
Sparse Nonnegative Solution of

Underdetermined Linear Equations by

Linear Programming

David L. Donoho and Jared Tanner

March 2005; Corrected April 8, 2005

Abstract

Consider an underdetermined system of linear equations y = Ax with known d×n matrix
A and known y. We seek the sparsest nonnegative solution, i.e. the nonnegative x with fewest
nonzeros satisfying y = Ax. In general this problem is NP-hard. However, for many matrices
A there is a threshold phenomenon: if the sparsest solution is sufficiently sparse, it can be
found by linear programming.

In classical convex polytope theory, a polytope P is called k-neighborly if every set of k
vertices of P span a face of P . Let aj denote the j-th column of A, 1 ≤ j ≤ n, let a0 = 0 and
let P denote the convex hull of the aj . We say P is outwardly k-neighborly if every subset
of k vertices not including 0 spans a face of P . We show that outward k-neighborliness is
completely equivalent to the statement that, whenever y = Ax has a nonnegative solution
with at most k nonzeros, it is the nonnegative solution to y = Ax having minimal sum.

Using this and classical results on polytope neighborliness we obtain two types of corol-
laries. First, because many bd/2c-neighborly polytopes are known, there are many systems
where the sparsest solution is available by convex optimization rather than combinatorial
optimization — provided the answer has fewer nonzeros than half the number of equations.
We mention examples involving incompletely-observed Fourier transforms and Laplace trans-
forms.

Second, results on classical neighborliness of high-dimensional randomly-projected sim-
plices imply that, if A is a typical uniformly-distributed random orthoprojector with n = 2d
and n large, the sparsest nonnegative solution to y = Ax can be found by linear programming
provided it has fewer nonzeros than 1/8 the number of equations.

We also consider a notion of weak neighborliness, in which the overwhelming majority
of k-sets of aj ’s not containing 0 span a face. This implies that most nonnegative vectors
x with k nonzeros are uniquely determined by y = Ax. As a corollary of recent work
counting faces of random simplices, it is known that most polytopes P generated by large n
by 2n uniformly-distributed orthoprojectors A are weakly k-neighborly with k ≈ .558n. We
infer that for most n by 2n underdetermined systems having a sparse solution with fewer
nonzeros than roughly half the number of equations, the sparsest solution can be found by
linear programming.

Key Words and Phrases: Neighborly Polytopes. Cyclic Polytopes. Underdetermined
Systems of Linear Equations. Linear Programming. Combinatorial Optimization. Convex Hull
of Gaussian Samples. Positivity constraints in ill-posed problems.
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1 Introduction

Consider an underdetermined system of linear equations y = Ax, where y ∈ Rd, x ∈ Rn, A is a
d×n matrix, d < n and y is considered known but x is unknown. In this paper only nonnegative
solutions x ≥ 0 are of interest. Enthusiasts of parsimony seek the sparsest solution – the one
with fewest nonzeros. Formally, they consider

(NP ) min ‖x‖0 subject to y = Ax, x ≥ 0.

Here the 0-‘norm’ ‖x‖0 counts the number of nonzeros. Because of the extreme non-convexity of
the zero-‘norm’, (NP ) is NP-hard in general. In this paper we consider the convex optimization
problem

(LP ) min 1′x subject to y = Ax, x ≥ 0.

We will show that for many matrices A, whenever the solution to (NP ) is sufficiently sparse,
it is also the unique solution of (LP ). As a general label, we call this phenomenon NP/LP
equivalence.

We develop an understanding of this equivalence phenomenon using ideas from the theory
of convex polytopes; the books of Grünbaum [18] and Ziegler [28] are useful starting points.
Throughout the paper, we study a specific polytope P , definable in several equivalent ways. Let
Tn−1 denote the standard simplex in Rn, i.e. the convex hull of the unit basis vectors ei. Let
Tn

0 denote the solid simplex, i.e. the convex hull of Tn−1 and the origin. We think of Tn−1 as
the outward part of Tn

0 , i.e. the part one would see looking from ‘outside’.
We focus attention in this paper on the convex polytope P = ATn

0 ⊂ Rd. Equivalently, P is
the convex hull of a certain pointset A ⊂ Rd, containing the columns of aj , j = 1, . . . , n of A,
possibly together with the origin a0 = 0; include the origin if it does not already belong to the
convex hull of the {aj}n

j=1. For later use, set N = #A. Thus, N = n if 0 belongs to the convex
hull of the {aj}n

j=1, otherwise N = n + 1. Below we use the notation T = Tn−1 if N = n, and
T = Tn

0 , if N = n + 1. Then we may also write P = AT .
A general polytope Q is called k-neighborly if every set of k vertices spans a face of Q. Thus,

all combinations of vertices generate faces. The standard simplex Tn−1 is the prototypical
neighborly object. The terminology and basic notions in neighborliness were developed by Gale
[15, 16]; see also [18, 20, 28].

We modify this notion here, calling a polytope Q which contains 0 outwardly k-neighborly if
every set of k vertices not including the origin 0 span a face. Roughly speaking, such a polytope
behaves as a neighborly one except perhaps at any faces reaching the origin. Thus if Q is k-
neighborly then it is also outwardly k-neighborly, but the notions are distinct. In addition
outward k-neighborliness of ATn

0 implies k-neighborliness of ATn−1, the ‘outward part’ of ATn
0 .

Of course, when 0 ∈ ATn−1 neighborliness and outwardly neighborliness of P = ATn
0 coincide.

(Modification of neighborliness to exclude consideration of certain subsets of vertices has been
useful previously; compare the notion of central neighborliness of centrosymmetric polytopes,
where every k vertices not including an antipodal pair span a face; see the paper [7] for discussion
and references.)

