
Parallel multi-scale reduction of persistent homology filtrations
Rodrigo Mendoza-Smith and Jared Tanner
{mendozasmith,tanner}@maths.ox.ac.uk

The persistent homology pipeline includes the reduction
of a, so-called, boundary matrix. We extend the work
of [1, 7] where they show how to use dependencies in
the boundary matrix to adapt the reduction algorithm
presented in [12] in such a way as to reduce its computa-
tional cost. Herein we present a number of additional
dependencies in the boundary matrices and propose a
novel parallel algorithm for the reduction of boundary
matrices. In particular, we show: that part of the reduc-
tion is immediately apparent, give bounds on the reduc-
tion needed for remaining columns, and from these give
a framework for which the boundary reduction process
can be massively parallelised. Simulations on four syn-
thetic examples show that the computational burden can
be conducted in approximately a thousandth the number
of iterations needed by traditional methods. Moreover,
whereas the traditional boundary reductions reveal bar-
codes sequentially from a filtration order, this approach
gives an alternative method by which barcodes are partly
revealed for multiple scales simultaneously and further re-
fined as the algorithm progresses; simulations show that
for a Vietoris-Rips filtration with ∼ 104 simplices, an esti-
mate of the essential simplices with 95% precision can be
computed in two iterations and that the reduction com-
pleted to within 1% in about ten iterations of our algo-
rithm as opposed to nearly approximately eight thousand
iterations for traditional methods.

1 Introduction

Persistent homology is a technique within topological
data analysis, see [12, 13] and references therein, that
estimates the topological features of a shape in high-
dimensional space from a point-cloud S ⊂ Rd sampled
from a data manifoldM⊂ Rd. The topological informa-
tion on the shapeM is encoded as a set of Betti numbers,

Betti(M) := {bp,r : 0 ≤ p ≤ d, r ∈ [0,∞)} (1)

which geometrically represent the number of p-
dimensional holes at scale r ∈ [0,∞) in a simplicial com-
plex triangulation of M. Knowledge of the homologies
persistent in a dataset can aid interpretation of the data,
see for example [3, 4, 5, 6, 14, 22, 18]. In the persistent
homology paradigm, the set Betti(M) is approximated at
multiple scales {r1, . . . , rT } ⊂ [0,∞) through a two-step
procedure. First, a scale-indexed filtration of simplicial
complexes is constructed yielding a simplicial complex K
with vertex set S and m simplices. This simplicial com-
plex is represented as a m×m matrix ∂ defined over the
Galois field of two elements F2 and having ∂i,j = 1 iff
σi ∈ K is a face of σj ∈ K with co-dimension 1. The ma-
trix ∂ ∈ Fm×m2 , together with the scale r` at which each
simplex σj ∈ K is added to the filtration, encode the nec-
essary information to estimate Betti(M) via persistent
homology. The homologies in the data are then revealed
in the second, and final, step of reducing the boundary
matrix ∂. Reduction algorithms for persistent homology

are so named as they can essentially be viewed as acting
on each column of the boundary matrix to minimise the
maximum index of its nonzeros while maintaining that
the column span of the first j columns of ∂ remains un-
changed for all j. That is, following the notation of [7],
reduction algorithms entrywise minimise

low∂(j) =

{
max{i ∈ [m] : ∂i,j = 1} if ∂j 6= 0
0 if ∂j = 0, (2)

subject to the aforementioned span constraint; we denote
the minimum of low∂(j) by low*(j). Nonzero values of
low*(j) reveal a homology persisting from σlow*(j) to σj .
As low*(j) is a property of the simplicial complex K [11]
we omit the explicit reference to the boundary matrix in
its notation; moreover, we denote by low∂ and low* the
vectors of their values in {0, 1, . . . ,m}. Sec. 2.1 and 2.2
provides further details on the construction of the simpli-
cial complex filtration, the persistent homology pipeline,
and their connections with the underlying data manifold
as they pertain to our main results.
The focus of this manuscript is extending the work [1, 7]
where they show how to use dependencies in the bound-
ary matrix to adapt the first boundary matrix reduction
algorithm [12], restated in Alg. 1, in such a way as to
reduce its computational cost.

Algorithm 1: Standard reduction [12]

Data: ∂ ∈ Fm×m2

Result: low* ∈ Zmm+1

for j ∈ [m] do
while ∃ j0 < j : low∂(j0) = low∂(j) do

∂j ← ∂j + ∂j0 ;
end

end
low* ← low∂ ;

Alg. 1 performs the reduction by sequentially minimising
low∂(j) by adding columns j0 < j for which low∂(j0) =
low∂(j) until either there is no such column j0 or col-
umn j has been set to zero. The computational overhead
in Alg. 1 is in computing the left-to-right column opera-
tions, and has a worst-case complexity of O(m3) which is
achieved by an example simplicial complex in [17]. Previ-
ous advances in reduction algorithms primarily focus on
decreasing the computational cost by exploiting structure
in ∂ to reveal some entries in ∂ can be set to zero [1, 7]
or by parallelising the reduction by dividing the bound-
ary matrix into blocks and partially reducing each block
[1, 2]; further details of these approaches are given in Sec.
2.4. The aforementioned approaches show substantially
improved average empirical operation count as compared
to Alg. 1.
Our main contribution is by noting both bounds on the
values of low*(j), which are empirically observed to typ-
ically identify a large fraction of the low*(j), and more-
over presenting a framework by which the known low*(j)
can be used to to reduce ∂ in a highly parallel fashion.

1

In addition, the bounds on low*(j) suggest priorities by
which columns might be reduced. The algorithm is de-
signed to work with some of the previous speedups as
suggested in [1]. Moreover, as is discussed in Sec. 3, our
parallelisation strategy induces an iterative non-local re-
finement procedure on low∂ and makes the algorithm fit
for early stopping, see Secs. 4.2 and 4.3. An example
of the a resulting reduction algorithm is given in Alg. 2
whose details are explained further in Sec. 3 and numer-
ical experiments for its application are shown in Sec. 4.
Additional strategies to speed up the algorithm are given
in Secs. 3.2 and 3.3, while Sec. 3.4 suggests further exten-
sions for computer environments with substantially fewer
processors than m.

Algorithm 2: Parallel multi-scale reduction
Data: ∂ ∈ Fm×m2 ; MAX_ITER ∈ [m]
Result: low* ∈ Zmm+1

// Phase 0: Initialisation
Build βj according to (9);
Pivots← {j ∈ [m] : βj = low∂(j) > 0};
for j ∈ Pivots do

∂low∂(j) ← 0;
end
iter← 0;
while low∂ 6= low* or iter ≤ MAX_ITER do

// Phase I: Local injections
for d ∈ [dim(K)] do

maxCollision← 0;
for j ∈ {` ∈ Kd : low∂(`) > 0} \ Pivots do

if low∂(j) > maxCollision then
if low∂(j) /∈ low∂([j − 1]) then

Pivots← Pivots∪{j};
else

maxCollision← low∂(j);
end

end
end

end
// Phase II: Column reduction
for j0 ∈ Pivots do
N (j0)← {` ∈ [m] \ [j0] : low∂(`) = low∂(j0)};
for j ∈ N (j0) do

∂j ← ∂j + ∂j0 ;
if low∂(j) = βj then

Pivots← Pivots∪{j};
∂low∂(j) ← 0;

end
end

end
// Increase iteration
iter← iter +1;

end
low* ← low∂ ;

2 Background

In this section we give an overview of the pipeline for
computing persistent homology which includes a short
introduction to the topological and algebraic results on
which our results are based, and a review of the prior
art in boundary matrix reduction algorithms. In what
follows we adopt the following notation. If S is a set, we
let 2S denote the power set of S and |S| be the cardinality
of S. We also borrow notation from Combinatorics and
let [m] := {1, . . . ,m} for m ∈ N. We will use Zm+1 as a
shorthand for [m]∪{0}. For a function f : A→ B, we let
f(A) = {f(a) ∈ B : a ∈ A} and f(∅) = ∅. If ∂ ∈ Fm×m2

is a matrix, we let ∂j ∈ Fm2 be its j-th column and ∂i,·
be its i-th row. The support of an m-dimensional vector
v is defined as supp(v) = {i ∈ [m] : vi 6= 0}. If ∂ ∈ Fm×m2

is a boundary matrix, we let nnz(∂) or the number of
nonzeros entries in ∂. We reserve the notation 1 {·} for
indicator functions that return 1 if the argument is true
and 0 otherwise. If Rd is the d-dimensional Euclidean
space with p-norm ‖ · ‖p and S ⊂ Rd, we let diam(S) :=
maxx,y∈S ‖x−y‖ be the diameter of S. Finally, for any c ∈
Rd and r ≥ 0, we let Br(c) :=

{
x ∈ Rd : ‖x− c‖p ≤ r

}
be

the d-dimensional p-ball of radius r centred at c.

