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ABSTRACT

The activation function deployed in a deep neural network has great influence on the performance
of the network at initialisation, which in turn has implications for training. In this paper we study
how to avoid two problems at initialisation identified in prior works: rapid convergence of pairwise
input correlations, and vanishing and exploding gradients. We prove that both these problems can
be avoided by choosing an activation function possessing a sufficiently large linear region around
the origin, relative to the bias variance σ2

b of the network’s random initialisation. We demonstrate
empirically that using such activation functions leads to tangible benefits in practice, both in terms
test and training accuracy as well as training time. Furthermore, we observe that the shape of the
nonlinear activation outside the linear region appears to have a relatively limited impact on training.
Finally, our results also allow us to train networks in a new hyperparameter regime, with a much
larger bias variance than has previously been possible.

Keywords Activation Function Design, Deep Learning, Initialisation, Random Networks.

1 Introduction

The preactivations h(l) ∈ RNl and activations z(l)(x) ∈ RNl of an input vector x ∈ RN0 at each layer l ∈ [L]
of a fully-connected, deep, feedforward neural network, with weight matrices W(l) ∈ RNl×Nl−1 and bias vectors
b(l) ∈ RNl , are computed by the following pair of recurrence relations,

z(l)(x) = W(l)h(l−1) + b(l−1), h(l)(x) = φ(z(l)(x)), (1)

where φ : R→ R is the pointwise nonlinearity, referred to as the activation function, deployed at each layer. The
impact of the choice of activation function φ on a wide range of a properties, including for instance the trainability
and generality of the network, is an active area of research [1, 2, 3, 4, 5, 6]. In this paper we study specifically
how the choice of activation function impacts the performance of the network at initialisation, and the subsequent
implications of this on training. We build on prior work [7, 8, 9, 10] concerning randomly initialised deep neural
networks (DNNs), focusing on two objectives: first, ensuring deeper information propagation by slowing the rate of
convergence of pairwise input correlations, and second, avoiding vanishing and exploding gradients [11] by at least
approximately achieving dynamical isometry. In [7] estimates for how a) the length of the preactivations of an input
and b) the correlation between the preactivations of two distinct inputs evolve with depth were derived. In both [7, 8]
the authors investigated how the choice of the activation function φ and the variance of the random weights σ2

w and
biases σ2

b effect the lengths of and correlations between preactivations. A key finding of [8] was the identification
of a condition on (σ2

w, σ
2
b ), termed initialisation on the edge of chaos (EOC), which is necessary in order to avoid

asymptotic exponentially fast convergence of both the lengths and correlations. Furthermore, [10] identified for a broad
range of activation function that by letting σ2

b → 0 then the rate of convergence in correlation can be reduced away
from the fixed point, i.e., non-asymptotically. We review this line of research in detail in Section 2.1. A related line of
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work [9, 12, 13] proposed that the problem of vanishing and exploding gradients can be mitigated by ensuring that the
spectrum of the input-output Jacobian of the network is concentrated around one, a property termed dynamical isometry.
In addition, it was shown that initialisation on the EOC implies that the mean of the spectrum of the input-output
Jacobian is one. Therefore, dynamical isometry can at least approximately be achieved by making, through careful
selection of (φ, σ2

w, σ
2
b ), the variance σ2

JJT of the spectrum close to zero. More specifically, the authors highlighted
how this can be achieved for particular activation functions by using an orthogonal initialisation scheme for the weights
and again by letting σ2

b → 0. A number of algorithmic and architectural methods have been proposed and deployed in
practice to overcome the problem of vanishing and exploding gradients across a variety of contexts, see for instance
[1, 5, 14, 15, 16, 17, 18, 19]. For brevity we do not review these here, but remark that the line of work described above
can be viewed as complimentary to these methods, focusing specifically on the network at initialisation.

Letting σ2
b → 0 is unsatisfactory for a number of reasons, first, σ2

b → 0 typically results in the length of the
preactivations converging towards zero with depth. Second, and as demonstrated by our experiments in Section 4, more
affine initialisations with a small but not overly small σ2

b appear to provide the best training outcomes in practice. Third
and finally, this strategy does not leverage our freedom in designing the activation function deployed in order to achieve
these two goals. In this paper we introduce and study a novel set of scaled, bounded activation functions which are
linear in some neighbourhood of the origin. For functions in this set we derive upper bounds controlling both the rate of
convergence of correlations between preactivations, as well as the variance of the spectrum of the input-output Jacobian.
Notably these bounds depend on the ratio σ2

b/a
2, where a denotes the size of the linear region of the activation function,

and approach zero as σ2
b/a

2 → 0. The theory presented in this paper therefore provides a rigorous explanation for the
observation that networks equipped with an activation function which approximates the identity at the origin often train
well (see for example [20]). Furthermore, our experiments demonstrate the benefits of deploying these scaled, bounded
activations in practice, in terms of train and test accuracy, training time and allowing us to train networks with a much
larger bias variance than was previously possible.

The structure of this paper is as follows, in Section 2 we review the foundational results of prior works and summarise
the contributions of this paper, in particular Theorem 2.1. In Section 3 we derive Theorem 2.1, then in Section 4 we
investigate the implications of our theory for training deep networks in practice.

2 Principles for initialising deep networks

As referenced to in Section 1, the prior works on which our results are based can be divided into two distinct themes,
one concerned with the dynamics of the preactivation correlations in the forward pass [7, 8, 10], and the other dynamical
isometry [9, 12, 13]. We review these two themes in detail in Sections 2.1 and 2.2 respectively, then in Section 2.3 we
introduce and present the key contribution of this paper, Theorem 2.1. Note that in what follows Z,Z1, Z2 ∼ N (0, 1)
are considered to be independent and identically distributed standard Gaussian random variables. Furthermore, the
standard Gaussian measures in one and two dimensions are be denoted by γ and γ(2) respectively.

2.1 Dynamics of the preactivation correlations in the forward pass

In [21] it was established that the outputs of certain random, feedforward, single hidden layer neural networks converge
in distribution to centred Gaussian processes as the width of the hidden layer goes to infinity. More recently in [22, 23],
this result was extended to random multilayer neural networks, with the preactivations at each layer being found to
converge in distribution to centred Gaussian processes in the large width limit. The behaviour of a centred Gaussian
process is fully described by its covariance matrix. In particular, for networks whose forward pass is described by (1),
with the weights and biases at each layer l ∈ [L] being mutually independent, centred Gaussian random variables with
variances σ2

w/Nl−1 and σ2
b respectively, and assuming that the same activation function φ is deployed at each neuron,

then the kernel used to compute the entries of the covariance matrix of the Gaussian process at the lth layer is defined
by the following recurrence relation,

κ(l)(x(α),x(β)) = σ2
wE[φ(z

(l)
i (x(α)))φ(z

(l)
i (x(β)))] + σ2

b . (2)

Note here that i ∈ [Nl] can be any entry of the preactivation. This recurrence relation has been highlighted a number of
times in a variety of contexts, the one most relevant for this paper being a mean field approximation used to study signal
propagation in the forward pass [7, 8, 10]. In this work we do not focus on the correspondence between wide, random
neural networks and Gaussian processes as in [22, 23]. Rather, as in [7, 8, 10], we adopt the Gaussian process or mean
field approximation in order to better understand and analyse key statistics of the network at initialisation. In particular,
and as highlighted in [7], in the infinite width limit one can interpret the variance of the preactivations of an input at a
given layer, corresponding to (2) with α 6= β, as the expected euclidean length of said input at said layer. Adopting the
notation of [7], then the sequence of variances, or expected lengths, (q

(l)
α )Ll=1, associated with an arbitrary input x(α),

2
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are generated by the following recurrence relation,

q(l)α = Vφ(q(l−1)α ) := σ2
w

∫
R
φ

(√
q
(l−1)
α z

)2

dγ(z) + σ2
b = σ2

wE

[
φ

(√
q
(l−1)
α Z

)2
]

+ σ2
b (3)

for l ∈ [L]L with q(0)α := ||x(α)||22. As demonstrated in Figure 1(a), analysis of the variance function Vφ : R≥0 → R≥0
provides insight into the impact of (φ, σ2

w, σ
2
b ) on the dynamics of the expected length of the preactivations with depth.

Indeed, unless (φ, σ2
w, σ

2
b ) is chosen appropriately then q(l)α can either rapidly converge towards zero or diverge. This

problem of vanishing or exploding activation lengths can be mitigated by choosing (φ, σ2
w, σ

2
b ) in order that there exists

a stable fixed point q∗ = Vφ(q∗) for which q(l)α → q∗ for all inputs x(α), see for example Tanh with σ2
b = 0.1 in Figure

1(a). We remark that this problem was also studied in [24] in the context of finite width deep ReLU networks.

(a) (b)

Figure 1: (a) Variance functions for ReLU, Tanh and ELU with σ2
b ∈ {0, 0.1}. With σ2

b = 0.1 the variance function associated
with ReLU has no fixed point and q(l) →∞ from any initial variance q(0) ∈ R≥0. With σ2

b = 0 the variance function associated
with ELU has a unique and marginally stable point q∗ = 0, therefore q(l) → 0 from any initial variance q(0) ∈ R≥0. Finally, with
σ2
b = 0.1, the variance function associated with Tanh has a unique and stable fixed point q∗ > 0, therefore q(l) → q∗ from any

initial variance q(0) ∈ R≥0. (b) Correlation functions associated with Relu, Tanh and ELU with σ2
b ∈ {0, 0.1}. For ReLU, and as

illustrated by (a), for there to exist a fixed point of the variance function it is necessary that σ2
b = 0. Note that without a fixed point

q∗ it is not possible to define a correlation function which is fixed with depth. Relative to the other activation functions considered,
the correlation function of ReLU is further from the identity function, and as a result correlations converge faster with the depth.
This can also be observed in Figure 10 in Appendix B.6. Note that in both (a) and (b) σ2

w is chosen so that χ1 = 1, see (7).

In [7] the covariance and correlation between preactivations of different inputs was also analysed and a recurrence
relation for the covariance derived, which is equivalent to (2) with α 6= β. In the infinite width limit the covariance
can be interpreted as the inner product between the preactivations of two inputs, and the correlation as the angle. The
evolution of these quantities with depth has important implications for the performance of the network at initialisation
as well as subsequent training. Denoting the covariance between the preactivations of x(α) and x(β) at the lth layer as
q
(l)
αβ , with respective variances q(l)α and q(l)β , then it was shown in [7] that

q
(l)
αβ = σ2

w

∫
R2

φ(u1)φ(u2)dγ(2)(z1, z2) + σ2
b ,

u1 :=

√
q
(l−1)
α z1, u2 :=

√
q
(l−1)
β (ρ

(l−1)
αβ z1 +

√
1− (ρ

(l−1)
αβ )2z2),

(4)

where ρ(l−1)αβ = q
(l−1)
αβ /(q

(l−1)
α q

(l−1)
β ) is the correlation at the previous layer. If the variance function defined in (3) has

a fixed point q∗ > 0 then an additional key benefit beyond that already discussed is that the analysis of the evolution of

3
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the covariance and correlation with depth can be simplified. In particular, assuming that the inputs are normalised so
that q(0)α = q

(0)
β = q∗ > 0, then q(l)α = q

(l)
β = q∗ for all l ∈ [L]. In this setting the sequence of correlations (ρ

(l)
αβ)Ll=1

are generated by the following recurrence relation,

ρ
(l)
αβ = Rφ,q∗(ρ

(l−1)
αβ ) :=

q
(l)
αβ

q∗
=
σ2
w

q∗

∫
R
φ(u1)φ(u2)dγ(2)(z1, z2) +

σ2
b

q∗
=
σ2
w

q∗
E[φ(U1)φ(U2)] +

σ2
b

q∗
. (5)

Here we refer to Rφ,q∗ : [−1, 1] → [−1, 1] as the correlation function, and U1 :=
√
q∗Z1, U2 :=

√
q∗(ρZ1 +√

1− ρ2Z2), where ρ is the input argument Rφ,q∗(ρ), are dependent Gaussian random variables with U1, U2 ∼
N (0, q∗).