In Section 2 we connect neighborliness to the question of NP/LP equivalence.

Theorem 1 Let A be a d× n matrix, d < n. These two properties of A are equivalent:

• The polytope P has N vertices and is outwardly k-neighborly,

• Whenever y = Ax has a nonnegative solution x0 having at most k nonzeros, x0 is the
unique nonnegative solution to y = Ax and so the unique solution to (LP ).
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Formalizing the notion of sparsity threshold of a matrix A, we see that LP/NP equivalence
holds up to a certain breakdown point; namely, the largest value m such that every sparse vector
with fewer than m nonzeros is the uniquely recovered by (LP ). The highest value of k for which
a polytope besides the d simplex can be k-neighborly is bd/2c [15, 16, 18]. The degree of outward
neighborliness of ATn

0 is not better than the degree of neighborliness of ATn−1. Hence if n > d,
the equivalence breakdown point is not better than bd/2c+ 1.

1.1 Neighborly Polytopes

A polytope is called neighborly if it is k-neighborly for every k = 1, . . . , bd/2c. Many families of
neighborly polytopes are known. In Section 3, we use Theorem 1 and the structure of standard
families of neighborly polytopes to give:

Corollary 1.1 Let d > 2. For every n > d there is a d × n matrix A such that NP/LP
equivalence holds with breakdown point bd/2c+ 1.

When we have a matrix A with this property, and a particular system of equations that must
be solved, we can run (LP ); if we find that the output has fewer nonzeros than half the number
of equations, we infer that we have found the unique sparsest nonnegative solution.

For such matrices, if it would be very valuable to solve (NP ) – because the answer would be
very sparse – we can solve it by convex optimization. Conversely, it is exactly in the cases where
the answer to (NP ) would not be very sparse that it might also be very expensive to compute!

The standard examples of neighborly polytopes go back to Gale; some of these are reviewed
in Section 3. They have interesting interpretations in terms of Fourier analysis and geometry of
polynomials, and correspond to interesting matrices A. Section 3 shows how to apply them to
get the above corollary and to get two results about inference in the presence badly incomplete
data. The first concerns incomplete Fourier information:

Corollary 1.2 Let µ(0) be a nonnegative measure supported on some subset of the n known
points 0 < t1 < · · · < tn < 2π. Let µ̂k denote the Fourier coefficient

µ̂k ≡
∑

j

µ{tj} exp{
√
−1 · ktj}.

Suppose that yk = µ̂
(0)
k is observed (without error) for k = 1, . . . ,m, 2m < n. If µ(0) is supported

on at most m points, the problem

min
∑

j

µ{tj} subject to yk = µ̂k, k = 1, . . . ,m; µ{tj} ≥ 0, j = 1, . . . n,

has µ(0) as its unique solution.

Superficially, this problem seems improperly posed, since we have n unknowns – the mass of
µ at each of the n points tj – with only 2m < n data µ̂k to constrain them. Yet if the underlying
object µ(0) is sparsely supported, it is uniquely recoverable, in fact by convex optimization.

A parallel result can be given for partial Laplace transformation.

Corollary 1.3 Let µ(0) be a nonnegative measure supported on some subset of the n known
points −∞ < τ1 < · · · < τn < ∞. Let µ̃k denote the Laplace transform value

µ̃k ≡
∑

j

µ{τj} exp{kτj}.
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δ = .1 δ = .25 δ = .5 δ = .75 δ = .9
ρN .060131 .087206 .133457 .198965 .266558
ρV S .240841 .364970 .558121 .765796 .902596

Table 1: Phase transitions ρN and ρV S in strong and weak neighborliness

Suppose that yk = µ̃
(0)
k is observed (without error) for k = 1, . . . ,m, m < n. If µ(0) is suported

on at most m/2 points, the problem

min
∑

j

µ{tj} subject to yk = µ̃k, k = 1, . . . ,m; µ{τj} ≥ 0, j = 1, . . . n

has µ(0) as its unique solution.

This problem again seems improperly posed, since we have n unknowns but only m < n (real)
data. Yet if µ(0) is sparsely supported, it is uniquely recoverable, again by linear programming.

These corollaries are stated in a form that would be familiar to those in the signal-processing
community, and in that form are not new. The first follows from a result in Donoho, Johnstone,
Hoch and Stern [10, Theorem 3]; both follow from recent work by Jean-Jacques Fuchs [14] which
we learned of after this paper was first submitted. In fact the basic idea behind both results
was known to Carathéodory [4, 5] although not stated in this form.

These corollaries are proved here using the neighborliness of polytopes deriving from spe-
cial curves in Rd. This illustrates the point made by Theorem 1: results about neighborliness
are equivalent to results about uniqueness. In some polytope literature confusion seems to have
arisen, suggesting for example, that Carathéodory knew about neighborly polytopes, discounting
Gale’s contribution. In our view, Carathéodory pioneered uniqueness, Gale pioneered neighbor-
liness, and others conflated the two, in effect anticipating the equivalence implied by Theorem
1, but apparently without making that equivalence explicit.

1.2 Random Polytopes

When introducing the neighborliness concept, Gale suggested that ‘most’ polytopes are neigh-
borly [15]. Recently, the authors [11] studied neighborliness of random polytopes, considering
high-dimensional cases dn = bδnc, n large. They derived a function ρN such that polytopes
P with n Gaussian-distributed vertices in Rd were roughly ρN (d/n) · d-neighborly for large n.
Thus, if n = 2d, they found ρN (d/n) ≈ .133; compare Table 1. Applying their results gives

Corollary 1.4 Fix ε > 0. Let Ad,n denote a random d × n matrix with columns drawn inde-
pendently from a multivariate normal distribution on Rd with nonsingular covariance matrix.
Suppose d and n are proportionally-related by dn = bδnc. Then, with overwhelming probability
for large n, Ad,n offers the property of LP/NP equivalence up to breakdown point ≥ (ρN (δ)−ε)d.

