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Abstract

Let A be a d by n matrix, d < n. Let T = Tn−1 be the standard regular simplex in Rn.
We count the faces of the projected simplex AT in the case where the projection is random,
the dimension d is large and n and d are comparable: d ∼ δn, δ ∈ (0, 1). The projector A is
chosen uniformly at random from the Grassmann manifold of d-dimensional orthoprojectors
of Rn. We derive ρN (δ) > 0 with the property that, for any ρ < ρN (δ), with overwhelming
probability for large d, the number of k-dimensional faces of P = AT is exactly the same as
for T , for 0 ≤ k ≤ ρd. This implies that P is bρdc-neighborly, and its skeleton Skelbρdc(P )
is combinatorially equivalent to Skelbρdc(T ). We display graphs of ρN .

We also study a weaker notion of neighborliness it asks if the k-faces are all simplicial and
if the numbers of k-dimensional faces fk(P ) ≥ fk(T )(1− ε). This was already considered by
Vershik and Sporyshev, who obtained qualitative results about the existence of a threshold
ρV S(δ) > 0 at which phase transition occurs in k/d. We compute and display ρV S and
compare to ρN .

Our results imply that the convex hull of n Gaussian samples in Rd, with n large and
proportional to d, ‘looks like a simplex’ in the following sense. In a typical realization of
such a high-dimensional Gaussian point cloud d ∼ δn, all points are on the boundary of the
convex hull, and all pairwise line segments, triangles, quadrangles, ..., bρdc-angles are on the
boundary, for ρ < ρN (d/n).

Our results also quantify a precise phase transition in the ability of linear programming to
find the sparsest nonnegative solution to typical systems of underdetermined linear equations;
when there is a solution with fewer than ρV S(d/n)d nonzeros, linear programming will find
that solution.

Key Words and Phrases: Neighborly Polytopes. Convex Hull of Gaussian Sample. Un-
derdetermined Systems of Linear Equations. Uniformly-distributed Random Projections.
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1 Introduction

Let T = Tn−1 be the standard simplex in Rn and let A be a uniformly-distributed random
projection from Rn to Rd. Some time ago, Goodman and Pollack proposed to study the prop-
erties of n points in Rd obtained as the vertices of P = AT ; this was called by Schneider the
Goodman-Pollack model of a random pointset. Independently, Vershik advocated a ‘Grass-
mann Approach’ to high-dimensional convex geometry and began to study the same object P ,
motivated by average-case analysis of the simplex method of linear programming.

Key insights into the properties of P were obtained by Affentranger and Schneider [1] and
Vershik and Sporyshev [13]. Both developed methods to count the number of faces of the
randomly-projected simplices P = AT . Affentranger and Schneider considered the case where
d is fixed and n is large and showed the number of points on the convex hull of P grew log-
arithmically in n. Vershik and Sporyshev considered the situation where the dimension d was
proportional to the number of points n and found that the low-dimensional face numbers of P
behaved roughly like those of the simplex.

1.1 New Applications

In the years since [1, 13] first appeared, new reasons have emerged to study this problem:

• Properties of Gaussian ‘Point Clouds’. Work of Baryshnikov and Vitale [2] has shown that
the Goodman-Pollack model is for certain purposes equivalent to the classical model of
drawing n samples from a multivariate Gaussian distribution in Rd. Thus, results in this
model tell us about the properties of multivariate Gaussian point clouds, in particular, the
properties of their convex hull. High-dimensional Gaussian point clouds provide models of
modern high-dimensional datasets. Much development of statistical models assumes these
clouds behave as low dimensional clouds; as we will see this is wildly inaccurate.

• Sparse Solution of Linear Systems. In a companion paper [8], the authors considered
the problem of finding the sparsest nonnegative solution to an underdetermined system
of equations y = Ax, x ≥ 0, A a d × n matrix. They connected this with the problem
of k-neighborliness of the polytope P0 = conv(AT ∪ {0}); for more on neighborliness, see
below. They showed that, if P0 is k-neighborly, then for every problem instance (y,A)
where y = Ax0 with x0 having at most k nonzeros, the sparsest solution can be obtained
by linear programming.

