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Abstract

Shannon’s sampling theorem quantifies the Fourier domain periodization in-
troduced by the equidistant sampling of a bandlimited signal when the sampling
rate is at least as fast as the Nyquist rate dictated by the signal’s bandwidth. If
sampled faster than the Nyquist rate, i.e., oversampling, a reconstruction com-
posed of highly localized atoms is possible, allowing for practical applications
where only a truncated set of samples is available. More specifically, it is known
that root-exponential accuracy can be achieved by constructing atoms whose
Fourier transform (filter) is infinitely differentiable and compactly supported in
the appropriate bandwidth. Unfortunately, there is no known compactly sup-
ported infinitely smooth filter whose corresponding atom has a known explicit
representation; and as such, an approximation of the atom is required for the im-
plementation in the time domain. By considering filters with Gevrey regularity,
we obtain root-exponential localization for the atom, and an efficient truncated
Gabor approximation of the filter and atom. Furthermore, we present an al-
ternative error decomposition that allows for the complete rigorous analysis of
the error in truncating the signal, and of the error introduced in approximat-
ing the filter and atom. By scaling the approximation order appropriately, the
root-exponential convergence rate is not adversely affected by the filter’s ap-
proximation.

Key words : Shannon’s sampling theorem, oversampling, Gabor frames, Gevrey
regularity
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1 Introduction

The classical Shannon sampling theorem plays a crucial role in signal processing
and communications, indicating how to transfer between analog signals and discrete
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sequences [29]. Shannon’s sampling theorem states that if a function1 belongs to the
space of bandlimited functions Bσ, i.e.,

f(t) :=
1√
2π

∫ σ

−σ
e2πiwtF (w)dw, F (w) ∈ L20[−σ, σ], (1)

then it can be recovered exactly from its equidistant samples

f(t) ≡
∞
∑

k=−∞

f

(

k

2σ

)

sin(2πσt− πk)
2πσt− πk :=

∞
∑

k=−∞

f

(

k

2σ

)

sinc(2πσt− πk). (2)

Sampling a function in the time domain introduces a periodization in the associated
Fourier dual space, where sampling at the rate 1/2σ corresponds to a 2σ periodiza-
tion. In equation (2) the reproducing atom (time domain), sinc(2πσt−πk), removes
the periodization introduced by sampling, through the action of its associated filter
(Fourier dual space), χ[−σ,σ], see Figure 1. For this critical, Nyquist sampling rate,
sinc(·) is the unique atom that can be used to remove the periodization.
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Figure 1: The dual space representation of a representative signal bandlimited to
[−σ, σ], solid. The periodization of the signal in the dual space, dotted, due to
sampling at the Nyquist rate 1/2σ, and the sinc’s dual space representation, χ[−σ,σ],
dot-dash.

Although a critical observation, the formulation in equation (2) is unsuitable for
practical applications, where only a finite number of samples2 is available, {f(k/2σ)

1Throughout this paper we will use lower case letters to designate functions in the time domain,
and upper case for the Fourier transform of the same function.

2We concern ourselves with the truncated oversampling of general bandlimited signals possessing
complex valued Fourier transforms. Consequently, the signals under consideration do not have any
particular symmetry in the time domain as an arbitrary translation, f(t − κ) can be effected by
a corresponding dual space modulation, exp(2πiκw)F (w). As such, without loss of generality we
consider samples centered about the origin, t = 0, and for expository purposes we detail an odd
number of samples, with an even number of samples extending trivially.
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}|k|≤L. For truncated samples the error, classically referred to as the truncation error,
is controlled by the atom’s localization

ε(t, σ, L) : =

∣

∣

∣

∣

∣

∣

f(t)−
√
2π

2σ

∑

|k|≤L

f

(

k

2σ

)

ψ

(

t− k

2σ

)

∣

∣

∣

∣

∣

∣

≤
√
2π

2σ
· ‖f‖L∞

∑

|k|>L

∣

∣

∣

∣

ψ

(

t− k

2σ

)
∣

∣

∣

∣

. (3)

In the case of the classical Shannon sampling theorem, the atom, ψ(τ) := sinc(τ),
suffers from an unacceptably slow decay, limτ→∞ψ(τ) ∼ 1/τ , resulting in a first order
convergence rate while moving from the sample boundaries, ±L/2σ,to the interior.
Moreover if the samples f(k/(2σ)) are replaced by noisy samples f(k/(2σ))+εk, then
the corresponding approximation via the cardinal series in (2) may differ significantly
from f(t), cf. [4].
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Figure 2: The signal’s dual space representation, solid, and the signal’s periodiza-
tion due to sampling at the rate, r/2σ, for r < 1, dotted. With the gap between
periodization, a smooth filter, dot-dash, can be used to remove the periodization
introduced by sampling.