Analysing the univariate recurrence relation ρ(l) = Rφ,q∗(ρ
(l−1)) allows for the identification of both depth limits,

beyond which information cannot propagate, as well as issues around stability, in a manner analogous to that of the
dynamical systems perspective given in [25]. In order to appreciate these points, observe, as in [7], that by construction
as long as the correlation function is well defined on [−1, 1] then one is always a fixed point,

Rφ,q∗(1) =
σ2
w

q∗
E[φ(U1)2] +

σ2
b

q∗
=
V (q∗)

q∗
= 1.

The general shape of the correlation function, as well as the stability of the fixed point at one and the existence of other
fixed points, is determined by the choice of (φ, σ2

w, σ
2
b ). This can be observed in Figure 1(b), in which the correlation

functions of three commonly used activation functions are plotted side by side for comparison. Figure 2(a) shows the
correlation function for three different values of σ2

w with σ2
b = 0.1 and φ(z) = htanh(z) fixed. For σ2

w = 0.63 and
σ2
w = 1.26 it is clear from Figure 2(a) that ρ∗ = 1 is the only positive fixed point. Furthermore, for these two choices

of σ2
w it is also clear, by inspection, that ρ∗ = 1 is a stable and marginally stable fixed point respectively, and that from

any initial correlation the sequence of correlations ρ(l) → 1 with depth. As a result, in the infinite width limit any pair
of inputs, no matter how large the angle between them is, are mapped to the same point by the network asymptotically
with depth. However, for σ2

w = 0.63 a new, stable fixed point ρ∗ < 1 is introduced. In this case, then for any initial
correlation the sequence ρ(l) converges to the limit ρ∗ < 1. Therefore, in the infinite width limit any pair of inputs,
no matter how small the initial angle between them is, are mapped to different points by the network asymptotically
with depth. Figure 2(a) therefore illustrates the existence of two very distinct regimes for a given choice of activation
function, one ordered, in which all inputs are mapped asymptotically to the same output, and the other chaotic, in
which even arbitrarily small perturbations of an input lead to a different output. Figure 2(b) illustrates the limiting ρ∗
throughout the (σw, σb) plane for φ = htanh(·).

In order to understand and separate these two regions [7, 8] studied the slope of Rφ,q∗(ρ) at ρ = 1: for a sufficiently
smooth activation function φ the derivative is given by

R′φ,q∗(ρ) = σ2
wE[φ′(U1)φ′(U2)], (6)

the slope at ρ = 1 is therefore
χ1 := R′φ,q∗(1) = σ2

wE[φ′(U1)2]. (7)

The set of pairs (σ2
w, σ

2
b ) ∈ R≥0×R≥0 such that χ1 = 1 is colloquially referred to in the literature as the edge of chaos

(EOC) and in Figure 2(c) this set, or curve, is plotted for three different activation functions. In [8] it was proved that if
(σ2
w, σ

2
b ) does not lie on the EOC then the sequences generated by the variance and correlation functions, (3) and (5)

respectively, approach their respective fixed points asymptotically exponentially fast. As a result, the EOC curve can be
interpreted as a transition boundary between order, corresponding to χ1 < 1, in which pairwise correlations converge
asymptotically exponentially fast to 1 with depth, and chaos, corresponding to χ1 > 1, in which even pairwise input
correlations that are arbitrarily close to 1 diverge asymptotically exponentially fast with depth. The dynamics of the
preactivation correlations can also be understood and interpreted in terms of a network’s sensitivity to perturbations
of the input, with networks initialised in the chaotic regime carrying the risk of being overly sensitive, and those
initialised in the ordered regime being insensitive. These observations are also of practical relevance for training, indeed
experimental evidence [8] illustrates that initialising closer to the EOC consistently results in reduced training times.

To recap the discussion presented so far, rapid convergence in correlations to a fixed point appears to result in poor
training outcomes, with the network being either highly sensitive or insensitive to perturbations of the input. To avoid
asymptotically exponentially fast convergence it is necessary to choose (σ2

w, σ
2
b ) so that χ1 = 1. The specific asymptotic

rate however depends on the activation function deployed. In [10], and under the assumption that initialisation is on
the EOC, the asymptotic convergence rate of the sequence of correlations for different families of activation functions
was analysed. A key finding of this work is that while ReLU like activation functions have asymptotic convergence
|1− ρ(l)| = O(l−2), a broad class of smooth activation functions, including, tanh, elu and swish, have convergence

4
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(a) (b)

(c) (d)

Figure 2: (a) Correlation map for htanh activation function, plotted on the interval [0, 1] to better display fixed point behaviour (there
are no fixed points in the interval [−1, 0]). When χ ≤ 1 then one is the unique fixed point of the correlation function. Furthermore,
for χ < 1 then one is a stable fixed point, and for χ = 1 then one is a marginally stable fixed point. When χ > 1 then although one
is still a fixed point it is unstable, and a new stable fixed point less than one is introduced. (b) Stable fixed point ρ∗ as a function of
(σ2

w, σ
2
b ) for the tanh activation function. (c) The EOC critical line χ = 1 for different activation functions. (d) σ2

w as a function of
q∗, as σ2

b → 0 then q∗ → 0.

|1 − ρ(l)| = O(l−1). However, it seems highly reasonable that avoiding fast non-asymptotic, i.e., away for ρ∗ = 1,
convergence of correlations is also potentially of value. Figure 1(b) illustrates, assuming initialisation on the EOC, that
certain combinations of (φ, σ2

b ) can result in a correlation function which is closer to the identity function. This in turn
implies a slower convergence of the correlation sequence throughout the layers, rather than just at the depth limit. This
idea was promoted in [10, Appendix B.2], where it was suggested that one should choose a small σ2

b and an activation
function which is approximately linear, for example, one which is the weighted sum of a linear and nonlinear activation
function.

5
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2.2 Avoiding vanishing and exploding gradients via dynamical isometry

A key ingredient behind the success of neural networks is that their modular, compositional structure enables easy
computation of the gradients of the network output with respect to the model parameters. The computation of these
gradients can efficiently be performed using the backpropagation algorithm [26]. Backpropagation, also referred to as
the backward pass of the network, generates a sequence of vectors (δ(l)(x))Ll=1 at each layer with respect to an input
x ∈ RN , which measure the error associated with minimising the loss L(θ, x). Here θ denotes the trainable network
parameters, θ :=

⋃L
l=1{W(l)} ∪ {b(l)}. For a suitably smooth loss function L(θ, x), the backpropagation error vector

δ(l)(x), and the gradient of L(θ, x) with respect to biases b(l)j and weights w(l)
j,i , at each layer l ∈ [L] can be computed

using the following recurrence equations,

δ(L)(x) = D(L)(x)∇h(L)L(θ,x),

δ(l)(x) =
(
D(l)(x)W(l+1)

)T
δ(l+1)(x),

∂L(θ,x)

∂b
(l)
j

= δ
(l)
j (x),

∂L(θ,x)

∂w
(l)
j,i

= h
(l−1)
i (x)δ

(l)
j (x).

(8)

Here, for each l ∈ [L], D(l)(x) is a diagonal matrix with D(l)
ii (x) := φ

′
(z

(l)
i (x)) for all i ∈ [Nl]. Consequently, the

weights and biases of the network can be iteratively updated via gradient descent type algorithms, or some variant
thereof, in order that the forward pass improves its performance, as measured typically by averaging L(θ,x) over
batches of the training data, at executing the task in hand. We emphasise that in practice, instead of updating the
parameters with respect to a single data point, gradients are calculated and averaged over batches of the training data. It
is important therefore not to confuse the input-output Jacobian of the network, which we will discuss presently, with the
Jacobian of the loss surface over the training data, or batches of the training data.

We now turn our attention to reviewing the findings of the literature concerning the propagation of δ(l) in the backwards
pass. Analogous to the recurrence relation for the variance function (3) in the forward pass, in [8] a mean field
approximation for δ(l) was developed. Specifically, the recurrence relation for the variance, q̃l := E[(δli)

2], of entries of
the error vectors δli was shown to be

q̃l =
N l+1

N l
q̃l+1χ1 (9)

with χ1 defined as in (7). Although certain assumptions needed for this approximation are undesirable, notably the
weights used during forward propagation are drawn independently from the weights used in backpropagation, empirical
evidence indicates that it is nonetheless a useful model [8]. In particular, unlike the analysis of the gradients used to
update the network parameters. The reappearance of χ1 in (9) shows the benefit of selecting (φ, σ2

w, σ
2
b ) such that

χ = 1, as this ensures, at least in expectation, that the magnitudes of the error vectors are stable during the backward
pass, i.e., they neither converge to zero or diverge.

Unfortunately, initialising on the EOC suffices only to ensure that vanishing and exploding gradients are avoided on
average, and in practice does not guarantee good training performance. In particular, if, as it propagates backwards, an
error vector is projected onto a smaller and smaller subspace then the directions in which the parameters in the lower
layers can be updated becomes limited, thereby resulting in model degeneracy [12, 13]. In order to improve training,
in [12, 13] the authors proposed that the product of Jacobians at each layer should act as an isometry on as large a
subspace as possible, implying that the singular values of the input-output Jacobian at any layer should concentrate
around one. As in [9, 13], we denote the input-output Jacobian of the network as J : RN0 →∈ RN0×NL ,

J(x) =

L∏
l=1

D(l)(x)W(l). (10)

Comparing (10) with (8), then the Jacobian of x can be viewed as the transpose of the product of linear backpropagation
operators used to compute the error vectors associated with x at each layer. In [9, 13] the authors considered two
initialisation schemes, in both the biases b(l)

i at each layer are mutually independent and identically distributed Gaussians
with mean 0 and variance σ2

b . The weight matrices at each layer however either have mutually independent identically
distributed Gaussian entries with mean 0 and variance σ2

w/Nl−1, or are drawn from a uniform distribution over scaled
orthogonal matrices such that (W(l))TW(l) = σ2

wI. To analyse the Jacobian of the network at an arbitrary point x, the

6
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authors considered again the large width setting, in which, as per the discussion in Section 2.1, the preactivations at
layer l layer can be modelled as mutually independent, identically distributed, centred Gaussian random variables with
variance q(l) 1. For both of the initialisation schemes described, the limiting spectral density of J(x), in terms of its
moment generating transform

MJJT (z) =

∞∑
k=1

mk

zk
, (11)

was computed and analysed using tools from free probability [9, 13, 27]. We refer the reader to Appendix 6 of [9]
for further details. In the context of ensuring dynamical isometry, then of particular interest are the first and second
moments, which can be expressed in terms of the moments µk of D2 and sk of (WTW). Here we drop the dependence
on the layer index l by assuming that the condition q(0) = q∗ holds true for all inputs x. Adopting again the notation
used in [9],

µk :=

∫
φ′(
√
q∗z)2kdγ(z) = E[φ′(

√
q∗)Z)2k],

m1 := (σ2
wµ1)L = (χ1)L,

m2 := (χ1)2LL
(µ1

µ2
+

1

L
− 1− s1

)
.

