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Abstract

That neural networks may be pruned to high spar-
sities and retain high accuracy is well established.
Recent research efforts focus on pruning immedi-
ately after initialization so as to allow the compu-
tational savings afforded by sparsity to extend to
the training process. In this work, we introduce a
new ‘DCT plus Sparse’ layer architecture, which
maintains information propagation and trainabil-
ity even with as little as 0.01% trainable kernel
parameters remaining. We show that standard
training of networks built with these layers, and
pruned at initialization, achieves state-of-the-art
accuracy for extreme sparsities on a variety of
benchmark network architectures and datasets.
Moreover, these results are achieved using only
simple heuristics to determine the locations of the
trainable parameters in the network, and thus with-
out having to initially store or compute with the
full, unpruned network, as is required by compet-
ing prune-at-initialization algorithms. Switching
from standard sparse layers to DCT plus Sparse
layers does not increase the storage footprint of a
network and incurs only a small additional com-
putational overhead.

1. Introduction

It is well established that neural networks can be pruned ex-
tensively while retaining high accuracy; see (Blalock et al.,
2020; Liu et al., 2020) for recent reviews. Sparse networks
have significant potential benefits in terms of the memory
and computational costs of training and applying large net-
works, as well as the cost of communication between servers
and edge devices in the context of federated learning. Con-
sequently research on pruning techniques has garnered sig-
nificant momentum over the last few years.
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1.1. Competing Priorities for Sparse Networks

Traditional pruning algorithms, which prune after or dur-
ing training, result in a final network with a small storage
footprint and fast inference (Gale et al., 2019). However,
since these methods initialize networks as dense, and ini-
tially train them as such (only to slowly reduce the number
of parameters), the overall storage and computational costs
of training remain approximately those of a dense network.

For the benefits of sparsity to extend to training, the network
must be pruned before training starts. In (Frankle & Carbin,
2019), and many works since (Frankle et al., 2020; Malach
et al., 2020), researchers have shown the existence of ‘lottery
tickets” — sparse sub-networks of randomly initialized dense
networks, that can be trained on their own from scratch to
achieve accuracy similar to that of the full network. This has
inspired a surge in recent work on techniques to efficiently
prune networks directly at initialization, to identify these
trainable, sparse sub-networks.

Research on prune-at-initialization (Pal) methods has pro-
gressed rapidly and achieved impressive test accuracy with
well below 1% of the network parameters, see (Tanaka et al.,
20205 de Jorge et al., 2021) and Section 5. However, almost
all current Pal algorithms involve the computation of ‘sen-
sitivity scores’ (or a comparable metric) for all candidate
parameters in the dense network, which are then used to
decide which parameters to prune. Thus, despite a less com-
putationally demanding training procedure, these methods
still require the capacity to store, and compute with, the full
network on the relevant device (see Table 1).

Ideally, starting with dense networks which are then pruned
would be avoided entirely, and only those parameters to
be trained would be initialized. The only Pal method to
date that can achieve this is random pruning, since it is
equivalent to initializing a sparse network with randomly se-
lected sparse support. For high sparsities, however, random
pruning achieves significantly lower accuracy than other
methods, for details see Section 5.

An alternative approach to training sparse networks from
scratch is Dynamic Sparse Training (DST) (Mocanu et al.,
2018; Mostafa & Wang, 2019). In DST methods, the net-
work is initialized as sparse according to some heuristic



Table 1. Summary of state-of-the-art Pal and DST methods in comparison with the DCT plus Sparse (DCTpS) approach presented in this
paper. Uniform random pruning is included as baseline, and Iterative Magnitude Pruning (IMP), though not a Pal algorithm, is included
for comparison. The table considers only the pruning of network weights, not bias or batchnorm parameters, which is the focus of prior
Pal work and of this paper. Let N denote the total number of parameters in the full networks’ weights, P € (0, 1) is the global overall
density of the weights tensors, and & is the number of iterations used in a Pal algorithm. The computational cost in the table refers to the
average cost of each individual matrix-vector product involved in feedforward and convolutional layers, with flattened weights tensor of
size m x n with density p, with ¢ = max(m, n) (see Section 5.4 for more details). If this cost differs between the forward and backward
pass, the larger of the two is included. The extra factor of ﬁmn for RigL comes from the necessity to compute full gradients every AT
steps. We report the drop in accuracy for the case of ResNet50 applied to CIFAR100 at different global sparsities, relative to the dense

baseline. Quantities which decrease from O(C) to O(D) during training are denoted by O(C) % O(D).