To remedy these problems in applications one usually introduces oversampling:
If the bandlimited signal is sampled at a faster rate, T := r/2σ where r < 1, then the
dual space periodization is increased to σ/r, allowing a large family of reproducing
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filters. Specifically, any function satisfying3

Ψ(w) =







1 |w| ≤ σ
0 |w| > σ(2− r)/r =: Ω ⇒ ψ ∈ BΩ
anything else,

(4)

gives rise to a Shannon-type series expansion

f(t) ≡
√
2πT

∞
∑

k=−∞

f (kT )ψ (t− kT ) . (5)

For r = 1 the above filter reduces to χ[−σ,σ], and the classical Shannon’s sampling
theorem. However, for r < 1 a gap is introduced between σ and σ(2− r)/r, allowing
for a host of other reproducing filters, including those with a high degree of regularity,
see Figure 2.

Asymptotically the atom’s localization is reflected in the filter’s smoothness; con-
sequently, the filter’s regularity controls the convergence rate of the truncation er-
ror, (3). By constructing infinitely differentiable filters with precise regularity esti-
mates, we obtain root-exponential accuracy for the approximation of a bandlimited
signal, as the point to be approximated moves from the sampling boundary, ±LT , to
the interior, Section 2. Unfortunately, unlike classical finite regularity filters, such as
the raised cosine, which have a closed form expression for their corresponding atoms;
to the authors’ knowledge, there is no known infinitely differentiable filter who’s
atom allows an explicit closed form expression. As such, we introduce an efficient
exponentially accurate Gabor approximation to infinitely differentiable filters, which
allows for explicit representations in both the time and Fourier dual space. Further-
more, we present an alternative error decomposition that allows for the complete
rigorous analysis of the error in truncating the signal, and of the error introduced
in approximating the filter and atom, Section 3. A direct numerical comparison of
a classical finite regular filter, and our infinitely smooth filter, illustrates superior
convergence in the interior of the samples, and a similar error near the sampling
boundaries, Section 4. By adaptively scaling the filter’s Gabor approximation or-
der with the distance from the point to be recovered and the sampling boundaries,
LT − |t|, the filter’s approximation does not adversely affect the overall convergence
rate. However, before proceeding, we briefly describe one of a variety of applications
where high order accuracy is of importance.

1.1 Oversampling and channel estimation in communications

Channel estimation and equalization in wireless communications is an example where
the problem of reconstructing an oversampled bandlimited signal from its samples

3It has been noted in [16] that the reproducing property is somewhat less strict than as stated
in equation (4), in that the filter need not be zero for all |w| ≥ (2 − r)/r. Rather, the reproducing
property is satisfied if the filter is one for |w| ≤ σ, and zero at the points where the periodic extension
of the signal’s dual representation is non-zero. However, this added flexibility can not increase
the regularity of the filter, or decrease its regularity constants; and as such, can not improve the
asymptotic convergence rate. Although this added flexibility can be used to increase the atom’s
immediate localization about the origin, it introduces substantial peaks away from the origin, [16],
decreasing the overall convergence rate.
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plays an important role. Data transmission over wireless channels is impaired by
multipath propagation [24], where the signal sent from the transmit antenna arrives
at the receive antenna via multiple propagation paths, due to reflections from the
ground and surrounding structures.

If the transmitter and receiver are not moving the channel is essentially a time-
invariant system and can be modeled as convolution operator. More precisely, let
f ∈ Bσ be the transmitted signal in a single-carrier communication system4, i.e., f
is of the form

f(t) =
∑

k∈Z

ckψ(t− kR), (6)

where {ck}k∈Z are the data to be transmitted, ψ ∈ Bσ is called the pulse shaping
function, and R ≤ σ is referred to as transmission rate. The received signal g can be
written as

g(t) =

+∞
∫

−∞

f(s)h(t− s) ds+ η(t),

where h is the impulse response of the channel and η represents additive Gaussian
white noise [24].

