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Abstract. The compatibility of unsynchronized interleaved uniform sam-

pling with Sigma-Delta analog-to-digital conversion is investigated. Let f be
a bandlimited signal that is sampled on a collection of N interleaved grids

{kT + Tn}k∈Z with offsets {Tn}N
n=1 ⊂ [0, T ]. If the offsets Tn are chosen

independently and uniformly at random from [0, T ] and if the sample values
of f are quantized with a first order Sigma-Delta algorithm, then with high

probability the quantization error |f(t)− ef(t)| is at most of order N−1 log N .

In memory of David Gottlieb–mentor and friend.

1. Introduction

One of the fundamental issues in modern electronics is the conversion between
analog and digital signal representations. Shannon’s classical sampling theorem
is a tool for passing between bandlimited signals and their representations from
uniform samples. We shall focus on the space Bσ of finite energy bandlimited
signals whose Fourier transforms are supported on [−σ, σ]. More precisely, Bσ =
{f ∈ L2(R) : supp(f̂) ⊂ [−σ, σ]}, where the Fourier transform f̂ is normalized as
f̂(ξ) =

∫
f(t)e−2πiξtdt. Each f ∈ Bσ has the representation

f(t) =
∫ σ

−σ

f̂(ξ)e2πiξtdξ.

Shannon’s sampling theorem, e.g., see [17], states that each f ∈ Bσ can be
expressed exactly in terms of its sample values {f(kT )}k∈Z through

(1.1) f(t) = T
∑
k∈Z

f(kT )ψ(t− kT ),

provided that (σ + σc) ≤ 1/T, where the sampling kernel ψ satisfies

(1.2) ψ̂(ξ) =
{

1, when |ξ| ≤ σ,
0, when |ξ| > σc,

with σ ≤ σc. In particular, it is necessary that 1/T ≥ 2σ.
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When the sampling rate 1/T is strictly greater than the Nyquist rate 2σ, i.e.,
1/T > 2σ, it is possible to take σc > σ in (1.2) and to select ψ̂ to be smooth.
This is an essential property for the usefulness of Shannon’s sampling theorem in
applications since in practice only a finite number of samples f(kT ) are available
for the reconstruction of f(t). As a result, the sum in (1.1) must be truncated and
f(t) is only approximately recovered. If ψ̂ is selected to be sufficiently smooth, e.g.,
at least twice continuously differentiable, then ψ(t) will decay at least as rapidly
as |t|−2, and (1.1) can be truncated to a finite sum while still recovering accurate
approximations of f(t) in the sampled region, e.g., see [13]. Examples of practical
kernels ψ̂ are plentiful, see [6, 10, 8, 11]; they range from the classical raised cosine
to infinitely differentiable Gevrey-α filters [13]. In each case, ψ̂(ξ) is defined by
selecting a function ρ(ξ) and letting

(1.3) ψ̂ρ(|ξ|) = ρ

(
|ξ| − σ

σc − σ

)
for σ ≤ |ξ| ≤ σc.

For the results presented here the classical raised-cosine defined by

(1.4) ρrc(ξ) =
1
2
(1 + cos(πξ)).

yields sufficient localization, and we may for simplicity restrict our attention to the
associated sampling kernel ψ = ψρrc .

A practical limitation in the direct application of Shannon’s sampling theorem
is the increasingly high sampling rates that are necessary for ultra-wideband trans-
missions. The high rate analog-to-digital converters (ADCs) needed for such appli-
cations pose serious challenges such as decreased accuracy and increased cost. A
naive solution for synthetically increasing the sampling rate is to interleave mul-
tiple analog-to-digital converters, each of which has a sampling rate 1/T that lies
below the Nyquist rate. Interleaving N such ADCs to a uniform mesh gives a
faster effective sampling rate of N/T . Unfortunately this naive approach is not
easy to implement, especially for large N , due to the difficulty in synchronizing
(and maintaining synchronization of) the interleaved ADCs [15]. This obstacle can
be overcome by a suitable modification of Shannon’s sampling theorem to allow
for unsynchronized uniform interleaving, often called uniform interleaving [13, 14],
e.g., see Theorem 2.2.

Overview and main results. The main contribution of this article is to give an
analysis of the compatibility of uniform interleaved sampling with coarse quantiza-
tion. We focus on coarse quantization given by Sigma-Delta (Σ∆) algorithms, and
consider an unsynchronized sampling geometry with randomly interleaved sampling
grids. It is desirable to use Σ∆ schemes in this setting because of their superior
robustness properties: Σ∆ methods can be implemented using imperfect circuit
elements without compromising the accuracy of the recovered approximation.