Line 1 of Table 1 gives results for different aspect ratios δ = d/n of the nonsquare matrix
A. Thus if n = 10d, so the corresponding system is underdetermined by a factor 10, the typical
matrix A with Gaussian columns offers LP/NP equivalence up to breakdown point exceeding
.06d. For the typical A and for every problem instance y generated by a sparse vector x with
nonzeros ≤ .06 times the number of equations, (LP ) delivers the sparsest solution.
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1.3 Weak Neighborliness and Weak Equivalence

The notion of NP/LP equivalence developed in Theorem 1 demands, for a given A, equivalence
at all problem instances (y, A) generated by any nonnegative sparse vector x0 with at most
k nonzeros. A weaker notion considers equivalence merely for most such problem instances.
This idea is developed in Section 4 below, where it is shown that for matrices A where the
corresponding pointset A is in general position NP/LP equivalence at a certain instance y = Ax0

depends only on the support of x0 and not the values of x0 on its support. Hence, we define a
measure on problem instances by simply counting the fraction of support sets of size k with a
given property. We then meaningfully speak of a given A offering NP/LP equivalence for most
problem instances having nonnegative sparse solutions with most k nonzeros.

We can also define two weaker notions of classical (resp. outward ) neighborliness, saying
that the polytope P is (k, ε)-weakly neighborly (resp. weakly outwardly neighborly) if, among all
k-membered subsets of vertices (resp. among those not including 0), all except a fraction ε span
k−1-faces of P . As it turns out, if the points A are in general position, weak neighborliness of P
is the same thing as saying that P = AT has at least (1− ε) times as many (k− 1)-dimensional
faces as T . Hence, the notion of weak-neighborliness is really about numbers of faces. We say
that a face is zerofree if 0 does not occur as a vertex.

Theorem 2 Let A be a d × n matrix, d < n with pointset A in general position. For 1 ≤ k ≤
d− 1, these two properties of A are equivalent

• The polytope P = AT has at least (1− ε) times as many zerofree (k − 1)-faces as T ,

• Among all problem instances (y, A) generated by some nonnegative vector x0 with at most
k nonzeros, the solutions to (NP ) and to (LP ) are identical, except in a fraction ≤ ε of
instances.

The authors [11], in recent work on high-dimensional random polytopes counted the faces of
randomly-projected simplices. Building on work of Affentranger and Schneider [1] and especially
Vershik and Sporyshev [27] they considered the case where d and n are large and proportional,
and were able to get precise information about the phase transition between prevalence and
scarcity of weak-neighborliness as k increases from 1 to d− 1. They studied a function ρV S (in
honor of Vershik and Sporyshev who first implicitly characterized it) that maps out the phase
transition in weak-neighborliness. Fix ε > 0 and consider n large. Weak-neighborliness typically
holds for k < ρV S(d/n)·d·(1−ε), while for k > ρV S(d/n)·d·(1+ε), weak neighborliness typically
fails. They also showed that the same conclusions hold for weak outward neighborliness as for
weak neighborliness. Numerical results are given in Table 1, in particular, the second line, where
ρV S(.1) ≈ .24. Informally, for most 10-fold underdetermined matrices A and most vectors with
fewer nonzeros than 24% of the number of rows in A, the sparsest nonnegative solution can be
found by (LP ). In contrast, ρN (.1) ≈ .06. Informally, if for a typical matrix A we insist that
every instance of (NP ) with a sufficiently sparse solution be solvable by (LP ), then ‘sufficiently
sparse’ must mean at most 6% d.

As a corollary, we obtain the following. Let S+(d, n, k) denote the collection of all systems
of equations (y, A) having a nonnegative solution x0 with at most k nonzeros. When A is a
matrix with columns in general position, equivalence between (NP ) and (LP ) depends only on
the support of x0, as discussed in Lemma 4.2. Place a probability measure on S+(d, n, k) which
makes the nullspace of A uniformly distributed among n− d subspaces of Rn and which makes
the support of the sparsest solution uniform on k-subsets of n objects. Using Table 1’s entry
showing ρV S(1/2) > .558, we have the following:
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Corollary 1.5 Consider the systems of equations (y, A) in S+(n, 2n, .558n). For n large, the
overwhelming majority of such (y, A) pairs exhibit NP/LP equivalence.

1.4 Contents

Section 2 proves Theorem 1, while Section 3 explains how Corollaries 1.1-1.2-1.3-1.4 follow
from Theorem 1 and existing results in polytope theory. Section 4 studies weak neighborliness
and justifies Corollary 1.5. Section 5 discusses (LP ) in settings not neighborly in the usual
sense, extensions to noisy data, and extensions to situations when nonnegativity is not enforced.
Positivity is seen to be a powerful constraint.

2 Equivalence

2.1 Preliminaries

To begin, we relate (LP ) to the polytope P . Note that the value of (LP ) is a function of y ∈ Rd:

V (y) ≡ val(LP ) = inf 1′x subject to y = Ax, x ≥ 0.

Note also that V is homogeneous: V (ay) = aV (y), a > 0. We have defined the polytope P = AT
so that it is simply the ‘unit ball’ for V :

P = {y : y ∈ ARn
+ and V (y) ≤ 1}.