The process of removing the interference caused by multipath propagation is
referred to as equalization. We do not go into detail about the various kinds of
equalizers, the interested reader may consult [24] and the references therein. In
many equalization methods one solves a system of equations Ax = y, where the
entries of the matrix A are samples of h and x and y are vectors containing samples
of f and g. The impulse response h can be estimated at the receiver by sending pilot
signals (ideally a delta-distribution, practically a so-called pseudo-noise signal of
the same bandwidth as the transmitted signal) before the actual data transmission.
The receiver first performs an analog anti-alias filtering of the pilot signal (i.e., a
projection onto Bσ), and then samples the filtered signal at Nyquist rate or higher,
to form an estimate of h. The error due to additive white noise can be greatly
reduced by oversampling as well as by averaging over several such estimates.

Ideally the receiver would sample h at times t = {kR}k∈Z and the samples h(kR)
would be sufficient for a successful equalization. However in practice the transmission
rate is often independent from the sampling clock at the receiver [10]. Thus we may
sample h at times {kRs}k∈Z instead, where the ratioR/Rs is assumed to be irrational.
Hence we have to interpolate h at nodes {kR}k∈Z from its oversampled values taken at
times {kRs}k∈Z. In theory such an interpolation can be carried out exactly by means
of Shannon’s sampling theorem; however, in practice one has to work with a finite
number of samples, which means we can only compute an approximate interpolation
of h from its samples {kR}|k|≤L.

Due to the truncation error introduced during the interpolation of h the entries
of A are not known exactly. Therefore we are dealing with a perturbed matrix
Ã := A+E, where E represents the perturbation caused by the truncation error. The
role of this perturbation error becomes significant if the channel experiences so-called

4The restriction to single-carrier systems is just for convenience, the described problem is similar
in multi-carrier systems
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deep fades, which in turn means that ‖A−1‖ will be large (if A is invertible at all).
Standard error estimates for perturbed linear systems tell us that the amplification
of the error in the solution depends on the quantity ‖A−1‖ · ‖E‖, cf. [15]. Therefore
it is important to make ‖E‖ and thus the truncation error as small as possible. This
is where the highly localized reconstruction methods proposed in this paper come
into play for this application.

2 Oversampling and Localization

The time domain localization of an atom, ψ(·), is reflected in the regularity5 of its
corresponding filter, Ψ(·),

|ψ(t)| ≤ (2πt)−s‖Ψ‖Cs ·
2Ω√
2π

∀s, ψ ∈ BΩ (7)

where ‖Ψ‖Cs := ‖Ψ(s)‖L∞ .
Consequently, convergence is gained at the polynomial rate6

ε(t, L, T ) ≤ Const · (LT − |t|)1−s(2π)−s‖Ψ‖Cs ·
(

Ω

σ

)

, s ≥ 2 (8)

as t passes from the boundary, ±LT , to the interior, where T := r/2σ.
Rather than improving the atom’s localization by increasing its corresponding

filter’s regularity, attempts have been made to construct highly localized atoms by
maximizing the atom’s local amplitude,

∫ R
−R ψ

2(t)dt/
∫∞
−∞ ψ2(t)dt. However, such

approaches have resulted in discontinuous filters [22] and atoms which do not decay
globally [16]. A much more successful approach for polynomial order filters is to
minimize the filter’s regularity constant, ‖Ψ‖Cs . The classical raised cosine is such
a filter [24],

Ψrc(w) =























1 |w| ≤ σ
0 |w| > σ(2− r)/r
1
2(1 + cos

(

π
2

(

r
1−r

)

(

w
σ − 1

)

)

σ < w < σ 2−r
r

1
2(1 + cos

(

π
2

(

r
1−r

)

(

w
σ + 1

)

)

−σ > w > −σ 2−r
r

, (9)

where the bounded regularity constants are given explicitly by ‖Ψ‖C1 = 1
2

(

T
2(1−r)

)

and ‖Ψ‖C2 = 1
2

(

T
2(1−r)

)2
.