Our main result may be summarized as follows. Suppose that the bandlim-
ited signal f ∈ Bσ is sampled on an interleaved collection of N uniform grids
{kT + Tn}k∈Z with offsets {Tn}N

n=1 that are chosen independently and uniformly
at random from [0, T ]. If the samples of f are quantized with a first order Sigma-
Delta analog-to-digital converter then with quantifiably high probability the overall
quantization error ‖f − f̃‖L∞(R) is at most of order N−1 logN . This is within a
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logarithmic factor of the rate achieved with traditional uniform sampling. A precise
statement of this main result is given in Theorem 4.2.

The remainder of the paper is organized as follows. Section 2 reviews unsyn-
chronized uniform interleaved sampling of bandlimited signals. Section 3 focuses
on the special case of randomly interleaved sampling, and derives size and variation
estimates associated with the sampling kernels in this setting. Section 4.1 provides
basic background on Sigma-Delta (Σ∆) quantizers and derives general error bounds
in the setting of unsynchronized uniform interleaved sampling. Section 4.2 contains
our main result, Theorem 4.2, which proves error bounds for Sigma-Delta quanti-
zation of randomly interleaved uniform sampling. Numerical examples are given in
Section 5.

2. Uniform interleaved sampling of bandlimited signals

Similar to Shannon’s sampling theorem (1.1) for uniform samples, a bandlimited
function f ∈ Bσ can also be expressed in terms of its uniform interleaved samples,
i.e., samples on a union of shifted lattices. Each f ∈ Bσ can be represented in
terms of the interleaved uniform samples {f(kT + Tn) : k ∈ Z, n = 1, . . . N}, where
{Tn}N

n=1 ⊂ R, through

f(t) = T
∑
k∈Z

N∑
n=1

f(kT + Tn)ψn(t− kT − Tn),

provided that

• the sampling grids {kT + Tn}k∈Z are disjoint for different n = 1, 2, · · · , N ,
• the effective sampling rate N/T is greater than the Nyquist rate 2σ,
• the sampling kernels {ψn}N

n=1 are appropriately constructed.

See [13] for further details. In the case where N is appropriately large, it is possible
to select each ψn to differ only by a constant multiple cn from a standard sampling
kernel ψ that satisfies (1.2), i.e., we may take ψn = cnψ.

We shall make use of the following standard result which is essentially a version
of the Poisson summation formula. We include a proof for the sake of completeness.

Lemma 2.1. If ϕ ∈ Bσ and λ > 0 then

(2.1)
∑
k∈Z

ϕ(k/λ)e−2πiξk/λ = λ
∑
n∈Z

ϕ̂(ξ + nλ).

The left sum in (2.1) converges unconditionally in L2
loc(R). The right sum in (2.1)

locally involves only finitely many indices.

Proof. Since both sides of (2.1) are λ periodic, it suffices to verify that equality
holds when both sides of (2.1) are restricted to [0, λ]. Let

(2.2) s(ξ) = χ[0,λ](ξ)
∑
n∈Z

ϕ̂(ξ + nλ).

Since ϕ̂ ∈ L2(R) is compactly supported on [−σ, σ], the sum defining s is only taken
over finitely many indices. Hence s ∈ L2[0, λ].
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Let m1 be the largest integer such that −σ−m1λ ≤ λ, and let m2 be the smallest
integer such that σ −m2λ ≥ 0. Using the support properties of ϕ̂ we have that∫ λ

0

s(ξ)e2πikξ/λdξ =
m2∑

n=m1

∫ λ

0

ϕ̂(ξ + nλ)e2πikξ/λdξ =
m2∑

n=m1

∫ (n+1)λ

nλ

ϕ̂(ξ)e2πikξ/λdξ

=
∫ (m2+1)λ

m1λ

ϕ̂(ξ)e2πikξ/λdξ =
∫ σ

−σ

ϕ̂(ξ)e2πikξ/λdξ = ϕ(k/λ).

Thus s has the Fourier series representation

s(ξ) =
1
λ

∑
k∈Z

ϕ(k/λ)e−2πikξ/λ,

which converges unconditionally in L2[0, λ]. This completes the proof. �

Theorem 2.2. Suppose that f ∈ Bσ is sampled on the set

{kT + Tn : k ∈ Z, 1 ≤ n ≤ N},

where 0 ≤ T1 < T2 < · · · < TN < T. Let ψ be a sampling kernel that satisfies (1.2)
with associated bandwidth constant σc ≥ σ. Let m = dT (σ + σc)eand assume that
the number of interleaved grids satisfies N ≥ 2m+ 1.