Inspired by these two more recent developments, we study randomly-projected simplices anew.

1.2 Neighborliness

The polytope P is called k-neighborly if every subset of k vertices forms a k− 1-face [10, Chap-
ter 7]. A k-neighborly polytope ‘acts like’ a simplex, at least from the viewpoint of its low-
dimensional faces. More formally, a k-neighborly polytope with n vertices has several properties
of interest:

• It has the same number of `-dimensional faces as the simplex Tn−1, ` = 0, . . . , k − 1.

• The `-dimensional faces are all simplicial, for 0 ≤ ` < k.

• The (k − 1)-dimensional skeleton is combinatorially equivalent to the (k − 1)-skeleton of
the simplex Tn−1.
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Figure 1: Lower curve: lower bound ρN (δ) on the neighborliness threshold, computed by meth-
ods of this paper. Upper curve: Vershik-Sporyshev weak neighborliness threshold ρV S . Matlab
software available from the authors.

Such properties can seem counterintuitive. Comparing Tn−1 ⊂ Rn with P = ATn−1 ⊂ Rd,
we note that P is a lower-dimensional projection of Tn−1 and, it would seem, might ‘lose faces’
as compared to Tn−1 because of the projection. For example, it might seem likely that, under
projection, some edges of Tn−1 might fall ‘inside’ the convex hull conv(ATn−1); yet if P is 2-
neighborly, this does not happen. Surprisingly, in high dimensions, the counterintuitive event
of 2-neighborliness is quite typical. Even much more extreme things occur – we can have k-
neighborliness with k proportional to d.

1.3 Asymptotic Analysis

We adopt the Vershik-Sporyshev asymptotic setting and consider the case where d is proportional
to n and both are large. However, to better align with applications, and with our own companion
work [6, 7, 8], we use different notation than Vershik and Sporyshev in [13]. In a later section
we will harmonize results. We assume d = dn = bδnc and consider n large.

Our primary concern is the neighborliness phase transition. It turns out that, with over-
whelming probability for large n, the polytope P = ATn−1 typically has n vertices and is
k-neighborly for k ≈ ρN (d/n) · d. The function ρN will be characterized and computed below;
see Figure 1. For example, that Figure shows that, if n = 2d and n is large, k-neighborliness
holds for k ≤ .133d .

To state a formal result, for a polytope Q, let f`(Q) denote the number of `-dimensional
faces.

Theorem 1 Main Result. Let ρ < ρN (δ) and let A = Ad,n be a uniformly-distributed random
projection from Rn to Rd, with d ≥ δn. Then

Prob{f`(ATn−1) = f`(Tn−1), ` = 0, . . . , bρdc} → 1, as n→∞. (1.1)

In particular, this agreement of face numbers means that P is k neighborly for k = ρN (δ)d(1 +
oP (1)).
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We may distinguish this result from the pioneering work of Vershik and Sporyshev [13], who
were interested in the question of whether, for k in a fixed proportion to n, the face numbers
fk(ATn−1) = fk(Tn−1)(1+oP (1)) or not. They also proved a threshold phenomenon for k in the
vicinity of (say) ρV Sd, for some implicitly characterized ρV S = ρV S(d/n) . While Vershik and
Sporyshev referred to ‘the neighborliness problem’ in the title of their article, the notion they
studied was not neighborliness in the sense of [10] and classical convex polytopes but instead
what we might call weak neighborliness. Such weak neighborliness asks whether, for a given
random polytope P = ATn−1, there are n vertices and whether the overwhelming majority of
`-membered subsets of those vertices span (`− 1)-faces of P , for ` ≤ k.

For comparison to Theorem 1, note that the question of approximate equality of face numbers
fk(ATn−1) = fk(Tn−1)(1 + oP (1)) is weaker than the exact equality studied here in Theorem 1;
it changes at a different threshold in k/d. Vershik-Sporyshev’s result can be stated as follows.