2.1 Simplicial homology

If S is a finite set and α ⊂ σ ⊂ S, then σ is a simplex of
S and α is a face of σ. A set of simplices K ⊂ 2S is a
simplicial complex if σ ∈ K implies that every face of σ
is also in K. The dimension of the simplex is defined as
dim(σ) = |σ| − 1. The dimension of a simplicial complex
K will be defined as dim(K) = max {dim(σ) : σ ∈ K}. It
will be convenient to assume that the simplices in K are
indexed, so that K =

{
σ1, . . . , σ|K|

}
. In this case, the

set of p-simplices is the set of simplices in K which are
indexed by

Kp = {j ∈ [|K|] : dim(σj) = p} . (3)

The boundary of a simplex σ is its set of faces of co-
dimension one; symbolically we denote this by bd(σ) =
{α : dim(α) = dim(σ)− 1}.
In the subsequent paragraphs we describe, for complete-
ness, the algebraic structure of simplicial complexes and
how it gives rise to the homology groups; omitting this
paragraph does not limit one’s ability to understand the
new algorithms proposed. The set of p-chains Cp(K) :=
2Kp equipped with the symmetric difference operation is
an abelian group with neutral element ∅. For each p ∈ N,
the group Cp(K) is related to Cp−1(K) by a boundary
map dp : Cp → Cp−1 defined by dp(c) =

∑
σ∈c bd(σ).

The kernel and image of dp are geometrically meaning-
ful. Elements in Zp = Ker dp are called p-cycles, while
elements in Bp = Im dp+1 are called p-boundaries. More-
over, for all p and for all c ∈ Cp, dp−1 ◦ dp(c) = ∅, so
Bp ⊂ Zp ⊂ Cp, see [11]. The quotient space Hp = Zp/Bp
is called the p-th homology group and its elements are
called homology classes. The p-th Betti number is defined

2

as bp = rankHp and counts the number of p-dimensional
holes of the simplicial complex K.

2.2 Construction of the simplicial complex
In persistent homology, a simplicial complex K is built
from a point-cloud S ⊂ Rd sampled from a data man-
ifold M ⊂ Rd. Given S, the goal of persistent ho-
mology is to estimate the relevant homological features
of M at all scales r ∈ [0,∞). To do so, a simplicial
complex triangulation is computed from S at all scales
r ∈ {r1, . . . , rT } ⊂ [0,∞) by letting K = ∅ and adding
a simplex σ ⊂ S to K whenever the points in σ are suf-
ficiently close to each other. The notion of closeness is
implied by the relevant scale parameter, and is assessed
for each scale r via a monotonic function fr : 2S → {0, 1}
inducing a filtration

M0 ⊂M1 ⊂ · · · ⊂MT = K (4)

of simplicial complexes Mi =
{
σ ∈ 2S : fri(σ) = 1

}
. For

example, the function

fr(σ) = 1

{ ⋂
x0∈σ

Br(x0)

}
,

generates the C̆ech complex filtration, while the function

fr(σ) = 1 {diam(σ) ≤ 2r}

generates the Vietoris-Rips complex filtration. We shall
assume that the filtration (4) has m elements and that
the largest set in the filtration is a simplicial complex
with simplices given by

K = {σ1, . . . , σm} .

It is further assumed that the simplices in K are indexed
according to a compatible ordering, meaning that the sim-
plices in M` always precede the ones in K \M`, and that
the faces of any given simplex always precede the simplex.
Persistent homology tracks how the homology of the fil-
tration changes at each scale rt or, equivalently, as new
simplices are added to the filtration. Indeed, when adding
simplex σi at scale rt, the homology of Mt can change in
one of two possible ways [11].

1. A class of dimension dim(σi) is created. In this case,
σi is a positive simplex.

2. A class of dimension dim(σi)−1 is destroyed. In this
case, σi is a negative simplex.

If σj is a negative simplex, then it destroys the class cre-
ated by a positive simplex σi with i = low*(j) < j, see
Lemma 1. This observation induces a natural pairing
(σi, σj) between a negative simplex σj and the positive
simplex σi it destroys. Moreover, it allows us to quantify
the lifetime of a particular homology class in the filtra-
tion via its homology persistence which is the difference
between rt for σj and σi.

When rT is sufficiently small, we might find that some
simplices are never destroyed; these simplices represent
the homology classes that are persistent in the filtration
up to scale rT , and we called them essential. The per-
sistence pairs are computed by representing the filtration
(4) as a boundary matrix ∂ ∈ Fm×m2 and applying the
reduction algorithm [12] to it. We discuss this process in
Sec. 2.3

2.3 Boundary matrix reduction

If K = {σ1, . . . , σm} is a simplicial complex constructed
as in the previous Sec. 2.2, it can be represented with a
boundary matrix ∂ ∈ Fm×m2 defined by

∂i,j =

{
1 σi is a face of σj of co-dimension 1
0 otherwise (5)

The boundary matrix ∂ is sparse, binary, and upper-
triangular and has associated a function low∂ : [m] →
Zm+1 defined as in (2). The matrix ∂ will be said to
be reduced when low∂ ∈ Zmm+1 is an injection over its
support, i.e. when low∂(j1) = low∂(j2) > 0 implies that
j1 = j2. We use the notation ∂∗ to denote a matrix ∂ with
injective low∂ and remark that even though ∂ can have
several reductions, the injection is a property of the com-
plex K and does not depend on any particular reduction
∂∗, see [11, p.183]. When there is no risk of confusion, we
let low* be the injection of the boundary matrix under
consideration.
The vector low* reveals information about the pairings
by virtue of the following Lemma.

Lemma 1 (Pairing [12]). If σj is a negative simplex, then
σlow*(j) is a positive simplex.

Hence, low*(·) partitions the simplices in K as,

Pos = {j ∈ [m] : low*(j) = 0}
Neg = {j ∈ [m] : low*(j) > 0}
Ess = {j ∈ Pos : @ k s.t. low*(k) = j}

so Pos∩Neg = ∅ and Ess ⊂ Pos. It will also be convenient
to define the set Paired as the union of the set of negative
and associated positive simplices

Paired =
{
j ∈ [m] : low*(j) ∈ [m]

}
∪
{

low*(j) ∈ [m] : j ∈ [m]
}

(6)
The technology used to reduce ∂ is known as the reduction
algorithm (Alg. 1) and was first presented in [12]. The
convergence guarantees of Alg. 1 are given in Theorem 2.

Theorem 2 (Convergence of Alg. 1 [12]). Alg. 1 con-
verges for any boundary matrix ∂ ∈ Fm×m2 in at most
O(m3) operations.

We survey the prior art in boundary matrix reduction
algorithms in the subsequent Sec. 2.4.

3

2.4 Boundary matrix algorithm prior art

Let K be the simplicial complex corresponding to a fil-
tration over a grid {r1, . . . , rT } and point-cloud S ⊂ Rd.
The number of simplices in K is of order Ω(2|S|) as
rT → diam(S), which turns the process unfeasible even
for moderately large point-clouds S and scales rT . Hence,
though Alg. 1 terminates in O(m3) steps, we may find
that m = O(2|S|) making the reduction unfeasible. The
main computational overhead when reducing a bound-
ary matrix is in performing left-to-right column opera-
tions, so many reduction algorithms have implemented
strategies that cut the number of column operations re-
quired to fully reduce the matrix. One such strategy was
given in [7, 1] by reducing columns in blocks of decreas-
ing dimension and observing that, by Lemma 1, column
low*(j) can be set to zero whenever column j is reduced.
As dim(σlow*(j)) is of one lower dimension that dim(σj),
clearing results in all positive non-essential columns of
dimension less than dim(K) being set to zero without ze-
roing them through column additions. Setting a positive
column to zero when its corresponding negative pair has
been found is often called clearing, so we adopt this ter-
minology. Alg. 2 heavily relies on this clearing strategy
so we sketch the pseudocode of [7] in Alg. 3.