Let the vector c = [c1, · · · , cN ]T be chosen as any solution to Ac = e, where the
(2m+ 1)×N matrix A is defined by

(2.3) ∀ 1 ≤ j ≤ 2m+ 1 and 1 ≤ k ≤ N, Aj,k = e−2πi(j−m−1)Tk/T ,

and where the (2m+ 1)× 1 vector e = [e(1), · · · , e(2m+ 1)]T is defined by e(n) =
δn,(m+1). The Kronecker δj,k is defined to equal one when j = k, and zero otherwise.

Then the following sampling formula holds

(2.4) f(t) = T
∑
k∈Z

N∑
n=1

f(kT + Tn)cnψ(t− kT − Tn),

with unconditional convergence in both L2(R) and L∞(R).

Proof. Define

fn(t) = Tcn
∑
k∈Z

f(kT + Tn)ψ(t− kT − Tn),

and note that fn ∈ L2(R). The Fourier transform of fn is given by

(2.5) f̂n(ξ) = Tcnψ̂(ξ)e−2πiTnξ
∑
k∈Z

f(kT + Tn)e−2πikTξ.

Note that fn ∈ L2(R) and f̂n is supported on [−σc, σc], because {f(kT +Tn)}k∈Z ∈
`2 for every Tn and ψ̂(ξ) is constructed to be compactly supported on [−σc, σc].

Applying Lemma 2.1 to (2.5) with ϕ(t) = f(t+ Tn) and λ = 1/T gives

(2.6) f̂n(ξ) = ψ̂(ξ)cn
∑
k∈Z

e−2πikTn/T f̂(ξ + k/T ),

with equality in L2(R). Note that the sum is a finite sum since f ∈ Bσ.
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For (2.4) to hold we require f =
∑N

n=1 fn, or equivalently f̂ =
∑N

n=1 f̂n. By
(2.6) we have

(2.7)
N∑

n=1

f̂n(ξ) = ψ̂(ξ)
∑
k∈Z

f̂(ξ + k/T )
N∑

n=1

cne
−2πikTn/T .

Note that a circular shift of the rows of A results in a Vandermonde matrix, and
consequently A has full rank if 0 ≤ T1 < T2 < · · · < TN < T . Thus by the definition
of c as a solution to Ac = e we have that

(2.8) ∀ |k| ≤ m,
N∑

n=1

cne
−2πikTn/T = δk,0.

Also, by the definition of m, and since supp(ψ̂) ⊂ [−σc, σc] and supp(f̂) ⊂ [−σ, σ],
we have that

(2.9) ∀ |k| > m, ψ̂(ξ)f̂(ξ + k/T ) = 0.

Combining (2.7), (2.9), and (2.8), gives
∑N

n=1 f̂n(ξ) = f̂(ξ), as required. This shows
that (2.4) holds in L2(R).

To see that (2.4) also holds in L∞(R) recall that f ∈ Bσ ⊂ Bσc
and note that

each function in the right side of (2.4) is in Bσc
. Thus the L2 convergence of the

respective Fourier transforms in fact takes place in L2[−σc, σc]. Since

∀ h ∈ Bσ, ‖h‖L∞(R) ≤ ‖ĥ‖L1(R) ≤
√

2σc‖ĥ‖L2(R),

the convergence in L∞(R) follows. �

For perspective on the effective sampling rate in Theorem 2.2, note that the
hypotheses on m and N imply that N/T > 2σ. It is also worth mentioning that
Theorem 2.2 offers many degrees of design flexibility. Besides the freedom of choos-
ing ψ, the system Ac = e becomes increasingly underdetermined as N →∞ (with
σ, σc, T fixed) and there are infinitely many choices for the coefficients {cn}N

n=1.

3. Random uniform interleaved sampling of bandlimited signals

In this section we consider the case of unsynchronized interleaved sampling with
no deterministic control on the offsets 0 ≤ T1 < T2 < · · · < TN < T from Theorem
2.2. We consider the situation where {Tn}N

n=1 is determined by choosing N inde-
pendent uniform random variables on [0, T ] and then arranging them in increasing
order. In other words, {Tn}N

n=1 will be assumed to be the order statistics associated
with N independent random variables each uniformly distributed on [0, T ].

There are powerful technical results, notably in [1, 9], which justify the effec-
tiveness of randomly interleaved sampling. Since these results focus primarily on
sampling theoretic issues, we hope that the current work on coarse analog-to-digital
conversion will serve as a useful complement. The results and techniques in [1, 9]
play an important role in our analysis and motivation.