(12)

It is evident from (12) that the mean squared singular valuem1 of the Jacobian either exponentially explodes or vanishes
unless the network is initialised on the EOC. However, although initialisation on the EOC makes m1 independent of
depth, the variance

σ2
JJT = m2 −m2

1 = L
(µ2

µ2
1

− 1− s1
)

(13)

grows linearly with depth. As a result, under the limiting width assumption then for an arbitrary, normalised input
vector initialisation on the EOC may still result in an increasingly ill-conditioned Jacobian with depth L. Indeed, we
require that m1 = 1 and σ2

JJT ≈ 0 so as to at least approximately achieve dynamical isometry. Equation (13) shows
that using a Gaussian initialisation scheme, corresponding to s1 = −1, results in a linear growth in σ2

JJT with depth
regardless of the activation function used. As a result, deep, dense feed-forward networks cannot achieve dynamical
isometry using Gaussian initialisation. In contrast, orthogonal initialisation, corresponding to s1 = 0, can in theory
be used to ensure that σ2

JJT is arbitrarily close to one by controlling the moment ratio µ2/µ
2
1. However, the ability to

control the moment ratio depends on the activation function deployed: in the case of ReLU for instance, whose EOC is a
singleton, the moment ratio is a constant and hence once again dynamical isometry cannot be achieved. As highlighted
in [9], for certain activation functions, e.g., erf and tanh, which have a non-singleton EOC as illustrated by Figure 2(c),
then the moment ratio can be reduced by shrinking q∗, which in turn can be achieved by reducing σ2

b , see Figure 2 (d).
Finally we remark that similar analyses were conducted in [28] in the context of finite width deep ReLU networks.

2.3 Contribution: activations which approximately preserve correlations and achieve dynamical isometry

To recap, in Section 2.1 we discussed how, in order to achieve deep information propagation and avoid the network being
either highly sensitive or insensitive to perturbations of the input, it is important to avoid a rapid rate of convergence of
the correlation. To this end it is necessary to choose (φ, σ2

w, σ
2
b ) so that χ1 = 1 and the associated correlation function

is close to identity. In Section 2.2 we discussed the problem of vanishing and exploding gradients. Prior works suggest
that this problem can be avoided if the singular values of the input-output Jacobian at each layer concentrate around 1.
The condition χ1 = 1 is equivalent to ensuring that the mean of the input-output Jacobian’s spectrum at any layer is one.
Therefore, if the variance σ2

JJT of the spectrum, defined in (13), is close to zero, then the spectrum of the input-output
Jacobian is guaranteed to concentrate around one. Furthermore, with orthogonal initialisation on the EOC then so long
as µ2/µ

2
1 ≈ 1 then σ2

JJT ≈ 0.

In this paper we present principles for choosing the activation function φ, see Definition 2.1, and an additional linear
scaling parameter which simultaneously enables uniform convergence of the correlation function Rφ,q∗(ρ) to the
identity map, and convergence of the variance σ2

JJT of the input-output Jacobian’s spectrum to zero, without requiring
σ2
b to shrink towards zero. For further details we refer the reader to Theorem 2.1. From prior work it was unclear

how one could achieve this. For example, initialising on the EOC, using orthogonal initialisation and deploying the
modulus activation function achieves perfect dynamical isometry, but results in rapid convergence of correlations in
the forward pass, leading to poor training outcomes. Treated separately, a key theme that emerges in the prior works
towards achieving both goals is that of reducing σ2

b in order to make q∗ small. As mentioned briefly in section 2.1, in

1Note that (3) was derived in the context of Gaussian initialisation, for now we also assume it holds true also for the Orthogonal
case.

7
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[10] the authors highlight that, for a smooth class of activation functions, taking this action can reduce the gap between
the correlation map and the identity. The authors also provide a rule for selecting σ2

b just small enough so that pairwise
correlations avoid being within some ε > 0 of one at the output layer. Furthermore, experiments conducted in [10]
indicate that selecting the variance hyperparameters in this manner accelerates training in practice. However, the authors
also highlight that as the depth of the network increases this rule still requires σ2

b → 0. Likewise, and as mentioned in
section 2.2, in [9] the authors show, for the htanh and erf activation functions, that reducing q∗ by shrinking σ2

b results
in the moment ratio converging towards one. However, this solution is not entirely satisfactory, first if the expected
length of the activations goes to zero then asymptotically the network will on average annihilate inputs and fail to pass
information to the output. Second, experimental evidence indicates that a small, but not overly small σ2

b , gives the best
results in practice, which we demonstrate in Section 4. Third, this solution relies only on the choice of σ2

b and ignores
the role and design of φ. Our work seeks to address this issue by achieving both goals through the design of φ, even
when σ2

b and q∗ are fixed away from zero.

In light of the above, and assuming σ2
b is fixed and that σ2

w is chosen in order that χ1 = 1, or goal is to design or choose
φ in order that both maxρ∈[−1,1] |Rφ,q∗(ρ) − ρ| ≈ 0 and |µ2/µ

2
1 − 1| ≈ 0. As highlighted in [10], linear activation

functions are advantageous from the perspective of slowing the convergence of the pairwise correlations in the forward
pass. Likewise, [27, 12] highlight that linear networks with orthogonal initialisation achieve perfect dynamical isometry.
However, linear activations are not a suitable option as a linear network can only represent linear functions. To preserve
the rich approximation capabilities of nonlinear networks we analyse a set of activation functions characterised by being
odd, bounded, Lipschitz continuous and linear around the origin. We refer to activation functions of this type, defined
in Definition 2.1, as scaled-bounded activations.
Definition 2.1 (scaled-bounded activations). We refer to the set of activation functions φ : R→ R which satisfy the
following properties as scaled-bounded activations.

1. Continuous.

2. Odd, meaning that φ(z) = −φ(−z) for all z ∈ R.

3. Linear around the origin and bounded: in particular there exists a, k ∈ R>0 such that φ(z) = kz for all
z ∈ [−a, a] and φ(z) ≤ ak for all z ∈ R.

4. Twice differentiable at all points z ∈ R\D, where D ⊂ R is a finite set. Furthermore |φ′(z)| ≤ k for all
z ∈ R\D.

As illustrated in Figure 3, the structure of scaled-bounded activation functions outside of their linear region [−a, a]
can vary substantially. We note that for any scaled-bounded activation φ there exists a, k ∈ R>0 such that |φ(z)| ≤
|Shtanha,k(z)|, where

Shtanha,k(z) =

{
zk, |z| < a

ak, |z| ≥ a. (14)

Here Shtanh stands for scaled-bounded hard tanh, and we further note that Shtanha,k(·) is a scaled-bounded activation
for any a, k ∈ R>0. Our main contribution is Theorem 2.1, which asserts, for scaled-bounded activations, that the
correlation function Rφ,q∗ can be made arbitrarily close to the identity on [0, 1], and the moment ratio µ2/µ

2
1 arbitrarily

close to one, by choosing σ2
b/a

2 to be small.

Theorem 2.1. Let φ be a scaled-bounded activation, see Definition 2.1, σ2
b > 0 and suppose that

χ1 := σ2
wE[φ′(

√
q∗Z)2] = 1,

where q∗ > 0 is a fixed point of the associated variance function Vφ. In addition, assume that all inputs x are

normalised so that ||x||22 = q∗. With y :=
σ2
b

a2 and Λ defined as in Lemma 3.4, then

max
ρ∈[0,1]

|Rφ(ρ)− ρ| <
(

8

π

)1/3

y1/3 (15)

and ∣∣∣∣µ2

µ2
1

− 1

∣∣∣∣ ≤ erf
(

Λ(y)√
2

)−2
− 1. (16)

We emphasise that as y := σ2
b/a

2 → 0 then both

max
ρ∈[0,1]

|Rφ,q∗(ρ)− ρ|,
∣∣µ2/µ

2
1 − 1

∣∣→ 0.

8
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Figure 3: examples of scaled-bounded activation functions with k = 1 and a ∈ {1, 2, 4}. The prefix S refers to the
scaling of the linear region via the parameter a.

We first remark that the uniform bound on the correlation provided by Theorem 2.1 is only for nonnegative correlations.
However, Figure 6 indicates that letting σ2

b/a
2 → 0 results maxρ∈[−1,1] |Rφ,q∗(ρ) − ρ| → 0. The key takeaway of

Theorem 2.1 for practitioners is that an improved initialisation can be achieved by using an activation function which has
a sufficiently large linear region spanning either side of the origin. The size of this linear region, a, needs to be selected
on the basis of both the bias variance hyperparameter σ2

b and the depth of the network. The deeper the network or the
larger σ2

b is, the larger a needs to be in order to avoid both convergence of the correlations and achieve approximate
dynamical isometry. In practice, as per Figure 5, modest increases in a typically suffice to capture many of potential
benefits at initialisation. We emphasise that there is a tension between the linear region being large enough to achieve a
good initialisation, while being small enough so that the expressivity of the network is not reduced. In particular, if
the network is initialised so that it acts as linear transform on the input data, and if the optimiser becomes trapped in a
local minimum close to the initialisation point, then the network may continue to act as a linear transform throughout
training.

9
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3 Analysis of scaled-bounded activation functions

3.1 Derivation of Theorem 2.1

We start our analysis by revisiting what it means to initialise on the EOC: the condition in (7) presupposes the existence
of a fixed point q∗ of Vφ. To resolve this matter we introduce and study the fixed points of a related function, W . Before
presenting this analysis we introduce the following slight abuse of notation,

φ′(z) :=
1

2

(
dφ

dz
(z−) +

dφ

dz
(z+)

)
(17)

where dφ
dz (z−) and dφ

dz (z+) are the left and right derivatives of φ at z ∈ R respectively. This is convenient for what
follows as it allows us to define a notion of a derivative of a scaled-bounded activation φ over the whole of the domain:
we remark, by Definition 2.1, that the true derivative of φ, and φ′(·), as defined above, are equal almost everywhere.

Lemma 3.1. Let φ be a scaled-bounded activation, see Definition 2.1, and σ2
b > 0. Define

Wφ(q) :=
E[φ(
√
qZ)2]

E[φ′(
√
qZ)2]

+ σ2
b (18)

for all q ∈ R≥0. Then Wφ : R≥0 → R≥0 and W has a fixed point q∗ > 0.

A proof of Lemma 3.1 is provided in Appendix B.1. As a consequence of Lemma 3.1, we are able to make the following
claims concerning the existence of fixed points of the variance function Vφ for any scaled-bounded activation φ.

Corollary 3.1.1. Let φ be a scaled-bounded activation, see Definition 2.1, σ2
b > 0 and suppose

χ1 := σ2
wE[φ′(

√
q∗Z)2] = 1, (19)

where q∗ > 0 is a fixed point of Wφ, defined in (18). Then q∗ is a fixed point of the associated variance function Vφ,
defined in (3).

A proof of corollary 3.1.1 is included in Appendix B.2 for completeness. The key takeaway of Corollary 3.1.1 is that
for any scaled-bounded activation there exists a fixed point q∗ of Vφ satisfying q∗ > 0. In fact, as Vφ(0) = σ2

b > 0
then any fixed point of Vφ is greater than 0. We emphasise that such analysis is necessary as in general care is required
when making assumptions concerning the existence of fixed points. For example, the variance function for ReLU like
functions do not have any fixed points unless σ2

b = 0.