To see this, write conv for the convex hull operation. The convexity and homogeneity
of V guarantees that the right side is conv({0} ∪ {aj}n

j=1). We have defined P by cases; if
0 ∈ conv({aj}n

j=1), P = ATn−1; otherwise P = ATn
0 . In each case P = conv({0} ∪ {aj}n

j=1).
We call subconvex combination a linear combination with nonnegative combinations summing

to at most one. The previous paragraph can be reformulated so:

Lemma 2.1 Consider the problem of representing y ∈ Rd as a subconvex combination of the
columns (a1, . . . , an). This problem has a solution if and only if val(LP ) ≤ 1. If this problem
has a unique solution then (LP ) has a unique solution for this y.

We adopt standard notation concerning convex polytopes; see [18] for more details. In
discussing the (closed, convex) polytope P , we commonly refer to its vertices v ∈ vert(P ) and
k-dimensional faces F ∈ Fk(P ). v ∈ P will be called a vertex of P if there is a linear functional
λv separating v from P\{v}, i.e. a value c so that λv(v) = c and λv(x) < c for x ∈ P , x 6= c.
Thus P = conv(vert(P )). Vertices are just 0-dimensional faces, and a k-dimensional face of P
is a k-dimensional set F ⊂ P for which there exists a separating linear functional λF , so that
λF (x) = c, x ∈ F and λF (x) < c, x 6∈ F . Faces are convex polytopes, each one representable
as the convex hull of a subset vert(F ) ⊂ vert(P ); thus if F is a face, F = conv(vert(F )). A
k-dimensional face will be called a k-simplex if it has k + 1 vertices. Important for us will be
the fact that for k-neighborly polytopes, all the low-dimensional faces are simplices.

It is standard to define the face numbers fk(P ) = #Fk(P ). We also need the simple obser-
vation that

vert(AT ) ⊂ A vert(T ), (2.1)

which implies
F`(AT ) ⊂ AF`(T ), 0 ≤ ` < d; (2.2)

and so the numbers of vertices obey

f0(AT ) ≤ f0(T ). (2.3)
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2.2 Basic Insights

Theorem 1 involves two insights recorded here without proof. Similar lemmas were recently
proven in [7]. The first explains the importance and convenience of having simplicial faces of P .

Lemma 2.2 (Unique Representation). Consider a k-face F ∈ Fk(P ) and suppose that F
is a k-simplex. Let x ∈ F . Then

[a] x has a unique representation as a convex combination of vertices of P .

[b] This representation places nonzero weight only on vertices of F .

Conversely, suppose that F is a k-dimensional closed convex subset of P with properties [a] and
[b] for every x ∈ F . Then F is a k-simplex and a k-face of P .

The second insight: outward k-neighborliness can be thought of as saying that the low-
dimensional zerofree faces of P are simply images under A of the faces of Tn−1, and hence
simplices.

Lemma 2.3 (Alternate Form of Neighborliness). Suppose the polytope P = AT has N
vertices and is outwardly k-neighborly. Then

∀` = 0, . . . , k − 1, ∀ F ∈ F`(Tn−1), AF ∈ F`(AT ). (2.4)

Conversely, suppose that (2.4) holds; then P = AT has N vertices and is outwardly k-neighborly.

2.3 Theorem 1, Forward Direction

We suppose that P is outwardly k-neighborly, that the nonnegative vector x0 has at most k
nonzeros, and show that the unique solution of (LP ) is precisely x0. We assume without loss of
generality that the problem is scaled so that 1′x0 = 1; thus x0 ∈ Tn−1.

Now since x0 has at most k nonzeros, it belongs to a k−1-dimensional face F of the simplex:
F ∈ Fk−1(Tn−1). Hence y belongs to AF , which, by outward neighborliness and Lemma 2.3,
is a k − 1-dimensional face of P . Now, by Lemma 2.2, y has a unique representation by the
vertices of P , which is a representation by the vertices of AF only, and which is unique. But
x0 already provides such a representation. It follows that x0 is the unique representation for y
obeying

1′x ≤ 1.

Hence it is the unique solution of (LP ). 2

2.4 Theorem 1, Converse Direction

By hypothesis, A has the property that, for every y = Ax0 where x0 has no more than k
nonzeros, x0 is the unique solution to the instance of (LP ) generated by y. We will show that
P has n vertices and is k-neighborly.

By considering the case k = 1 with every xi = ei, we learn that in each case the corresponding
yi = Axi belongs to P and is uniquely representable among subconvex combinations of (aj)n

j=1

simply by ai. This implies by Lemma 2.2 above that each yi is a vertex of P , so P has at least n
vertices. Now if 0 6∈ conv{aj}n

j=1, 0 is also a vertex of P . Since by (2.3) the number of vertices
of P = AT is at most the number of vertices of T , we see that P has exactly N vertices.
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Consider now k > 1, and a collection of k disjoint indices i1, . . . ik, 1 ≤ i` ≤ n. By hypothesis,
for every x0 of the form

x0 =
k∑

`=1

α`ei` ,

with α` ≥ 0 and
∑

` α` = 1, the corresponding problem (LP ) based on y = Ax0 has a unique
solution, equal to x0. Since this latter problem has a unique solution, there is (by Lemma
2.1) a unique solution to the problem of representing each such y as a subconvex combination
of columns of A, and that solution is provided by the corresponding x0. All the x0 under
consideration populate a face F of Tn−1, determined by i1, . . . ik. By the converse part of
Lemma 2.2, AF is a face in Fk−1(AT ).

Combining the last two paragraphs with the converse part of Lemma 2.3, we conclude that
P has N vertices and is outwardly k-neighborly. 2

3 Corollaries

We first mention a standard fact about convex polytopes: [15], [18, Chapter 7].

Theorem 3.1 For every n > d > 1 there are bd/2c-neighborly polytopes in Rd with n vertices.