Algorithm 3: Standard reduction with a twist [7]

Data: ∂ ∈ Fm×m2

Result: low* ∈ Zm+1
m

for d ∈ {dimK, dimK − 1, . . . , 1} do
for j ∈ Kd do

while ∃j0 < j : low∂(j0) = low∂(j) do
∂j ← ∂j + ∂j0 ;

end
if ∂j 6= 0 then

∂low∂(j) ← 0;
end

end
end
low* ← low∂ ;

Another strategy to reduce the complexity of Alg. 1 is
called compression [1] and consists in deriving analytical
guarantees to nullify nonzeros in the boundary matrix
without affecting the pairing of the simplices. This has
the objective of saving arithmetic operations and hence
reducing the flop count. However for very large values of
m, which are typical for large filtration values where m
grows exponentially with |S|, it is necessary to also paral-
lelise these approaches in order to be scalable. The idea
of distributing the workload of the reduction algorithm
has already been explored in [1, 2] where the matrix is
partitioned into b blocks of contiguous columns to be in-
dependently reduced in a shared-memory or distributed
system. The numerical simulations in [2] show that these
strategies can indeed bring substantial speed-ups when
implemented on a cluster, but also requires the provision

of the parameter b as well as a number of design choices
for a practical implementation.
Apart from parallelisation, a number of other approaches
have been proposed. For instance, [16] adapted the
Coppersmith-Winograd algorithm [8] to guarantee reduc-
tion in time O(m2.3755). A set of sequential algorithms
that exploits duality of vector spaces was given in [9, 10],
but as pointed out in [19] is only known to give speed-
ups when applied to Vietoris-Rips complexes. Finally,
[20] projects ∂ to a low-dimensional space while control-
ling the error between the resulting barcodes, but doing
so in practice can be as costly as reducing the matrix in
its ambient space.

3 Main contributions
In this section we describe the theory behind the paral-
lelisation strategy of Alg. 2. The main algorithmic in-
novation is a strategy to efficiently distribute the work-
load of Alg. 1 over O(m) processors to progressively en-
trywise minimize low∂ ∈ Zmm+1. Additionally, Alg. 2 is
designed to take advantage of some structural patterns
in the boundary matrix in order to minimise the total
number of left-to-right column operations. The core ob-
servation is that, by simple inspection, the rows of the
boundary matrix reveal a subset of nonzero entries in ∂
which cannot be modified in the reduction process, and
consequently identify nonzero lower bounds on low*(j)
for a subset of j ∈ [m]. This observation is captured by
Definition 3 and Definition 4.

Definition 3 (left(·)). Let ∂ ∈ Fm×m2 be a boundary ma-
trix. The left function is defined as

left(i) =

{
min {j ∈ [m] : ∂i,j = 1} ∂i,· 6= 0
0 ∂i,· = 0

(7)

Definition 4 (βj). Let ∂ ∈ Fm×m2 be a boundary matrix
and

Lj = {i ∈ [m] : left(i) = j}. (8)

Then, for j ∈ [m] we let

βj =

{
maxLj Lj 6= ∅
0 Lj = ∅ (9)

The vector β ∈ Zmm+1 carries a great deal of information
about the nature of each column in the boundary matrix.
Some of its properties are explored in Theorem 5.

Theorem 5 (Properties of βj). Let ∂ ∈ Fm×m2 be a
boundary matrix and β defined as in (9). Then, the fol-
lowing statements hold.

P.1 βj = 0⇔ @i ∈ [m] s.t. left(i) = j

P.2 βj is invariant to left-to-right column operations.

P.3 {j ∈ [m] : βj > 0} ⊂ Neg.

P.4 Pos ⊂ {j ∈ [m] : βj = 0}.

4

P.5 βj ≤ low*(j) ≤ low∂(j) for all j ∈ [m].

P.6 β can be computed in time O(nnz(∂)).

Proof.

P.1 This follows directly from the definition of βj .

P.2 Let i ∈ [m] be a row of ∂ and j = left(i). Reduc-
tion of ∂j is achieved by adding to ∂j columns ∂` for
` < j By Definition 8 ∂i,` = 0 for ` < j and hence
∂i,j = 1 throughout the reduction. Consequently the
set left(i) and values βj are fixed in the reduction
procedure.

P.3 If βj > 0, then exists i ∈ [m] such that left(i) = j >
0. Then, ∂i,j = 1 and there does not exist ∂` with
` < j such that ∂i,` = 1. Hence ∂i,j can not be set
to zero in the reduction, so j ∈ Neg.

P.4 This result follows by taking complements on the re-
sult P.3.

P.5 By P.2 the set Lj in 8 are nonzero entries in ∂j which
cannot be modified in the reduction procedure and
consequently low*(j) ≥ βj .

low*(j) ≥ max{i ∈ supp(∂j) : left(i) = j} = βj

P.6 Note that when creating the boundary matrix, β can
be constructed with the following procedure,

Algorithm 4: Building β
Data: Simplicial complex K = {σ1, . . . , σm}
Result: βj for j ∈ [m]
for σj ∈ K do

βj ← 0;
for σi ∈ bd(σj) do

if σi has not been visited then
βj ← max(βj , i);
Mark σi as visited;

end
end

end

Alg. 4 finishes in time proportional to
∑
j |bd(σj)|,

so it has complexity O (nnz(∂)).

The value of Theorem 5 is most immediately apparent
in P.4 and in particular when low∂(j) = βj in which case
low*(j) is determined. Our numerical experiments in Sec.
4 show empirically that a large number of columns can
usually be identified as already being reduced without
need of any column operations. Moreover, having access
to a large number of reduced columns allows a massive
parallelisation as described in Sec. 3.1 and illustrated in

Sec. 4. While the calculation of β adds an initial compu-
tation to Alg. 2, it can be computed at the matrix-reading
cost of O(nnz(∂)), so it can often be obtained as a by-
product of creating the filtration without penalising the
asymptotic computational complexity of constructing the
matrix.
Additionally, the vector β gives a sufficient condition for
a column to be in Neg. Knowledge that an unreduced
column is necessarily negative can be used in numerous
ways. For example, as discussed in sections 3.2, 3.3, and
3.4 this is useful to produce more reliable estimations of
low* in the case of early-stopping. Additionally, knowl-
edge that a column is necessarily negative enhances a
notion of clearing as discussed in Sec. 3.2.
Apart from Theorem 5, Alg. 2 makes use of the observa-
tion that since low∂ converges to an injection low*, one
can often inspect the sparsity pattern of ∂ to identify
regions of [m] where low∂ is locally an injection. This
local injection property is the basis of the following The-
orems 6 and 7, which give sufficient conditions to iden-
tify sets T ⊂ [m] such that low∂(j) = low*(j) for all
j ∈ T . In the remainder of this section it will be conve-
nient to extend some of our prior notation as follows: for
a set T ⊂ [m], we let low∂(T) = {low∂(j) : j ∈ T} and
| low∂(T)| be its cardinality. Informally, the argument in
Theorem 6 is that, for each dimension d, any subset of
contiguous columns T ⊂ Kd\{j ∈ Kd : low∂(j) = 0} with
minT = minKd is already reduced if low∂ : T → [m] is
an injection or, equivalently, if | low∂(T)| = |T |.

Theorem 6 (Local injection I). Let ∂ ∈ Fm×m2 be the
boundary matrix of a simplicial complex K and let d ∈
[dim(K)] and Kd defined as in (3). Let

T := Kd \ {j ∈ Kd : low∂(j) = 0} 6= ∅

be such that T =
{
j1, . . . , j|T |

}
for j1 < · · · < j|T | and for

` ≤ |T |, let T ` = {j1, . . . , j`}. If∣∣low∂
(
T `
)∣∣ = `, (10)

then low∂(j) = low*(j) for all j ∈ T `.