When a comparatively small number of sampling points is taken, low regularity
constant polynomial order methods give extremely good reconstructions. However,
when a larger number of samples is available, atoms with significantly improved
asymptotic localization can be achieved by constructing infinitely regular filters,
Ψ ∈ C∞0 . It should be noted that for infinitely differentiable functions, the opti-
mal bound in equation (7) is not necessarily obtained for large s, as the regularity

5This is achieved by s integration by parts, where the derivatives are transfered onto the filter.
6If the underlying filter possesses ‖Ψ‖Cs+1 <∞, then the below bound can be tightened by one

order of (LT − |t|) to the rate (LT − |t|)−s, [12].
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constant ‖Ψ‖Cs grows rapidly in s. Rather, for functions where precise regularity
estimates are known, the optimal s can be determined, resulting in an exponential
decay without necessarily large constants. These claims will be realized in the nu-
merical experiments presented in Section 4, contrary to assertion in [3] where it is
claimed that the increased regularity does not improve numerical convergence. In a
direct numerical comparison with the raised cosine filter, our infinitely differentiable
filter achieves dramatically superior convergence in the interior of the samples, and
quantitatively similar errors near the sampling boundaries.

2.1 Localization and Gevrey regularity

To achieve exponential accuracy and satisfy the reproducing condition, (4) requires
a filter which is infinitely differentiable and compactly supported. The natural space
for infinitely differentiable compactly supported functions is the Gevrey class7 which
consists of functions satisfying the smoothness bound

‖ρ‖Cs := ‖ρ(s)‖L∞ ≤ Const · (s!)
α

ηs
⇐⇒ ρ ∈ Gα (10)

where η is a constant independent of s. Incorporating the regularity information
in the localization bound (7) and minimizing over all admissible s, we conclude that
Gevrey class filters satisfy a root-exponential localization decay8,

|ψ(t)| ≤ Const ·
√

|t| exp(−α(2πη|t|)1/α), Ψ ∈ Gα, (11)

and root-exponential truncation error

ε(t, L, T ) ≤ Constα,η exp(−(2πη(LT − |t|))1/α) (12)

where Constα,η ∼ η−2
∑q

l=0 q!η
l/2/(q − l)!, with q the smallest integer greater than

or equal to (3α− 2)/2.
A similarly localized atom was constructed in [11, 21] by multiplying the sinc

function with the inverse Fourier transform of an appropriately dilated G2 function.
Alternatively, such Gα filters can be expressed explicitly in the dual space, such as

ΨG2(w) =















1 |w| ≤ σ
0 |w| > σ(2− r)/r
exp[β · (w − σ(2− r)/r)−1 e−(w−σ)−1

] σ < w < σ 2−r
r

exp[β · (−w − σ(2− r)/r)−1 e(w+σ)−1
] −σ > w > −σ 2−r

r

(13)

which is in G2, [20].
Although the filter ΨG2(·) and the one in [21] result in rapid convergence while

approaching the interior, |t| ≤ LT , their associated atoms lack an explicit construc-
tion. As a result, to reconstruct the bandlimited signal at an arbitrary point requires

7Compact support is inconsistent with analyticity, G1, so reproducing atoms can at most be in
the space Gα, for α > 1. The Gevrey class of functions is essentially similar to ultra-differentiable
functions, [23].

8True exponential decay, i.e., α = 1, can not be realized, as was shown in the classical paper [2].
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the costly implementation of a quadrature evaluation, or a global approximation of
the atom, such as the Pade approximation proposed in [21]. In the following section
we construct an alternative Gabor approximation well suited to the characteristic
shape of filter, and which allows for both an efficient approximation and a rigorous
analysis of the overall error introduced in the approximation.

3 An implementation with exponential accuracy

Due to the structure of the desired filters, and the need to compute its inverse
Fourier transform, we propose a particular Gabor approximation, discussed in section
3.2, as a highly efficient method to construct atoms based upon general Gα regular
filters. Furthermore, unlike the Pade approximation, the Gabor decomposition allows
a detailed analysis of the error introduced in the filter’s approximation. Before
proceding in constructing these atoms, we review those properties of Gabor frames
which are relevant for our application.

3.1 Gabor frames and their time-frequency localization

We briefly review some results about Gabor frames and refer to [13] for details and
references. A Gabor system consists of functions of the form

gna,mb(t) = e2πimbtg(t− na), n,m ∈ Z, (14)

for some window g ∈ L2(R) and a, b ∈ R. The parameters a and b are the time and
frequency translation parameters, respectively.