To simplify the analysis we will now proceed under the assumption that the input data is normalised to have euclidean
length q∗ and that q(l) = q∗ for all l ∈ [L]. If one where interested in initialising in this manner in practice, it might
also be of interest to explore guarantees concerning the ease with which a stable fixed point of Vφ can be computed: in
particular if the fixed point is not attractive then numerical precision issues might mean that the sequence q(l) diverges
from q∗. We do not pursue this line of inquiry and instead leave it as potential future work. Now that we have identified
the existence of fixed points of the variance functions of scaled-bounded activations, it is possible to study the associated
correlation functions.

Lemma 3.2. Let φ be a scaled-bounded activation, see Definition 2.1, σ2
b > 0 and suppose

χ1 := σ2
wE[φ′(

√
q∗Z)2] = 1, (20)

where q∗ > 0 is a fixed point of Wφ. In addition, assume that all inputs x are normalised so that ||x||22 = q∗. Then the
associated correlation map Rφ,q∗, defined in (5), is fixed at each layer l ∈ [L], satisfies Rφ,q∗ : [−1, 1]→ [−1, 1] and
is differentiable with

R′φ,q∗(ρ) = σ2
wE[φ′(U1)φ′(U2)] (21)

for all input correlations ρ ∈ (−1, 1).

A proof of Lemma 3.2 is given in Appendix B.3. This expression for the correlation is equivalent to that given in [7],
however we emphasise, due to the fact that φ is not necessarily continuously differentiable, that significantly more care
is required to derive it. Indeed, if φ were not odd then this equivalence would not hold and additional terms would
appear, potentially complicating the analysis downstream. We are now ready to present a key lemma, which provides a
tight uniform bound on the interval [0, 1] between the correlation functions associated with scaled-bounded activations
and the identity function.

10
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Lemma 3.3. Under the same conditions and assumptions as in Lemma 3.2, it holds that

max
ρ∈[0,1]

|Rφ,q∗(ρ)− ρ| = σ2
b

q∗
. (22)

A proof of Lemma 3.3 is provided in Appendix B.4. The final lemma we present before proving Theorem 2.1 concerns
the relationship between a, the size of the linear region, and q∗, the fixed point of the variance function. This lemma
provides lower and upper bounds on the ratio a√

q∗
for all scaled-bounded activations as a function of a and σ2

b . The fact
that this is possible indicates that the particular shape of the tails of a scaled-bounded activation do not play a key role
in achieving a good initialisation. In Figure 4 we plot these bounds, as well as example a/

√
q∗ ratios, for a number of

activation functions as a function of a.

Figure 4: Bounds on a√
q∗

given in (23) vs. a√
q∗

, computed numerically for the same scaled-bounded activations
visualised in Figure 3.

Lemma 3.4. Under the same conditions and assumptions as in Lemma 3.2, and defining y :=
σ2
b

a2 , then

Λ(y) <
a√
q∗

<

(
8

π

)1/6

y−1/3, (23)

where Λ(y) is defined asW0

 2

π

√ 8

π
exp

−
(√

W0

(
2
πy
−2
))2

2


 1(√

W0

(
2
πy
−2
)) +

(√
W0

(
2

π
y−2

))

−2


1/2

and W0 denotes the principal branch of the Lambert W function.

A proof of Lemma 3.4 is given in Appendix B.5. We note that while the upper bound in Lemma 3.4 is easy to interpret,
the lower bound is not immediately interpretable. However, this lower bound still allows us to compute a numerical
lower bound for any scaled-bounded activation as per Figure 4. In terms of asymptotic behaviour it is easy to check that
as y → 0 then y−1/3,Λ(y)→∞, and as y →∞ then y−1/3,Λ(y)→ 0. We also observe from Figure 4 that, at least
empirically, the lower bound seems to be far tighter: we leave it as potential future work to investigate deriving a tighter
upper bound. We are now ready to prove Theorem 2.1.

11
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Proof. To derive the inequality concerning the correlation function given (15) we use the upper bound

a√
q∗

<

(
8

π

)1/6
a2/3

σ
2/3
b

derived in Lemma 3.4. Squaring both sides, dividing by a2 and multiplying by σ2
b then

σ2
b

q∗
<

(
8

π

)1/3
σ
2/3
b

a2/3
.

To conclude we apply Lemma 3.3. We now turn our attention to proving the inequality concerning the moment ratio
provided in equation 16. Analysing the lth moment,

µl := E[φ′(
√
q∗Z)2l]

= 2

(
k2l
∫ a/

√
q∗

0

dγ(z) +

∫ ∞
a/
√
q∗
φ′(
√
q∗z)2ldγ(z)

)
.

By assumption |φ′(z)| ≤ k, hence we can bound this quantity as

k2lerf
(

a√
2q∗

)
≤ µl ≤ k2l,

where the lower bound arises simply by zeroing the second integral term. It therefore follows that

k4erf
(

a√
2q∗

)
k4

≤ µ2

µ2
1

≤ k4

k4erf
(

a√
2q∗

)2 ,
erf
(

a√
2q∗

)
≤ µ2

µ2
1

≤ erf
(

a√
2q∗

)−2
Observe that µ2/µ

2
1 − 1 ≤ erf

(
a√
2q∗

)−2
− 1 and 1− µ2/µ

2
1 ≤ 1− erf

(
a√
2q∗

)
. We now prove, by contradiction, that

erf
(

a√
2q∗

)−2
− 1 ≥ 1− erf

(
a√
2q∗

)
. Indeed, assume that erf

(
a√
2q∗

)−2
− 1 < 1− erf

(
a√
2q∗

)
, then

1− erf
(

a√
2q∗

)2

< erf
(

a√
2q∗

)(
erf
(

a√
2q∗

)
− erf

(
a√
2q∗

)2
)

≤ erf
(

a√
2q∗

)(
1− erf

(
a√
2q∗

)2
)
.

As erf
(

a√
2q∗

)
< 1 for a√

2q∗
<∞ then this is a contradiction. Therefore∣∣∣∣µ2

µ2
1

− 1

∣∣∣∣ ≤ erf
(

a√
2q∗

)−2
− 1.

As erf is monotonically increasing it suffices to lower bound the quantity a√
q∗

. The result claimed is then recovered by
applying the lower bound on a√

q∗
derived in Lemma 3.4.

3.2 Discussion and practical takeaways

Equation (15) implies, by choosing a sufficiently large relative to σ2
b , that problems arising as a result of limits on

the depth of information propagation as well as network sensitivity can be mitigated without the need for q∗, σ2
b → 0.

Equation (16) likewise implies, as long as orthogonal initialisation is used, that increasing a also mitigates the problem
of model degeneracy, again without the need for q∗, σ2

b → 0. Our numerics support these conclusions: in Figure 5 the
bounds in (15) and (16) are plotted numerically with σ2

b fixed, and converge to 0 as a increases. Likewise, Figure 6
shows that increasing a moves Rφ,q∗ closer to the identity. We remark that (3) and (5) where derived in the context of

12
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Figure 5: The left and right plots display the correlation and moment ratio bounds, given in Equations (15) and (16)
respectively, vs. the equivalent numerically computed quantities for a variety of different activation functions φ ∈ Ω, as
shown in Figure 3. We note that the right hand curve for hard saw is accurate only up to an a of 6 due to numerical
precision issues arising from numerical integration steps.

Figure 6: impact of scale parameter a on correlation function of scaled (or adapted) htanh (left-hand plot) and sinusoid
(right-hand plot).

Gaussian initialisation. As a result one might question whether (15) is immediately applicable to orthogonally initialised
networks. Indeed, although referenced to in [9, 13], the correspondence between orthogonally initialised networks and
Gaussian processes is to our knowledge yet to be rigorously established. However, it seems highly likely that the same
correspondence holds, an assertion supported both by empirical observation and the fact that large random orthogonal
matrices are well approximated by Gaussian matrices (see e.g., [29]). We defer a detailed study of this correspondence
to later work. We also note that the uniform bound we provide holds for non-negative correlations only, this is due to the
fact that the upper bound on this interval, σ2

b/q
∗ as per Lemma 3.3, is relatively easy to analyse. However, we suspect

for scaled-bounded activations that letting σ2
b/a

2 → 0 results in a uniform convergence of the correlation function to
the identity for ρ ∈ [−1, 1]. This hypothesis is supported by Figure 6.
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We conclude this section by considering the relevance and importance of each of the four properties of scaled-bounded
activation functions in regard to achieving a good initialisation in practice. Property 1), φ being continuous, does not
seem controversial, indeed most of the commonly used activation functions are continuous. Furthermore, it seems
reasonable that continuous activation functions result in a loss landscape that is easier for an optimiser to navigate,
compared with that induced by non-continuous ones. Property 2), φ being odd, is beneficial in theory as it removes
additional constant terms from (22) in Lemma 3.3. However, as per the proof of Lemma 3.3, it can be observed
that these terms will decay exponentially fast as a grows due to the fact that the locations of the points in D all have
magnitude at least a. As for property 3), while the existence of a linear region around the origin is critical to our results,
we suspect that boundedness is more an artefact of our proof than a necessity in practice. Assuming that φ is bounded
simplifies certain pieces of analysis, and crucially allows us to formulate upper and lower bounds on Vφ(q), needed for
the proof of Lemma 3.4. We hypothesise that this condition could be relaxed to |φ(z)| < |z|. In regard to property 4)
and contrary to the conclusion one might be inclined to draw from [10], φ being non-differentiable demonstrates that
smoothness is not necessary for a good initialisation. Finally, the bound on the derivative of φ was introduced to allow
us to to derive bounds on Vφ.

4 Experiments

4.1 Experimental setup

Across all experiments we train networks with depths L ∈ {20, 50, 100, 200}, with each layer having a fixed width
N = 400, for 100 epochs on CIFAR-10. The results are averaged over 10 trials. Variance hyperparameters (σ2

w, σ
2
b )

are selected to lie on the EOC, with σ2
b ∈ {1, 10−1, 10−2, 10−3, 10−4} and σ2

w computed in in order that χ1 = 1, see
(7). The parameters of the network are initialised according to the following two schemes.

• Gaussian initialisation: all parameters are drawn mutually independent of one another. The weights in each
layer are identically distributed with w(l)

i,j ∼ N (0, σ2
w/N). The biases are all identically distributed with

b
(l)
i,j ∼ N (0, σ2

b ).

• Orthogonal initialisation: all weight matrices and bias parameters are drawn mutually independent of one
another. The weight matrix at each layer is drawn according to the Haar measure, i.e., uniformly, over
the orthogonal group of N × N matrices such that (W(l))TW(l) = σ2

wIN . The biases are all identically
distributed with b(l)i,j ∼ N (0, σ2

b ).

Finally, optimisation is performed using SGD with a batch size of 64. A learning rate of 10-4 was found to be provide
good results across all experiments.

4.2 Experimental validation of the results of Section 3

In order to test and validate the results of Section 3, we deploy the scaled Shtanh activation function, defined in (14),
with a ∈ {1, 2, 5, 10} and k = 1, and measure the test accuracy of the networks described in Section 4.1 at various
stages of training. The results of these experiments are summarised in the heatmaps provided in Figure 7. As per the
implications of Theorem 2.1, it is clear from Figure 7 that as σ2

b increases a larger but not necessarily maximal value
of a gives the best results. This is illustrated by the ridges, indicating the highest test accuracy, running from top left
to bottom right in the heatmap subplots. This therefore highlights the trade-off between activation functions which
are linear enough to allow for a good initialisation, while not being overly linear that the network loses approximation
power. We emphasise that these results are not unique to Shtanh and that the same conclusions can be drawn for other
scaled-bounded activation functions 2. As established in prior works, we also observe an advantage in using orthogonal
over Gaussian initialisation. However, we also note that this performance gap is relatively small. We leave it to future
work to investigate the impact of optimising over, or regularising with respect to, the set of orthogonal weight matrices
so that orthogonality is preserved, at least approximately, throughout training.