Proof. Let T be defined as in Theorem 6. If ` = 1, then
there ∂j1 is the first column of dimension d that appears
in the filtration, so there is no column j ∈ [j1] that can
reduce it. Hence, suppose that ` > 1 and let jt ∈ T ` be
such that low∂(jt) 6= low*(jt). Then there is j < jt such
that low∂(j) = low∂(jt). This implies that j ∈ Kd ∩ [jt]
and that low∂(j) > 0, so j ∈ T`. Hence, |T`| = `, but
| low∂(T`)| < `, which contradicts (10).

Theorem 7 addresses a generalisation of Theorem 6 and
argues that for each dimension d, any subset of contiguous
columns T ⊂ Kd \ {j ∈ Kd : low∂(j) = 0} is already
reduced if | low∂(T)| = |T | and there is no column j ∈
Kd \ T with j < minT such that low∂(j) ∈ low∂(T).

Theorem 7 (Local injection II). Let ∂ ∈ Fm×m2 be the
boundary matrix of a simplicial complex K and let d ∈

5

[dim(K)]. Define T and T ` as in Theorem 6. Assume
that for k > 1 and k ≤ ` it holds that

min low∂(T ` \ T k−1) > max low∂(T k−1) (11)

and
|low∂ ({jk, . . . , j`})| = `− k + 1. (12)

Then, low∂(j) = low*(j) for all j ∈ {jk, . . . , j`}.

Proof. Let T and T ` be as in Theorem 7 so that T ` \
T k−1 = {jk, . . . , j`}. Since ` > 0 and k > 1, then `− k +
1 > 0. If k = 2, then j2 ∈ low∂(T ` \ T 1) and invoking
(11),

low∂(j2) ≥ min low∂(T `\T 1) > max low∂(T 1) = low∂(j1),

so the result follows by invoking Theorem 6 with ` = 2.
Arguing as in Theorem 6, suppose that k > 2 and let
jt ∈ {jk, . . . , j`} be such that low∂(jt) 6= low*(jt). Then,
there is j < jt such that low∂(j) = low∂(jt). Given that
jk ≤ j < jt and by (11) then j ∈ T ` \ T k−1. Hence,
| low∂(T` \T k−1)| < `−k+ 1, which contradicts (12).

We now describe how the results presented so far in this
section interact in Alg. 2.

3.1 Parallel multi-scale reduction
So far, Theorems 5 -7 identify a subset of the columns j
in ∂ ∈ Fm×m2 for which low*(j) is known without need
for performing column additions. In order to complete
the reduction of ∂, that is identify low*, it is necessary to
perform column additions analogous to those in Alg. 1;
however,unlike the sequential ordering in Alg. 1, we will
propose massive parallelisation of the column additions.
Towards this we define the set of columns j ∈ [m] for
which their low*(j) is known at any given iteration of a
reduction algorithm as the Pivots:

Pivots =
{
j ∈ [m] : low*(j) ∈ [m] has been identified.

}
Moreover, we define the set of column with which a pivot
could be added to in order to reduce their low∂ as the
neighbours of column j:

N (j) =
{
` > j : low∂(`) = low*(j)

}
. (13)

Note that as low* are an injection, if j1, j2 ∈ Pivots and
j1 6= j2, then N (j1) ∩N (j2) = ∅ so ⋃

j∈Pivots

N (j)

⋃Pivots ⊂ [m] (14)

is a partition and each column in N (j) for j ∈ Pivots can
have their low reduced independently by adding column j
to columns ` ∈ N (j). In sequential algorithms like Algs.
1 and 3, the set N (j) is constructed only after the block
[j−1]∩Kdim(σj) has been fully reduced. In contrast, Alg.
2 starts by inspecting the sparsity pattern of ∂ to identify

a large set of seed Pivots that are then used to build (13)
for each j ∈ Pivots. Given that (14) is a partition, each
set N (j) is partially reduced independently, typically in
parallel and new columns are appended to Pivots when-
ever their update is such that their low*(`) is identified by
either by Theorems 5 - 7. We elaborate on these stages
of Alg. 2, and its convergence, in the remainder of this
section.

3.1.1 Phase 0: Initialising Pivots

The first step of Alg. 2 is to compute the vector β, which
can be done at cost O(nnz(∂)) by Theorem 5. This vector
is then coupled with low∂ to build the set of initial pivots

Pivots← {j ∈ [m] : βj = low∂(j)} ,

which by Theorem 5, contains indices for columns that
are already reduced, e.g. low*(j) is known for j ∈ Pivots.
The clearing strategy from Lemma 1 is applied to each
of these columns to zero out their corresponding positive
pairs. The resulting set of Pivots is then passed on to the
main iteration.

3.1.2 Phase I: Finding local injections

In the first phase of the main iteration, the following Alg.
5 is applied to each dimension d ∈ [dim(K)].

Algorithm 5: Finding local injections
Data: ∂ ∈ Fm×m2 ; Pivots ⊂ Neg
Result: Pivots′ ⊂ Neg s.t. Pivots ⊂ Pivots′

maxCollision← 0;
for j ∈ {` ∈ Kd : low∂(`) > 0} \ Pivots do

if low∂(j) > maxCollision then
if low∂(j) /∈ low∂([j − 1]) then

Pivots← Pivots∪{j};
else

maxCollision← low∂(j);
end

end
end

Alg. 5 starts by initialising maxCollision ← 0 and walk-
ing through the non-zero columns in Kd that have not
been identified as pivots. The idea is to identify regions
of Kd where Theorems 6 and 7 can be applied to guar-
antee that a local injection exists. At each j, the vari-
able maxCollision tracks the largest i ∈ low∂([j − 1]) ∩
low∂(Kd) such that i = low∂(j1) = low∂(j2) for j1 6= j2.
In terms of Theorem 7, maxCollision plays the rôle of
max low∂(T j−1) in (11), since if low∂(j) > maxCollision
and low∂(j) /∈ low∂([j − 1]), then there is no column
` < j that can have low∂(`) = low∂(j) and conse-
quently low∂(j) cannot be further reduced and therefore
its low*(j) is known.

6

3.1.3 Main iteration II: Parallel column reduction

Once the first phase has been completed, the sets of
N (j) are computed for each j ∈ Pivots. Each column in⋂
j∈PivotsN (j) has their associated pivot added to them;

that is, ∂` ← ∂` + ∂j is carried out for each ` ∈ N (j) for
j ∈ Pivots. Alg. 2 then marks the column ` as reduced if
low∂(`) = β`,
ell is added to the set of Pivots, and the clearing strategy
is called to set the associated positive column ∂low*(`) to
zero.

3.1.4 Convergence

The convergence of Alg. 2 is a consequence of the inter-
play between Phases I and II of the main iteration. We
describe this mechanism in the following theorem.

Theorem 8 (Convergence of Alg. 2). Let ∂ ∈ Fm×m2 be
the boundary matrix of a simplicial complex K. Then,
Alg. 2 converges to low*.

Proof. Let Pivots` ⊂ [m] be the set of indices of columns
that are known to be already reduced at the start of it-
eration `, and let low∂

` be the corresponding estimate of
low*. We show that Alg. 1 converges by showing that if
low* 6= low∂

`, then either

|Pivots`+1 | ≥ |Pivots` |+ 1 (15)

or,
‖ low∂

`+1− low* ‖ < ‖ low∂
`− low* ‖. (16)

Note that |Pivots0 | ≥ dim(K) ≥ 1 since at Phase 0 at
least the first column of each dimension must be identified
as a pivot.
Suppose that at the start of iteration ` ≥ 0 the boundary
matrix ∂ is still not reduced so that low∂

` 6= low*. If
a column is identified as reduced at the end of Phase I,
then it is marked as a pivot so |Pivots`+1 | ≥ |Pivots` |+1
and we are done. Hence, assume that no new pivots are
identified. In this case, for each j ∈ Pivots` we construct
the set N (j) as in (13).
If ∃j0 ∈ Pivots` such that |N (j0)| ≥ 1, then Alg. 2 enters
Phase II to reduce columns in N (j0). In this case, (16)
holds and we are done. Otherwise, suppose |N (j0)| = 0
for all j ∈ Pivots`. In this case, since the matrix is not
reduced, the set

C = {j ∈ [m] : |N (j)| > 0}

is not empty. Let,

jmin = min C (17)

and let d = dim(σjmin). There are two possible cases,

1. jmin = minKd: In this case, the column must have
been identified as a pivot at Phase 0, which is a case
previously excluded.