In order to show that this unsynchronized sampling architecture is compatible
with coarse quantization algorithms, we need to carry out a refined investigation of
the coefficients {cn}N

n=1 that arise in Theorem 2.2. This section will focus on proving
size and smoothness bounds for the canonical choice of the sequence {cn}N

n=1. We
begin by stating some background results that will be important for our analysis.
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Theorem 3.1, which is a streamlined corollary of [9, Theorem 3.3], bounds the
smallest singular value of the matrix A when the sampling offsets {Tn}N

n=1 are the
order statistics associated with N independent random variables each uniformly
distributed on [0, T ], see also [1]. For further details on the following theorem, see
[9].

Theorem 3.1. Let {Tn}N
n=1 be defined by drawing N independent uniform random

variables on [0, T ] and arranging them increasing order. Let A be the (2m+1)×N
matrix defined by (2.3) with N > (2m+ 1). Then with probability at least

1− 4(m+ 1)e−N/(40(m+1)),

the following upper bound on the operator norm of (AA∗)−1 is satisfied

(3.1) ‖(AA∗)−1‖2 ≤ 20N−1.

Note that the original theorem in [9] is stated for {Tn}N
n=1 chosen as independent

uniform random variables on [0, T ]. Since the singular values of a matrix is not
affected by any interchange of its columns, the same result holds when the {Tn}N

n=1

are the associated order statistics.
The next theorem bounds the maximal gap in a collection of independent uniform

random variables.

Theorem 3.2. Let {Tn}N
n=1 be defined by drawing N independent uniform random

variables on [0, T ] and arranging them increasing order, and consider the associated
maximal gap defined by

MN = max{T2 − T1, · · · , Tn − Tn−1, · · · , TN − TN−1, T + T1 − TN}.

Fix α > 0. If N ≥ 4(1 + α)2 then with probability at least

1− 2/Nα

there holds

MN ≤ (1 + α)T logN
N

.

Proof. Without loss of generality, we consider the case T = 1, since the case of
T 6= 1 then follows by rescaling.

For independent uniform random variables on [0, 1], the distribution for the
difference Tk − Tj of a pair of order statistics with j < k is given by

f(Tk−Tj)(x) =

{
N ! xk−j−1(1−x)N−k+j

(k−j−1)!(N−k+j)! , if x ∈ [0, 1],

0, if x /∈ [0, 1].

See equation (2.3.4) on page 14 in [4] for further details. For differences of adjacent
order statistics and x ∈ [0, 1] this reduces to

∀ 1 ≤ n ≤ N − 1, f(Tn+1−Tn)(x) = N(1− x)N−1,

and
f(TN−T1)(x) = N(N − 1)xN−2(1− x).

Fix 0 < λ < 1. For any fixed n we have that

Prob[Tn+1 − Tn > λ] = N

∫ 1

λ

(1− x)N−1dx = (1− λ)N .(3.2)
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Similarly,

Prob[1 + T1 − TN > λ] = Prob[1− λ > TN − T1]

= N(N − 1)
∫ 1−λ

0

xN−2(1− x)dx

= Nλ(1− λ)N−1 + (1− λ)N .(3.3)

The probability that at least one of the differences {Tn+1−Tn}N−1
n=1 or 1 +T1−TN

exceeds λ can be bounded using a union bound with (3.2) and (3.3) to give

Prob[MN > λ] ≤ (N − 1)(1− λ)N +Nλ(1− λ)N−1 + (1− λ)N

= N(1− λ)N

(
1

1− λ

)
≤ Ne−λN

(
1

1− λ

)
.(3.4)

To complete the proof we select λ = λN = (1 + α)N−1 logN and note that
for N > 4(1 + α)2 we have 0 < λ < 1/2 and (1 − λ)−1 < 2. Thus, by (3.4),
N > 4(1 + α)2 implies Prob[MN > λ] ≤ 2Ne−λN , and hence by the definition of λ

Prob
[
MN >

(1 + α) logN
N

]
≤ 2
Nα

.

�

Although the bound in Theorem 3.2 suffices for our purposes, there are also more
delicate asymptotic bounds in [5], cf. [12], which show that with probability one,

lim sup
N→∞

NMN − logN
2 log logN

= 1.

Also see [1] for a version in higher dimensions.
The following theorem catalogs properties of the vector c from Theorem 2.2 in the

setting of {Tn}N
n=1 drawn uniformly at random from [0, T ]. Given {cn}N

n=1 ⊂ CN ,
we define ∆cn = cn − cn+1 if 1 ≤ n ≤ N − 1, and ∆cN = cN − c1. In the interest
of concreteness we state the following theorem for specific choices of the bounding
constants and associated probabilities. More general versions follow in the same
manner using a more general version of Theorem 3.1 as stated in [9, Theorem 3.3].