We also provide some very preliminary results concerning a new training protocol, in which a scaled-bounded activation
function is deployed and the value of a is decreased slowly over the first few epochs. To motivate this, observe in Figure
8 that, as per our theory, a large value of a always gives the best performance at initialisation. However, for reasons
already discussed, an overly large value of a has a negative impact on training long term. This strategy can therefore be
interpreted as computing a good initialisation for the final network. The purple curve in Figure 8 displays the outcome
of this strategy, which appears promising over a wide range of depths and hyperparameter choices.

2Implementation and additional results can be found at https://github.com/Cross-Caps/AFLI
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(a) Shtanh with Gaussian initialisation

5 Conclusion and avenues for future work

In this paper we considered the role of the activation function in avoiding certain problems at initialisation, namely
limited information propagation with depth, high sensitivity or insensitivity to perturbations of the input, and vanishing
and exploding gradients. The first two of these we investigated by studying the dynamics of the preactivation correlations,
and the third by analysing the spectrum of the input-output Jacobian of the network. Previously, these problems have
been ameliorated by shrinking σ2

b in relation to the depth of the network. This is unsatisfactory for two reasons: firstly
it results in the expected euclidean length of the activations shrinking towards 0 with depth, and second it places
constraints on the initialisation regime, which can result in suboptimal training outcomes. Our theory and experiments
clarify that shrinking σ2

b is not necessary, instead, it is possible to avoid these problems at initialisation by ensuring that
the activation function deployed has a sufficiently large linear region around the origin. This work therefore provides a
rigorous explanation for the observation that activation functions which approximate the identity near the origin perform
well, particularly at initialisation.

Avenues for future work include characterising more precisely how large the linear region needs to be for a given depth,
a more comprehensive investigation as to the potential benefits of a more affine initialisation, and an analysis of the
approximation capabilities of a neural network whose parameters are constrained to lie in some neighbourhood of a
given initialisation point. In addition, a quantitative description of how the preactivation correlation dynamics impact
training is desirable.
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(b) Shtanh with orthogonal initialisation

Figure 7: test accuracy on CIFAR-10 at different stages of training. Note that all sub-heatmap plots share the same colour scale.

16



Activation function design for deep networks: linearity and effective initialisation A PREPRINT

(a) Shtanh with Gaussian initialisation

(b) Shtanh with orthogonal initialisation

Figure 8: test accuracy during training on CIFAR-10. Networks are trained either with a fixed value of a or with a linearly
decreasing from 10→2 over the first 30 epochs.
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A Supporting Lemmas

For the sake of clarity and completeness we recall here two well known Lemmas concerning Lebesgue integrals. Both
can be proved using a combination of Lebesgue’s dominated convergence theorem and the mean value theorem (See
e.g., Chapter 2 of [30]).

Lemma A.1. Let (X,F , µ) be a measure space and Y ⊂ R an open interval. Consider a function f : X × Y → R
such that the following are true.

1. For each y ∈ Y then the function fy : X → R with fy(x) := f(x, y) satisfies fy(x) ∈ L1(X,F , µ).

2. For each y ∈ Y then limy′→y f(x, y′) = f(x, y) almost everywhere in X .

3. For each y ∈ Y there exists an open interval K, with y ∈ K, and a gK(x) ∈ L1(X,F , µ) such that
|f(x, y′)| ≤ gK(x)

for all y′ ∈ K.

Then the function F : Y → R with F (y) :=
∫
X
f(x, y)dµ is continuous on Y .

Lemma A.2. Let (X,F , µ) be a measure space and Y ⊂ R an open interval. Consider a function f : X × Y → R
such that the following are true.

1. For each y ∈ Y then the function fy : X → R with fy(x) := f(x, y) satisfies fy(x) ∈ L1(X,F , µ).

2. For each y ∈ Y then ∂f
∂y (x, y) exists almost everywhere in X .

3. For each y ∈ Y there exists an open interval K, with y ∈ K, and a gK(x) ∈ L1(X,F , µ) such that

|∂f
∂y

(x, y′)| ≤ gK(x)

for all y′ ∈ K.

Then the function F : Y → R with F (y) :=
∫
X
f(x, y)dx is differentiable on Y with

F ′(y) =

∫
X

∂f

∂y
(x, y)dµ. (24)

We also now present a specific adaptation of integration by parts for piecewise continuously differentiable functions of
Gaussian random variables with a finite number of discontinuities and bounded derivative.

Lemma A.3. Suppose f : R→ R is bounded, piecewise continuously differentiable at all but a finite number T ∈ N
of non-differentiable points, t1 < t2 < ... < tT , and has bounded derivative. Then∫

R
zf(z)dγ(z) =

T∑
i

[
−

exp(− 1
2z

2)
√

2π
f(z)

]t−i
t+i

+

∫
R
f ′(z)dγ(z) (25)

Proof. We first note that as f and f ′ are continuous and continuous almost everywhere but at a finite number of
points respectively, then they are clearly measureable with respect to the completion of the Borel sigma algebra on
R. Additionally, under the assumptions that f and f ′ are bounded, it follows that f(z), zf(z), f ′(z) ∈ L1(R,B(R), γ)
where γ is the standard one dimensional Gaussian measure. Defining, for typographical ease, g(z) := zf(z),
g−(z) := max{−zf(z), 0} and g+(z) := max{zf(z), 0}, then as |g±(z)| ≤ |g(z)| it follows that g−(z), g+(z) ∈
L1(R,B(R), γ). As both g− and g+ are nonnegative functions then (g−1[−n,n])n∈N and (g+1[−n,n])n∈N are sequences
of non-decreasing functions converging to g− and g+ respectively. Therefore, by monotone convergence∫

R
zf(z)dγ(z) =

∫
R
g+(z)dγ(z)−

∫
R
g−(z)dγ(z)

= lim
n→∞

∫ n

−n
g+(z)dγ(z)− lim

n→∞

∫ n

−n
g−(z)dγ(z)

= lim
n→∞

∫ n

−n
zf(z)dγ(z).
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Let n ∈ N be any integer such that n > |tT |. For typographical ease let t0 := −n and tT+1 := n, we proceed to
analyse the integral of interest over [−n, n].∫ n

−n
zf(z)dγ(z) =

T∑
i=0

∫ ti+1

ti

f(z)z
exp(− 1

2z
2)

√
2π

dz.

By construction f is continuously differentiable on each of the above intervals of integration. Standard integration by
parts gives ∫ ti+1

ti

f(z)z
exp(− 1

2z
2)

√
2π

dz =

[
−

exp(− 1
2z

2)
√

2π
f(z)

]t−i+1

t+i

+

∫ ti+1

ti

f ′(z)dγ(z).

Collecting terms it follows that∫ n

−n
zf(z)dγ(z) =

T+1∑
i=0

[−exp(− 1
2z

2)
√

2π
f(z)

]t−i+1

t+i

+

∫ ti+1

ti

f ′(z)dγ(z)


=

[
−

exp(− 1
2z

2)
√

2π
f(z)

]n
−n

+

T∑
i=1

[
−

exp(− 1
2z

2)
√

2π
f(z)

]t−i
t+i

+

∫ n

−n
f ′(z)dγ(z).

Defining f ′−(z) := max{−f ′(z), 0} and f ′+(z) := max{f ′(z), 0}, then as |f±(z)| ≤ |f(z)| it follows that
f−(z), f+(z) ∈ L1(R,B(R), γ). As both f− and f+ are nonnegative functions, (f−1[−n,n])n∈N and (f+1[−n,n])n∈N
are sequences of non-decreasing functions converging to f+ and f− respectively. Therefore by monotone convergence∫

R
f ′(z)dγ(z) =

∫
R
f ′−(z)dγ(z)−

∫
R
f ′+(z)dγ(z)

= lim
n→∞

∫ n

−n
f ′−(z)dγ(z)− lim

n→∞

∫ n

−n
f ′+(z)dγ(z)

= lim
n→∞

∫ n

−n
f ′(z)dγ(z).

As a result∫
R
zf(z)dγ(z) = lim

n→∞

∫ n

−n
zf(z)dγ(z)

= lim
n→∞

[
−

exp(− 1
2z

2)
√

2π
f(z)

]n
−n

+

T∑
i=1

[
−

exp(− 1
2z

2)
√

2π
f(z)

]t−i
t+i

+ lim
n→∞

∫ n

−n
f ′(z)dγ(z)

=

T∑
i=1

[
−

exp(− 1
2z

2)
√

2π
f(z)

]t−i
t+i

+

∫
R
f ′(z)dγ(z)

as claimed.

B Section 3 proofs

B.1 Lemma 3.1

Lemma 3.1. Let φ be a scaled-bounded activation, see Definition 2.1, and σ2
b > 0. Define

Wφ(q) :=
E[φ(
√
qZ)2]

E[φ′(
√
qZ)2]

+ σ2
b

for all q ∈ R≥0. Then Wφ : R≥0 → R≥0 and W has a fixed point q∗ > 0.

Proof. We first prove that Wφ : R≥0 → R≥0. To bound the numerator term then for any scaled-bounded activation
function φ, see Definition 2.1, it follows that there exists a, k ∈ R> 0 such that

0 ≤ E[φ(
√
qZ)2] < a2k2 <∞. (26)
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for all q ∈ R≥0. As E[φ′(
√
qZ)2] ≥ 0 it suffices to show that the denominator is nonzero. For a given q ∈ R≥0. as

φ′(
√
qz)2 ≥ 0 for all z ∈ R\D, then E[φ′(

√
qZ)2] = 0 implies that φ′(

√
qz) = 0 almost everywhere for z ∈ R. This

is a contradiction however as there exists by construction an a > 0 such that φ(
√
qz) = kz for z ∈ [−a/√q, a/√q].

As a result E[φ′(
√
qZ)2] > 0. We therefore conclude that Wφ : R≥0 → R≥0.

To prove that Wφ has a fixed point q∗ > 0 we need to lower and upper bound E[φ′(
√
qZ)2]. A lower bound can be

derived as follows,

E[φ′(
√
qZ)2] =

∫
R
φ′(
√
qZ)2dγ

= 2

∫ ∞
0

φ′(
√
qZ)2dγ

= 2

∫ a/
√
q

0

k2dγ + 2

∫ ∞
a/
√
q

φ′(
√
qZ)2dγ

> 2k

∫ a/
√
q

0

φ′(
√
qZ)2dγ

= k2erf
(

a√
2q

)
.

Here the second equality follows from the fact that integrand is an even function and the equality on the third line by
the construction of φ. The inequality on the fourth line follows from zeroing the second integral which is positive.
Furthermore |φ′(z)| ≤ k almost everywhere by construction, therefore we conclude that

k2erf
(

a√
2q

)
≤ E[φ′(

√
qZ)2] < k2 <∞ (27)

for all q ∈ R0.

