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ABSTRACT

A bandlimited signal can be reconstructed from its periodic
nonuniformly spaced samples provided the average sampling
rate is at least the Nyquist rate. Unlike many previously pub-
lished methods, the algorithm derived in this paper is de-
signed that pays special attention to various practical con-
straints. In particular, we propose a fast and numerically ro-
bust reconstruction method which can utilize FIR filters with
a small number of taps and requires only a modest amount
of oversampling to achieve high accuracy. The efficiency
and accuracy of the algorithm is obtained by fully exploit-
ing the sampling structure combined with utilizing localized
Fourier analysis. We discuss applications in time-interleaved
analog-to-digital converters where nonuniform periodic sam-
pling arises due to timing mismatches. Finally, numerical
simulations demonstrate the performance of our algorithm.

Index Terms— Signal sampling, Signal reconstruction,
Digital filters, Numerical analysis, Numerical stability.

1. INTRODUCTION

The ever-increasing desire for higher data rate and larger band-
width of modern communication systems, such as ultrawide-
band communications, demands high-speed and high-resolution
sampling systems. Furthermore, new methods in Sigma-Delta
quantization require ADCs to operate at a substantial over-
sampling rate to achieve the required precision [1].

Current ADC technologies can on the one hand no longer
meet these demands and on the other hand they cannot readily
and cost-efficiently pushed further. A simple and appealing
solution is to employ time-interleaved ADCs. A conventional
ADC uniformly samples an analog signal and subsequently
converts the discrete-time samples through quantization into
a digital signal, which is then further processed. The key idea
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of a time-interleaved ADC is to send the analog input signal
simultaneously throughN parallel ADCs, each operating at
a rate 1

T and whose sampling instants are spaced such that
the multiplexed output corresponds to a single ADC operating
at rateNT . Unfortunately, slight skews in the sample times
of the individual ADCs destroy the overall uniform sampling
pattern and result in a periodic nonuniform sampled output
after multiplexing [2]. If the errors remain uncorrected one
pays the price of a significant performance loss [2].

The correction of timing errors of time-interleaved ADCs
comprises two steps. In the first step the timing offsets haveto
be estimated. Several algorithms have been published for this
purpose, cf. [2] and the references therein. A particularlyro-
bust and computationally efficient method can be found in [3].

Here, we are interested in the second step, in which we
have to eliminate the timing error effects, once the timing er-
rors have been estimated. While this could be done by ad-
justing the sampling clock for each ADC, a better way is to
apply interpolation to achieve the correct values at the ideal
sampling instances [4], since the latter approach can be im-
plemented using digital signal-processing circuits, which are
portable and will benefit from evolving scaled CMOS tech-
nologies.

Thus, our goal in this paper is to design a method that can
reconstruct a signal from such a sampling pattern. While lit-
erature offers a variety of methods for this purpose, e.g. [5, 6,
7, 8, 9], we focus on developing a method that pays particular
attention to practical constraints – such as the fact that only a
finite number of samples is available – as well as numerical
efficiency and robustness.

2. UNIFORM (OVER)SAMPLING

We briefly review some aspects of Shannon’s sampling the-
orem from an angle that we be instrumental in introducing
the proposed method for nonuniform periodic sampling. The
famous Shannon sampling theorem says that a bandlimited
signal can be recovered exactly from its equidistant samples
via the cardinal series [10].



The uniform sampling operation induces periodization of
a signal’s Fourier transform. Forσ−bandlimited signals this
periodization can be removed if the sampling rate matches or
exceeds the corresponding Nyquist rate,Tnyq = 1/2σ; the
classical Shannon Sampling Theorem. Quantitatively,

s(t) ≡
∑

k∈Z

s (kT ) sincσ (t− kT ) , sincσ(t) :=
sin(2πσt)

2πσt

(1)
if and only if T ≤ Tnyq ands ∈ Bσ whereBσ is the space
of σ−bandlimited signals1. For a multitude of practical rea-
sons (such as robustness to noise and greater localization,
which leads to smaller truncation error since in practice we
are always dealing with finitely many samples) signals are
traditionally oversampled,T < Tnyq, which allows for more
general reconstruction pulsesψ. These pulses must satisfy
the conditionsψ(t) ∗ sincσ(t) = sincσ(t) andψ ∈ B1/2T ,
that is,ψ’s Fourier transform being 1 for|w| ≤ σ and 0 for
|w| ≥ 1/2T . For example,ψ(·), can be constructed to have

root-exponential decay,|ψ(t)| ≤ C · η−|t|1/2

ψ with ηψ > 1
(C is a constant) by smoothly connecting the region of 1 for
|w| ≤ σ to 0 for |w| ≥ 1/2T with dilation and translations of

ρ(w) := exp(−γ(1−w)−1 exp(−1/w)), w ∈ (0, 1), (2)

with2 γ > 0, [11]. The root-exponential decay can be trans-
lated into finite-tap pulses with SNR gains (measured in dB)
proportional to the number of taps squared, cf. Sections 3
and 4.

The approximation of a signal via Shannon’s Sampling
Theorem from its finite number of samples,2L + 1, can be
computed inO(L logL) operations. Let{sℓ}|ℓ|≤L be the
2L + 1 uniform set of samplessℓ := s(ℓT ). ProvidedT ≤
Tnyq, an approximation of the signal can be recovered on the
refined mesh with stepsizeT/p, p an integer, via frequency
space filtering. Toward this end, let

Fj,k :=
T

p
√

2π
exp

(−2πipjk

2pL+ 1

)

(3)

be the rectangular discrete Fourier transform of size(2pL +
1) × (2L+ 1) with |j| ≤ pL and|k| ≤ L; and let

F invj,k :=
p
√

2π

T (2pL+ 1)
exp

(

2πijk

2pL+ 1

)

(4)

be the square,(2pL+1)× (2pL+1), discrete inverse Fourier
transform. LetΨℓ be the pulses Fourier transform on the mesh
pℓ/T (2pL+ 1) for |ℓ| ≤ pL. Then, the approximation of the
signals(·) on the meshℓT/p for |ℓ| ≤ pL is given by

s̃ψ

(

kT

p

)

:= F invΨFS (5)

1Throughout this paper we will use lower case letters to designate signals
in the time domain, and upper case for the Fourier transform of the same
signal.