2. jmin > minKd: Let

T = Kd \ {j ∈ Kd : low∂(j) = 0} .

In this case, it must hold that | low∂([jmin] ∩ T)| =
|[jmin] ∩ T | since otherwise, there would exist an
` ∈ [jmin − 1] ∩ T such that low∂(`) = low∂(jmin)
implying that |N (`)| > 0 and thus contradicting
the minimality of jmin. Hence, by Theorem 6,
low∂([jmin] ∩ T) = |[jmin] ∩ T |, so jmin must have
been identified at Phase I of the iteration. This is
again, a contradiction.

Therefore, it is impossible to have |N (j0)| = 0 for all
j0 ∈ Pivots` if no pivots were identified at Phase I of the
iteration. Hence, as long as low∂

` 6= low* either (15) or
(16) hold, so at each iteration Alg. 2 will increase the
number of pivots, decrease some entries in low∂ , or both.

The multi-scale nature of Alg. 2 is advantageous to imple-
ment a number of strategies that allow us progressively
refine our knowledge of low*. We describe some of these
strategies in the next subsections.

3.2 Clearing by compression
In this section we describe a clearing strategy based on a
column compression arguments inspired by the previous
compression arguments presented in [1] to reduce opera-
tion flop-count. This strategy, in its simplest form pre-
sented in Corollary 10, can be straightforwardly imple-
mented in a parallel architecture in Alg. 2, but is not ex-
plicitly listed in Alg. 2 for conciseness. Here, we present
a compression result that can in some cases help clear
columns in the matrix and in some other cases can give
improved bounds on the location of low*. In doing so, it
will be convenient to define the set Paired` ⊂ Paired, as
the sets of elements in (6) that have been identified at the
`-th iteration by Alg. 2.
Note that Paired` at iteration ` include the set of unre-
duced columns that have been identified as negative. In
particular, by Theorem 5,

{j ∈ [m] : βj > 0} ⊂ Paired` .

Lemma 9 (Clearing by local compression). Let ∂ ∈
Fm×m2 be a boundary matrix of a simplicial complex K.
Let j ∈ [m] and d = dim(σj) ∈ [dim(K)]. Then at itera-
tion ` of Alg. 2,

low*(j) ∈ Lj := {0} ∪ (Kd−1 ∩ [βj , low∂(j)]) \ Paired` .
(18)

Proof. If j ∈ [m], and d = dim(σj), then low*(j) ∈ Kd−1
by the definition of ∂; moreover, low*(j) ∈ [βj , low∂(j)]
by Theorem 5. The injection condition on the support of
low* implies that if low*(j) can not be equal to any of the
observed positive low*’s. Finally, low*(j) can not be equal
to the index of any of the identified negative columns as
∂low*(j) is necessarily positive, and can not be equal to any
of the indices of paired positive columns by the injection
condition and Lemma 1. Hence, low*(j) /∈ Paired`.

7

Lemma 9 implies the following corollary,

Corollary 10. Let ∂ ∈ Fm×m2 and let Lj be defined as
in (18) and such that |Lj | = 1. Let i ∈ Lj. If i = 0, then
low*(j) = 0. Else, i = low*(j) and consequently column
j is negative and fully reduced and ∂i is positive.

3.3 Essential estimation
Another way to reuse the partial knowledge of negative
and associated positive columns, as given by Paired` ⊂
Paired be the set of columns that have been identified as
paired at the `-th iteration of Alg. 2, is to estimate the
essential simplices

Lemma 11 (Essential estimation). Let ∂ ∈ Fm×m2 be a
boundary matrix and j ∈ [m], then at iteration `

Ess ⊂
{

[m] \ Paired`
}
\ {low∂(j) : j ∈ [m]} (19)

Proof. Clearly, Ess∩Paired` = ∅ for all ` by
the partition on the columns. We show that
Ess∩{low∂(j) : j ∈ [m]} = ∅. To do this, we follow a
proof by contradiction and suppose that low∂(j) ∈ Ess,
which implies

@p s.t. low*(p) = low∂(j) (20)

as otherwise p is the index of a negative column and
low*(p) the index of an associated positive non-essential
column. We show that column j can not be either posi-
tive or negative, which leads to a contradiction.

1. j ∈ Pos: As we are determining Ess∩{low∂(j) : j ∈ [m]},
we consider only the j such that low∂(j) > 0, but
since j ∈ Pos we must have low*(j) = 0. By the defi-
nition of j being positive there must exist q < j such
that low*(q) = low∂(j) in order that j can be re-
duced to the zero column; however, this contradicts
(20) by setting p = q.

2. j ∈ Neg: By Theorem 5 low∂(j) ≥ low*(j). If
low∂(j) = low*(j), then (20) is contradicted with
p = j. Otherwise, if low∂(j) > low*(j), then by the
definition of low*(j) there must exist q < j such that
low*(q) = low∂(j) in order to reduce column j. This
again, contradicts (20)

Theorem 19 implies that the set of essential columns can
be iteratively estimated by a set E` ⊂ [m] initialised at
E0 = [m] and iteratively updated as,

E`+1 ←
(
E` \ Paired`

)
\ {low∂(j) : j ∈ [m]} . (21)

3.4 Distributing the workload
Central to the efficacy of Alg. 2 is the typically large num-
ber of pivots available to reduce subsequent columns cou-
pled with the ability of all column additions in its Phase 2

to be performed in parallel. We do not explicitly describe
parallelisation strategies for Phase 2 due to architecture
specificity, but make a few remarks regarding communi-
cation minimisation and early termination in Secs. 3.4.1
and 3.4.2 respectively.

3.4.1 Prioritise reduction of sets N (j) with large
cardinality

Let,
C = {j ∈ Pivots : |N (j)| > 0} , (22)

be the set of columns that can be used in a given iteration
to decrease low∂ .
If only p < |C| processors are available, and communica-
tion of these active pivots is the dominant cost, then it
may be desirable to implement only a portion of the pos-
sible column additions available in Phase 2 duration an
iteration. In such a setting, a priority queue can be used
to order the sets N (j) based on their cardinality and act
on multiples of p sets of active columns per iteration of
Phase 2.

3.4.2 Prioritise reduction of N (j) ∩ Neg

In settings where low* cannot be fully determined due
to computational or time constraints, the reduction or-
dering can be prioritised to minimize various objectives.
One such objective is to minimize ‖ low∂ − low* ‖ in a
suitable norm as rapidly as possible. Recall, Theorem
5 gives bounds on the value of low* and low∂ is avail-
able by inspection. Due to the the identification of fully
reduced negative column, say column j allows clearing
of column low*(j) there is benefit in prioritising the re-
duction of columns which are known to be negative,
e.g. {j ∈ [m] : βj > 0} ⊂ Neg. Alternative prioritisations
would be application specific, but can include such infor-
mation as prioritising values for which the persistence is
greater or improving the estimation of essential columns
as described in Sec. 3.3.

4 Numerical experiments

In this section we evaluate the efficacy of our parallel
multi-scale reduction Alg. 2 empirically by comparing its
performance against the standard reduction Alg. 1 and
standard reduction with a twist Alg. 3. Our evaluation
is on a set of synthetic simplicial complexes from point-
clouds sampled from a set of a predefined set of ensembles.
The point-clouds and their corresponding Rips-Vietoris
simplicial complexes are generated with the Javaplex [21]
library. When building the simplicial complex, we supply
the following parameters,

1. Number of points (N): The number of points in the
point-cloud to be generated.

2. Maximum dimension (dimK): The maximum di-
mension of the resulting simplicial complex K.

8

3. Maximum filtration value (rT): The maximum ra-
dius in a predefined grid of scales {r1, . . . , rT } ⊂
[0,∞) used to build the filtration.

