestrictedCG includes one application of the matrix-vector product
A and one application of A∗ in addition to thresholding and vector operations, which
is approximately the same computational cost as that of RestrictedSD presented in
Section 4.1. The values of (k,m,n) tested and least squares model fits are calculated
and described in Section 4.1.

The least squares models for the dct matrix ensemble are presented in Tab. 9.
The GPU implementation has an approximate minimum time of 0.35ms for n = 210

which is approximately two thirds of the timings presented in Tab. 6. As observed for
RestrictedSD in Section 4.1, the time increases with n, exhibiting a δ dependence
for n ≥ 214, and the largest time for n = 220 and δ = 0.99 showing a near four-fold

GPU Accelerated Greedy Algorithms for Compressed Sensing 27

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

 0

0.05

0.1

0.15

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a) (b)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 0

0.1

0.2

0.3

0.4

0.5

0.6

(c) (d)

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0
.4

0.4

0
.4

0.4

0.4

0.4

0.6
0.6

0.6

0.6

0.6 0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.2

0.2

0.2

0.2

0.
4

0.4

0.4

0.4

0.4

0.6

0.6
0.6

0
.6

0.
6

0.6

0.6

0.6

0
.6

0.6

0.60.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(e) (f)

Fig. 1 Plot of average time (in milliseconds) for support set detection per iteration with n = 216. The
GPU implementation of NIHT with the dct matrix ensemble. Panel (a) is FindSupport. Panel (b) uses
FindSupport with minValue set to maxValue to force the support set identification at each call. Panel (c)
uses sorting but only when the update is sufficiently large that the support set could have changed. Panel
(d) uses sorting at each iteration. Panel (e) is the ratio of the times in Panel (a) over those in Panel (b).
Panel (f) is the ratio of the times in Panel (a) over those in Panel (c).

28 J.D. Blanchard, J. Tanner

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.05

0.1

0.15

0.2

0.25

 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 0

0.2

0.4

0.6

0.8

1

(a) (b)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 0

0.2

0.4

0.6

0.8

1

1.2

(c) (d)

0.1

0.1

0.1

0.1

0.
2

0.2

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6 0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.2

0.2

0.2

0.2

0.4

0
.4

0.4

0.4

0.4

0.
4

0.40.4

0.6

0
.6

0
.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(e) (f)

Fig. 2 Plot of average time (in milliseconds) for support set detection per iteration with n = 218. The
GPU implementation of NIHT with the dct matrix ensemble. Panel (a) is FindSupport. Panel (b) uses
FindSupport with minValue set to maxValue to force the support set identification at each call. Panel (c)
uses sorting but only when the update is sufficiently large that the support set could have changed. Panel
(d) uses sorting at each iteration. Panel (e) is the ratio of the times in Panel (a) over those in Panel (b).
Panel (f) is the ratio of the times in Panel (a) over those in Panel (c).

GPU Accelerated Greedy Algorithms for Compressed Sensing 29

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.5

1

1.5

2

2.5

3

3.5

4

0.5

1

1.5

2

2.5

3

3.5

(a) (b)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.5

1

1.5

2

2.5

3

3.5

 0

0.5

1

1.5

2

2.5

3

(c) (d)

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.4

0
.4

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.2

0.2

0.2

0.2

0.40.4

0.4

0.4

0
.4

0.
4

0.4

0
.6

0.
6

0.6

0.6

0.6

0.6

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(e) (f)

Fig. 3 Plot of average time (in milliseconds) for support set detection per iteration with n = 220. The
GPU implementation of NIHT with the dct matrix ensemble. Panel (a) is FindSupport. Panel (b) uses
FindSupport with minValue set to maxValue to force the support set identification at each call. Panel (c)
uses sorting but only when the update is sufficiently large that the support set could have changed. Panel
(d) uses sorting at each iteration. Panel (e) is the ratio of the times in Panel (a) over those in Panel (b).
Panel (f) is the ratio of the times in Panel (a) over those in Panel (c).

30 J.D. Blanchard, J. Tanner

increase in the time as compared to n = 218. The largest time for the GPU imple-
mentation is approximately 7.5ms. The CPU implementation similarly shows a near
constant minimum time of approximately 25ms for smaller values of n, and again
exhibits a linear delta dependence in δ for the largest value of n.