Examples are provided by the cyclic polytopes, which come in two standard families:

• ‘Moment Curve’ Cyclic Polytopes. Let 0 ≤ t1 < · · · < tn < ∞, and let the j-th column of
the d× n matrix A be given by

aj = M(tj), j = 1, . . . , n,

where M : R+ 7→ Rd is the so-called moment curve

M(t) = (t, t2, . . . , td)T .

The polytope obtained from the convex hull of the (aj)n
j=1 is bd/2c neighborly; see Gale

[16]. Note that A is a kind of non-square Vandermonde matrix.

• ‘Trigonometric’ Cyclic Polytopes. Let 0 < t1 < · · · < tn < 2π, and, for d = 2m, let the
j-th column of the d × n matrix A be given by aj = F (tj) where F : [0, 2π) 7→ Rd is the
trigonometric moment curve

F (t) = (cos(t), sin(t), cos(2t), sin(2t), . . . , cos((d/2)t), sin((d/2)t))T .

The polytope obtained from the convex hull of the (aj)n
j=1 is bd/2c-neighborly, again see

[16]. Note that A is a kind of non-square Fourier matrix.

Existing proofs of neighborliness of moment curve polytopes [16, 18], after a simple adap-
tation, give Corollary 1.1. Note that t1 = 0 is an allowable value for which a polytope
conv{M(tj)} is bd/2c-neighborly; since M(0) = 0, it follows that, for any specific choice for
t1, P = conv({0} ∪ {M(tj)}n

j=1) is bd/2c neighborly, as, when t1 6= 0, one could view P as
conv{M(tj)}n

j=0 with t0 = 0. We conclude that every P = conv({0}∪{M(tj)}n
j=1) is outwardly-

neighborly. Hence, defining the matrix A = [M(t1), . . . ,M(tn)] we get (LP )-(NP )-equivalence
up to breakdown point bd/2c. Corollary 1.1 follows.
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Corollary 1.3 also follows from the outward-neighborliness of P = conv({0}∪{M(tj)}j). Let
yk = µ̃

(0)
k . Represent µ(0) by a vector x0 with n entries, the j-th one representing µ(0){τj}.

Define tj = exp(τj), j = 1, . . . , n, and note that y = Ax0 where A is the partial Vandermonde
matrix associated with the moment curves above. Since the polytope associated to A is bd/2c-
outwardly-neighborly, if the measure µ(0) is supported in no more than bd/2c points, it is uniquely
recovered from data y by solving (LP).

To obtain Corollary 1.2, we apply the neighborliness of trigonometric cyclic polytopes in the
Appendix, proving

Lemma 3.1 The polytope conv({0} ∪ {F (tj)}) is outwardly bd/2c-neighborly.

Applying this, we can obtain Corollary 1.2. Break the m observed complex data into real
parts and imaginary parts, giving a vector y of length d = 2m. Since µ(0) is a nonnegative
measure supported at 0 < t1 < · · · < tn < 2π, represent it as a vector x0 with j-entry µ(0){tj}.
The data y are related to the vector x0 through y = Ax0 where A is the above partial Fourier
matrix. The corresponding polytope is neighborly. Hence if the nonnegative vector x0 has
no more than m = d/2 nonzeros, it will be uniquely reconstructed (despite n > d) from the
data y by (LP ). (As stated earlier, Corollary 1.2 also follows from [10, Theorem 3]; in fact the
underlying calculation in the proof of Theorem 3 in [10] can be seen to be the same as the ‘usual’
one in proving neighborliness of trigonometric cyclic polytopes, although at the time of [10] this
connection was not known.) After this paper was originally submitted, the authors learned of
work by Jean-Jacques Fuchs [14] also implying Corollaries 1.2-1.3.

A wide range of neighborly polytopes is known. A standard technique (already used in the
two examples above) is to take n points on a curve C : R 7→ Rd [6, 22]. The curve must be a
so-called curve of order d, meaning that each hyperplane of Rd intersects the curve in at most
d points. This construction is of course intimately connected with the theory of Moment Spaces
and with unicity of measures having specified moments [19]. Constructions based on oriented
matroids and totally positive matrices have also been made by Sturmfels; see [25, 24]. In the
context of this paper, we note that if such a curve passes through the origin, then of course
conv({0} ∪ {C(tj)}) is neighborly, and so outwardly-neighborly as well. However, as Lemma
3.1 shows, outward neighborliness is possible even when such a curve does not pass through the
origin,

Sturmfels has even shown that (for even d) in some sense curves of order d offer the ‘only’
example of neighborly polytopes (up to isomorphism). In short, it is known that polytopes
offering full bd/2c neighborliness are special.

What is the generic situation? Gale [15] proposed that in some sense ‘most’ polytopes
are neighborly. Goodman and Pollack [1] proposed a natural model of ‘random polytope’ in
dimension d with n vertices. They suggested to take the standard simplex Tn−1 and apply a
uniformly-distributed random projection, getting the random polytope P = ATn−1. Vershik
and Sporyshev considered this question in the case where d and n increase to ∞ together in
a proportional way. The companion paper [11] revisits the Vershik-Sporyshev model, asking
about neighborliness of the resulting high-dimensional random polytopes. It proves:

Theorem 3 Let 0 < δ < 1, let n tend to infinity along with d = dn = bδnc, and let A = Ad,n

be a random d by n orthogonal projection. There is ρN (δ) > 0 so that, for ρ < ρN (δ), with
overwhelming probability for large n, P = ATn−1 is bρdc-neighborly.