We say that the triple (g, a, b) generates a Gabor frame for L2(R), for given a
and b, if there exist constants (frame bounds) A,B > 0 such that

A‖f‖2 ≤
∑

n,m∈Z

|〈f, gna,mb〉|2 ≤ B‖f‖2, (15)

for any f ∈ L2(R), where throughout this section we use the usual L2(R) inner
product. The Gabor frame operator S is given by

Sf =
∑

n,m∈Z

〈f, gna,mb〉gna,mb, f ∈ L2(R), (16)

and satisfiesAI ≤ S ≤ BI, where I is the identity operator of L2(R). If {gna,mb}n,m∈Z
is a Gabor frame for L2(R), then any f in L2(R) can be written in the form

f =
∑

n,m∈Z

〈f, γna,mb〉gna,mb =
∑

n,m∈Z

〈f, gna,mb〉γna,mb, (17)

with the canonical dual frame (γna,mb)n,m∈Z given by

γna,mb = e2πimbtγ(t− na), n,m ∈ Z, (18)
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where γ = S−1g is referred to as the canonical dual window. Gabor frames for L2(R)
can only exist if ab ≤ 1 while Gabor Riesz bases can only exist if ab = 1. Thus the
ratio 1

ab measures the redundancy of Gabor system.
Since one key motivation for considering Gabor frames is to obtain a joint time-

frequency localized representation of functions and operators one usually attempts to
choose the window g to be well localized in time and frequency. While the Balian–
Low theorem precludes Gabor Riesz bases with good time-frequency localization,
it is not difficult to design Gabor frames with excellent localization properties. For
instance, if g is a Gaussian or a hyperbolic secant, we obtain a Gabor frame whenever
ab < 1. It is clear that for a truly local time-frequency representation, not only g,
but also its dual γ has to be well concentrated in the time-frequency plane. The
problem under which conditions γ will inherit the time-frequency decay properties
of g have been studied in detail in, e.g., [8, 14, 17, 27].

For the efficient approximation of Gα filters, we select the Gaussian which is
invariant under the Fourier transform defined in equation (1). This particular window
and its dual, were investigated extensively by Janssen in [18].

Proposition 1 Let g(t) = 2
1
4 exp(−πt2) and (ab)−1 = 2q, q ∈ N. Then the canonical

dual window γ is given by

γ(t) =
ab

ϑ3(πt/a)

∞
∑

k=−∞

ckg(t− k/b), (19)

where c(y) := exp(−π/2y2),

ck =

∑∞
m=0(−1)m+kc(b)(m+

1
2
)(2|k|+m+ 1

2
)

∑∞
n=−∞(−1)n(n+ 1

2)c(b)
(n+ 1

2
)2

,

and
1

ϑ3(z)
:=

2
∑∞

k=−∞(−1)ke2ikz∑∞
m=0(−1)mc(a)(m+1/2)(2|k|+m+1/2)

∑∞
n=−∞(−1)n(2n+ 1)c(b)(m+1/2)(2|k|+m+1/2)

,

with ϑ3(z) := ϑ3(z, c(a)) denoting the third theta function in the notation of [28].
Furthermore, γ is analytic in the strip |Im(t)| < π

4a , and decays at the rate,

|γ(t)| ≤ exp(−π|t|/2b). (20)

Equation (19) can be found in Section 6 of [18]. As noted by Janssen [19], the
analyticity follows from the fact that the 1/ϑ3(z) has its poles exactly at (m+1/2)a+
(n+ 1/2)i/2a, see [28], Subsec. 21.12.

3.2 An efficient approximation and complete error analysis

Rather than constructing an approximation of the atom directly, as in [21], we con-
struct an approximation to the filter, which allows for an explicit construction of
the atom and permits a complete error analysis. From this approach we can view
the approximation error in terms of sacrificing the reproducing property in the dual
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space, (4), and adapt the approximation to carefully balance the truncation and
reproducing errors.

In practice, only a finite number of sampling points are available and as a result
the exact reproducing property of Shannon’s sampling theorem is lost. The intro-
duced error is quantified in the truncation error, (3), which we have shown to be
root-exponentially small, (11), for the Gevrey-class filters, Ψ ∈ Gα. By relaxing the
reproducing property, we construct a filter that allows for explicit representations of
both the filter and its atom. Towards this end we introduce a new error decompo-
sition for the recovery of a bandlimited signal with sampling rate, T := r/2σ, using
an arbitrary atom ψ(·) and its associated filter Ψ(·), not necessarily satisfying the
reproducing property, (4).