A Accuracy Computational Cost Network Size on Device

P= 0.01 0.001 0.0001 At init. Training Final At init. Training Final

Random -11.9%  -66% -66% 0 O(pmn) O(pmn)  O(PN) O(PN) O(PN)

IMP +08% -11%  -64.8% 0 O(mn) L O@pmn)  ON) ON)L  O(PN)
O(pmn) O(PN)

FORCE -6.6%  -269% -62.4% O(mnk) O(pmn) O(pmn) O(N) O(PN) O(PN)

SynFlow -62%  -31.6% -604% O(mnk) O(pmn) O(pmn) O(N) O(PN) O(PN)

RigL (ERK) +0.4% -16.8% -65.7% 0 O(pmn + O(pmn)  O(PN) O(PN) O(PN)
ﬁmn)

DCTpS 58%  -15%  -22.8% 0 O(qlogqg+ O(qlogg+ O(PN) O(PN) O(PN)

pmn)  pmn)

(thereby also avoiding any initialization and storage of the
full network), but the topology - the support set of the non-
zero parameters - of the network is updated during training,
along with the values of the weights themselves.

Table 1 summarises the performance of the current state-of-
the-art pruning and DST algorithms in terms of the various
competing priorities for sparse networks: accuracy, storage
footprint, and computational complexity.

1.2. Matching Sparsity vs. Extreme Sparsity

(Frankle et al., 2021) note the distinction between what they
call ‘matching sparsities’, at which the resulting pruned net-
works retain (approximately) the same performance as the
full dimensional baseline, and ‘extreme sparsities’, at which
there is a trade-off between sparsity and performance. At-
tention is increasingly being paid to the latter regime, which
is especially relevant for resource-constrained settings, in
which trade-offs may be necessary or considered worth-
while. A crucial question in the extreme-sparsity setting is
the rate of accuracy drop-off as sparsity is increased. Prior
algorithms like SNIP (Lee et al., 2019) and GraSP (Wang
et al., 2020) display gradual accuracy decrease up to a point,
but then reach a sparsity at which accuracy rapidly collapses
to random guessing. The primary improvements achieved by
the most recent algorithms, FORCE (de Jorge et al., 2021)

and SynFlow (Tanaka et al., 2020), is to extend that grad-
ual performance degradation to significantly higher sparsity.
The DCTpS method proposed here, too, avoids this ‘cliff-
like’ drop-off in accuracy, exhibiting an even more gradual
decrease in performance at extreme sparsities, resulting in
superior performance in this extreme-sparsity regime.

1.3. Contributions

In this manuscript we introduce a new neural network layer
architecture with which networks can be initialized and
trained in an extremely low-dimension parameter space.
These layers are constructed as the sum of a dense offset
matrix which need not be stored and has a fast transform,
plus a sparse matrix of trainable stored parameters, denoted
as DpS to abridge ‘Dense plus Sparse’. Consequently, the
resulting networks are in effect dense, but require the storage
of a sparse network with potentially extremely few train-
able parameters, and incur the computational cost of very
sparse networks. This effective density allows information
to continue to propagate through the network at low train-
able densities, avoiding unnecessary performance collapse.
Our approach and results can be summarised as follows:

* The neural network layer architectures introduced here
are the sum of a discrete cosine transform (DCT) ma-
trix and a sparse matrix, denoted ‘DCT plus Sparse’



(DCTpS). These layers have the same memory foot-
print as a standard sparse tensor, and a low addi-
tional quasi-linear computational overhead above that
of sparse layers.

* The sparse trainable matrices in all layers are assigned
an equal number of trainable parameters, and within
each the support is randomly chosen - avoiding any ini-
tial storage of, or computation with the dense network.

A variety of network architectures using these layers
are trained to achieve high accuracy, in particular in
the extremely sparse regime with weight-matrix den-
sity as small as P = 0.0001, where they significantly
outperform prior state-of-the-art methods; for example
by up to 37% on ResNet50 applied to CIFAR100.

* Combining DCTpS layers with state-of-the-art Dy-
namic Sparse Training (DST) techniques yields even
further improvements in accuracy at all densities - of-
ten in the region of 3%-7%.

2. Prior Prune-at-Initialization (Pal) Methods

Neural network pruning has a large and rapidly growing
literature; for wider ranging reviews of neural network prun-
ing see (Gale et al., 2019; Blalock et al., 2020; Liu et al.,
2020). Pal is the subset of pruning research most directly
comparable with the ‘DCT plus Sparse’ networks presented
here. For conciseness, we limit our discussion to the most
competitive Pal techniques.