Thus, typical Goodman-Pollack polytopes have neighborliness ‘proportional to dimension’.
(This result permits, but does not imply, that polytopes are not fully neighborly; i.e. the fact
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that ρN < .5 allows the possibility that k-neighborliness may not hold up to the upper limit
k = bd/2c. The lack of full neighborliness for δ < .42 can be inferred from the lack of d/2-weak
neighborliness described below. )

The Goodman-Pollack model is broader than at first appears. By a result of Baryshnikov
and Vitale [2], P is affinely equivalent to the convex hull of a Gaussian random sample. We can
conclude that

Corollary 3.1 Let A = Ad,n denote a random d×n matrix with columns aj, j = 1, . . . , n drawn
independently from a multivariate normal distribution on Rd with nonsingular covariance. Sup-
pose d and n are proportionally-related by dn = bδnc. Let ρ < ρN (δ). Then, with overwhelming
probability for large n, P = conv{aj}n

j=1 is bρdc-neighborly.

The companion paper [11] implies that the preceding two results hold just as written also for
P = ATn

0 , and P = conv({0} ∪ {aj}) respectively, when ‘neighborly’ is replaced by ‘outwardly
neighborly’. Corollary 1.4 follows.

4 Weak Neighborliness and Probabilistic Equivalence

4.1 Individual Equivalence and General Position

We say there is individual equivalence (between NP and LP) at a specific x0 when, for that x0,
the result y = Ax0 generates instances of (NP ) and (LP ) which both have x0 as the unique
solution. In such a case we say that x0 is a point of individual equivalence.

For general A the task of describing such points may be very complicated; we adopt a
simplifying assumption. Recall the definition of A: Let a0 = 0 and, if 0 6∈ conv{aj}n

j=1, let
A = {aj}n

0 . Otherwise let A = {aj}n
1 . We say that that A is in general position in Rd if no

k-plane of Rd contains more than k + 1 aj ’s (i.e. viewing the aj as points of Rd). Under this
assumption, the face structure of P is very easy to describe. A remark in [20, Page 81] (compare
also [7]) proves

Lemma 4.1 Suppose that A is in general position. Then for k ≤ d−1, the k-dimensional faces
of P = conv(A) are all simplicial.

Recalling Lemma 2.2, it follows that, when A is in general position, whenever y belongs to
a k-dimensional face of P with k ≤ d − 1, there is a corresponding unique solution of (LP ).
This remains true for every y in that same face of P , and the unique solution involves a convex
combination of the vertices of that same face. The vertices are identified with members of A.
Those members are identified either with the origin or with certain canonical unit basis vectors
of Rn. Hence, the collection of such convex combinations of vertices is in one-one correspondence
with points in a specific k-face of T . Moreover, by the uniqueness in Lemma 2.2, a k-face of T
can arise in this way in association with only one k-face of P . Hence for k ≤ d − 1, we have a
bijection between k-faces of P , and a subset Sk of the k-faces of T . We think of Sk as the subset
of k-faces of T destined to survive as faces under the projection T 7→ AT onto Rd.

The k-faces of T are in bijection with the supports of the vectors belonging to those faces.
Since two vectors x0 and x1 with unit sum and with common support belong to the same face
of T , and since each face as a whole survives or does not survive projection, we conclude:

Lemma 4.2 Suppose that A is in general position and that x0 has at most d− 1 nonzeros. The
property of individual equivalence depends only on the support of x0; if x0 and x1 have nonzeros
in the same positions, then they are either both points of individual equivalence or neither points
of individual equivalence.
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Figure 1: Empirical verification of the NP/LP equivalence phase transition as a function of δ
with dn = bδnc and sparsity k = bρdnc in the case of n = 200. The fraction of successes in (LP)
recovering (NP) in gray scale, and the calculated weak neighborliness transition curve ρV S(δ)
overlaid in red. Note that weak neighborliness exceeds d/2 for δ > .425; see Subsection 4.3.

There are of course
(
n
k

)
supports of size k. This gives us a natural way to measure ‘typicality’

of individual equivalence.

Definition 1 Given a d×n matrix A, we say that a fraction ≥ (1− ε) of all vectors x with
k nonzeros are points of individual equivalence if individual equivalence holds for a fraction
≥ (1− ε) of all supports of size k.

A practical computer experiment can be conducted to approximate ε for a given A and k.
One randomly generates a sparse vector x0 with randomly-chosen support and arbitrary positive
values on the support. One forms y = Ax0, and solves (LP ). Then one checks whether the
solution of (LP ) is again x0. ε(A, k) can be estimated by the fraction of computer experiments
where failure occurs. Experiments of this kind reveal that for A a typical random d × 2d
orthoprojector, individual equivalence is typical for k < .558d. See Figure 1, which shows that
the experimental outcomes track well the prediction ρV S .

4.2 Individual Equivalence and Face Numbers

We are now in a position to prove Theorem 2 using the above lemmas. For a polytope Q possibly
containing 0 as a vertex, f̃k(Q) denote the number of zerofree k-faces, i.e. the number of faces
of Q not having 0 as a vertex. Restating Theorem 2 in the terminology of this section we have:

Theorem 4 Let A be in general position. These statements are equivalent for k < d:

• The zerofree face numbers of AT and T agree within a factor 1− ε:

(1− ε)f̃k−1(T ) ≤ f̃k−1(AT ) ≤ f̃k−1(T ).

• A fraction ≥ (1− ε) of all vectors with k nonzeros are points of individual equivalence.
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Proof. A given support of size k corresponds uniquely to a k − 1 face F of Tn−1. Individual
equivalence at the given support occurs if and only if AF is a face of P . By (2.2), the zerofree
faces of P are a subset of the images AF where F is a face of Tn−1. Hence the identity

#(supports giving equivalence)
#(supports of size k)

=
f̃k−1(AT )
f̃k−1(T )

.