Error(L, t, r) := f(t)−
∑

|k|≤L

f(kT )ψ(t− kT )

=

(

f(t)−
∞
∑

k=−∞

f(kT )ψ(t− kT )
)

+
∑

|k|>L

f(kT )ψ(t− kT ) (21)

The first error component, the reproducing error, exactly vanishes for filters satisfying
condition (4), and the second component is the traditional truncation error. With
the goal of achieving minimal error in the approximation of the bandlimited signal,
there is no reason to enforce the reproducing property, (4). Rather, the filter should
be selected to minimize the overall error given in equation (21). Below we illustrate
how a truncated Gabor decomposition allows for the explicit construction of both the
filter and its associated atom, where the error introduced by truncating the Gabor
expansion, is expressed in the reproducing error. We now turn our attention to the
construction of such a non-reproducing filter.

To allow for the explicit representation of the filter and its associated atom we
compute the Gabor expansion of an arbitrary filter where the synthesis window has
a known inverse Fourier transform. Practical implementation will require that only
a finite number of Gabor coefficients is used, making this an efficient approach if the
analysis window is analytic, allowing the Gabor coefficient decay rate and the filters
localization to be similar, as they are both determined by the filters regularity. In
particular, root-exponential decay for filters, Ψ ∈ Gα. To represent the filter and
atom as finite combinations of Gaussians, we compute the Gabor coefficients from
the Gaussian’s canonical dual, equation (19). The resulting filter and atom are then
given explicitly by

ΨM,N (w) :=
∑

|m|≤M

∑

|n|≤N

〈Ψ, γna,mb〉 exp(−2πimbw)g(w − na) (22)

ψM,N (t) :=
∑

|m|≤M

∑

|n|≤N

〈Ψ, γna,mb〉e2πimnab exp(−2πinat)g(t−mb) (23)

where g(t) := 21/4 exp(−πt2) is the Gaussian invariant under the Fourier transform
defined in equation (1).
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As the filter is in Gα, and the canonical dual is analytic, [19], the Gabor coeffi-
cients in equations (22,23) decay at the root-exponential rate in the modulation term
m. Additionally, as the filter is compactly supported in [−σ, σ], and the Gaussian’s
dual decays exponentially, equation (20), the coefficients decay exponentially in the
translation term, n, once away from the filter, i.e., |n| > σ/a. More specifically,

∣

∣〈Ψ, γna,mb〉
∣

∣ ≤ (2πb|m|)−s‖γ(t− na)Ψ(t)‖CsT−1

≤ ConstΩ,b|m|3/2 · e−c(|n|+|m|1/α), Ψ ∈ Gα[−Ω,Ω] (24)

where ConstΩ,b := Ωη3/2b3/2 exp(πΩ/2b)‖Ψ‖C0 and c:= min(πa/2b, α(2πbηmin)
1/α)

with ηmin := min(ηf , ηΨ).
The reproducing error is then given by the truncation of the Gabor expansion,
∣

∣

∣

∣

∣

f(t)−
∞
∑

k=−∞

f(kT )ψM,N (t− kT )
∣

∣

∣

∣

∣

≡
∣

∣

∣

∣

∫ ∞

−∞
F (w)[Ψ(w)−ΨM,N (w)]eiwtdw

∣

∣

∣

∣

≤ Const · ‖F‖L∞
∑

|m|>M

∑

|n|>N

∣

∣〈Ψ, γna,mb〉
∣

∣ (25)

≤ Cα · ‖F‖L∞e−c(N+M1/α) (26)

with Cα := ConstΩ,b · c−1
∑q

l=0 q!c
−l/(q − l)!, where q is the smallest integer

greater than or equal to 5
2α− 1.

As the atom is composed of translated and dilated Gaussians, whose amplitude
decays root-exponentially in the translation term, and as the Gaussians are only
translated to ±2πMb, the atom’s localization is given by

|ψ(t)| ≤ ConstΩ,bN

{

exp(−c|t|1/α) |t| ≤Mb
e−cMb exp(−π(|t| − 2πMb)2) |t| > Mb

(27)

when Ψ ∈ Gα. Due to the superexponential decay for |t| > Mb, the composite
error is controlled by the reproducing error for points away from the boundary,
LT − |t| > Mb. The above results are summarized in the following theorem.