The most successful Pal methods determine which entries to
prune by computing a synaptic saliency score vector (Tanaka
et al., 2020) of the form
JOR
G = — 1

(w) = 5o O w, (1)
where R is a scalar function, w is the vector of network
parameters, and ® denotes the Hadamard product. Those
parameters with the lowest scores are pruned.

SNIP (Lee et al., 2019) sets out to prune weights whose re-
moval will minimally affect the training loss at initialization.
They suggest ‘connection sensitivity’ as the appropriate
metric: G(w) = \% © w|, where L is the training loss.

GraSP (Wang et al., 2020) instead maximises the gradi-
ent norm after pruning. The resulting saliency scores for
each parameter are calculated via a Taylor expansion of the
gradient norm about the dense initialization, resulting in

G(w) = — (H%) ® w, where H is the Hessian of L.

FORCE (and a closely related method, iterative SNIP)
(de Jorge et al., 2021), like GraSP, take into account the inter-
dependence between parameters so as to predict their impor-
tance after pruning. They also note, however, that by relying

on a Taylor approximation of the gradient norm, GraSP as-
sumes that the pruned network is a small perturbation away
from the full network, which is not the case at high spar-
sities. Instead they propose letting G(w) = \% o w|,
where w is the parameter vector w after pruning. They then
propose FORCE and Iter-SNIP as iterative algorithms to
approximately solve for the score vector G and gradually

prune parameters.

SynFlow (Tanaka et al., 2020) makes use of an alternative
objective function R = 1T (HzL:1 |wl |) 1, where |w!"| is

the element-wise absolute value of the parameters in the [™

layer, and 1 is a vector of ones. This allows them to calculate
saliency scores G without using any training data. Like
FORCE, their focus extends to extreme sparsities, and their
algorithm is designed to avoid layer collapse (pruning whole
layers in their entirety) at the highest possible sparsities.
Together, FORCE and SynFlow are the current state-of-the-
art for pre-training pruning to extreme sparsities.

Pal methods are also sometimes referred to as static sparse
training (SST), since the sparse support remains fixed after
initialization. DST methods (Mocanu et al., 2018; Mostafa
& Wang, 2019), on the other hand, modify the support
set during training, subject to maintaining a fixed sparsity
level overall. DST methods are characterised by the crite-
ria according to which they prune some weights and ‘re-
grow’/activate others during training, and also whether the
layer-wise sparsity levels remain fixed during training, or
if connections pruned in one layer can be replaced by ad-
ditional connections in other layers. The current state-of-
the-art for DST is RigL (Evci et al., 2020), which maintains
a fixed layer-wise sparsity distribution, prunes parameters
with the smallest magnitude, and re-activates weights with
the largest-magnitude gradients.

Recent work (Frankle et al., 2021) has shown that given a
particular sparsity pattern identified by SNIP, GraSP or Syn-
Flow, one can shuffle the locations of the allotted trainable
parameters within each layer, and train the resulting network
to matching or even slightly improved accuracy. In other
words, they argue, the success of these SST methods is due
to their layer-wise distribution of the number of trainable pa-
rameters, rather than the particular locations of the trainable
parameters within a layer. This somewhat calls into ques-
tion the role of the proposed saliency metrics used to score
the importance of each parameter individually. In contrast,
while RigL is also shown to be influenced by the layer-wise
sparsity distribution (Evci et al., 2020), the premise of DST
is precisely that the locations of the trainable parameters
within each layer matter fundamentally. Either way, further
understanding of, and heuristics for, the ideal layer-wise
parameter allocations would be complementary and directly
beneficial to the aforementioned Pal and DST methods, as
well as ‘DCT plus Sparse’ presented in Section 4.



3. Restricting Network Weights to Random
Subspaces

Let w € R"™ denote the full vector of network parameters.
The number of trainable parameters can be reduced by re-
stricting w € R™ to a k-dimensional hyperplane such that

w=d+ U0, 2)

where d is an untrainable offset from the origin, U € Rnxk
is a fixed subspace embedding, and # € R” is the vector
of k < n trainable parameters. A k-sparse network (w
being k-sparse, with support set S), such as those generated
by Pal methods, represents the specific case when d =
0, and the subspace embedding U € R™** is a matrix
with one nonzero per column and at most one nonzero per
row, with their locations determined by S (we denote this
structure for U as ‘k-sparse disjoint’). In this sparse w
setting, identifying ‘Lottery Tickets’ — sparse networks (and
their initial parameter values) which can be trained to high
accuracy from scratch — can be viewed as identifying the
appropriate U and 6.