Theorem 3.3. Let {Tn}N
n=1 be defined by drawing N independent uniform random

variables on [0, T ] and arranging them increasing order. Let A be the (2m+1)×N
matrix defined by (2.3) with N > 2m + 1, let e = [e1, · · · , e2m+1]T be defined by
en = δn,(m+1), and let c = [c1, · · · , cN ]T denote the canonical solution to Ac = e
that is given by

c = A∗(AA∗)−1e.

Fix α > 0 and additionally assume N > 4(1 + α)2. Then with probability at least

1− 2
Nα

− 4(m+ 1)e−N/(40(m+1))

the following hold:

(3.5) max
1≤n≤N

|cn| ≤
20
√

2m+ 1
N

,
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and there exists a constant 0 < Cm ≤ 2π(2m+ 1)3/2 such that

(3.6) max
n

|∆cn| ≤
20(1 + α)Cm logN

N2
.

Proof. We first establish (3.5). For a row or column vector v, we use v(n) to denote
the nth entry of v. Let

an = [e2πimTn/T , e2πi(m−1)Tn/T , · · · , e−2πimTn/T ]T

denote the nth column of the matrix A. Using this notation, and recalling that
e(n) = δn,(m+1) we have that c = A∗(AA∗)−1e is the (m+1)th column ofA∗(AA∗)−1.
So c∗ is the (m + 1)th row of the matrix [(AA∗)−1]∗A = (AA∗)−1A and hence is
given by

c∗(n) = c(n) = ((AA∗)−1an)(m+ 1),
where z denotes the complex conjugate of z ∈ C. Note that ‖an‖2 =

√
2m+ 1.

Thus, by Theorem 3.1, with probability greater than 1− 4(m+ 1)e−N/(40(m+1))

|c(n)| =
∣∣((AA∗)−1an)(m+ 1)

∣∣
≤ ‖(AA∗)−1an‖2

≤ ‖(AA∗)−1‖ ‖an‖2

≤ 20N−1
√

2m+ 1.(3.7)

To establish (3.6) we begin with the bound

|c(n)− c(n− 1)| = |c(n)− c(n− 1)|
= |((AA∗)−1an)(m+ 1)− ((AA∗)−1an−1)(m+ 1)|
= |((AA∗)−1(an − an−1))(m+ 1)|
≤ ‖(AA∗)−1(an − an−1)‖2

≤ ‖(AA∗)−1‖ ‖an − an−1‖2(3.8)

Again, Theorem 3.1 supplies a bound on ‖(AA∗)−1‖. We now address how to
control ‖an − an−1‖2. Note that an = g(Tn) where g is the smooth vector valued
function

g(t) = [g−m(t), g−m+1(t), . . . , gm(t)]T ,
with

gj(t) = exp(2πijt/T ).
Observe that |g′j(t)| ≤ 2πj/T . Then, using the mean-value theorem on gj , we get

|gj(Tn)− gj(Tn−1)| ≤
2πj
T

|Tn − Tn−1|,

and consequently

(3.9) ‖an − an−1‖2 = ‖g(Tn)− g(Tn−1)‖2 ≤
Cm

T
|Tn − Tn−1|,

where

Cm = 2π(
m∑

j=−m

j2)1/2 = 2π

√
m(m+ 1)(2m+ 1)

3
≤ 2π(2m+ 1)3/2.

Next, by Theorem 3.2, with probability greater than 1− 2/Nα

(3.10) |Tn − Tn−1| ≤
(1 + α)T logN

N
.
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Combining (3.10) with (3.9) gives

(3.11) ‖an − an−1‖ ≤
(1 + α)Cm logN

N
.

The bounds in (3.8) and (3.11) and Theorem 3.1 combine to give the desired
result (3.6)

|c(n)− c(n− 1)| ≤ 20(1 + α)Cm logN
N2

,

with the same bound holding analogously for |c(N)− c(1)|. �

4. Sigma-Delta quantization

4.1. Sigma-Delta for general uniform interleaved sampling. This section
briefly introduces Sigma-Delta (Σ∆) quantization and states a general error bound
that relates quantization error and variation of the sampling kernel.

Signal expansions such as (1.1) and (2.4), via appropriate sampling theorems,
give discrete-time representations of bandlimited functions. But the sample values
in such decompositions still take on a continuous range of real values. Quantization
is the lossy process of discretizing sample amplitudes to lie in a finite set such as
{−1, 1}. This makes it possible to provide representations that are discrete in both
time and amplitude.

Suppose that f ∈ Bσ is real valued, that {Tn}N
n=1 ⊂ [0, T ] is strictly increasing,

and that the interleaved sampling formula (2.4) holds. We focus on the case where
the samples are quantized in the time order in which they are obtained, so we order
the sequence {f(kT + Tn) : k ∈ Z, 1 ≤ n ≤ N} according to the order imposed
by sampling and quantize this sequence using a stable first order Σ∆ quantization
scheme. Noting that

(4.1) · · · < TN − T < T1 < T2 < · · · < TN < T1 + T < . . .

we denote this time ordered sequence of sample instances by {tm}m∈Z with t1 = T1.
In other words, {tm}m∈Z is defined by arranging {kT + Tn : k ∈ Z, 1 ≤ n ≤ N} in
increasing order.