Theorem 2 Vershik-Sporyshev. There is a function ρV S(δ), characterised below, with the
following property. Let d = d(n) ∼ δn and let A = Ad,n be a uniform random projection from
Rn to Rd. Then for a sequence k = k(n) with k/d ∼ ρ, ρ < ρV S(δ), we have

fk(ATn−1) = fk(Tn−1)(1 + oP (1)). (1.2)

We emphasize that our notation differs from Vershik and Sporyshev, who studied instead
the inverse function δV S(ρ) (say). Figure 1 displays the weak-neighborliness phase transition
function ρV S for comparison with the neighborliness phase transition ρN .

The Vershik-Sporyshev result is sharp in the sense that for sequences with k/d ∼ ρ > ρV S ,
we do not have the approximate equality (1.2). In this paper we will show how a proof of
Theorem 2 can be made similar to the proof of Theorem 1.

1.4 Numerical results

Our work contributes the first study of the neighborliness phase transition and the first numerical
information about the Vershik-Sporyshev weak-neighborliness phase transition. Our Matlab
software for computing these curves is available from the authors. In particular, Figure 1 depicts
substantial numerical differences in the critical proportion ρV S and the lower bounds ρN . The
most striking property of ρV S is that it crosses the line ρ = 1/2 near δ = .425 and increases to
1 as δ → 1. This has implications for sparse solution of linear equations with n equations and
2n unknowns; see [8]. For comparison, we compute that

.371 ≈ lim
δ→1

ρN (δ). (1.3)

1.5 Solid Simplices

There are two natural variations on the notion of simplex to which the above results also apply.
The first, Tn

0 , is the convex hull of {0} and Tn−1. This is a ‘solid’ n-simplex in Rn, but
not a regular simplex, since the vertex at 0 is closer to the other vertices than they are to
each other. The second, Tn

1 , is the convex hull of the vector −α1 with Tn−1, where α solves
(1 + α)2 + (n − 1)α2 = 2. This is also a ‘solid’ n-simplex in Rn, this time a regular one, with
n+ 1 vertices all spaced

√
2 apart. For applications where random projections of one or both of

these alternate simplices could be of interest, we make the following remark.

Theorem 3 Theorems 1 and 2 hold for ATn
1 , with the same functions ρN and ρV S and the

comparable conclusions. Theorems 1 and 2 hold for ATn
0 , with the same functions ρN and ρV S

and the comparable conclusions, provided ’neighborliness’ is replaced by ’outward neighborliness’.
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’Outward neighborliness’ is a slight variation of the concept of ’neighborliness’, see the paper
[8]. We give the (simple) proof of Theorem 3 in the Appendix.

1.6 Applications

We briefly indicate how these new results give information about the applications sketched in
Section 1.1.

1.6.1 Gaussian Point Clouds.

Suppose we sample X1, X2, . . . , Xn i.i.d. according to a multivariate Gaussian distribution on
Rd with nonsingular covariance. By Baryshnikov-Vitale [2], any affine-invariant property of the
point configuration will have the same probability distribution under this model as it would
under the model where A is a uniform random projection and Xi is the i-th column of A. We
conclude the following.

Corollary 1.1 Let δ ∈ (0, 1) be fixed and let d = dn = bδnc. Let ρ < ρN (δ). Let X1, X2 . . . , Xn

be i.i.d. samples from a Gaussian distribution on Rd with nonsingular covariance. Consider the
convex hull P of (Xi)n

i=1. Then with overwhelming probability for large n,

• every Xi is a vertex of the convex hull P ;

• every pair Xi, Xj generates an edge of the convex hull;

• ...

• every k = bρdc points generate a (k − 1)-face of P .

In short, not only are the points on the convex hull, but all reasonable-sized subsets span faces
of the convex hull.

This is wildly different than the behavior that would be expected by traditional low-dimensional
thinking. If we consider the case of d fixed and n tending to infinity, Affentranger and Schneider
showed that there are a constant times log(n)(d−1)/2 points on the convex hull; in contrast, in
the high-dimensional asymptotic considered here, all n points are on the convex hull. Even more
exotically, Theorem 3 implies that a result just like Corollary 1.1 is true for the point set of n+1
points with Xi i = 1, . . . , n random as before, this time with zero mean, and the additional
point X0 = 0. Even though 0 is the most likely value for a standard Gaussian vector, it is a
very highly exposed point in high dimensions!