The model (2) was explored in (Li et al., 2018) where they
showed it is possible to randomly draw the offset d and
subspace U, and to retain accuracy comparable to that of
the full n-dimensional network by training only the k < n
parameters in 6. In their work, d is drawn from a traditional,
say Gaussian, initialization known to have desirable train-
ing properties, and U has geometry-preserving properties
similar to drawing U uniformly from the Grassmannian;
for details see (Li et al., 2018) S7. The smallest possible
dimension k for which such subspace training achieved 90%
of the accuracy of a dense network was termed the ‘intrinsic
dimension’ of the loss surface, as the ability to successfully
train a network in a random low-dimensional subspace indi-
cates some low-dimensional structure in the loss landscape.

In Figure 1, we repeat one of the experiments from (Li
et al., 2018), comparing their method, which we denote
as ‘Hyperplane Projection’, with random pruning and the
aforementioned Pal methods, on Lenet-5 with CIFAR10.
The performance of Li et al.’s method stands in stark contrast
with the performance of random pruning at initialization,
which corresponds to (2) with d = 0 and U being k-sparse
disjoint, with S selected uniformly at random. Despite both
methods involving training in randomly selected subspaces,
‘Hyperplane Projection’ far outperforms random pruning
at k < n. Furthermore, in this low-dimensional regime,
‘Hyperplane Projection’ even outperforms state-of-the-art
Pal algorithms.

However, in the context of Pal algorithms it is important
to note that despite having the same number of trainable
parameters k, the networks based on the ‘Hyperplane Pro-
jection’” model (2), with d € R™ dense, do not afford any
memory and computational benefits over a dense network.

—e— DCTpS

—e— FORCE

Random (EPL)
Random (Uniform)

—e— SynFlow
'/0—0‘._/—0— Hyperplane Projection
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—aZ
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Number of trainbale parameters

Figure 1. Different subspace selection methods applied to Lenet-5
(LeCun et al., 1998) and trained on CIFAR10. We report maximum
validation accuracy, averaged over three runs, at each subspace
dimension (number of trainable parameters).

In the following section we propose an alternative subspace
model to (2), ‘DCT plus Sparse’, which combines the ben-
efit of the dense nonzero offset d of (Li et al., 2018) with
the specially structured sparse U as used in Pal methods,
without needing to store the offset d. Moreover, we show
that state-of-the-art test accuracy is obtained even while
selecting the location of the 1-sparse rows in U according
to a simple random equal per layer heuristic, avoiding the
initial calculation of parameter saliency scores.

4. DCT plus Sparse (DCTpS) Network Layers

The network parameters w in (2) which Pal methods spar-
sify are typically only the network weight matrices as they
usually comprise the largest number of trainable parame-
ters'. In the specific case we consider, combining d dense
and non-trainable, with U being k-sparse disjoint, the asso-
ciated weight matrices W € R"*" comprising w in (2) can
be expressed as W = D + S, where D is dense, but fixed
(i.e. non-trainable d), and S is sparse, with fixed sparse
support (i.e. non-trainable U) and trainable values within
that support (corresponding to the trainable ). As D is
dense, the sparse matrix .S can be initialized as zero, and the
training of S corresponds to adjusting only & < n entries
within D. To allow for an additional bulk scaling of D by a
trainable parameter2 «, similar to batch normalization (Ioffe
& Szegedy, 2015), we consider W = aD + S.

In order to maintain the low network size on device and

'Tanaka et al. briefly extend their analysis to batchnorm layers
in their Appendix (Section 10) (Tanaka et al., 2020).

2We note that the inclusion of an « scaling parameter for D is
a departure from a standard subspace training model since it en-
ables the re-scaling of different sections of d independently during
training, but it adds expressive power with almost no overhead.
See the Supp. Mat. for experiments without an o parameter.



to reduce the computational burden of applying W with
a dense component (and W T in the backward pass), we
treat the dense offset D as the action of the discrete cosine
transform (DCT) matrix® resulting in

Wz = aDCT(z) + Sz, 3)
W' =aDCT ! (v) + S v. 4)

The DCT can be applied in near linear, ¢ log g, computa-
tional cost (where ¢ = max(m, n)), and need not be directly
stored. Consequently, this layer architecture (3) retains the
benefit of W being dense, while having the on device stor-
age footprint of a sparse network and at the minimal over-
head of requiring an additional computational q log g cost.
We refer to layers parameterized by (3) as ‘DCT plus Sparse’
(DCTpS) layers. There are, of course, many other candidate
matrices for D with the same or similar properties, which to-
gether constitute a more general ‘Dense plus Sparse’ (DpS)
layer class, but we restrict our attention to DCTpS in this
paper, deferring alternative choices of fast transforms to
later investigation.