Theorem 2 Let f(t) be a signal bandlimited to [−σ, σ], and Ψ(·) a filter in Gα

satisfying equation (4). The atom ψM,N (·), given in (23) can be used to recover the
signal, f(t), from its sampled values, {f(kT )}|k|≤L, where T := r/2σ and r < 1, with
the error bounded by

|Error(L, t, r)| :=

∣

∣

∣

∣

∣

∣

f(t)−
∑

|k|≤L

f(kT )ψP (t− kT )

∣

∣

∣

∣

∣

∣

(28)

≤ CαN‖F‖L∞
(

e−c(N+M1/α) + e−c(LT−|t|)1/α
)

(29)

where c and Cα are defined as before. Moreover, the signal can be recovered at the
fractional power exponential rate, exp(LT−|t|)1/α, if the number of Gabor coefficients
are selected at, at least the rates M ∼ LT − |t| and N ∼M 1/α.
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4 Numerical Experiments

Using highly regular filters, Ψ ∈ Gα, allows for atoms, ψ(·), with exponential local-
ization as seen in equation (11). Consequently, a bandlimited signal, f ∈ Bσ, can be
recovered with the exponential accuracy indicated in Theorem 2. We now verify this
theorem, and contrast the exponential accuracy to the more common polynomial or-
der accuracy obtained by filters possessing only a finite order regularity. To compare
representative filters with finite and infinite regularity, we use the canonical raised
cosine filter, (9), and the Gevrey order two filter given in equation (13), respectively.

Much of the success of the raised cosine filter is due to the optimally small first
two regularity constants, ‖Ψ‖Cs for s = 1, 2, which result in rapid initial localization.
Infinitely regular filters posses bounded regularity constants for all s, but at the cost
of necessarily larger regularity constants for small s. However, a great deal of freedom
exists in the selection of Gα regular filters, for example the constant β used in the
filter of equation (13). Although there is no closed form solution for the β which
minimizes the first regularity constant, a good approximation can be obtained for a
large range of oversampling by selecting β such that the filter’s points of inflection
are at the middle of the region connecting zero and one, i.e. Ψ(2)(±σ/r) = 0. As
such, for the numerical experiments involving the filter ΨG2, we use the β which
satisfies this inflection condition

β :=
(1 + 2z2)z

(1 + z)2
e1/z where z := σ(r−1 − 1).

For the approximation of an arbitrary bandlimited signal, we form a test signal
whose Fourier transform is composed of one hundred characteristic functions with
random complex valued amplitudes normalized to unit l2 norm; and with random
widths and centers, normalized so that the largest magnitude bandwidth is σ. The
resulting numerics shown, are characteristic of arbitrary complex valued bandlimited
signals. The dual space representation, real portion, of such a function can be seen
in Figure 2, which is the signal whose approximation error is shown in Figures 3 and
4. We now illustrate the convergence properties for the implementation described in
Theorem 2.

For a given signal, and oversampling rate, Theorem 2 indicates that exponential
accuracy is gained as the point to be recovered moves from the sampling boundary
to the interior, and as the number of terms in the truncated Gabor decomposition,
N and M , are increased. Ideally we would like to maximize the lattice dependent
value of c given in equation (24), however, this requires knowledge of the filter and
bandlimited signal’s regularity coefficients, ηΨ,f , which are traditionally not known.
Alternatively, we use a tiling of the time-frequency plane most appropriate for our
Gabor synthesis window. For our synthesis window, we use the Gaussian which is
invariant under the Fourier transform and which tiles the time-frequency plane with
elements centered at the lattice points, and posseses circular decay in the plane. This
suggests we select equal translation and modulation parameters, and for computa-
tional robustness a redundancy of two, a = b := 2−1/2. It should also be noted that
the Gaussian’s dual, γ, can easily be computed with exponential accuracy as the
terms involved in the infinite series decay exponentially, see equation (19), cf. [27]
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for a proof and [25] for details about a fast numerical method to compute γ. Further-
more, the dual need only be computed once, and its stored values used to compute
the Gabor coefficients, 〈Ψ, γna,mb〉. For simplified notation we express the filter,

ΨN,M , as simple ΨN , where M is given by M := round(2−1/2N2) to balance the de-
cay rates in the Gabor decomposition. Figure 3 illustrates the behavior of the error
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Figure 3: The log10 of the error in recovering a signal in B1, with oversample rate
r = 0.7. Note the log convergence exhibited by the reconstruction using the raised
cosine(dotted), as compared to the root convergence obtained by the truncated Gabor
expansion Ψ15 of ΨG2, (solid). In the interior of the sample, |t| . 30, the error is
dominated by the reproducing error, ‖Ψ15 − ΨG2‖L∞ ≤ 2.1−10, whereas near the
boundaries, the error is dominated by the root-exponential localization error, see
Theorem 2.

as a function of the distance to the sampling boundaries, and the number of terms
in the Gabor decomposition, see Theorem 2. Away from the boundaries, |t| . 30,
the error is dominated by the reproducing errors introduced in the truncated Gabor
decomposition; whereas near the boundaries the error is controlled by the truncation
errors.