2

Of course, counting faces of polytopes is an old story. This result points to a perhaps
surprising probabilistic interpretation. Suppose the points in A are in general position. We
randomly choose a nonnegative vector x with k < d nonzeros in such a way that all arrangements
of the nonzeros are equally likely; the distribution of the amplitudes of the nonzeros can be
arbitrary. We then generate y = Ax. If the quotient polytope P has 99% as many (k− 1)-faces
as T , then there is a 99% chance that x is both the sparsest nonnegative representation of y and
also the unique nonnegative representation of y. This is a quite simple and, it seems, surprising
outcome from mere face counting.

4.3 Interpreting Table 1

The authors’ paper [11] derives numerical information about the Vershik-Sporyshev phase tran-
sition ρV S(δ) > 0, i.e. the transition so that for ρ < ρV S(δ), the bρdc-dimensional face numbers
of ATn−1 are the same as those of T to within a factor (1 + oP (1)), while for ρ > ρV S(δ) they
differ by more than a factor (1 + oP (1)). They show that the same conclusion holds for the
zerofree face numbers of ATn

0 .
Obviously ρN (δ) ≤ ρV S(δ). Fixing some small ε > 0, we have with overwhelming probability

for large d that

P = AT is (ρ̃N · d)-outwardly -neighborly, and
(ρ̃V S · d, ε)-weakly-outwardly -neighborly;

here ρ̃N ≡ ρN (δ)− ε, and ρ̃V S ≡ ρV S(δ)− ε obey

0 < ρ̃N ≈ ρN (δ) < ρ̃V S ≈ ρV S(δ).

Some numerical information is provided in Table 1. Two key points emerge:

• ρN , the smaller, is still fairly large, perhaps surprisingly so. While it tends to zero as
δ → 0, it does so only at a rate O(1/ log(1/δ)); and for moderate δ it is on the other of .1.

• ρV S is substantially larger than ρN . The fact that it ‘crosses the line’ ρ = 1/2 for δ near
.425 is noteworthy; this means that while a polytope can only be bd/2c neighborly, it can
be > d/2 weakly neighborly! In fact we know ρV S(δ) → 1 as δ → 1 [27, 11]. For ε > 0
and δ sufficiently close to 1, for sufficiently large d, typical weak neighborliness can exceed
d(1− ε)! This is an important difference between neighborliness and weak neighborliness,
and is the source of Corollary 1.5.

5 Discussion

5.1 When A is not in General Position

There are interesting problems where A is not in general position, but (LP ) saves the day. Here
is an example, based on the dictionary of dyadic intervals.
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Let n = 2J be dyadic (i.e. let J be integral), and define the dyadic subintervals of {0, . . . , n−
1} recursively, with χ0,0 = {0, . . . , n−1}, χ1,0 the left half of χ0,0, and χ1,1 the right half of χ0,0.
In general, we view χj,k as a parent to be split into two equal children - χj+1,2k, the left half,
and χj+1,2k+1 the right half. This defines a family 0 ≤ j ≤ J , 0 ≤ k < 2j .

We can use these dyadic intervals to cover arbitrary nondyadic intervals Iab = {a ≤ t < b},
here a and b are integers with 0 ≤ a < b ≤ n − 1. There are of course many ways that a
nondyadic interval can be covered by dyadic ones.

A very attractive and historically important approach is provided by Whitney covering.
For a given interval I, consider the maximal dyadic intervals χj,k ⊂ I. Here by maximal, we
mean dyadic intervals which are subsets of I but whose parents are not subsets of I. Clearly the
collection of such maximal dyadic intervals covers I. The reader will want to check the following:

Lemma 5.1 The Whitney covering of I is the sparsest decomposition into dyadic intervals.

In effect, this is the reason for having the Whitney decomposition! In particular, the Whitney
covering has at most 2J = O(log(n)) terms, compared to the ‘worst’ representation, which can
have as many as O(n) terms.

Consider now the matrix A whose columns are the 2n − 1 different indicators of dyadic
intervals. In detail, let ãjk be a normalized indicator vector for χjk, i.e. an n-vector which is
0 for t outside χj,k and 2−(J−j)/2 for t inside χj,k. Note that ‖ãjk‖2 = 1. Now A is the matrix
whose columns are an enumeration of the ãj,k; it is n by 2n − 1. Note that the columns of A
are not in general position, since the parent-child set decomposition χj,k = χj+1,2k ∪ χj+1,2k+1

implies the parent-child linear dependency

ãj,k = (ãj+1,2k + ãj+1,2k+1)/
√

2.

Hence even sparse representations using A can never be unique. Nevertheless, we will see that
(LP ) is an advantageous approach.

Consider vectors y = yab which are indicators of not-necessarily dyadic intervals Iab. Any
such interval has a representation y = Ax in terms of nonnegative superpositions of dyadic
intervals. These range from sparse to very nonsparse. At one extreme, y can be represented in
terms of superpositions of (b−a) singletons; at the other extreme it can be represented by using
at most 2J well-chosen dyadic intervals .

Lemma 5.2 The solution yab = Ax obtained from (LP ) has nonzeros corresponding to the
maximal dyadic intervals χj,k ⊂ Iab. Thus (LP ) delivers the Whitney decomposition of Ia,b.

Hence (LP ) gives the sparsest representation available by dyadic intervals; it has at most 2J =
O(log(n)) terms, compared to the ‘pixel’ representation, which has as many as O(n) terms.

Note that here (a) the columns of A are not in general position and (b) the representation
of y is not unique, but (LP ) and (NP ) are still equivalent.

5.2 Noise tolerance

In general, ‘real’ data contain noise. The (LP ) viewpoint can accommodate this naturally, by
relaxing exact equality to an approximation:

(LPε) min 1′x subject to ‖y −Ax‖2 ≤ ε, x ≥ 0.