The framework (3) applies equally to convolutional layers.
Each step in a convolution can be cast as a matrix-vector
product Wz, where x € RP¥h-dim j 5 vectorised ‘patch’ of
the layer input, and W € Reut-channelsxpatch-dim haq the filters
as its rows. Back-propagation through a 2D convolutional
layer involves convolutions with (rotated versions of) the
layer’s filters, each step of which can be implemented as
W, where ¢ is a permuted version of a patch v. See the
Supplementary Material for more details.

The state-of-the-art Pal algorithms, such as FORCE and Syn-
Flow, require initially storing and computing with densely
initialized weight matrices so as to compute saliency scores
for each parameter. To avoid these costs, we use only a
simple heuristic to determine the locations of the trainable
parameters in DCTpS networks: we allocate an equal num-
ber of trainable parameters to each layer, and select their
locations within each weight tensor uniformly at random.

This ‘Equal per layer’ (EPL) heuristic achieves the basic
goal of maintaining some amount of trainability within each
layer, but is otherwise naive. While we will show that even
something as simple as EPL is sufficient for state-of-the-
art results with DCTpS networks, there is likely scope for
improved heuristics for the allocation of trainable parame-
ters, which - as noted in (Frankle et al., 2021) - may be the
most relevant feature of a Pal method, and thus may further
improve performance. In the Supplementary Material, we
include experiments with another naive heuristic which dis-
tributes parameters evenly across filters, rather than layers,
and achieve similar results.

31f the input dimension is less or greater than the output dimen-
sion, we zero-pad the input or truncate the output respectively.

5. Experiments

SynFlow (Tanaka et al., 2020) and FORCE (de Jorge
et al.,, 2021) have recently emerged as the state-of-the-
art Pal algorithms in the extreme-sparsity regime, signif-
icantly outperforming the prior state-of-the-art methods
SNIP and GraSP. We thus focus our experiments on com-
paring DCTpS with SynFlow and FORCE*, as well as RigL
(ERK), the current SOTA DST method. A full description
of all experimental setups and hyperparameters is included
in the Supplementary Material, and our code is available at
github.com/IlanPrice/DCTpS. For all plots in this section,
solid lines represent test accuracy averaged over three runs,
and shaded regions (though often too small to make out)
represent the standard deviation. The dashed black lines
denote the unpruned dense network baseline accuracy, while
dashed colored lines indicates where an algorithm breaks
down and is thus unable to prune the network to the specified
sparsity.

Combining DCTpS with RigL.: Though DCTpS networks
have been presented in the framework of static spare training,
they can straightforwardly be combined with DST methods
like Rigl, which are then used to iteratively update the
support set of the DCTpS layers’ sparse S matrices. We test
this in the experiments below, with positive results.

Random Pruning Comparisons: As noted above, the sup-
port sets of trainable nonzero parameters in ‘DCTpS’ net-
works are selected without any calculations involving the
full network. Relevant SST comparisons in this respect are
thus variants of random pruning, since initializing sparse
matrices is equivalent to initializing them as dense and prun-
ing randomly. Globally uniform random pruning, which we
denote as Random (uniform) in Figures 1 - 4; is often in-
cluded as a baseline in works such as (de Jorge et al., 2021;
Lee et al., 2019; Wang et al., 2020)). We include an addi-
tional random sparse initialization, Random (EPL), which
uses the same heuristic for distributing trainable parameters
as we use for DCTpS networks (with the difference being
that the trainable entries in the sparse weight matrices are
not initialized as 0, but according to a standard initializa-
tion scheme). We note that this Random (EPL) heuristic
significantly outperforms Random (uniform) at higher spar-
sities, and even matches state-of-the-art pruning methods for
densities greater than approximately 1%, see e.g. Figure 2.