1.6.2 Sparse Solution by Linear Programming

Finding the sparsest nonnegative solution to y = Ax is an NP-hard problem in general when
d < n. Surprisingly, many matrices have a sparsity threshold: for all instances y such that
y = Ax has a sufficiently sparse nonnegative solution, there is a unique nonnegative solution,
which can be found by linear programming. Interestingly, the neighborliness phase transitions
ρN and ρV S describe the threshold behavior of typical matrices A. This connection is discussed
at length in [8]. Consider the standard linear program:

(LP ) min 1′x subject to y = Ax, x ≥ 0.
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Corollary 1.2 Fix ε, δ > 0. Let d = bδnc, and let A be a d times n matrix whose columns
are independent and identically distributed according a multivariate normal distribution with
nonsingular covariance. Let k = b(ρN (δ) − ε)dc. With overwhelming probability for large n,
A has the property that, for every nonnegative vector x0 containing at most k nonzeros, the
corresponding y = Ax0 generates an instance of the minimization problem (LP) which has x0

for its unique solution.

In words, for a typical A, for all problem instances permitting sufficiently sparse solutions,
the linear programming problem (LP) computes the sparsest solution. Here sufficiently sparse
is determined by ρN (d/n).

The weak neighborliness threshold has implications in terms of ‘most’ underdetermined sys-
tems. Consider the collection S+(n, d, k) of all systems of linear equations with n unknowns, d
equations, permitting a solution by ≤ k nonzeros. As explained in [8], one can place a measure
on S+ in which different matrices with the same row space are identified and different vectors y
are identified if their sparsest decompositions have the same support. The result is a compact
space, on which a natural uniform measure exists: the uniform measure on d-subspaces of Rn

times the uniform measure on k-subsets of n objects.

Corollary 1.3 Fix δ > 0, and set ρ < ρV S(δ). For large n, in the overwhelming majority of
systems in S+(n, δn, (ρδ)n), (LP) delivers the sparsest solution.

We read off of Figure 1 that ρV S(1/2) > .55. Thus, for large n, in most n by 2n systems
permitting a sparse solution with 55% as many nonzeros as equations, that is the solution
delivered by (LP). This phenomenon is studied further in [8] and material cited there.

In both such results about solutions of linear equations, Theorem 3’s applicability to the
solid simplices ATn

0 is crucial.

1.7 Contents

In this paper we develop a viewpoint that allows to prove Theorems 1 and 2 in the same way,
and that is essentially parallel to proofs of face-counting results in [7]. While necessarily our
proofs have much to do with Vershik and Sporyshev’s proof of Theorem 2, the viewpoint we
adopt has the benefit of solving a range of problems, not only in this setting.

Section 2 proves Theorem 1, while Section 3 defined certain exponents used in the proof.
Section 4 explains how the proof may be adapted to obtain Theorem 2. Section 5 sketches the
proof of Theorem 3.

2 Random Projections of Simplices

We now outline the proof of Theorem 1. Key lemmas and inequalities will be justified in a later
section.

2.1 Angle Sums

As remarked in the introduction, our proof proceeds by refining a line of research in convex
integral geometry. Affentranger and Schneider [1] (see also Vershik and Sporyshev [13]) studied
the properties of random projections P = AT where T is an n − 1-simplex and P is its d-
dimensional orthogonal projection. [1] derived the formula

Efk(P ) = fk(T )− 2
∑
s≥0

∑
F∈Fk(Q)

∑
G∈Fd+1+2s(Q)

β(F,G)γ(G,T );
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where E denotes the expectation over realizations of the random orthogonal projection, and the
sum is over pairs (F,G) where F is a face of G. In this display, β(F,G) is the internal angle at
face F of G and γ(G,T ) is the external angle of T at face G; for definitions and derivations of
these terms see eg. Grünbaum, Chapter 14, as well as [9, 11, 12]. Write

Efk(P ) = fk(T )−∆(k, d, n) (2.1)

with
∆(k, d, n) = 2

∑
s≥0

∑
F∈Fk(T )

∑
G∈Fd+1+2s(T )

β(F,G)γ(G,T ). (2.2)

2.2 Exact Equality from Expectation

We view (2.1) as showing that on average fk(P ) is about the same as fk(T ), except for a
nonnegative ‘discrepancy’ ∆. We will show that under the stated conditions on k,d, and n, for
some ε > 0

∆(k, d, n) ≤ n exp(−nε). (2.3)

Now as fk(P ) ≤ fk(T ),

Prob{fk(P ) 6= fk(T )} ≤ E(fk(T )− fk(P )) = ∆(k, d, n).