By balancing the reproducing and truncation errors, as noted in Theorem 2,
root-exponential accuracy can be achieved while moving away from the sampling
boundaries, by selecting the number of terms in the Gabor decomposition as a func-
tion of the distance to the sampling boundaries. Figure 4 illustrates the error for
recovering the same bandlimited signal used in Figure 3, but with a spatially adap-
tive number of Gabor coefficients, N := 5 + (LT − |t|)/4, and M = 2−1/2N2, where
5 is the minimum number of Gabor coefficients needed for a qualitatively accurate
approximation of the filter. Figures 3 and 4 illustrate the superior accuracy obtained
by using highly regular filters, as indicated in Theorem 2.
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Figure 4: The log10 of the error in recovering a signal in B1, with oversample rate
r = 0.7. Note the log convergence exhibited by the reconstruction using the raised
cosine(dotted), as compared to the root convergence obtained by the truncated Gabor
expansion ΨN of ΨG2, (solid), where N := 5+(LT−|t|)/4, andM = 2−1/2N2. Unlike
the error in Figure 3, the root-exponential accuracy is not halted near the interior of
the domain, and the similar accuracy near the sampling boundaries is achieved with
significantly fewer Gabor coefficients.

5 Final remarks

It has been well understood that the oversampling of bandlimited signals allows for
the reconstruction with smooth filters, and correspondingly well localized atoms.
More precisely that root-exponential accuracy can be achieved with infinitely differ-
entiable filters, [11, 21]. However, such filters have resisted explicit construction of
their atoms, and as such practical implementation has been limited. Here we illus-
trated an efficient Gabor approximation of a large class of smooth filter, and a new
error formulation that allows a rigorous analysis of the overall error introduced in the
approximation of the atom, as well as the truncation of the samples. Although this
implementation does result in root-exponential convergence, it remains computation-
ally intensive to obtain the full reconstruction accuracy, scaling like (LT−|t|)3. Even
so, as discussed in section 1.1, there are applications that require such high resolution
approximations.

With the goal of developing highly localized fast algorithms, future work should
consider implementations where the periodization induced by sampling is removed
through the direct action of the filter in the Fourier dual space, hence avoiding the
construction of an atom. Moreover, we have only considered uniform sampling, since
if the sampling geometry can be chosen in advance, uniform sampling is optimal in
many applications. However, in several applications, one is confronted with nonuni-
formly spaced samples, see e.g. [1, 9] for theory and algorithms for the reconstruction
of bandlimited functions from nonuniform sampling. The methods developed in [5, 7]
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are based on the convolution identity f = f ∗ ψ for f ∈ Bσ, where Ψ(ω) = 1 for
ω ∈ [−σ, σ] and Ψ(ω) = 0 for |ω| > σ0 for properly chosen σ0 > σ. While these
methods are highly localized the truncation error analysis given in [6, 7] is based on
the unrealistic assumption that in certain steps of the reconstruction all (infinitely
many!) samples are available. Unlike for uniform sampling the truncation to finitely
many samples can lead to severe instabilities of certain reconstruction methods, as
pointed out in [26]. While approximation algorithms based on trigonometric polyno-
mials are stable and fast [26], they do not achieve high convergence rate with respect
to truncation error. A natural extension of the work presented in this paper would
therefore be to derive a complete truncation error analysis for a highly localized
reconstruction method for the case of nonuniform sampling.
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[26] T. Strohmer, Numerical analysis of the non-uniform sampling problem, J.
Comp. Appl. Math., 122(1–2):297–316, 2000.

[27] T. Strohmer, Approximation of dual Gabor frames, window decay, and wireless
communications, Appl. Comp. Harm. Anal., 11(2):243–262, 2001.

[28] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge
University Press, Cambridge, 1996. Reprint of the fourth (1927) edition.

[29] A.I. Zayed, Advances in Shannon’s Sampling Theory, CRC Press, Boca Raton,
1993.