4. Number of divisions (h): The grid of scales is uniform
with spacing h, that is h := ri+1 − ri for i ∈ [T − 1].

Ensemble N dimK rT h

Gaussian Points in R3 15 5 5 10
Figure-8 15 5 5 10
Trefoil Knot 15 5 5 10
S2 × S2 15 5 5 10

Central to our numerical evaluations in this manuscript is
the number of iterations required. The reduction in Algs.
1 and 3 is an horizontal procedure in the sense that no
column in a given dimension is reduced before the pre-
ceeding columns in this dimension have been reduced. In
contrast, Alg. 2 is a diagonal procedure as it implements
an horizontal type of reduction in Phases I and II, but
rather than completely reducing the columns in order, it
progressively prunes the matrix vertically by doing left-
to-right column operations every time there is enough
information to guarantee that this is possible. Given this
crucial difference in design, it becomes difficult to find ap-
propriate benchmarking scenarios and, more fundamen-
tally, to provide a notion of iteration that is agnostic to
the algorithm’s architecture. Hence, in our numerical ex-
periments, we let an iteration be the set of operations
that are performed at each cycle of the outer-most loop
of the algorithm. This is a reasonable convention as it is
consistent with each of the algorithm’s concurrency and
is also natural for the high-level pseudo-code description
of their design. However, we note that this notion of it-
eration can be optimistic or pessimistic depending on the
unit of computational overhead that is being measured.
In our experiments, left-to-right column operations are
chosen as the main unit of computational overhead and,
indeed, our algorithm has been designed to minimise this
kind of operations. Given the embarrassingly parallel na-
ture of Phase II of Alg. 2, this model is generous with
our algorithm as it does not consider possible limitations
to the number of processors available and it does not ac-
count for the communication overhead between proces-
sors. Finally, as our algorithm’s practical performance is
greatly limited by the hardware architecture, we point out
that our numerical experiments should serve as a proof-of-
concept of a design that can yield a powerful production
implementation rather than a trustworthy comparison of
the run-time or flop-count in the general case.
The numerical results presented in this section simulate a
parallel implementation and are available at [15]. A truly
parallel implementation is being developed.

4.1 Operations are packed in fewer
iterations

For each ensemble we sample three point-clouds and re-
duce their corresponding boundary matrices using each

of Algs. 1 - 3. Fig. 1 illustrates the computational com-
plexity, as the number of column additions performed at
each iteration and also the number of nontrivial xor op-
erations when adding columns in the matrix; that is, the
number of scalar operations of the form

{1⊕ 1, 1⊕ 0, 0⊕ 1} .

Scalar operations are relevant because in some storage
models like the one given in [7] the computational cost of
updating the matrix depends super-linearly on the num-
ber of non-zeros in the columns being added. Figs. 1a, 1g
and 1j show the number of column additions per iteration
of each algorithm performs to reduce each of the simpli-
cial compelexes under consideration. Specifically, they
illustrate how that Alg. 2 allocates most of the column
additions at the earliest iterations due to its highly par-
allel nature. On the other hand, Figs. 1b, 1h, and 1k as
well as Tab. 1 show that while Alg. 2 reduces the number
of iterations, it has a total number of column additions
indistingushable to Alg. 3 and about half that of Alg. 1.
This shows that Alg. 2 is successful in packing the num-
ber of left-to-right column operations into considerably
few independent iterations.

4.2 low* is approximated at multiple scales
Let low∂

` be the estimate of low* at the `-th iteration of
an algorithm. We evaluate the quality of the approxima-
tion by computing the relative `1-error as

error` =
‖ low∂

`− low* ‖1
‖ low* ‖1

. (23)

Fig. 2 illustrates an improved rate of reduction in errork

per iteration as each of the algorithms progresses. This is
achieved without resorting to further prioritisation of this
reduction as described in Sec. 3.4.2 as we are simulating
a number of processors in excess of the number of column
additions needed per iteration. Tab. 2 shows the precise
number of iterations each of Algs. 1 - 3 need to achieve
(23) less than 10−k for k = 1, 2, 3, 4 and complete reduc-
tion. Tab. 2 shows the rapid reduction of (23) by Alg.
2 compared to only appreciable reduction by Algs. 1 and
3 near their complete reductions; e.g. wheras a relative
reduction of (23) to 1% is achieved by Alg. 2 in less than
20 iterations, Algs. 1 and 3 take approximately ten and
nine thousand iterations respectively for the same reduc-
tion. Fig. 3 and Tab. 3 show a similarly early decrease
in the fraction of the number of columns which are fully
reduced. Remarkably, Alg. 2 has reduced at least 50% of
the columns in only two iterations, and all but 1% within
no more than 20 iterations; this is in contrast with be-
tween approximately two and a half and ten thousand
iterations for compreable reductions by Algs. 1 and 3.

4.3 The set Ess can be reliably estimated
after a few iterations

Finally, we show how the efficacy of Lemma 11 in estimat-
ing the the set of essential columns. Let E` be defined as

9

10
0

10
1

10
2

10
3

10
4

iteration

10
0

10
1

10
2

10
3

10
4

c
o
u
n
t
o
f
c
o
lu

m
n
 a

d
d
it
io

n
s

Random-Gaussian: |S|=15, dim=3

 m=9948 m=9948

 m=9948
 m=9948

 m=9948

pms

std

twist

(a) Gaussian
Count of column additions

10
0

10
1

10
2

10
3

10
4

iteration

10
0

10
1

10
2

10
3

10
4

10
5

c
o

u
n

t
o

f
c
o

lu
m

n
 a

d
d

it
io

n
s
 (

c
u

m
u

la
ti
v
e

)

Random-Gaussian: |S|=15, dim=3

 m=9948

 m=9948
 m=9948

 m=9948 m=9948 m=9948

 m=9948

 m=9948

 m=9948

pms

std

twist

(b) Gaussian
Count of column additions (cumulative)

10
0

10
1

10
2

10
3

10
4

iteration

10
3

10
4

10
5

10
6

10
7

10
8

10
9

c
o

u
n

t
o

f
X

O
R

 o
p

e
ra

ti
o

n
s
 (

c
u

m
u

la
ti
v
e

)

Random-Gaussian: |S|=15, dim=3

 m=9948

 m=9948
 m=9948

 m=9948 m=9948 m=9948
 m=9948

 m=9948
 m=9948

pms

std

twist

(c) Gaussian
Count of XOR operations (cumulative)

10
0

10
1

10
2

10
3

10
4

iteration

10
0

10
1

10
2

10
3

10
4

c
o
u
n
t
o
f
c
o
lu

m
n
 a

d
d
it
io

n
s

Random-Figure-8: |S|=15

 m=9948

 m=9948
 m=9948

 m=9948

 m=9948 m=9948

 m=9948

pms

std

twist

(d) Figure-8
Count of column additions

10
0

10
1

10
2

10
3

10
4

iteration

10
0

10
1

10
2

10
3

10
4

10
5

c
o

u
n

t
o

f
c
o

lu
m

n
 a

d
d

it
io

n
s
 (

c
u

m
u

la
ti
v
e

)

Random-Figure-8: |S|=15

 m=9948

 m=9948 m=9948

 m=9948 m=9948 m=9948
 m=9948

 m=9948
 m=9948

pms

std

twist

(e) Figure-8
Count of column additions (cumulative)

10
0

10
1

10
2

10
3

10
4

iteration

10
3

10
4

10
5

10
6

10
7

10
8

10
9

c
o

u
n

t
o

f
X

O
R

 o
p

e
ra

ti
o

n
s
 (

c
u

m
u

la
ti
v
e

)

Random-Figure-8: |S|=15

 m=9948

 m=9948 m=9948

 m=9948 m=9948 m=9948
 m=9948

 m=9948
 m=9948

pms

std

twist

(f) Figure-8
Count of XOR operations (cumulative)

10
0

10
1

10
2

10
3

10
4

iteration

10
0

10
1

10
2

10
3

10
4

c
o

u
n

t
o

f
c
o

lu
m

n
 a

d
d

it
io

n
s

Random-Trefoil-Knot: |S|=15

 m=7829

 m=5581

 m=6399

pms

std

twist

(g) Trefoil Knot
Count of column additions

10
0

10
1

10
2

10
3

10
4

iteration

10
0

10
1

10
2

10
3

10
4

10
5

c
o

u
n

t
o

f
c
o

lu
m

n
 a

d
d

it
io

n
s
 (

c
u

m
u

la
ti
v
e

)

Random-Trefoil-Knot: |S|=15

 m=7829
 m=7829
 m=7829

 m=5581 m=5581 m=5581
 m=6399

 m=6399

 m=6399

pms

std

twist

(h) Trefoil Knot
Count of column additions (cumulative)

10
0

10
1

10
2

10
3

10
4

iteration

10
4

10
5

10
6

10
7

10
8

10
9

c
o

u
n

t
o

f
X

O
R

 o
p

e
ra

ti
o

n
s
 (

c
u

m
u

la
ti
v
e

)