5.1. Lenet-5

We first consider the small Lenet-5 architecture on CIFAR10
so as to compare sparse network methods against the ‘Hy-
perplane Projection” method of (Li et al., 2018), which is

*A revised version of (de Jorge et al., 2021) includes a closely
related variant of FORCE, called Iter-SNIP with very similar re-
sults. It suffices to compare our method to FORCE.
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Figure 2. Test accuracy on CIFAR10 and CIFAR100 datasets using sparse ResNet50 and VGG19 architectures. DCT plus Sparse (DCTpS)
networks (with EPL parameter allocation) are compared with FORCE, SynFlow, RigL, and random pruning methods.

computationally demanding despite having few trainable
parameters, due to the nature of its chosen random subspace.
Figure 1 illustrates that Hyperplane Projection achieves val-
idation accuracy superior to all Pal methods tested except
DCTpS which matches or exceeds its accuracy. The efficacy
of the Hyperplane Projection method helps illustrate the
value of the affine offset in (2), while the even superior ac-
curacy of DCTpS shows that the offset can be deterministic
and the hyperplane sparse and axis-aligned as in (3).

5.2. ResNet 50 and VGG19 applied to CIFAR10 and
CIFAR100

ResNet50 and VGG19 are selected as the primary architec-
tures to benchmark the Pal methods considered here; this
follows (de Jorge et al., 2021) and allows direct comparison
with related experiments conducted therein.

Figure 2 displays the test accuracy of these architectures, ap-
plied to CIFAR10 and CIFAR100 datasets, as a function of
the percentage of trainable parameters within the weight ma-
trices determined by the aforementioned Pal algorithms. At
5% density all Pal algorithms are able to obtain test accuracy
approximately equal to that of a dense network. Random
(uniform) and Random (EPL) initializations exhibit a col-
lapse or significant drop in accuracy once the density drops

below 1% and 0.5% respectively, but at greater densities
they roughly match or even outperform other Pal methods.
Below 0.5%, DCTpS has superior or equal test accuracy
compared to both SynFlow> and FORCE. The superior accu-
racy of DCTpS is most pronounced as the density decreases
to 0.01%; for example, in the case of ResNet applied to
CIFAR10, DCTpS achieves accuracy 22% above the next
most effective method SynFlow, and moreover retains ac-
curacy in excess of 80%. With the introduction of dynamic
sparsity, RigL achieves superior accuracy to all static sparse
approaches at higher densities (ranging from 5% to 0.5%),
after which it is overtaken by DCTpS. Applying RigL to
the sparse matrices in DCTpS networks yields significant
improvements over static sparse DCTpS networks; for ex-
ample, considering ResNet50 applied to CIFAR100, DCTpS
with RigL achieves &~ 50% accuracy at 0.01% density, as
compared with 44% with static DCTpS. DCTpS combined
with RigL achieves accuracy comparable to or better than
all methods, including RigL, at densities of 1% or below,
again with the most significant margins at the most extreme
sparsities.

SWe note that one feature of SynFlow’s saliency scores is that
they grow very large for large networks, and thus in order to suc-
cessfully prune ResNet50 with SynFlow it is necessary to switch
from float32 to float64 to avoid overflow.



The test accuracy of all methods are somewhat lower for
VGG19 applied to CIFAR10 and CIFAR100. Up to ap-
proximately 0.05% density, each of SynFlow, FORCE, and
DCTpS achieve accuracy within approximately 2% of each
other. FORCE fails to generate a network for densities below
0.05%, denoted by dashed green lines, while the benefits of
DCTpS over SynFlow become apparent for these smaller
densities where its test accuracy is approximately 10% and
20% greater on CIFAR10 and CIFAR100 respectively. Once
again RigL outperforms static sparse approaches at densities
ranging from 5% to 0.1%, but collapses below this level.
Combining Rigl. with DCTpS is comparable to or better
than all other methods at all densities, and significantly
outperforms static DCTpS (by 3% - 6% at all densities on
CIFAR100, for example).

One important point to underscore is that in these exper-
iments, as is typical in prior Pal experiments (de Jorge
et al., 2021), we only consider the proportion of remaining
trainable weights in linear and convolutional layers. Large
networks like ResNet50 and VGG19 also have bias and
batchnorm parameters (making up 0.22% and 0.06% of
trainable parameters of the respective architectures). That
these are not prunable in our experiments imposes a floor
on the overall number of trainable parameters remaining
in the network. The plateau in performance exhibited by
DCTpS networks in Figure 2 is thus testament to their abil-
ity to preserve information flow through the network despite
extremely few trainable weights, thereby preserving the ca-
pacity of the network endowed by other remaining trainable
parameters.

Shrinking the storage footprints of batchnorm networks to
their most extreme limits will require the development and
incorporation of methods to prune batchnorm parameters
as well. Such methods can be incorporated into DCTpS
networks (and other Pal methods).