Table 9 Least squares model Const.+ αδ for the average time in milliseconds of the projection portion
of RCGProjection divided by the number of CG iterations conduced, to approximate the average time of
RestrictedCG, with values recorded from the interior of HTP iteration line 4 for the dct matrix ensemble.

n Const. α `∞ error

gpu

210 0.346 - 0.0643
212 0.37 - 0.0734
214 0.417 0.0179 0.0508
216 0.562 0.0833 0.0523
218 1.29 0.519 0.0548
220 4.14 3.23 0.102

cpu

210 24.2 - 2.02
212 24.6 - 5.05
214 28.7 - 6.9
216 39.7 - 4.96
218 79.7 9.5 9.75
220 351 36.1 80.6

The least squares models for the gen matrix ensemble are presented in Tab. 10.
Both the GPU and CPU implementations show a strong linear dependence on δ with
a small constant component, and have rapid increases with n. For the largest value of
n = 214 the GPU implementation is nearly sixteen times faster than the CPU imple-
mentation. Both ensembles exhibit a rapid rise in the execution time as n increases.

Table 10 Least squares model Const.+ αδ + βρ for the average time in milliseconds of the projection
portion of RCGProjection divided by the number of CG iterations conduced, to approximate the average
time of RestrictedCG, with values recorded from the interior of HTP iteration line 4 for the gen matrix
ensemble.

n Const. α β `∞ error

gpu
210 0.474 -0.0407 - 0.0522
212 0.383 1.71 - 0.0659
214 0.372 28.2 - 0.712

cpu
210 0.387 0.77 -0.822 0.274
212 -0.422 28.2 - 4.67
214 16.5 449 - 155

The least squares models for the smv matrix ensemble are presented in Tab. 11.
The GPU implementation has an approximate minimum time of 0.36ms for n = 210.
The GPU implementations exhibit a ρ dependence for larger n and p; though less
pronounced than the ρ dependence in Tab. 8. The GPU implementation exhibits a δ

dependence for the largest value of n, with this dependence decreasing for larger val-

GPU Accelerated Greedy Algorithms for Compressed Sensing 31

Table 11 Least squares model Const.+ αδ + βρ for the average time in milliseconds of the projection
portion of RCGProjection divided by the number of CG iterations conduced, to approximate the average
time of RestrictedCG, with values recorded from the interior of HTP iteration line 4 for the smv matrix
ensemble.

n Const. α β `∞ error

gpu p=3

210 0.355 - - 0.0994
212 0.367 - - 0.0626
214 0.401 - - 0.174
216 0.612 - -0.379 0.464
218 1.19 - - 0.906

gpu p=4

210 0.361 - - 0.0508
212 0.384 - - 0.138
214 0.411 0.029 - 0.0629
216 0.565 0.13 - 0.095
218 1.27 0.507 - 0.343

cpu p=4

210 0.231 - -0.18 0.071
212 0.391 - -0.561 0.243
214 0.812 - - 0.155
216 2.66 0.768 - 0.411
218 12.6 6.04 - 1.32

gpu p=5

210 0.363 - - 0.0485
212 0.391 - - 0.0868
214 0.433 - 0.168 0.0551
216 0.626 0.152 - 0.112
218 1.52 0.587 - 0.398

gpu p=6

210 0.365 - - 0.0877
212 0.398 - - 0.0665
214 0.454 - 0.197 0.125
216 0.729 - 0.576 0.116
218 1.77 0.445 1.16 0.337

gpu p=7

210 0.364 - - 0.056
212 0.391 0.0259 - 0.0529
214 0.473 - 0.266 0.0889
216 0.804 - 0.685 0.254
218 2.07 0.411 1.57 0.4

cpu p=7

210 0.279 - -0.294 0.258
212 0.427 - -0.381 0.134
214 1.08 - - 1.4
216 3.68 1.6 - 1.15
218 17.5 9.37 - 2.51

ues of p. The CPU implementation has essentially no ρ dependence, and a significant
dependence on δ . Behavior with p and n are consistent with Tab. 8.