Hence (2.3) implies that with overwhelming probability we get equality of fk(P ) with fk(T ), as
claimed in the theorem. To extend this into the needed simultaneous result - that f`(P ) = f`(T ),
` = 0, . . . , k−1 – one defines events Ek = {fk(P ) 6= fk(T )} and notes that by Boole’s inequality

Prob(∪k−1
0 E`) ≤

k−1∑
0

Prob(Ek) ≤
k−1∑
`=0

∆(`, d, n).

The exponential decay of ∆(k, d, n) will guarantee that the sum converges to 0 whenever the
k − 1-th term does. Hence by establishing (2.3) we get

Prob{f`(P ) = f`(T ), ` = 0, . . . , k − 1} → 1

as is to be proved.
To establish (2.3), we rewrite (2.2) as

∆(k, d, n) =
∑
s≥0

Ds

where, for ` = d+ 1 + 2s, s = 0, 1, 2, . . .

Ds = 2 ·
∑

F∈Fk(T )

∑
G∈Fd+1+2s(T )

β(F,G)γ(G,T ).

We will show that, for ρ < ρN (still to be defined) and for sufficiently small ε > 0, then for
n > n0(ε; ρ, δ)

n−1 log(Ds) ≤ −ε, s = 0, 1, 2, . . . .

This implies (2.3) and hence our main result follows.
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2.3 Decay and Growth Exponents

Following Affentranger and Schneider [1] and Vershik and Sporyshev [13], observe that:

• There are
(

n
k+1

)
k-faces of T .

• For ` > k, there are
(
n−k−1

`−k

)
`-faces of T containing a given k-face of T .

• The faces of T are all simplices, and the internal angle β(F,G) = β(T k, T `), where T d

denotes the standard d-simplex.

Thus we can write

Ds = 2 ·
(

n

k + 1

)(
n− k − 1
`− k

)
β(T k, T `)γ(T `, Tn−1)

= Csβ(T k, T `)γ(T `, Tn−1), (2.4)

say, with Cs the combinatorial prefactor.
We now estimate n−1 log(Ds), decomposing it into a sum of terms involving logarithms of

the combinatorial prefactor, the internal angle and the external angle. Formally, we will define
exponents Ψcom, Ψint and Ψext so that for ε > 0, and n > n0(ε, δ, ρ)

n−1 log(Cs) ≤ Ψcom(`/n; ρ, δ) + ε, s = 0, 1, 2, . . . ,

and
n−1 log(β(T k, T l)) ≤ −Ψint(`/n; k/n) + ε, (2.5)

uniformly in ` ≥ δn, k ≥ ρn, (`− k) ≥ (δ − ρ)n.

n−1 log(γ(T l, Tn−1)) ≤ −Ψext(`/n) + ε, (2.6)

uniformly in ` ≥ δn. It follows that for any fixed choice of ρ, δ, for ε > 0, and for n ≥ n0(ρ, δ, ε)
we have the inequality

n−1 log(Ds) ≤ Ψcom(ν; ρ, δ)−Ψint(ν; ρδ)−Ψext(ν) + 3ε, (2.7)

valid uniformly in s. Exactly the same approach (with different details) has been used in [7],
and the approach is related to [13].

To see where the exponents come from, we consider the simpest case, Ψcom. Define the
Shannon entropy:

H(p) = p log(1/p) + (1− p) log(1/(1− p));

noting that here the logarithm base is e, rather than the customary base 2. As did Vershik and
Sporyshev [13] (and also [5, 7]), we note that

n−1 log
(

n

bpnc

)
→ H(p), p ∈ [0, 1], n→∞ (2.8)

so this provides a convenient summary for combinatorial terms. Defining ν = `/n ≥ δ, we have

n−1 log(Cs) = H(ρδ) +H(
ν − ρδ

1− ρδ
)(1− ρδ) +R1 (2.9)
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with remainder R1 = R1(s, k, d, n). Define then the growth exponent

Ψcom(ν; ρ, δ) ≡ H(ρδ) +H(
ν − ρδ

1− ρδ
)(1− ρδ),

describing the exponential growth of the combinatorial factors. It is banal to apply (2.8) and
see that the remainder R1 in (2.9) is o(1) uniformly in the range k − ` > (δ − ρ)n, n > n0.