We now prove that Wφ is continuous. Due to fact that E[φ′(
√
qZ)2] > 0 then Wφ has no singularities. It therefore

suffices to prove that both q 7→ E[φ(
√
qZ)2] and q 7→ E[φ′(

√
qZ)2] are continuous functions on R≥0. In both cases

we achieve this by applying Lemma A.1 in the context of the measure space (R,B(R), γ), where γ denotes the
standard one dimensional Gaussian measure and B(R) the completion of the Borel σ algebra on the real numbers. For
q 7→ E[φ(

√
qZ)2] with q ∈ R≥0 then condition 1 is satisfied due to (26), condition 2 follows from the continuity of φ

and condition 3 is satisfied by g(z) := a2k2. For q 7→ E[φ′(
√
qZ)2] with q ∈ R≥0 then condition 1 is satisfied due to

(27), condition 2 follows from the fact that φ′ is continuous almost everywhere in R and condition 3 is satisfied for all
q ∈ R≥0 by g(z) := k2. We conclude then that Wφ is continuous on R≥0.

To prove that 0 is not a fixed point, observe that E[φ(√qZ)2]

E[φ′(√qZ)2] ≥ 0 and therefore Wφ(q) ≥ σ2
b > 0 for all q ∈ R≥0. Using

(26) and (27) we may in addition derive the following upper bound on Wφ,

σ2
b ≤Wφ(q) <

a2

erf
(

a√
2q

) + σ2
b =: U(q) (28)

for all q ∈ R≥0. Observe that as Wφ is continuous and Wφ(0) > 0, then if Wφ has no fixed points it must hold that
Wφ(q) > q for all q ∈ R≥0. Otherwise, by the intermediate value theorem, the function Wφ(p)− p must have a root
and hence W must have a fixed point q∗ > 0. Considering the upper bound U on Wφ from equation 28, assume that
U(q) > q for all q ∈ R≥0. Then

a2

erf
(

a√
2q

) + σ2
b > q,

a2 + σ2
berf

(
a√
2q

)
> qerf

(
a√
2q

)
However, limq→∞ a2 + σ2

berf
(

a√
2q

)
= a2 <∞ while limq→∞ qerf

(
a√
2q

)
=∞. As qerf

(
a√
2q

)
is continuous then

there must exist a q ∈ R≥0 such thatU(q) < q, which is a contradiction. We therefore conclude thatWφ(q) < U(q) < q
for some q ∈ R≥0 and that therefore Wφ must have a fixed point q∗ > 0.
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B.2 Corollary 3.1.1

Corollary 3.1.1. Let φ be a scaled-bounded activation, see Definition 2.1, σ2
b > 0 and suppose

χ1 := σ2
wE[φ′(

√
q∗Z)2] = 1,

where q∗ > 0 is a fixed point of Wφ, defined in (18). Then q∗ is a fixed point of the associated variance function Vφ,
defined in (3).

Proof. From Lemma 3.1 it holds that there exists q∗ > 0 such that Wφ(q∗) = q∗. Inspecting (3) and (18) it follows
that Vφ(q∗) = Wφ(q∗) = q∗, therefore q∗ is a fixed point of Vφ.

B.3 Lemma 3.2

Lemma 3.2. Let φ be a scaled-bounded activation, see Definition 2.1, σ2
b > 0 and suppose

χ1 := σ2
wE[φ′(

√
q∗Z)2] = 1,

where q∗ > 0 is a fixed point of Wφ. In addition, assume that all inputs x are normalised so that ||x||22 = q∗. Then the
associated correlation map Rφ,q∗, defined in (5), is fixed at each layer l ∈ [L], satisfies Rφ,q∗ : [−1, 1]→ [−1, 1] and
is differentiable with

R′φ,q∗(ρ) = σ2
wE[φ′(U1)φ′(U2)]

for all input correlations ρ ∈ (−1, 1).

Proof. Recall that U1 :=
√
q∗Z1 and U2 :=

√
q∗(ρZ1 +

√
1− ρ2Z2). From Corollary 3.1.1 we know that q∗ is a

fixed point of Vφ and therefore the variance of all inputs, given the assumed normalisation, will remain fixed at q∗
for all layers of the network. Since q∗ > 0, then Rφ,q∗ : [−1, 1]→ [−1, 1] by construction as long as the correlation
function (5) is finite for any ρ ∈ [−1, 1]. This follows by Cauchy-Schwarz,

|E[φ(U1)φ(U2)]| ≤ E[φ(U1)2]1/2E[φ′(U2)2]1/2 < a2k2 <∞. (29)

It remains to be proved that Rφ,q∗ is differentiable on (−1, 1) and to derive (21). To this end it suffices to show that
H(ρ) := E[φ(U1)φ(U2)] is differentiable on (−1, 1) and derive an expression for its derivative. We rewrite H as
follows,

H(ρ) :=

∫
R×R

φ(u1)φ(u2)dγ(2)(z1, z2)

recalling that γ(2) denotes the standard two dimensional Gaussian measure. We proceed by applying Lemma A.2 in the
context of the measure space (R2,B(R2), γ2), where B(R2) denotes the completion of the Borel σ-algebra on R2, and
the interval (−1, 1). First observe that condition 1 of Lemma A.2 is satisfied as∫

R×R
|φ(u1)φ(u2)|dγ(2)(z1, z2) < a2k2 <∞.

For condition 2, by construction (φ ◦ u2)(ρ, z1, z2) is non-differentiable only on the set

|D|⋃
i=1

{(z1, z2) : ρz1 +
√

1− ρ2z2 =
di√
q∗
}.

This is the union of a finite number of one dimensional lines in R2 and hence has measure 0. Therefore, for each
ρ ∈ (−1, 1), then ∂φ◦u2

(∂ρ) (x, z1, z2) exists almost everywhere and hence condition 2 is also satisfied. Finally, for
condition 3 note that this partial derivative can be expressed as

∂φ ◦ u2
∂ρ

(ρ, z1, z2) =
∂u2
∂ρ

(ρ, z1, z2)φ′(u2)

=
√
q∗

(
z1 −

ρ√
1− ρ2

z2

)
φ′(u2),
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from which it follows ∣∣∣∣∂φ ◦ u2∂ρ
(ρ, z1, z2)

∣∣∣∣ ≤ √q∗
(
|z1|+

|ρ|√
1− ρ2

|z2|

)
|φ′(u2)|

<
√
q∗k

(
|z1|+

|ρ|√
1− ρ2

|z2|

)
.

For any ρ ∈ (−1, 1) consider the open interval (−1 + δ(ρ), 1− δ(ρ)), where δ(ρ) := |1−ρ|
2 . It follows that

sup
ρ∈(−1+δ(ρ),1−δ(ρ))

∣∣∣∣∂φ ◦ u2∂ρ
(ρ, z1, z2)

∣∣∣∣ ≤ √q∗k
(
|z1|+

1− δ(ρ)√
2δ(ρ)− δ(ρ)2

|z2|

)
=: gK(z1, z2).

Letting κδ := 1−δ(ρ)√
2δ(ρ)−δ(ρ)2

, then by applying the Fubini-Tonelli theorem it follows that∫
R2

gK(z1, z2)dγ(2)(z1, z2) =
√
q∗k

(∫
R2

|z1|dγ(2)(z1, z2) + κδ

∫
R2

|z2|dγ(2)(z1, z2)

)
=
√
q∗k

√
2

π
(1 + κδ)

<∞.
Hence for any ρ ∈ (−1, 1) there exists an open interval K = (−1 + δ(ρ), 1 − δ(ρ)) with ρ ∈ K and an integrable
function gK(z1, z2) : R2 → R, such that∣∣∣∣∂(φ ◦ u2)

∂ρ
(ρ, z1, z2)

∣∣∣∣ ≤ gK(z1, z2).

We conclude then that condition 3 is also satisfied, and therefore, by Lemma A.2, H is differentiable on (−1, 1). The
derivative of H can be expressed as follows,

H ′(ρ) =

∫
R2

φ(u1)
∂u2
∂ρ

φ′(u2)dγ(2)(z1, z2)

=
√
q∗
∫
R

∫
R
φ(u1)

(
z1 −

ρ√
1− ρ2

z2

)
φ′(u2)dγ(z1)dγ(z2)

=
√
q∗
∫
R

(∫
R
z1φ(u1)φ′(u2)dγ(z1)

)
dγ(z2)− ρ

√
q∗√

1− ρ2

∫
R
φ(u1)

(∫
R
z2φ
′(u2)dγ(z2)

)
dγ(z1),

(30)

where the third equality in the above follows by applying the Fubini-Tonelli theorem. We proceed first to derive an
expression for H ′(0) and then to analyse H ′(ρ) for ρ ∈ (−1, 0) ∪ (0, 1). In all that follows, and as φ is odd, we let
−dT ... < −d2 < −d1 < d1 < d2.. < dT be the elements of D where T := |D|/2. From (30) it follows that

H ′(0) =
√
q∗
∫
R

(∫
R
z1φ(
√
q∗z1)φ′(

√
q∗z2)dγ(z1)

)
dγ(z2)

=
√
q∗
∫
R
φ′(
√
q∗z2)

(∫
R
z1φ(
√
q∗z1)dγ(z1)

)
dγ(z2)

By construction φ(
√
q∗z1) is differentiable at all points other than

si :=
di√
q∗
,

li := − di√
q∗

for i ∈ [T ]. Applying Lemma A.3∫
R
z1φ(
√
q∗z1)dγ(z1) = −

T∑
i

[exp(− 1
2z

2
1)

√
2π

φ(
√
q∗z1)

]l−i
l+i

+

[
exp(− 1

2z
2
1)

√
2π

φ(
√
q∗z1)

]s−i
s+i


+
√
q∗
∫
R
φ′(
√
q∗z1)dγ(z1)

=
√
q∗
∫
R
φ′(
√
q∗z1)dγ(z1).
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Here the second equality follows from the continuity of φ. Therefore

H ′(0) =
√
q∗
∫
R
φ′(
√
q∗z2)

(√
q∗
∫
R
φ′(
√
q∗z1)dγ(z1)

)
dγ(z2)

= q∗
∫
R2

φ′(
√
q∗z1)φ′(

√
q∗z2)dγ(2)(z1, z2)

(31)

To derive an expression for H ′(ρ) for any ρ ∈ (−1, 0) ∪ (0, 1), we apply integration by parts to each of the inner
integrals in (30) using Lemma A.3. Starting with the second inner integral, with ρ ∈ (−1, 0) ∪ (0, 1) and z1 ∈ R fixed,
we define ψ : R→ R as the function z2 7→ (φ′ ◦ u2)(z1, z2, ρ). By construction φ′ is continuously differentiable at all
points other than the following,

pi(z1) :=
di√

q∗(1− ρ2)
− z1

ρ√
1− ρ2

,

ni(z1) := − di√
q∗(1− ρ2)

− z1
ρ√

1− ρ2

for all i ∈ [T ]. Applying Lemma A.3 it follows that∫
R
z2ψ(z2)dγ(z2) = −

T∑
i

[exp(− 1
2z

2
2)

√
2π

ψ(z2)

]n−i
n+
i

+

[
exp(− 1

2z
2
2)

√
2π

ψ(z2)

]p−i
p+i

+

∫
R
ψ′(z2)dγ(z2)

=: −κ1(z1) +

∫
R
ψ′(z2)dγ(z2).

Therefore the second integral on the final line of (30) can be expressed as∫
R
φ(u1)

(∫
R
z2φ
′(u2)dγ(z2)

)
dγ(z1)

= −
∫
R
φ(u1)κ1(z1)dγ(z1) +

∫
R
φ(u1)

∫
R
ψ′(z2)dγ(z2)dγ(z1)

= −
∫
R
φ(u1)κ1(z1)dγ(z1) +

√
q∗(1− ρ2)

∫
R2

φ(u1)φ′′(u2)dγ(2)(z1, z2).