4.4 Problem generation and memory allocation

One of the primary motivations for the development of this software is to allow large-
scale testing of the growing number of competing algorithms for compressed sensing.
Such large-scale testing includes both evaluation of algorithm performance for large
problem sizes n, as well as testing the algorithms on a large number of random prob-

32 J.D. Blanchard, J. Tanner

lem instances. Results of such testing are presented in [6]. Efficient testing of large
numbers of problems requires the ability to generate random problems with the prob-
lem generation time small compared to time needed for the algorithm to terminate.

The timings presented here are the time to generate a random problem and all
memory allocation as well as creating the initial step by computing A∗y, finding its
k largest entries using FindSupport and thresholding to the corresponding support
set using Threshold. The values of (k,m,n) tested and least square model fits are
calculated at described in Section 4.1.

The least squares models for the dct matrix ensemble are presented in Tab. 12.
The GPU implementation has an approximate nearly constant minimum time of 19ms
for n≤ 216, increasing up to about 60ms for n = 220 where a small linear dependence
in δ is also observed, which is consistent with RestrictedSD. The CPU imple-
mentation similarly shows a near constant minimum time of approximately 14ms for
smaller values of n, with an earlier significant δ dependence as n increases, with the
total time for n = 218 approaching 100ms.

Table 12 Least squares model Const.+αδ +βρ for the average time in milliseconds for random problem
generation and memory allocation for NIHT using the dct matrix ensemble.

n Const. α β `∞ error

gpu

210 18.7 -0.254 - 0.353
212 18.7 - - 0.82
214 19.1 - - 0.432
216 20.7 0.393 - 1.05
218 27 2.64 - 1.63
220 49.6 6.38 - 3.73

cpu

210 13 - - 2.66
212 14.9 - - 2.98
214 19.3 - - 4.72
216 31.8 8.38 - 44.3
218 88 11.1 - 13.8
220 294 - 67.4 214

The least squares models for the gen matrix ensemble are presented in Tab. 13.
Both the GPU and CPU implementations show a pronounced linear dependence on
δ . The GPU implementation time increases from a nearly constant time of about
37ms for n = 210 to between 35ms and 560ms for n = 214. The CPU implementa-
tion initially has a smaller time for n = 210 of between 3ms and 23ms, but increases
dramatically when n = 214 to between 10ms for small δ to 3,800ms for δ near one.

The least squares models for the smv matrix ensemble are presented in Tab. 14.
The GPU implementation has a nearly constant time of 19ms for n ≤ 216, increasing
only modestly to between 26ms and 29ms for n = 218. The GPU implementation
shows no ρ dependence with the exception of one apparent anomaly, and shows a
small δ dependence only for n = 218 and p ≥ 4. Increasing p from 3 to 7 introduces
only a modest (less than 2%) increase in the time. The CPU implementation exhibits
a strong δ dependence for n≤ 216 and dramatic increase with n from about 33ms for

GPU Accelerated Greedy Algorithms for Compressed Sensing 33

Table 13 Least squares model Const. + αδ for the average time in milliseconds for random problem
generation and memory allocation for NIHT using the gen matrix ensemble.

n Const. α `∞ error

gpu
210 36.4 6.87 0.825
212 36 34 1.17
214 35 529 5.81

cpu
210 3.12 19.6 5.35
212 9.55 248 12.1
214 10.1 3.84e+03 90.1

n = 210 to 43,000ms for n = 218. The CPU implementation shows a small increase in
time with p.

4.5 GPU Acceleration Ratio

For each of the tests described in Sections 4.1–4.3 there are (k,m,n) triples for which
both the GPU and CPU timings are recorded. This section gives a rough calculation
of the general acceleration of the GPU implementation as compared to the CPU im-
plementation. For each n where GPU and CPU timings are available we compute an
acceleration factor as follows: each associated proxy (k,m) as described in Section
4.1 that was tested for both GPU and CPU has the median of the GPU and CPU
times calculated and the ratio of the GPU over CPU times calculated. After each
(k,m) acceleration ratio is calculated, for a given n, we report the average of the ac-
celeration ratios. For NIHT this process is conducted for each of RestrictedSD,
FindSupport, and the problem generation, and HTP also includes RestrictedCG.
The average of the median acceleration ratios for NIHT are shown in Tab. 15 and for
HTP are shown in Tab. 16.