5.3. MobileNetV2 and Fixup-ResNet110

Next, DCTpS is compared to other Pal algorithms and RigL.
on two architectures which are less overparameterized than
ResNet50 and VGG19. First, we consider MobileNetV2
(Sandler et al., 2018), originally proposed as a Pal test-case
in (de Jorge et al., 2021), which has approximately 10% of
the parameters in ResNet50. Figure 3 (left) shows test accu-
racy for MobileNetV2 applied to CIFAR10, demonstrating
trends similar to those in Figure 2, with DCTpS exhibit-
ing superior performance as sparsity increases, retaining
approximately 70% accuracy with as few as 0.01% of the
networks weights. Rigl’s accuracy drops significantly be-
low 1% density, but combining DCTpS with RigL achieves
the best accuracy of all methods at all densities.

Second, we include experiments for Fixup-ResNetl10
(Zhang et al., 2019) on CIFAR10. ‘Fixup’ ResNets were de-

veloped in order to enable the efficient training of very deep
residual networks without batchnorm, to the same accuracy
as similarly sized batchnorm networks. In Fixup-ResNet110,
all but 282 of its 1720138 parameters are ‘prunable’, practi-
cally eliminating the overall density floor caused by batch-
norm parameters in the other large networks considered in
this section.

The Fixup initialization involves initializing some layers to
zero (in particular the classification layer and the final layer
in each residual block), as well as re-scaling the weight
layers inside the residual branches. Since our layers are
initialized as DCTs, we mimic these effects by setting the «
parameter to O or to the appropriate scaling factor. We use
the code provided by the authors® to obtain the baseline and
sparse network results, and create DCTpS Fixup ResNets
by simply replacing the Linear and Convolutional layers
with their corresponding DCTpS variants, and initializing
appropriately.

Figure 3 (right) illustrates the test accuracy of DCTpS, RigL,
Random (EPL) and Random (uniform). FORCE and Syn-
Flow cannot be directly applied to FixupResNet110 as they
both assign a saliency score of 0 to all parameters and con-
sequently have no basis on which to select which entries to
prune. At 0.1% density, with only 2000 trainable parameters
in total, spread across 110 layers, DCTpS retains approxi-
mately 45% test accuracy, outperforming the Random (EPL)
by more than 20%. DCTpS outperforms RigL below 0.5%
density, and DCTpS with RigL. matches or outperforms all
other methods at all densities.

5.4. Run Times and Theoretical Complexity

The operations of both fully connected and convolutional
layers can be framed in terms of matrix multiplication, and
thus we may discuss the complexity of a DCTpS layer
as compared with a standard sparse layer by consider-
ing a matrix-vector product Wz, where W € R™*". If
W is parameterized as in Equation 3, with S containing
pmn non-zeros, then theoretically the storage cost of W
is just the storage cost of .S, O(pmn), while the computa-
tional cost of applying the layer (computing W x) becomes
O(qlog q + pmn), where ¢ = max(m,n). We note here
that while storage requirements can decrease to arbitrarily
low levels, depending on p, once p < O(logq/r) where
r = min(m, n) , further sparsification results in only mini-
mal computational savings.

However, current implementations of deep learning pack-
ages render these computational and storage gains purely
theoretical, for now at least, and thus plots showing run-
times and storage costs corresponding to the above expres-
sions are not included. Firstly, most standard deep learn-

®https://github.com/hongyi-zhang/Fixup
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Figure 3. Left: Comparison of DCTpS against FORCE, SynFlow and RigL. on CIFAR10 with MobileNetV2 (Sandler et al., 2018). Right:
Comparison of DCTpS with Rigl and Random Pruning methods on CIFAR10 with FixupResNet110 (Zhang et al., 2019).
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Figure 4. Spectrum of the Jacobian of Resnet50 on CIFAR10, pruned to different sparsities with varies methods, at initialization. If a
curve does not appear in a given plot, it means that the spectrum was identically zero for that density. The DCTpS plot shows only one
curve since its Jacobian does not depend on the number of trainable weights.

ing libraries are not optimised for sparse tensor operations,
which affects the realisation of the potential benefits of all
Pal techniques, as well as our DCTpS approach. Secondly,
efficient DCTpS networks would require optimising the fast
transforms in these packages, and appropriately building in
their auto-differentiation.