Analysing κ1(z1), then by construction ψ(ni) = φ′(−di) and ψ(pi) = φ′(di). Furthermore, as φ is odd and continuous
then φ′ is even and as a result φ′(−d−i ) = φ′(d+i ) and φ′(−d+i ) = φ′(d−i ). Therefore

κ1(z1) =

T∑
i

[exp(− 1
2z

2)
√

2π
ψ(z)

]n−i
n+
i

+

[
exp(− 1

2z
2)

√
2π

ψ(z)

]p−i
p+i


=

T∑
i

(
exp(− 1

2n
2
i )√

2π

(
ψ(n−i )− ψ(n+i )

)
+

exp(− 1
2p

2
i )√

2π

(
ψ(p−i )− ψ(p+i )

))

=

T∑
i

(
exp(− 1

2n
2
i )√

2π

(
φ′(−d−i )− φ′(−d+i )

)
+

exp(− 1
2p

2
i )√

2π

(
φ′(d−i )− φ′(d+i )

))

=

T∑
i

(
exp(− 1

2n
2
i )√

2π

(
φ′(d+i )− φ′(d−i )

)
+

exp(− 1
2p

2
i )√

2π

(
φ′(d−i )− φ′(d+i )

))

=
1√
2π

T∑
i

(
φ′(d+i )− φ′(d−i )

)(
exp(−1

2
n2i )− exp(−1

2
p2i )

)
.

Expanding the integral involving κ1 then∫
R
φ(u1)κ1(z1)dγ(z1) =

T∑
i

(
φ′(d+i )− φ′(d−i )

) ∫
R
φ(u1)

exp(− 1
2n

2
i )− exp(− 1

2p
2
i )√

2π
dγ(z1).
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Observe that as

pi(z1)2 =
d2i

q∗(1− ρ2)
− z1

2diρ√
q∗(1− ρ2)

+ z21
ρ2

1− ρ2

ni(z1)2 =
d2i

q∗(1− ρ2)
+ z1

2diρ√
q∗(1− ρ2)

+ z21
ρ2

1− ρ2

then clearly ni(z1)2 = pi(−z1)2. Let βi(z1) := e−
1
2ni(z1)

2−e− 1
2pi(z1)

2

for all i ∈ [T ], then these βi are odd functions
as

βi(−z1) = e−
1
2ni(−z1)2 − e− 1

2pi(−z1)
2

= e−
1
2pi(z1)

2

− e− 1
2ni(z1)

2

= −βi(z1).

As the product of two odd functions is odd then∫
R
φ(u1)κ1(z1)dγ(z1) =

1√
2π

T∑
i

(
φ′(d+i )− φ′(d−i )

) ∫
R
φ(u1)βi(z1)dγ(z1) = 0

and so ∫
R
φ(u1)

(∫
R
z2φ
′(u2)dγ(z2)

)
dγ(z1) =

√
q∗(1− ρ2)

∫
R2

φ(u1)φ′′(u2)dγ(2)(z1, z2). (32)

Now we turn our attention to the first inner integral on the final line of (30). With ρ ∈ (−1, 0) ∪ (0, 1) and z1 ∈ R
fixed, and defining for typographical ease ϕ : R→ R as the function z1 7→ (φ′ ◦ u2)(z1, z2, ρ), then φ(u1)φ′(u2) is
continuously differentiable at all points other than the following,

oi(z2) :=
di

ρ
√
q∗
− z2

√
1− ρ2
ρ

ei(z2) := − di
ρ
√
q∗
− z2

√
1− ρ2
ρ

si :=
di√
q∗

li := − di√
q∗

for all i ∈ [T ]. Applying Lemma A.3,∫
R
z1φ(
√
q∗z1)ϕ(z1)dγ(z1) = −

T∑
i

[exp(− 1
2z

2
1)

√
2π

φ(
√
q∗z1)ϕ(z1)

]e−i
e+i

+

[
exp(− 1

2z
2
1)

√
2π

φ(
√
q∗z1)ϕ(z1)

]o−i
o+i


−

T∑
i

[exp(− 1
2z

2
1)

√
2π

φ(
√
q∗z1)ϕ(z1)

]l−i
l+i

+

[
exp(− 1

2z
2
1)

√
2π

φ(
√
q∗z1)ϕ(z1)

]s−i
s+i


+

∫
R
φ(
√
q∗z1)ϕ′(z1) +

√
q∗φ′(

√
q∗z1)ϕ(z1)dγ(z1).

As both φ and ϕ are continuous at li and si for all i ∈ [T ], then the left and right limits of φ(
√
q∗z1)ϕ(z1) at these

points are equal. Therefore∫
R
z1φ(
√
q∗z1)ϕ(z1)dγ(z1) = −

T∑
i

[exp(− 1
2z

2
1)

√
2π

φ(
√
q∗z1)ϕ(z1)

]e−i
e+i

+

[
exp(− 1

2z
2
1)

√
2π

φ(
√
q∗z1)ϕ(z1)

]o−i
o+i


+

∫
R
φ(
√
q∗z1)ϕ′(z1) +

√
q∗φ′(

√
q∗z1)ϕ(z1)dγ(z1)

=: −κ2(z2) +

∫
R
φ(
√
q∗z1)ϕ′(z1) +

√
q∗φ′(

√
q∗z1)ϕ(z1)dγ(z1).
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Analysing κ2, then by construction ϕ(ei) = φ′(−di) and ϕ(oi) = φ′(di). Similar to before it follows that

κ2(z2) =

T∑
i=1

[exp(− 1
2z

2
1)

√
2π

φ(
√
q∗z1)ϕ(z1)

]e−i
e+i

+

[
exp(− 1

2z
2
1)

√
2π

φ(
√
q∗z1)ϕ(z1)

]o−i
o+i


=

T∑
i=1

(
exp(− 1

2e
2
i )√

2π
φ(
√
q∗ei)

(
ϕ(−d−i )− ϕ(−d+i )

)
+

exp(− 1
2o

2
i )√

2π
φ(
√
q∗oi)

(
ϕ(d−i )− ϕ(d+i )

))

=

T∑
i=1

(
exp(− 1

2e
2
i )√

2π
φ(
√
q∗ei)

(
ϕ(d+i )− ϕ(d−i )

)
+

exp(− 1
2o

2
i )√

2π
φ(
√
q∗oi)

(
ϕ(d−i )− ϕ(d+i )

))

=
1√
2π

T∑
i=1

((
ϕ(d+i )− ϕ(d−i )

)(
exp(−1

2
e2i )φ(

√
q∗ei)− exp(−1

2
o2i )φ(

√
q∗oi)

))
Note that oi(−z2) = −ei(z2), therefore φ(

√
q∗oi(−z2)) = φ(−

√
q∗ei(z2)) = −φ(

√
q∗ei(z2)) as φ is odd. Likewise

ei(−z2) = −oi(z2) and so φ(
√
q∗ei(−z2)) = φ(−

√
q∗oi(z2)) = −φ(

√
q∗oi(z2)). Furthermore as

oi(z2)2 =
d2i
ρ2q∗

− z2
√

1− ρ2
ρ

+ z22
1− ρ2

ρ2
,

ei(z2)2 =
d2i
ρ2q∗

+ z2

√
1− ρ2
ρ

+ z22
1− ρ2

ρ2

then oi(−z2)2 = ei(z2)2. Analogous to βi, we now define Γi(z2) := exp(− 1
2e

2
i )φ(
√
q∗ei) − exp(− 1

2o
2
i )φ(
√
q∗oi).

The fact that Γi(z2) is odd follows from

Γi(−z2) = exp(−1

2
ei(−z2)2)φ(

√
q∗ei(−z2)))− exp(−1

2
oi(−z2)2)φ(

√
q∗oi(−z2))

= − exp(−1

2
oi(z2)2)φ(

√
q∗oi(z2))) + exp(−1

2
ei(z2)2)φ(

√
q∗ei(z2))

= −Γi(z2).

Analysing the first integral on the last line of 30), then as Γi is odd for each i ∈ [T ]∫
R

(∫
R
z1φ(u1)φ′(u2)dγ(z1)

)
dγ(z2)

= −
∫
R
κ2(z2)dγ(z2) +

∫
R

∫
R
φ(
√
q∗z1)ϕ′(z1) +

√
q∗φ′(

√
q∗z1)ϕ(z1)dγ(z1)dγ(z2)

= − 1√
2π

T∑
i=1

(
ϕ(d+i )− ϕ(d−i )

) ∫
R

Γi(z2)dγ(z2) +

∫
R2

φ(
√
q∗z1)ϕ′(z1)dγ(2)(z1, z2)

+
√
q∗
∫
R2

φ′(
√
q∗z1)ϕ(z1)dγ(2)(z1, z2)

=
√
q∗ρ

∫
R2

φ(u1)φ′′(u2)dγ(2)(z1, z2) +
√
q∗
∫
R2

φ′(u1)φ′(u2)dγ(2)(z1, z2).

(33)

Substituting (33) and (32) into (30) it follows that

H ′(ρ) =
√
q∗

(∫
R

(∫
R
z1φ(u1)φ′(u2)dγ(z1)

)
dγ(z2)− ρ√

1− ρ2

∫
R
φ(u1)

(∫
R
z2φ
′(u2)dγ(z2)

)
dγ(z1)

)

= q∗
(
ρ

∫
R2

φ(u1)φ′′(u2)dγ(2)(z1, z2) +

∫
R2

φ′(u1)φ′(u2)dγ(z1, z2)− ρ
∫
R2

φ(u1)φ′′(u2)dγ(2)(z1, z2)

)
= q∗

∫
R2

φ′(u1)φ′(u2)dγ(2)(z1, z2).

It therefore follows for all ρ ∈ (−1, 1) that

R′φ,q∗(ρ) = σ2
w

∫
R2

φ′(u1)φ′(u2)dγ(2)(z1, z2) = σ2
wE[φ′(U1)φ′(U2)]

as claimed.
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B.4 Lemma 3.3

Lemma 3.3. Under the same conditions and assumptions as in Lemma 3.2, it holds that

max
ρ∈[0,1]

|Rφ,q∗(ρ)− ρ| = σ2
b

q∗
.

Proof. Observe that

Rφ,q∗(0) =
E[φ(
√
q∗Z1)φ(

√
q∗Z2)]

q∗E[φ′(
√
q∗Z)2]

+
σ2
b

q∗

=
E[φ(
√
q∗Z1)]2

q∗E[φ′(
√
q∗Z)2]

+
σ2
b

q∗
.

As φ is odd then E[φ(
√
q∗Z1)] = 0 and therefore

Rφ,q∗(0) =
σ2
b

q∗
> 0.

Lemma 3.3 follows then as long as |Rφ,q∗(ρ)− ρ| < Rφ,q∗(0) for all ρ ∈ [0, 1]. As

Rφ,q∗(1) =
σ2
w

q∗
E[φ(
√
q∗Z1)2] +

σ2
b

q∗
=
V (q∗)

q∗
= 1

then |Rφ,q∗(1)− 1| = 0 < Rφ,q∗(0). All that remains to show is that the inequality holds for ρ ∈ (0, 1). We proceed
using an approach similar to that used to prove Proposition 3 in [10]. Using Lemma 3.2 then for any ρ ∈ (0, 1) we have

R′φ,q∗(ρ) =
E[φ′(U1)φ′(U2)]

E[φ′(
√
q∗Z)2]

≤ E[φ′(
√
q∗Z1)2]

1
2E[φ′(U2)2]

1
2

E[φ′(
√
q∗Z)2]

=
E[φ′(U2)2]

1
2

E[φ′(
√
q∗Z)2]

1
2

= 1.