Random-Trefoil-Knot: |S|=15

 m=7829
 m=7829
 m=7829

 m=5581 m=5581 m=5581

 m=6399

 m=6399

 m=6399

pms

std

twist

(i) Trefoil Knot
Count of XOR operations (cumulative)

10
0

10
1

10
2

10
3

10
4

iteration

10
0

10
1

10
2

10
3

10
4

c
o

u
n

t
o

f
c
o

lu
m

n
 a

d
d

it
io

n
s

Random-Sphere-Product: |S|=15, dim=1, factors=2

 m=9948

 m=9948

 m=9948

 m=9948
 m=9948 m=9948 m=9948

pms

std

twist

(j) Sphere product
Count of column additions

10
0

10
1

10
2

10
3

10
4

iteration

10
0

10
1

10
2

10
3

10
4

10
5

c
o

u
n

t
o

f
c
o

lu
m

n
 a

d
d

it
io

n
s
 (

c
u

m
u

la
ti
v
e

)

Random-Sphere-Product: |S|=15, dim=1, factors=2

 m=9948
 m=9948

 m=9948

 m=9948 m=9948 m=9948
 m=9948

 m=9948

 m=9948

pms

std

twist

(k) Sphere product
Count of column additions (cumulative)

10
0

10
1

10
2

10
3

10
4

iteration

10
3

10
4

10
5

10
6

10
7

10
8

10
9

c
o

u
n

t
o

f
X

O
R

 o
p

e
ra

ti
o

n
s
 (

c
u

m
u

la
ti
v
e

)

Random-Sphere-Product: |S|=15, dim=1, factors=2

 m=9948
 m=9948

 m=9948

 m=9948 m=9948 m=9948
 m=9948

 m=9948
 m=9948

pms

std

twist

(l) Sphere product
Count of XOR operations (cumulative)

Figure 1: Benchmarking on column operation overhead. For each ensemble, three point clouds are sampled and
their corresponding simplicial complexes are reduced with Algs. 1 - 3. Their performance is benchmarked
in three different ways: through the number of column additions done at each iteration (Figs. 1a, 1d, 1g,
1j); through the cumulative number of column additions up to a given iteration (Figs. 1b, 1e, 1h, 1k); and
through the cumulative number of XOR operations done up to a given iteration (Figs. 1c, 1f, 1i, 1l).10

Sample Gaussian Figure-8 Trefoil-knot Sphere-product
std twist std twist std twist std twist

1 0.52 1.00 0.49 1.00 0.46 1.00 0.50 1.00
2 0.52 1.00 0.51 1.00 0.40 1.00 0.49 1.01
3 0.50 1.00 0.50 1.00 0.44 1.00 0.47 1.00

Table 1: Ratio of total column additions. For each ensemble, three point clouds are sampled and the corresponding
simplicial complexes are reduced with each algorithm. The ratio of total column additions between Alg. 2
and both Algs. 1 and 3 is reported.

10
0

10
1

10
2

10
3

10
4

iteration

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Random-Gaussian: |S|=15, dim=3

 m=9948

 m=9948 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

pms

std

twist

(a) Gaussian

10
0

10
1

10
2

10
3

10
4

iteration

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Random-Figure-8: |S|=15

 m=9948
 m=9948 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

pms

std

twist

(b) Figure-8

10
0

10
1

10
2

10
3

10
4

iteration

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Random-Trefoil-Knot: |S|=15

 m=7829

 m=7829 m=7829

 m=5581

 m=5581

 m=5581

 m=6399

 m=6399

 m=6399

pms

std

twist

(c) Trefoil Knot

10
0

10
1

10
2

10
3

10
4

iteration

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Random-Sphere-Product: |S|=15, dim=1, factors=2

 m=9948
 m=9948 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

pms

std

twist

(d) Sphere product

Figure 2: Relative `1-error per iteration. For each ensemble, three point clouds are sampled and the corresponding
simplicial complexes are reduced with each of the algorithms. The relative `1-error between low∂ and low*,
as given in (23), is tracked.

11

‖ low∂ − low* ‖1
‖ low* ‖1

Gaussian Figure-8 Trefoil-knot Sphere-product
pms std twist pms std twist pms std twist pms std twist

0.1 14 9786 7366 9 9756 6759 12 7687 5519 7 9751 5589
0.01 20 9933 9180 17 9930 8916 15 7816 7087 10 9930 8485
0.001 24 9948 9197 25 9948 8942 16 7829 7122 13 9948 8564
0.0001 27 9949 9198 26 9949 8944 20 7830 7309 15 9949 9388
0 27 9949 9858 26 9949 9869 21 7830 7732 17 9949 9840

Table 2: Iterations to relative `1-error. For each ensemble, one point cloud is sampled and the corresponding
simplicial complex is reduced with each algorithm. The number of iterations to achieve a given relative
`1-error level between low∂ and low*, as given by (23), is reported for of Algs. 1 - 3.

10
0

10
1

10
2

10
3

10
4

iteration

10
-4

10
-3

10
-2

10
-1

10
0

%
 o

f
u
n
re

d
u
c
e
d
 c

o
lu

m
n
s

Random-Gaussian: |S|=15, dim=3

 m=9948

 m=9948 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

pms

std

twist

(a) Gaussian

10
0

10
1

10
2

10
3

10
4

iteration

10
-4

10
-3

10
-2

10
-1

10
0

%
 o

f
u
n
re

d
u
c
e
d
 c

o
lu

m
n
s

Random-Figure-8: |S|=15

 m=9948

 m=9948 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

pms

std

twist

(b) Figure-8

10
0

10
1

10
2

10
3

10
4

iteration

10
-4

10
-3

10
-2

10
-1

10
0

%
 o

f
u
n
re

d
u
c
e
d
 c

o
lu

m
n
s

Random-Trefoil-Knot: |S|=15

 m=7829

 m=7829
 m=7829

 m=5581

 m=5581

 m=5581

 m=6399

 m=6399

 m=6399

pms

std

twist

(c) Trefoil Knot

10
0

10
1

10
2

10
3

10
4

iteration

10
-4

10
-3

10
-2

10
-1

10
0

%
 o

f
u
n
re

d
u
c
e
d
 c

o
lu

m
n
s

Random-Sphere-Product: |S|=15, dim=1, factors=2

 m=9948

 m=9948
 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

pms

std

twist

(d) Sphere product

Figure 3: Proportion of unreduced columns per iteration. For each ensemble, three point clouds are sampled
and the corresponding simplicial complexes are reduced with each of Algs. 1 - 3. The proportion of unreduced
columns is presented at each iteration.

12

Proportion Gaussian Figure-8 Trefoil-knot Sphere-product
pms std twist pms std twist pms std twist pms std twist

0.90 2 996 528 2 996 499 2 784 392 2 996 519
0.50 2 4975 3405 2 4975 2974 2 3916 2536 2 4975 2958
0.10 12 8955 7424 7 8955 6849 7 7048 6140 7 8955 6115
0.05 15 9452 8432 7 9452 8618 12 7439 6738 7 9452 8404
0.01 20 9850 9471 17 9850 9494 15 7752 7427 7 9850 9461

Table 3: Iterations to unreduced percentage. For each ensemble, one point cloud is sampled and the corresponding
simplicial complex is reduced with each of Algs. 1 - 3. The number of iterations to achieve a given proportion
of unreduced columns is presented for each algorithm.

in (21), by Lemma 11, Ess ⊂ E` for every `. If E` is our
estimation at iteration `, then the number of true posi-
tives, false positives and false negatives in the estimation
is, respectively,

TP = |Ess∩E`| = |Ess |,
FP = |E` \ Ess | = |E`| − |Ess |,
FN = |∅| = 0.

To evaluate the quality of the estimation, we compute the
precision as defined by

precision =
TP

TP + FP
=
|Ess |
|E`|

and note that the recall = TP
TP+FN is equal to 1 due to the

estimate giving no false negatives. Fig. 4 and Tab. 4 show
the remarkably few iterations needed by Alg. 2 to achieve
precision near one while Algs. 1 and 3 show increase in the
precision to one only in the later iterations. Specifically,
Alg. 2 achieves precision of 95% with two iterations and
complete precision within 8 iterations whereas Algs. 1 and
3 require between seven and ten thousand iterations for
similar precisions.