RestrictedSD is observed to be between 54 and 77 times faster for the dct
ensemble, as much as ten times faster for the smv ensemble for n = 218 and as much
as sixteen times faster for the gen ensemble for n = 214. FindSupport is between
28 and 60 times faster for the dct ensemble, as much as 70 times faster for the smv
ensemble for n = 218 reducing to equally fast for n = 210, and as much as sixteen
times faster for the gen ensemble with n = 214. The random problem generation for
the dct ensemble is moderately slower for n < 214, increasing to about six times
faster for n = 220, but is dramatically (over one-thousand times) faster for the smv
ensemble for n large, and as much as six times faster for the gen ensemble with
n = 214. The acceleration of the random problem generation for large problem sizes
is an essential part of large-scale testing where these times often dominate those of
the algorithm for all but the (k,m,n) nearest to the transition where the algorithm is
unable to recover the measured signal. RestrictedCG has acceleration ratios similar
to those of RestrictedSD.

34 J.D. Blanchard, J. Tanner

Table 14 Least squares model Const.+αδ +βρ for the average time in milliseconds for random problem
generation and memory allocation for NIHT using the smv matrix ensemble.

n Const. α β `∞ error

gpu p=3

210 18.9 -0.275 - 0.683
212 18.8 - - 0.715
214 19.2 - - 1.04
216 20.6 - 0.829 1.05
218 26.5 - - 1.85

gpu p=4

210 18.7 - - 0.569
212 18.8 - - 0.604
214 19.3 -0.271 - 0.516
216 20.8 - - 0.841
218 26.3 0.849 - 0.988

cpu p=4

210 37 78.9 - 11.3
212 332 536 - 195
214 1.85e+03 1.35e+03 - 1.29e+03
216 8.74e+03 3.57e+03 - 5.83e+03
218 3.79e+04 9.99e+03 - 2.62e+04

gpu p=5

210 18.8 - - 0.96
212 18.6 - - 0.676
214 19.5 -0.222 - 0.386
216 21 - - 0.932
218 26.8 0.867 - 0.865

gpu p=6

210 18.8 - - 0.673
212 18.7 - - 0.627
214 19.6 -0.243 - 0.459
216 21.1 - - 1.03
218 27.7 0.696 - 1.11

gpu p=7

210 18.8 - - 0.452
212 18.7 0.256 - 0.574
214 19.6 - - 0.478
216 21.4 - - 0.624
218 28.8 0.519 - 0.827

cpu p=7

210 33.8 83.4 - 7.9
212 325 541 - 205
214 1.95e+03 1.28e+03 - 1.38e+03
216 8.9e+03 3.69e+03 - 5.97e+03
218 4.41e+04 - - 3.21e+04

5 Conclusions and Future Work

This software package allows for the timely testing of algorithms of both large prob-
lem sizes as well as testing large numbers of randomly generated problems. Both
GPU implementations, written in CUDA, and CPU implementations, written in Mat-
Lab, are included to permit evaluation of the acceleration achieved by the GPU im-
plementation compared to the CPU implementation; furthermore, users who wish to
add functionality to the GPU implementation but are less familiar with CUDA have
a more familiar MatLab implementation for development.

For the dct matrix ensemble, the included greedy algorithms have a very small
time per iteration due to their extremely efficient GPU implementation of the mat-

GPU Accelerated Greedy Algorithms for Compressed Sensing 35

Table 15 Multiplicative acceleration factor for NIHT of median times for the GPU over CPU times.

n p RestrictedSD FindSupport Prob. Gen.

dct

210 62.64 42.54 0.70
212 63.09 42.44 0.80
214 63.21 42.16 1.04
216 64.46 41.59 1.77
218 54.11 38.45 3.20
220 57.94 38.82 5.80

smv

210 4 0.33 1.85 4.26
212 4 0.52 4.10 32.32
214 4 1.41 14.64 135.08
216 4 4.29 43.04 521.60
218 4 10.43 71.50 1630.08
210 7 0.30 2.16 4.26
212 7 0.63 3.48 33.92
214 7 1.86 12.86 142.53
216 7 5.42 37.11 526.82
218 7 10.80 55.60 1556.44

gen
210 1.06 2.07 0.34
212 10.36 4.09 2.53
214 16.75 6.17 5.85

Table 16 Multiplicative acceleration factor for HTP of median times for the gpu over cpu times.