The definitions for the exponent functions (2.5)-(2.6) are significantly more involved, and are
postponed to the following section. There it will be seen that these are continuous functions.

Define now the net exponent Ψnet(ν; ρ, δ) = Ψcom(ν; ρ, δ) − Ψint(ν; ρδ) − Ψext(ν). We can
define at last the mysterious ρN as the threshold where the net exponent changes sign. It can be
seen that the components of Ψnet are all continuous over sets {ρ ∈ [ρ0, 1], δ ∈ [δ0, 1], ν ∈ [δ, 1]},
and so Ψnet has the same continuity properties.

Definition 1 Let δ ∈ (0, 1]. The critical proportion ρN (δ) is the supremum of ρ ∈ [0, 1] obeying

Ψnet(ν; ρ, δ) < 0, ν ∈ [δ, 1).

Continuity of Ψnet shows that if ρ < ρN then, for some ε > 0,

Ψnet(ν; ρ, δ) < −4ε, ν ∈ [δ, 1).

Combine this with (2.7). Then for all s = 0, 2, . . . , (n− d)/2 and all n > n0(δ, ρ, ε)

n−1 log(Ds) ≤ −ε.

This implies (2.3) and our main result follows.

3 Properties of Exponents

We now define the exponents Ψint and Ψext and discuss properties of ρN .

3.1 Exponent for External Angle

Let Q denote the cumulative distribution function of a normal N(0, 1/2) random variable, i.e.
X ∼ N(0, 1/2), and Q(x) = Prob{X ≤ x}. It has density q(x) = exp(−x2)/

√
π. Writing this

out,

Q(x) =
1√
π

∫ x

−∞
e−y2

dy. (3.1)

For ν ∈ (0, 1], define xν as the solution of

2xQ(x)
q(x)

=
1− ν

ν
; (3.2)

noting that possible values of xν are non-negative. Since xQ is a smooth strictly increasing
function ∼ 0 as x → 0 and ∼ x as x → ∞, and q(x) is strictly decreasing, the function
2xQ(x)/q(x) is one-one on the positive axis, and xν is well-defined, and a smooth, decreasing
function of ν. See Figure 2 for a depiction.
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Figure 2: Panel (a): The minimizer xν of ψν , as a function of ν; Panel (b): The exponent Ψext,
a function of ν.

3.2 Exponent for Internal Angle

Let Y be a standard half-normal random variable HN(0, 1); this has cumulant generating func-
tion Λ(s) = log(E exp(sY )). Very convenient for us is the exact formula

Λ(s) = s2/2 + log(2Φ(s)),

where Φ is the usual cumulative distribution function of a standard Normal N(0, 1). The cu-
mulant generating function Λ has a rate function (Fenchel-Legendre dual [4])

Λ∗(y) = max
s
sy − Λ(s).

This is smooth and convex on (0,∞), strictly positive except at µ = EY =
√

2/π. More details
are provided in [7]. See Figure 3.

For γ ∈ (0, 1) let

ξγ(y) =
1− γ

γ
y2/2 + Λ∗(y).

The function ξγ(y) is strictly convex and positive on (0,∞) and has a minimum at a unique yγ

in the interval (0,
√

2/π). We define, for γ = ρδ
ν ≤ ρ,

Ψint(ν; ρδ) = ξγ(yγ)(ν − ρδ) + log(2)(ν − ρδ).