The next definition uses the 1-bit scalar quantizer Q : R → {−1, 1} given by

(4.2) Q(u) =

{
1, if u ≥ 0,
−1, if u < 0.

There is no difficulty in extending our analysis to multibit quantizers, e.g., see [2],
but we restrict our attention to the 1-bit case for the sake of simplicity.

Definition 4.1. The first order Σ∆ scheme is given by the following recursion.
Let u0 = 0.

For m ≥ 1: qm = Q(um−1 + f(tm)),

um = um−1 + f(tm)− qm,

for m < 1: qm = −Q(um − f(tm)),

um−1 = um − f(tm) + qm.

The Σ∆ algorithm takes the sequence of sample values {f(tm)}m∈Z as its input
and returns the quantized sequence {qm}m∈Z ⊂ {−1, 1} as it output. The auxiliary
sequence {um}m∈Z is referred to as the state variable sequence. The Σ∆ algorithm
is stable in the following sense. If the input sample sequence satisfies |f(tm)| < 1
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for all m ∈ Z, then it is well known that the state variables satisfy |um| ≤ 1, see
[3]. In practice one runs the Σ∆ recursion only for finitely many positive indices m
since m = 0 corresponds to the time index when the sampling operation begins.

Below, we give a generic upper bound on the Σ∆ quantization error.

Proposition 4.1. Let {tm}m∈Z ⊂ R be any increasing sequence. Suppose that f
admits a decomposition

f(t) =
∑
m∈Z

f(tm)ψm(t− tm)

where each ψm vanishes at infinity, i.e., lim|t|→∞ ψm(t) = 0. Let {qm}m∈Z be the
sequence obtained by quantizing the sample sequence {f(tm)}m∈Z using the (two-
sided) stable first order Σ∆ scheme. Then

(4.3) |f(t)−
∑
m∈Z

qmψm(t− tm)| ≤
∑
m∈Z

|ψm(t− tm)− ψm+1(t− tm+1)|.

Proof. Note that

f(t)−
∑
m∈Z

qmψm(t− tm) =
∑
m∈Z

(f(tm)− qm)ψm(t− tm)

=
∑
m∈Z

(um − um−1)ψm(t− tm)

=
∑
m∈Z

um [ψm(t− tm)− ψm+1(t− tm+1)] ,

where the last equality is obtained using summation by parts and noticing that the
boundary terms disappear for all t since ψm vanishes at infinity. Finally, using the
fact that |um| < 1, we obtain (4.3). �

Next, we focus on the sampling sequences and reconstruction kernels that are
relevant in the setting of interleaved sampling. In the following theorem {tm}m∈Z
denotes the ordered sampling instances {Tk + Tn : k ∈ Z, 1 ≤ n ≤ N} as in (4.1).

Proposition 4.2. Let f ∈ Bσ be real valued and satisfy ‖f‖L∞(R) < 1. Suppose
that f is sampled on the interleaved grids {Tk + Tn : k ∈ Z, 1 ≤ n ≤ N} as in
Theorem 2.2, so that the sampling expansion (2.4) holds.

Quantize the time ordered samples {f(tm)}m∈Z with the first order Σ∆ scheme
to give the quantized samples {qm}m∈Z and denote the approximation f̃ obtained
using the quantized samples by

(4.4) f̃(t) =
∑
m∈Z

qmcmψ(t− tm),

where the constants cm are as in Theorem 2.2. Then the following quantization
error bound holds

(4.5) |f(t)− f̃(t)| ≤ 2K1(N)‖ψ‖L1(R) +K2(N)N
(
T−1‖ψ‖L1(R) + ‖ψ′‖L1(R)

)
,

where
K1(N) = max

1≤n≤N
|cn| and K2(N) = max

1≤n≤N
|∆cn|.
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Proof. Recalling that {tm}m∈Z is the time ordered version of {Tk+Tn : k ∈ Z, 1 ≤
n ≤ N}, it will be convenient to introduce the notation Tn,k = Tk + Tn. Using
Proposition 4.1 one can verify that

|f(t)− f̃(t)| ≤
∑
k∈Z

N−1∑
n=1

|cn+1||ψ(t− Tn+1,k)− ψ(t− Tn,k)|

+
∑
k∈Z

N−1∑
n=1

|cn+1 − cn||ψ(t− Tn,k)|

+
∑
k∈Z

|cN ||ψ(t− TN,k)− ψ(t− T1,k+1)|

+
∑
k∈Z

|c1 − cN ||ψ(t− T1,k+1)|.