n p RestrictedSD FindSupport Prob. Gen. RestrictedCG

dct

210 76.88 29.96 0.75 70.20
212 72.42 28.21 0.80 69.00
214 69.94 33.82 1.05 68.27
216 65.11 33.79 1.70 66.09
218 54.17 37.92 2.96 53.30
220 61.47 60.58 6.40 61.40

smv

210 4 0.39 0.95 4.26 0.51
212 4 0.61 2.16 31.34 0.79
214 4 1.57 4.32 132.79 1.90
216 4 4.41 13.09 504.11 4.74
218 4 10.01 24.89 1650.11 9.97
210 7 0.42 0.93 4.26 0.52
212 7 0.72 1.55 32.60 0.88
214 7 1.99 4.63 138.78 2.14
216 7 5.38 18.77 520.16 5.25
218 7 9.89 38.89 1550.09 9.24

gen
210 1.28 1.19 0.35 1.41
212 10.34 2.16 2.55 10.47
214 15.71 4.94 5.71 15.43

vecs, Tab. 6, which are between 50 and 70 times faster than their CPU implementa-
tion. In addition, the dct ensemble benefits from a small time for the random problem
generation due to the few random numbers needed. The included greedy algorithms
are observed to have nearly the same recovery ability for the dct and smv matrix en-
sembles for δ < 1/5 and p = 7 [6]. In this regime, the smv is observed to have a time

36 J.D. Blanchard, J. Tanner

per iteration similar the dct. The smv ensemble random problem generation requires
a large number of random variables, which becomes prohibitively time consuming
for the CPU implementation and n large, often with the problem generation taking
many times longer than the time needed for the greedy algorithm to converge. For-
tunately, the GPU implementation of the random problem generation is dramatically
faster than the CPU implementation, allowing for efficient testing of large numbers of
smv problems. Moreover, the smv ensemble is observed to be approximately ten fold
faster for RestrictedSD with n = 218 on the GPU as compared to the CPU imple-
mentation, Tab. 15 and 16. The gen ensemble shows over ten fold improvement for
RestrictedSD and RestrictedCG with n = 212 and n = 214 as well as a significant
reduction in the time to generate random problems.

The first generation of the software presented here includes representative exam-
ples of greedy algorithms for compressed sensing, but is in no way exhaustive. Nu-
merous competitive algorithms have not been included. The software has been written
in a way to ease the inclusion of other algorithms. Scripts have been included which
can repeat the tests presented here, including automatic generation of tables. These
scripts allow users to replicate the results here, or determine the behavior and effi-
ciencies of the software on their system, in addition to easily testing newly included
algorithms. The software is available online at [5], without charge for academic re-
searchers.

Acknowledgements We thank Stephen Wright and Shangkyun Lee for allowing inclusion of their dct
matrix vector product code [25]. We also thank Erik Opavsky and Emircan Uysaler, Grinnell College
students, for their dense matrix-vector product which is the foundation of our gen matrix-vector product.

References

1. Alabi, T., Blanchard, J., Gordon, B., Steinbach, R.: Fast k-selection algorithms for graphics processing
units. ACM J. Experimental Algorithmics 17(2) (2012). Article 4.2, Pages 4.2:1-4.2:29

2. Allison, D., Noga, M.: Selection by distributive partitioning. Information Processing Letters 11(1), 7
– 8 (1980)

3. Beliakov, G.: Parallel calculation of the median and order statistics on GPUs with application to robust
regression. Computing Research Repository abs/1104.2 (2011)

4. Berg, E.v.d., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM Journal
on Scientific Computing 31(2), 890–912 (2008)

5. Blanchard, J.D., Tanner, J.: GAGA: GPU Accelerated Greedy Algorithms (2013). URL
www.gaga4cs.org. Version 1.0.0

6. Blanchard, J.D., Tanner, J.: Performance comparisons of greedy algorithms in compressed sensing.
Submitted, www.math.grinnell.edu/∼blanchaj/PCGACS preprint.pdf (2013)

7. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput.
Harmon. Anal. 27(3), 265–274 (2009)

8. Blumensath, T., Davies, M.E.: Normalised iterative hard thresholding; guaranteed stability and per-
formance. IEEE Selected Topics in Signal Processing 4(2), 298–309 (2010)