This is depicted in Figure 4. For fixed ρ, δ, Ψint is continuous in ν ≥ δ. Most importantly, [7,
Section 6] gives the asymptotic formula

ξγ(yγ) ∼ 1
2
· log(

1− γ

γ
), γ → 0. (3.3)

3.3 Combining the Exponents

We now consider the combined behavior of Ψcom, Ψint and Ψext. We think of these as functions
of ν with ρ, δ as parameters. The combinatorial exponent Ψcom involves a scaled, shifted version
of the Shannon entropy, which is a symmetric, roughly parabolic shaped function. This is the
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Figure 5: The exponents Ψcom(ν; ρ, δ) and Ψint(ν; ρδ) + Ψext(ν), for ρ = .145, δ = .5555. The
graph of Ψcom (red) falls below that of Ψint + Ψext (green) and so Ψnet < 0.

exponent of a growing function which must be outweighed by the sum Ψext +Ψint. It is depicted
in Figure 4.

Figure 5 shows both Ψcom and Ψext + Ψint with δ = .5555 and ρ = .145. The desired
condition Ψnet < 0 is the same as Ψcom < Ψext + Ψint, and this is distinctly obeyed except near
ν = δ, where the two curves are close. We have ρN (δ) ≈ .145.

3.4 Justifying the Exponents

It remains to justify (2.5)-(2.6).
We sketch the argument for (2.6). The key point is the closed-form expression for γ(T `, Tn−1):

γ(T `, Tn−1) =

√
`+ 1
π

∫ ∞

0
e−(`+1)x2

(
1√
π

∫ x

−∞
e−y2

dy

)n−`−1

dx;

see [1]. We recognize the inner integral as involving Q from (3.1). Set ν`,n = (` + 1)/n. The
integral formula can be rewritten as√

nν`,n

π

∫ ∞

0
exp{−nν`,nx

2 + n(1− ν`,n) logQ(x)}dx. (3.4)

The appearance of n in the exponent suggests to use Laplace’s method; we define, for ν fixed,

fν,n(y) = exp{−nψν(y)} ·
√
nν

π

with
ψν(y) ≡ νy2 − (1− ν) logQ(y).

We note that ψν is smooth and in the obvious way can develop expressions for its second and
third derivatives. Applying Laplace’s method to ψν in the usual way, but taking care about
regularity conditions and remainders, gives a result with uniformity in ν. Arguing in a fashion
paralleling Section 5 of [7], one obtains:
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Lemma 3.1 For ν ∈ (0, 1) let xν denote the minimizer of ψν . Then∫ ∞

0
fν,n(x)dx ≤ exp(−nψν(xν))(1 +Rn(ν)),

where, for δ, η > 0,
sup

ν∈[δ,1−η]
Rn(ν) = o(1) as n→∞.

The minimizer xν mentioned in this lemma is the same xν defined earlier in (3.2) in terms of
the error function. Also, the minimum value identified in this Lemma as driving the exponential
rate is the same as our exponent Ψext:

Ψext(ν) = ψν(xν). (3.5)

Hence (2.6) follows.
The decay estimate (2.5) for the internal angle was derived in [7] and details can be found

there. Vershik and Sporyshev [13] used a related but seemingly different approach. The
argument starts from a closed-form integral expression for β(T k, T `). By [3], β(T k, T `) =
B( 1

k+2 , `− k + 1), where

B(α,m) = θ(m−1)/2
√

(m− 1)α+ 1π−m/2α−1/2J(m, θ) (3.6)

with θ ≡ (1− α)/α and

J(m, θ) =
1√
π

∫ ∞

−∞
(
∫ ∞

0
e−θv2+2ivλdv)me−λ2

dλ. (3.7)

It was shown in [7] that Laplace’s method applied to this last integral yields exponential bounds
on the decay of β of the form (2.5).

3.5 Properties of ρN

We mention two key facts about ρN Firstly, the concept is nontrivial:

Lemma 3.2
ρN (δ) > 0, δ ∈ (0, 1). (3.8)

Secondly, one can show that, although ρN (δ) → 0 as δ → 0, it goes to zero slowly.

Lemma 3.3 For η > 0,
ρN (δ) ≥ log(1/δ)−(1+η), δ → 0.