Denote the four sums above by I1,1, I1,2, I2,1, and I2,2 respectively. Next, we find
upper bounds for each sum.

(i) First, we bound I1,1. For the sufficiently smooth sampling kernels considered in
this article we have ψ′ ∈ L1(R), and hence

|I1,1(t)| ≤ K1(N)
∑
k∈Z

N−1∑
n=1

∣∣ ∫ t−Tn−kT

t−Tn+1−kT

ψ′(τ)dτ
∣∣

≤ K1(N)
∑
k∈Z

∫ t−kT

t−(k+1)T

|ψ′(τ)|dτ

≤ K1(N)‖ψ′‖L1(R)(4.6)

where K1(N) = max1≤n≤N |cn|. In the second inequality, we used the fact that
{Tn}N

n=1 is strictly increasing in [0, T ).

(ii) Next, we bound I1,2. Setting K2(N) = max1≤n≤N |∆cn|,

(4.7) |I1,2(t)| ≤ K2(N)
N−1∑
n=1

∑
k∈Z

|ψ(t− Tn − kT )|.

It may be verified that for any function ψ ∈ L1(R) ∩ C1(R) with ψ′ ∈ L1(R), we
have

(4.8) ∀t,
∑
k∈Z

|ψ(t− kT )| ≤ T−1‖ψ‖L1(R) + ‖ψ′‖L1(R).

Consequently, (4.7) implies

|I1,2(t)| ≤ K2(N)(N − 1)(T−1‖ψ‖L1(R) + ‖ψ′‖L1(R)).

(iii) We have

|I2,1(t)| ≤ K1(N)
∑
k∈Z

|ψ(t− TN − kT )− ψ(t− T1 − (k + 1)T )|

≤ K1(N)
∑
k∈Z

∫ t−TN−kT

t−T1−(k+1)T

|ψ′(τ)|dτ

≤ K1(N)‖ψ′‖L1(R).(4.9)
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In the last inequality, we used the fact that 0 ≤ T1 < TN < T , and consequently,
the sets Uk(t) = [t− T1 − (k + 1)T, t− TN − kT ] satisfy Uk(t) ∩ U`(t) = ∅ for all t
whenever k 6= `.

(iv) Finally,

|I2,2(t)| ≤ |c1 − cN |
∑
k∈Z

|ψ(t− T1 − (k + 1)T )|

≤ K2(N)(T−1‖ψ‖L1(R) + ‖ψ′‖L1(R)).

Above we use (4.8) to obtain the second inequality. �

4.2. Sigma-Delta for random uniform interleaved sampling. We are now
ready to state our main result. Theorem 4.2 addresses the behavior of first or-
der Sigma-Delta quantization for unsynchronized interleaved sampling when the
sampling offsets {Tn}N

n=1 are chosen randomly on [0, T ].

Theorem 4.2. Let {Tn}N
n=1 be defined by drawing N > 2m+1 independent uniform

random variables on [0, T ] and arranging them in increasing order. Suppose that
a real valued signal f ∈ Bσ satisfying ‖f‖L∞(R) < 1 is sampled on the interleaved
collection of grids

{kT + Tn : k ∈ Z, 1 ≤ n ≤ N},
and that the corresponding time ordered samples {f(tk)}k∈Z are quantized with the
first order Σ∆ scheme as in (4.1) and Definition 4.1 to give the quantized signal f̃
in (4.4). Then, with probability greater than

1− 2N−1 − 4(m+ 1)e−N/(40(m+1)),

there holds

|f(t)− f̃(t)| ≤ C1 + C2 logN
N

,

with C1 = 40
√

2m+ 1‖ψ‖L1(R) and C2 = 80π(2m+1)3/2
(
T−1‖ψ‖L1(R)+‖ψ′‖L1(R)

)
.

Proof. First note that with probability one there holds

0 < T1 < T2 < · · · < TN < 1,

so that Theorem 2.2 applies and the sampling expansion (2.4) holds. Taking α = 1
in Theorem 3.3 shows that with probability at least 1−2N−1−4(m+1)e−N/(40(m+1))

both (3.5) and (3.6) hold. Thus for K1(N) and K2(N) as in Proposition 4.2, we
have

K1(N) ≤ 20
√

2m+ 1
N

and K2(N) ≤ 80π(2m+ 1)3/2 logN
N2

.