9. Candès, E.J.: Compressive sampling. In: International Congress of Mathematicians. Vol. III, pp.
1433–1452. Eur. Math. Soc., Zürich (2006)

10. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measure-
ments. Comm. Pure Appl. Math. 59(8), 1207–1223 (2006)

11. Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inform. Theory 51(12), 4203–
4215 (2005)

12. Cevher, V.: An ALPS view of sparse recovery. In: Acoustics, Speech and Signal Processing (ICASSP),
2011 IEEE International Conference on, pp. 5808–5811. IEEE (2011)

GPU Accelerated Greedy Algorithms for Compressed Sensing 37

13. Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans.
Inform. Theory 55(5), 2230–2249 (2009)

14. Donoho, D.L.: Neighborly polytopes and sparse solution of underdetermined linear equations (2004).
Technical Report, Department of Statistics, Stanford University

15. Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)
16. Donoho, D.L.: For most large underdetermined systems of equations, the minimal l1-norm near-

solution approximates the sparsest near-solution. Comm. Pure Appl. Math. 59(7), 907–934 (2006)
17. Donoho, D.L.: High-dimensional centrally symmetric polytopes with neighborliness proportional to

dimension. Discrete Comput. Geom. 35(4), 617–652 (2006)
18. Donoho, D.L., Tanner, J.: Sparse nonnegative solution of underdetermined linear equations by linear

programming. Proc. Natl. Acad. Sci. USA 102(27), 9446–9451 (electronic) (2005)
19. Donoho, D.L., Tsaig, Y.: Fast solution of l1 minimization problems when the solution may be sparse.

IEEE Trans. Inform. Theory 54(11), 4789–4812 (2008)
20. Donoho, D.L., Tsaig, Y., Drori, I., Stark, J.L.: Sparse solution of underdetermined linear equations by

stagewise orthogonal matching pursuit. IEEE Trans. Inform. Theory 58(2), 1094–1121 (2012)
21. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: Appli-

cation to compressed sensing and other inverse problems. IEEE Selected Topics in Signal Processing
1(4), 586–597 (2007)

22. Foucart, S.: Hard thresholding pursuit: an algorithm for compressive sensing. SIAM Journal on Nu-
merical Analysis 49(6), 2543–2563 (2011)

23. Hoberock, J., Bell, N.: Thrust: A parallel template library (2010). URL
http://www.meganewtons.com/. Version 1.3.0, http://www.meganewtons.com/

24. Kyrillidis, A., Cevher, V.: Recipes on hard thresholding methods. In: Computational Advances in
Multi-Sensor Adaptive Processing (CAMSAP), 2011 4th IEEE International Workshop on, pp. 353–
356. IEEE (2011)

25. Lee, S., Wright, S.J.: Implementing algorithms for signal and image reconstruction on graphical pro-
cessing units (2008). URL http://pages.cs.wisc.edu/ swright/GPUreconstruction/gpu image.pdf

26. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. Signal Processing, IEEE
Transactions on 41(12), 3397 –3415 (1993)

27. Merrill, D., Grimshaw, A.: High performance and scalable radix sorting: A case study of implement-
ing dynamic parallelism for GPU computing. Parallel Processing Letters 21(02), 245–272 (2011)

28. Monroe, L., Wendelberger, J., Michalak, S.: Randomized selection on the GPU. In: Proceedings of
the ACM SIGGRAPH Symposium on High Performance Graphics, HPG ’11, pp. 89–98. ACM, New
York, NY, USA (2011)

29. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234
(1995)

30. Needell, D., Tropp, J.: CoSaMP: Iterative signal recovery from incomplete and inaccurate samples.
Appl. Comp. Harm. Anal. 26(3), 301–321 (2009)

31. NVIDIA: Cuda toolkit 4.0 (2011). http://developer.nvidia.com/cuda-toolkit-40
32. Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inform. Theory

50(10), 2231–2242 (2004)
33. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pur-

suit. IEEE Trans. Info. Theory 53(12), 4655–4666 (2007)
34. Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation.

Proc. International Conference on Acoustics, Speech, and Signal Processing (2008)
35. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for `1-minimization with

applications to compressed sensing. SIAM Journal on Imaging Science 1(1), 143–168 (2008)