The inequality on the second line of the above follows from Cauchy-Schwarz and the equalities on the third and fourth
lines are due to the fact that Z1, Z, U2 ∼ N (0, 1) are all identically distributed. Note that equality holds iff either
ρ = 0 or there exists an α ∈ R such that φ′(U1) = αφ′(U2). Since Z1 and Z2 are i.i.d. this can only occur if φ′ is a
constant, which in turn would imply that φ must be linear. However, by construction linear functions are clearly not
scaled-bounded activations and therefore for any ρ ∈ (0, 1) it holds that

R′φ,q∗(ρ) < 1.

For ρ ∈ (0, 1) then integrating both sides of the above inequality and applying the fundamental theorem of calculus we
have ∫ ρ

0

R′φ,q∗(t)dt <

∫ ρ

0

1dt =⇒ Rφ,q∗(ρ)− ρ < Rφ,q∗(0)

and ∫ 1

ρ

R′φ,q∗(t)dt <

∫ 1

ρ

1dt =⇒ ρ−Rφ,q∗(ρ) < 0.

As Rφ,q∗(0) > 0 then we conclude for ρ ∈ (0, 1) that |Rφ,q∗(ρ)− ρ| < Rφ,q∗(0). Therefore

|Rφ,q∗(ρ)− ρ| ≤ Rφ,q∗(0) =
σ2
b

q∗

for all ρ ∈ [0, 1] as claimed.
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B.5 Lemma 3.4

Lemma 3.4. Under the same conditions and assumptions as in Lemma 3.2, and defining y :=
σ2
b

a2 , then

Λ(y) <
a√
q∗

<

(
8

π

)1/6

y−1/3,

where Λ(y) is defined asW0

 2

π

√ 8

π
exp

−
(√

W0

(
2
πy
−2
))2

2


 1(√

W0

(
2
πy
−2
)) +

(√
W0

(
2

π
y−2

))

−2


1/2

and W0 denotes the principal branch of the Lambert W function.

Proof. To derive the upper bound on a/
√
q∗ we study lower bounds for Vφ(q). To this end we first lower bound

E[φ(
√
qZ)2]. The fact that φ is odd implies φ2 is even, therefore

E[φ(
√
qZ)2] = 2

(∫ a/
√
q

0

k2qz2dγ(z) +

∫ ∞
a/
√
q

φ(
√
qz)2dγ(z)

)

≥ 2

(
k2q

∫ a/
√
q

0

z2dγ(z)

)

= qk2erf
(

a√
2q

)
−
√

2

π
ak2
√
q exp

(
−a

2

2q

)
.

To now upper bound E[φ
′
(
√
q∗Z)2] we use the fact that |φ′(z)| ≤ k, which implies

E[φ
′
(
√
q∗Z)2] ≤ 2k2

∫ ∞
0

dγ(z)

= k2.

As q∗ = Vφ(q∗), it therefore follows that

q∗ ≥ q∗erf
(

a√
2q∗

)
−
√

2

π
a
√
q∗ exp

(
− a2

2q∗

)
+ σ2

b .

Rearranging and dividing by a2 gives

q∗

a2
erfc

(
a√
2q∗

)
≥ σ2

b

a2
−
√
q∗

a

√
2

π
exp

(
− a2

2q∗

)
.

For typographical ease we now substitute x = a√
q∗

and multiply by x2,

erfc
(
x√
2

)
≥ x2σ

2
b

a2
− x
√

2

π
exp

(
−x

2

2

)
.

It is known that erfc
(
x√
2

)
≤
√

2
π

1
x exp

(
−x

2

2

)
≤
√

2
π

1
x (see e.g., [31]). Additionally it holds that exp

(
−x

2

2

)
< 1

x2 ,
this follows from the fact that x > 2 ln(x), which can be proved using elementary calculus. Using these results we
formulate the following inequality,

x2
σ2
b

a2
− x
√

2

π

1

x2
<

√
2

π

1

x
,

which simplifies to
a√
q∗

=: x <

(
8

π

)1/6
a2/3

σ
2/3
b

=

(
8

π

)1/6

y−1/3.

as claimed.
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The derivation of the lower bound is more involved, we proceed by deriving an upper bound on Vφ(q) which will allow
us to upper bound q∗. First, as φ is upper bounded by k2a2 then

E[φ(
√
qZ)2] ≤ 2

(∫ a/
√
q

0

k2qz2dγ(z) + k2a2
∫ ∞
a/
√
q

dγ(z)

)

= k2qerf
(

a√
2q

)
− k2

√
2

π
a
√
q exp

(
−a

2

2q

)
+ k2a2erfc

(
a√
2q

)
.

A simple lower bound for E[φ
′
(
√
q∗Z)2] is as follows,

E[φ
′
(
√
q∗Z)2] ≥ 2k2

∫ a/
√
q∗

0

γ(z)

= k2erf
(

a√
2q∗

)
.

As a result of these inequalities we may formulate the following inequality,

q∗ ≤
k2q∗erf

(
a√
2q∗

)
− k2

√
2
πa
√
q∗ exp

(
−a

2

q∗

)
+ k2a2erfc

(
a√
2q∗

)
k2erf

(
a√
2q∗

) + σ2
b .

Rearranging this expression gives

q∗erf
(

a√
2q∗

)
≤ q∗erf

(
a√
2q∗

)
−
√

2

π
a
√
q∗ exp

(
− a2

2q∗

)
+ a2erfc

(
a√
2q∗

)
+ σ2

berf
(

a√
2q∗

)
.

Further simplification leads to√
2

π
a
√
q∗ exp

(
− a2

2q∗

)
≤ (a2 − σ2

b )erfc
(

a√
2q∗

)
+ σ2

b

< a2erfc
(

a√
2q∗

)
+ σ2

b .

Dividing by a2 and making the substitution x = a√
q∗

we arrive at the key inequality√
2

π

1

x
exp

(
−x

2

2

)
< erfc

(
x√
2

)
+
σ2
b

a2
. (34)

Recalling that our objective is to lower bound the quantity a√
q∗

, then by construction any value of x which satisfies
the above inequality is a viable candidate. The challenging aspect now is to find a non-trivial candidate, in particular

one that scales appropriately with a and σ2
b . For typographical ease we now define g(x) :=

√
2
π

1
x exp

(
−x

2

2

)
and

h(x) := erfc
(
x√
2

)
+

σ2
b

a2 . The derivatives of each of these function are as follows,

g′(x) = −
√

2

π
exp

(
−x

2

2

)(
1

x2
+ 1

)
h′(x) = −

√
2

π
exp

(
−x

2

2

)
,

note that g′(x) > h′(x) for all x ∈ R. We now identify a candidate lower bound by considering the linear equation u(x)

defined by being tangent to g(x) at x = δ :=
√
W0

(
2
πy
−2
)
. Here W0 refers to the principle branch of the Lambert W

function (see e.g., [32]). The line u(x) therefore has the form

u(x) = −
√

2

π
exp

(
−δ

2

2

)(
1

δ2
+ 1

)
x+ β.
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Observe that as u(δ) = y = g(δ) by construction, then

β = y +

√
2

π
exp

(
−δ

2

2

)(
1

δ
+ δ

)
=

√
2

π

1

δ
exp

(
−δ

2

2

)
+

√
2

π
exp

(
−δ

2

2

)(
1

δ
+ δ

)
=

√
2

π
exp

(
−δ

2

2

)(
2

δ
+ δ

)
We now identify a candidate lower bound γ as the solution of g(γ) = β, the solution of which can be expressed using the

Lambert W function, γ =
√
W0

(
2
πβ
−2
)
. Consider the following compositions of functions, Φg(y) := g(γ(β(δ(y))))

and Ψh(y) := h(γ(β(δ(y)))). To ensure that γ ≤ a√
q∗

, i.e., that γ is indeed a valid lower bound, then it must hold
that Φg(y) ≥ Φh(y). We refer the reader to Figure B.5 for a graphical description of this approach to identifying a
candidate lower bound. Our task then is to inspect the range of y ∈ R≥0 values for which this inequality holds true.
First we note that Φf (0) = Φh(0) = 0. Second we observe h, g, γ, β and δ are differentiable functions on R>0. As

dδ

dy
= −

√
W0

(
2
πy
−2
)

y
(
W0

(
2
πy
−2
)

+ 1
) < 0,

dβ

dδ
= −

√
2
π exp

(
− δ

2

2

) (
δ4 + δ2 + 2

)
δ2

< 0,

dγ

dβ
= −

√
W0

(
2
πβ
−2
)

β
(
W0

(
2
πβ
−2
)

+ 1
) < 0

then dγ
dy = dγ

dβ
dβ
dδ

dδ
dy < 0. Applying the chain rule

Φ′g(y) =
dg

dγ

dγ

dy

= −
√

2

π
exp

(
−γ

2

2

)(
1

γ2
+ 1

)
dγ

dy

=

√
2

π
exp

(
−γ

2

2

)(
1

γ2
+ 1

) ∣∣∣∣dγdy
∣∣∣∣

and
Φ′h(y) =

dh

dγ

dγ

dy

=

√
2

π
exp

(
−γ

2

2

) ∣∣∣∣dγdy
∣∣∣∣ .

The fact that √
2

π
exp

(
−γ

2

2

)(
1

γ2
+ 2

) ∣∣∣∣dγdy
∣∣∣∣ >

√
2

π
exp

(
−γ

2

2

) ∣∣∣∣dγdy
∣∣∣∣ ,

which can be further simplified to (
1

γ2
+ 1

)
> 1,

holds for all γ ∈ R implies that Φ′g(y) > Φ′h(y) for all y ∈ R>0. Therefore∫ y

0

Φ′g(t)− Φ′h(t)dt > 0

for all y ∈ R>0. Now applying the fundamental theorem of calculus∫ y

0

Φ′g(t)− Φ′h(t)dt = Φg(y)− Φh(y) + Φh(0)− Φf (0)

= Φg(y)− Φh(y)
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we conclude that Φg(y) > Φh(y) for all y ∈ R>0. As a result, γ is a valid lower bound for a2√
q∗

as long as
σ2
b

a2 > 0. Finally, to recover the statement of the theorem, we define the composite function Λ : R≥0 → R≥0 as
Λ(y) := γ(β(δ(y))).

Figure 9: illustration of proof approach to finding a lower bound γ for a√
q∗

for a given value of y = σ2
b/a

2 (in this
example y = 0.25). The red line indicates the value on the x-axis defined to be γ. This is computed by first identifying
where the line u(x), which lies tangent to the point where g hits the asymptotic limit of h(x) which in turn corresponds
to the value of y, intercepts the y-axis, denoted as β. We define γ then to be the point at which the horizontal line at β
(the upper dashed brown line) intercepts g(x). To ensure that β intercepts g(x) above the critical point of the inequality
g(x) < h(x), it is necessary to check that h(γ) < g(γ) is true.
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B.6 Convergence of preactivation correlations with depth for a range of activation functions

Figure 10: evolution of numerically computed preactivation correlations from two initial correlations, 0.01 and 0.6,
across a range of activation functions and fixed point values.
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