These results require only a simple observation. The paper [7] studied uniform random
projections ACn of the cross-polytope Cn, namely the unit `1 ball in Rn. A function ρ±N was
derived, giving the threshold below which a certain event En,ρ happens with overwhelming
probability for large n. Under the event En,ρ the images under A of all bρdc-dimensional faces
of C appeared as faces of AC. Viewing Tn−1 as a face of Cn, when En,ρ holds, it follows that
every low-dimensional face of Tn−1 must therefore appear as a face of ATn−1, meaning that

ρN (δ) ≥ ρ±N (δ), δ ∈ (0, 1).

Lower bounds completely parallel in form to those in Lemmas 3.2 and 3.3 were already proven
for ρ±N in [7]. Hence Lemmas 3.2 and 3.3 follow from those.
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4 Weak Neighborliness

We now explain how the above proof can be adapted to handle Vershik-Sporyshev’s result –
Theorem 2.

Observe that fk−1(Tn−1) =
(
n
k

)
; this combinatorial factor has exponential growth with n

according to an exponent Ψface(ρδ) ≡ H(ρδ); thus, if k = k(n) ∼ ρδn,

n−1 log(fk−1(Tn−1)) → Ψface(ρδ), n→∞.

We again define Ψnet as in the proof of Theorem 1.

Definition 2 Let δ ∈ (0, 1]. The critical proportion ρV S(δ) is the supremum of ρ ∈ [0, 1] obeying

Ψnet(ν; ρ, δ) < Ψface(ρδ), ν ∈ [δ, 1). (4.1)

Recall Section 2’s definition ∆(k, d, n) = fk−1(T )− fk−1(AT ) ≥ 0. The proof of Theorem 2
is based on observing that (4.1) implies

∆(k, d, n) = o(fk−1(Tn−1)). (4.2)

We immediately get (1.2). Showing that (4.1) implies (4.2) requires no new ideas; one proceeds
as in Section 2 almost line-by-line; we omit the exercise. 2

We remark that the criticial proportion ρV S defined in this way does not immediately re-
semble the result of Vershik and Sporyshev’s result. Section 6 of [7] explains how to translate
between the two notational systems.

5 Proof of Theorem 3

We now sketch the arguments supporting Theorem 3.

5.1 Solid Simplex T n
1

The standard n simplex with n + 1 vertices, Tn, lives in Rn+1. However, in fact it lies in
an n-plane orthogonal to the main diagonal. We think of that n-plane as a copy of n-space,
which is to say that by rotating and translating Rn+1 and dropping the last coordinate, we get
isometrically a convex body in Rn; this is in fact Tn

1 .
Applying a random projection B : Rn+1 7→ Rd to Tn gives a result which is identically

distributed (up to a translation) with a random projection A : Rn 7→ Rd. Indeed, BTn =
B

(
U
0

)
Tn

1 + v where U is a fixed n × n orthogonal matrix and v ∈ Rd is a fixed vector. But
Ã = B

(
U
0

)
defines a uniform random projection from Rn 7→ Rd. As Ã and A are identically

distributed, hence ATn
1 and BTn − v are identically distributed. Translations of a pointset do

not affect neighborliness properties.
Now in the asymptotic setting d ∼ δn, BTn obeys Theorem 1 with ρN (d/(n+ 1))d in place

of ρN (d/n)d, and similarly for ρV S in Theorem 2; all we are really doing is renaming n as n+1.
And of course the limiting δ ∼ d/n ∼ d/(n+ 1).

5.2 Solid Simplex T n
0

We think of Tn−1 as the ‘outward’ face of Tn
0 . ATn

0 is called outwardly k-neighborly if every
k−1 face of ATn−1 is also a face of ATn

0 . For more discussion, see [8] where the following result
is proved as Lemma A.1.
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Lemma 5.1 Suppose that 0 6∈ conv{aj}. Suppose that there exist b 6= 0 so that

Q = conv({aj}n
j=1 ∪ {b})

has n + 1 vertices, is k-neighborly, and has 0 ∈ Q. Then P = conv({0} ∪ {aj}n
j=1) has n + 1

vertices and is outwardly k-neighborly.

We remark that ATn
0 = conv({0}∪ {aj}) while ATn

1 = conv({−αA1}∪ {aj}). Hence ATn
1 is

exactly of the form Q given by this lemma, and ATn
0 is of the form P . Hence, k-neighborliness

of ATn
1 implies outward k-neighborliness of ATn

0 .
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