5 Conclusions
We have presented a massively parallel algorithm, Alg.
2 for the reduction of boundary matrices in the scalable
computation of persistent homology. This work extends
the foundational algorithms [1, 7, 12] using many of the
same notions, but allowing a dramatically greater distri-
bution of the necessary operations. Our numerical ex-
periments show that Alg 2, as compared with Algs. 1
and 3, is able to pack more operations into few itera-
tions, approximates low* simultaneously at all scales of
the simplicial complex filtration, and determines the es-
sential columns in remarkably few iterations. This mas-
sively parallel algorithm suggests the reduction of dra-
matically larger boundary matrices will now be possible,
and moreover allows early termination with accurate re-
sults when computational constraints are reached. Imple-
mentation of Alg. 2 in the leading software packages, as
reported in [19], is underway and we expect to report dra-
matic reduction in computational times in a subsequent
manuscript.

6 Acknowledgements

The authors would like to thank Vidit Nanda for his help-
ful comments. This work was supported by The Alan
Turing Institute under the EPSRC grant EP/N510129/1.
RMS acknowledges the support of CONACyT.

References

[1] Ulrich Bauer, Michael Kerber, and Jan Reininghaus.
Clear and compress: Computing persistent homol-
ogy in chunks. In Topological Methods in Data Anal-
ysis and Visualization III, pages 103–117. Springer,
2014.

[2] Ulrich Bauer, Michael Kerber, and Jan Reininghaus.
Distributed computation of persistent homology. In
2014 Proceedings of the Sixteenth Workshop on Al-
gorithm Engineering and Experiments (ALENEX),
pages 31–38. SIAM, 2014.

[3] Gunnar Carlsson. Topology and data. Bulletin of
the American Mathematical Society, 46(2):255–308,
2009.

[4] Gunnar Carlsson. Topological pattern recognition
for point cloud data. Acta Numerica, 23:289, 2014.

[5] Gunnar Carlsson, Tigran Ishkhanov, Vin De Silva,
and Afra Zomorodian. On the local behavior of
spaces of natural images. International journal of
computer vision, 76(1):1–12, 2008.

[6] Joseph Minhow Chan, Gunnar Carlsson, and Raul
Rabadan. Topology of viral evolution. Proceedings
of the National Academy of Sciences, 110(46):18566–
18571, 2013.

[7] Chao Chen and Michael Kerber. Persistent ho-
mology computation with a twist. In Proceedings
27th European Workshop on Computational Geome-
try, volume 11, 2011.

[8] Don Coppersmith and Shmuel Winograd. Matrix
multiplication via arithmetic progressions. Journal
of symbolic computation, 9(3):251–280, 1990.

13

10
0

10
1

10
2

10
3

10
4

iteration

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
o

s
it
iv

e
 P

re
d

ic
ti
v
e

 V
a

lu
e

Random-Gaussian: |S|=15, dim=3
 m=9948

 m=9948

 m=9948

 m=9948

 m=9948 m=9948

 m=9948

 m=9948

 m=9948

pms

std

twist

(a) Gaussian

10
0

10
1

10
2

10
3

10
4

iteration

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
o

s
it
iv

e
 P

re
d

ic
ti
v
e

 V
a

lu
e

Random-Figure-8: |S|=15
 m=9948

 m=9948
 m=9948

 m=9948

 m=9948
 m=9948

 m=9948

 m=9948

 m=9948

pms

std

twist

(b) Figure-8

10
0

10
1

10
2

10
3

10
4

iteration

0.4

0.5

0.6

0.7

0.8

0.9

1

P
o

s
it
iv

e
 P

re
d

ic
ti
v
e

 V
a

lu
e

Random-Trefoil-Knot: |S|=15
 m=7829

 m=7829

 m=7829

 m=5581

 m=5581
 m=5581

 m=6399

 m=6399

 m=6399

pms

std

twist

(c) Trefoil Knot

10
0

10
1

10
2

10
3

10
4

iteration

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
o

s
it
iv

e
 P

re
d

ic
ti
v
e

 V
a

lu
e

Random-Sphere-Product: |S|=15, dim=1, factors=2
 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

 m=9948

 m=9948 m=9948

 m=9948

pms

std

twist

(d) Sphere product

Figure 4: Precision of Ess estimation. For each ensemble, three point clouds are sampled and the corresponding
simplicial complexes are reduced with each algorithm. At each iteration, Ess is estimated and its precision
is tracked.

Precision Gaussian Figure-8 Trefoil-knot Sphere-product
pms std twist pms std twist pms std twist pms std twist

0.10 1 1 1 1 1 1 1 1 1 1 1 1
0.50 2 1033 559 2 1231 493 2 2132 1374 2 1016 557
0.90 2 8461 8244 2 7599 8238 2 6691 6445 2 6675 8222
0.95 2 8636 8938 2 7774 8892 2 6871 7123 2 6850 8519
1.00 8 8794 9858 5 7932 9869 8 7004 7732 7 7008 9866

Table 4: Iterations to essential-estimation precision. For each ensemble, one point cloud is sampled and the
corresponding simplicial complex is reduced with each algorithm. The number of iterations to achieve a given
precision of the set Ess is given for each algorithm.

14

[9] Vin De Silva, Dmitriy Morozov, and Mikael
Vejdemo-Johansson. Dualities in persistent (co) ho-
mology. Inverse Problems, 27(12):124003, 2011.

[10] Vin De Silva, Dmitriy Morozov, and Mikael
Vejdemo-Johansson. Persistent cohomology and cir-
cular coordinates. Discrete & Computational Geom-
etry, 45(4):737–759, 2011.

[11] Herbert Edelsbrunner and John Harer. Computa-
tional topology: an introduction. American Mathe-
matical Soc., 2010.

[12] Herbert Edelsbrunner, David Letscher, and Afra
Zomorodian. Topological persistence and simpli-
fication. Discrete and Computational Geometry,
28(4):511–533, 2002.

[13] Robert Ghrist. Elementary applied topology. Book
in preperation, 2014.

[14] PY Lum, G Singh, A Lehman, T Ishkanov, Mikael
Vejdemo-Johansson, M Alagappan, J Carlsson, and
G Carlsson. Extracting insights from the shape of
complex data using topology. Scientific reports, 3,
2013.

[15] Rodrigo Mendoza-Smith. Parallel multiscale re-
duction of ph filtrations. https://github.com/
rodrgo/tda, 2017.

[16] Nikola Milosavljević, Dmitriy Morozov, and Pri-
moz Skraba. Zigzag persistent homology in matrix
multiplication time. In Proceedings of the twenty-
seventh annual symposium on Computational geom-
etry, pages 216–225. ACM, 2011.

[17] Dmitriy Morozov. Persistence algorithm takes cu-
bic time in worst case. BioGeometry News, Dept.
Comput. Sci., Duke Univ, 2, 2005.

[18] Monica Nicolau, Arnold J Levine, and Gunnar Carls-
son. Topology based data analysis identifies a sub-
group of breast cancers with a unique mutational
profile and excellent survival. Proceedings of the
National Academy of Sciences, 108(17):7265–7270,
2011.

[19] Nina Otter, Mason A Porter, Ulrike Tillmann, Peter
Grindrod, and Heather A Harrington. A roadmap
for the computation of persistent homology. arXiv
preprint arXiv:1506.08903, 2015.

[20] Donald R Sheehy. The persistent homology of dis-
tance functions under random projection. In Pro-
ceedings of the thirtieth annual symposium on Com-
putational geometry, page 328. ACM, 2014.

[21] Andrew Tausz, Mikael Vejdemo-Johansson, and
Henry Adams. JavaPlex: A research software pack-
age for persistent (co)homology. In Han Hong
and Chee Yap, editors, Proceedings of ICMS 2014,
Lecture Notes in Computer Science 8592, pages

129–136, 2014. Software available at http://
appliedtopology.github.io/javaplex/.

[22] Dane Taylor, Florian Klimm, Heather A Harrington,
Miroslav Kramár, Konstantin Mischaikow, Mason A
Porter, and Peter J Mucha. Topological data anal-
ysis of contagion maps for examining spreading pro-
cesses on networks. Nature communications, 6, 2015.

15