6. Spectral Analysis and Distribution of
Nonzeros

Figure 2 shows that the accuracy of Random (uniform) col-
lapses to random guessing as the density decreases from
0.5% to 0.1%, and for Random (EPL) this occurs at 0.02%.
In both cases the percentage of trainable parameters at which
the pruned network becomes un-trainable are those at which
the spectrum of their Jacobian (J;; = gi j ) becomes equal
to O at initialization. This can be seen in Figure 4, which
displays the associated leading singular values of the Jaco-
bian in the exemplar case of ResNet50 applied to CIFAR10,
for different Pal methods at varying densities. As previ-
ously mentioned, FORCE and SynFlow do not reduce to
random guessing at any sparsity tested with ResNet50, and

correspondingly there is no sparsity at which the Jacobian
spectrum fully collapses to zero. It appears that the pri-
mary factor for trainability of Pal networks is determined
by whether the spectrum is or is not 0, as opposed to the
scale of the spectrum — SynFlow remains competitive with
FORCE even at densities for which SynFlow’s Jacobian has
a largest singular value of approximately 10~ '3 whereas the
corresponding singular value of FORCE is > 10'° greater.

Since DCTpS networks are always, in effect, dense net-
works, including at initialization, the spectrum of the Jaco-
bian, shown in Figure 4, does not depend on the sparsity of
its trainable weights, and thus does not collapse even as the
number of trainable parameters approaches zero. This likely
relates to their ability to be trained even with extremely
sparse and randomly distributed trainable weights.

It has been alternatively conjectured that these noted col-
lapses in accuracy occur due to ‘layer collapse’, where one
or more layers have all of their parameters set to zero, as
was noted in (Tanaka et al., 2020) for SNIP and GraSP. How-
ever, in residual networks, due to the existence of multiple
branches through which information may flow, it is possible
to prune multiple weights tensors in their entirety without
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collapsing performance. Indeed this phenomenon is ob-
served in Figure 5, which includes plots of the total number
of trainable parameters per layer determined by different
Pal methods at different sparsities, applied to ResNet50 on
CIFAR10. Comparing Figure 5 to the test accuracy of the
corresponding experiments in Figure 2, shows that prun-
ing all parameters in one or more weight tensors is neither
necessary nor sufficient for accuracy collapse. Neither Syn-
Flow nor FORCE exhibit complete performance collapse at
any density, despite both methods pruning multiple layers
completely. Conversely, Figure 2 shows Random (EPL)
on ResNet50 reduces to random guessing at a density of
0.02% or less, despite the fact that each single layer contains

approximately 100 trainable parameters.

The number and distribution of nonzeros generated by Pal
methods has recently been investigated in depth by (Fran-
kle et al., 2021); and in particular, the value of carefully
selecting sparse trainable parameters with Pal methods. It
was observed that given a particular sparsity pattern iden-
tified by Pal methods, the location of aa layer’s nonzeros
can be shuffled and the resulting network can be trained
to similar or even improved accuracy, suggesting the suc-
cess of a Pal algorithm may be determined primarily by the
number of trainable parameters per layer rather than which
entries within the layers are selected. Figure 5 illustrates
that SynFlow, for densities down to 0.1%, allocates train-
able parameters approximately equally per layer (with 4
notable exceptions, which turn out to correspond to those
shortcut connections which were prunable). Yet despite
this rough similarity in distribution at 0.1% density, we ob-
serve substantially different test accuracy for SynFlow and
Sparse (EPL).

7. Conclusions and Further Work

In this work we have shown that adding a layer-wise off-
set to sparse subspace training significantly improves test
accuracy in the extreme-sparsity regime. DCT plus Sparse
(DCTpS) layers provide an elegant way of achieving this
offset with no extra storage cost, and only a small compu-
tational overhead. Moreover we have shown that simple
heuristics can be used to randomly select the support sets
for their sparse trainable weight tensors, avoiding any initial
storage of, or computation with the full network. DCTpS
networks achieve state-of-the-art results at extreme trainable
sparsities, and are competitive with the state-of-the-art at
lower sparsities. These results are further improved when
DST methods like RigL. are applied to DCTpS networks.

There are numerous clear avenues for extending and comple-
menting this research. As noted, research on better heuris-
tics or other ways to choose the trainable sparse support
in the DCTpS layers may improve performance beyond
our simple EPL heuristic. Moreover, this should be com-
bined with research on pruning or removing batchnorm
parameters, since DCTpS layers only enable the pruning of
trainable weight tensors. Furthermore, there may well be an
optimal initialization of the o parameter in DCTpS layers,
and it may not need to be trained. As the scaling parame-
ter of the network weight tensors, this research would be
analogous to work on the optimal scale parameter to use
when initializing Gaussian weights, of which there is plenty
(Glorot & Bengio, 2010; He et al., 2015; Xiao et al., 2018).
Finally, the use of other fast deterministic transforms, or
other even more efficient ways to implement a dense offset,
may yield further improvements.
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