Substituting this into (4.5) yields the desired result. �

It is well known that Σ∆ schemes have superior robustness properties with re-
spect to quantizer imperfections. Theorem 4.2 uses the first order Σ∆ scheme given
in Definition 4.1. The 1-bit quantizer Q of this scheme is an ideal comparator which
is difficult to implement in practice. A more realistic model for the quantizer can
be obtained by replacing Q(·) in Definition 4.1 with Q(·+ εn) where εn is unknown
and may change at every step of the iteration, but can be kept within some known
margin, i.e., |εn| < ε. In this case, the results shown in Theorem 4.2 remain valid
after introducing the extra multiplicative constant (1 + ε), e.g., [3].
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The N−1 logN error bound of Theorem 4.2 is consistent with similar error
bounds for Σ∆ quantization in other settings. For example, a first order Σ∆
scheme produces an approximation with the error behaving like 1/λ where λ is
the sampling rate in the settings of:

• regularly oversampled bandlimited signals in Bσ, [3],
• redundant finite frame expansions in Rd, [2],
• overcomplete Gabor frames in L2(R), [16].

In this paper, our sampling rate is proportional to N , but the upper bounds given
in Theorem 4.2 have an extra logarithmic factor logN . The logN term is a conse-
quence of the random (non)synchronization imposed by our sampling geometry.

It may be possible to improve the N−1 logN bound in Theorem 4.2 using more
refined analysis. For example, if one takes subtle distribution properties of the state
variables un into account, then it is possible to improve error bounds below the basic
1/λ bound in the settings of: regularly sampled bandlimited signals [7], and finite
frames [2]. Indeed, in our setting of randomly interleaved sampling, numerical
experiments indicate better performance than the N−1 logN bound, which leads
us to believe that Theorem 4.2 can be improved.

5. Numerical examples

In this section we numerically illustrate the convergence rate of first order Sigma-
Delta quantization applied to random uniform interleaved sampling of bandlimited
signals, see Theorem 4.2. The following example uses specific choices of parameters
for the sampling geometry and associated kernels: σ = 1, σc = 1.2, T = 5, m = 11.

Example 5.1. A real valued test signal f ∈ Bσ satisfying σ = 1 and ‖f‖L∞(R) < 1
is selected. The test signal f used throughout this example is shown in Panel (a)
of Figure 5.1. For different values of N , the signal f is sampled on a truncated
portion of N interleaved sub-Nyquist grids

{kT + Tn : k ∈ Z, 1 ≤ n ≤ N}.

In this example, we take T = 5 and the offsets {Tn}N
n=1 are chosen by drawing N

independent uniform random variables from [0, T ] and arranging them in increasing
order. Truncation in the experiment only keeps 11 samples from each grid as follows

(5.1) {kT + Tn : −5 ≤ k ≤ 5, 1 ≤ n ≤ N}.

As described in Section 4, the time ordered samples of f on the truncated grids
(5.1) are quantized with the first order Σ∆ scheme. The signal f̃ is reconstructed
from the quantized samples as in (4.4), where ψ is the raised cosine filter (1.4)
with σc = 1.2, and {cn}N

n=1 is taken as in Theorem 2.2 with m = 11. A zoomed-in
comparison of f(t) and f̃(t) is shown in Panel (b) of Figure 5.1 for N = 6400.

Table 1 considers max|t|≤10 |f(t)− f̃(t)| for various choices of N , and also shows
that the bounds of ‖(AA∗)−1‖2 and MN in Theorems 3.1 and 3.2 respectively are
satisfied. Figure 5.2 shows a log-log plot of the approximation error from Table 1
against N . The maximum error is considered for the subinterval |t| ≤ 18 to avoid
the effect of truncation error; for further discussion on the role of truncation effects
in sampling see [13].

Acknowledgments. The authors thank Holger Rauhut for useful discussions.
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Figure 5.1. Panel (a): Test signal f ∈ B1 used in the numerical
experiment. Panel (b): Zoomed-in view of the signal f (solid), and
the reconstruction f̃ (dashed) from first order Σ∆ quantization.

N max|t|≤18 |f(t)− f̃(t)| N‖(AA∗)−1‖2 MN

50 4.1(-2) 48.0 5.65
100 7.0(-3) 4.68 5.43
200 3.4(-3) 3.03 5.74
400 6.7(-4) 1.84 6.17
800 2.4(-4) 1.40 4.51

1600 1.2(-4) 1.26 4.78
3200 4.6(-5) 1.20 4.70
6400 2.0(-5) 1.11 5.23

Table 1. For the signal displayed in Figure 5.1 we tabulate the:
Maximal error, max|t|≤18 |f(t) − f̃(t)| as well as observed values
for N‖(AA∗)−1‖2 and MN which are consistent with Theorems
3.1 and 3.2. The maximum error vs. N is shown in Figure 5.2.
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