This is again a convex optimization problem. It was studied in the case of a partial Fourier
matrix in [10, Theorem 3].
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There are natural ‘noise cognizant’ variants of Corollaries 1.2 and 1.3 from the introduction.
In fact for more general A one can show that the solution x1,ε of (LPε) gives a stable recovery
of x0. Formally, the result is:

Theorem 5 Let A be a matrix giving an outwardly k-neighborly polytope P . Suppose x0 has
no more than k nonzeros. There is C = C(A, k) < ∞ so that ‖y −Ax0‖2 ≤ ε implies

‖x1,ε − x0‖2 ≤ Cε, ε > 0.

This can be inferred from the above results by ‘soft’ means. Such a result has been given
previously in the partial Fourier case (extending Corollary 1.2) some time ago in [10, Theorem
3]. That reference provides a figure illustrating a geometric interpretation of this result, giving
an immediate ‘visual’ proof.

5.3 Removing the Nonnegativity Constraint

The articles[8], [7], discussed the case where x can take positive or negative values. The analogs
of (NP ) and (LP ) become

(P0) min ‖x‖0 subject to y = Ax

and
(P1) min ‖x‖1 subject to y = Ax.

In both problems the condition x ≥ 0 is absent. Hence the sum in (LP ) has been replaced by
the `1 norm in (P1). The problem (P0) (which extends (NP )) is NP-hard in general; at the
same time (P1) can be posed as a standard linear program.

In this setting, there is an analog of Theorem 1. Consider the polytope P obtained as a
convex hull of the 2n signed columns of A, (±jaj). This polytope is centrally symmetric (i.e.
invariant under reflection y 7→ −y and is called centrally-k-neighborly if every set of k columns
not containing an antipodal pair spans a face. It turns out that if P has 2n vertices and is
centrally k-neighborly, then, whenever (P0) has a solution with at most k nonzeros, (P1) has
the same unique solution. So given a problem instance (y, A), we can solve the linear program
(P1) and if we obtain a solution with at most k nonzeros, we know that we have solved (P0).
There is very active research on such problems; for a sampling of different perspectives, see
[3, 9, 12, 13, 17, 26, 23] and related work.

There are substantial quantitative differences between the breakdown points when nonneg-
ativity constraints are present and when they are not. While many bd/2c-neighborly polytopes
are known, a result of McMullen and Shephard [21] assures us that the most we can hope for is
a b(d+1)/3c-centrally-neighborly polytope, and it is not known that this bound is attainable for
large n and d. No general construction of maximally-centrally-neighborly polytopes is known.
Hence there is no nice analog of Corollary 1.1, and positivity allows the neighborliness phase
transition to jump from at most ≈ d/3 to ≈ d/2. Positivity is quite valuable.

The article [8] considered random polytopes obtained essentially from matrices A with
normally-distributed columns. With phase transition bounds ρ±W and ρ±N defined for central-
neighborliness analogously to ρV S and ρN , numerical results are shown in Table 2. While clearly
ρ±W ≤ ρV S and ρ±N ≤ ρN , the degree of quantitative difference is striking. Recalling Corollary
1.5, for most large n by 2n systems of equations in nonnegative unknowns having a 51% sparse
solution, the solution of (LP ) is the unique sparsest solution. A comparable statement for gen-
eral unknowns would consider n by

√
2n systems with 51% sparse solutions; this allows many

fewer unknowns than in the case of nonnegative x. Again positivity is quantitatively quite
valuable.
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Table 2: Phase Transitions in the case where x0 is sparse but may have both signs, using methods
from [8].

δ = .1 δ = .25 δ = .5 δ = .75 δ = .9
ρ±N .048802 .065440 .089416 .117096 .140416
ρ±W .188327 .266437 .384803 .532781 .677258

Appendix

The argument for Lemma 3.1, constructs a cyclic polytope Q so that P ⊂ Q. It uses two lemmas.
The first is strategic, the second tactical.

Lemma A.1 Suppose that 0 6∈ conv{aj}. Suppose that there exist b1, ..., bL distinct from 0 so
that

Q = conv({aj}n
j=1 ∪ {bl}L

l=1)

has n + L vertices, is k-neighborly, and that 0 ∈ Q. Then P = conv({0} ∪ {aj}n
j=1) has n + 1

vertices and is outwardly k-neighborly.

Proof. By hypothesis, Q is k-neighborly, and has the aj as vertices. Hence each F ∈
Fk−1(ATn−1) is a face of Q. But P ⊂ Q, and P has the aj among its vertices. Each such face
F is then also a (k − 1)-face of P . 2

Lemma A.2 Let M be a perfect square and let III ∈ RM denote the ‘comb’ sequence which is
one at integer multiples of

√
M . The discrete Fourier transform of III is again III.

Proof. This is a well-known property of the ‘Shah’ function or ‘Dirac Comb’. 2

Now turn to Lemma 3.1. Let ωk = 2π(k− 1)/(m+1)2, k = 0, . . . , (m+1)2. WLOG suppose
that the ωk are disjoint from the tj ’s and consider

bl = F (ω(m+1)l), l = 0, ...,m.

Applying Lemma A.2, we have

0 =
m∑

`=0

bl;

indeed the entries of the sum correspond to values of the Fourier transform of III at frequencies
0 < k < m + 1, at which it is zero. Hence,

0 ∈ conv{bl}.

Consider now
Q = conv({aj} ∪ {bl}).

This is a cyclic polytope in Rd with n + m + 1 vertices, and is bd/2c-neighborly. Apply now
Lemma A.1 to conclude that P = conv({aj} ∪ {0} is outwardly k-neighborly.

2
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