2Selectingγ = e2/3 gives good localization ofψ(·) for small |t|

with S the vector with the samples entriessℓ andΨ the diago-
nal matrix of the filter’s entriesΨℓ. Alternatively, an approx-
imation of the signal can be computed on the translated mesh
t0 + ℓT/p by incorporating a modulation in the frequency do-
main,

s̃ψ

(

kT

p
+ t0

)

:= F invMt0ΨFS (6)

whereMt0 is the diagonal matrix

Mt0 := diag

(

exp

( −2πit0ℓp

(2pL+ 1)T

))

for |ℓ| ≤ pL. (7)

The error in the approximation (5) is given by

|s(t) − s̃ψ(t)| ≤ C · p
2L

σ2
‖s‖L∞B(LT − |t|) (8)

whereB(|t|) is a monotonically decreasing bound of the pulse
ψ(t). As stated before, root-exponential localization,B(t) ≤
η−t

β

ψ whereηψ > 1 andβ < 1, can be achieved by using
Gevrey regular functions such as (2). The error in the approx-
imation, (5) comes primarily from the finite number of sam-
ples, and to a lesser extent by replacing the Fourier Transform
with the discrete Fourier transform. In fact, the errors intro-
duced by the discrete Fourier transform are bounded by the
finite sample error, [11].

3. RECONSTRUCTION ALGORITHM FOR
UNIFORM INTERLEAVED SAMPLING

We consider the case ofN time-interleaved ADCs, then-th
ADC is supposed to sample the signals at instants{kT +
(n−1)T
N }k∈Z, n = 1, . . . , N . Combining the outputs of the in-

dividual ADCs corresponds to a single ADC operating at sam-
pling rateNT . Due to the mentioned relative time skews of the
individual sampling clocks, then-th ADC actually samples
the signal at instants{kT+∆n}k∈Z, with ∆n = (n−1)T

N +δn,
where theδn are the undesired timing offsets. Combining the
N individual sampling sets yields the periodic nonuniform
sampling set{s(kT + ∆n)}, with k ∈ Z andn = 1, . . . , N .
Of course, the combined average sampling rate is stillN

T .
The following algorithm generalizes Shannon’s Sampling

Theorem to this sampling structure,

s(t) ≡
N

∑

n=1

∑

k∈Z

s(kT + ∆n)ψn(t− (kT + ∆n)).

We also present a fast discrete algorithm, similar to (5), for
implementing the reconstruction.

Define thenth uniform set of samples as{sn,ℓ}|ℓ|≤L where
sn,l := s(ℓT + ∆n), and letSn be the vector with entries
Sn,ℓ := sn,ℓ for |ℓ| ≤ L andn = 1, 2, . . . , N . Uniform sam-
pling with offset∆n induces periodization of the∆n modu-
lated signal’s Fourier Transform. The sampling rate for any



one of the uniform sampling sets being insufficient to recover
the signal, that isT > Tnyq, corresponds to a periodiza-
tion of the signal’s Fourier Transform which overlaps with
itself. However, if the effective sampling rate is sufficient,
T/N < Tnyq, and provided the sampling translates∆n are
distinct, the overlapping modulated periodization can be fil-
tered to recover the original signal. TheN uniform sampling
sets are used to recover the original signal’s Fourier transform
in intervalsIk := [σ+ (−N + k− 1)/T,−σ+ k/T ]. This is
achieved by solving for the filter coefficients{ck,n}Nn=1 that
satisfy

N
∑

n=1

ck,nM∆nFSn = F fullSSp (9)

where

F fullj,k :=
T

p
√

2π
exp

(−2πijk

2pL+ 1

)

(10)

is the square discrete Fourier Transform andSSp is com-
posed of the desired entries ofs(·); that is,s(ℓT/p) for |ℓ| ≤
pL. This is possible provided the effective sampling rate is
equal to or exceeds the Nyquist rate,T/N ≤ Tnyq. The de-
pendence ofs in equation (9) cancels, resulting in a small
N × N system of equations for{ck,n}Nn=1. Let R(k) :=
diag(γ1(k)γ2(k) · · · γN (k)) with γn(k) := exp(2πi∆n(k −
N − 1)/T ). Let eN−k+1 be the usual unit direction with en-
tries zero except for theN − k + 1th which is one, and let
c(k) be the column vector with entries{ck,n}Nn=1. The filter
coefficients,c(k), are determined by the system

AR(k)c(k) = eN−k+1, Am,n := exp(2πi∆nm/T ).
(11)

We note that the matrixA appears also in several other recon-
struction algorithms, however it is important to note that it is
utilized in a rather different way here.

Equipped with the filter coefficientsck,n, theIk-frequency
band ofs(·) can be recovered by multiplying the left hand side
of (9) by a filterΦk(w) which is non-zero inIk and zero out-
sideIk. Repeating this process over a set ofIkj which cover
[−σ, σ] and using filtersΦkj which are a partition of unity,

κ
∑

j

Φkj (w) = 1 for |w| ≤ σ, (12)

allows for the recovery ofs(·) over its entire bandwidth. The
overall effect of this process upon a given sampling setSn is
given by the filter

Ψn(w) :=

κ
∑

j=1

ckj ,nΦkj (w). (13)

Finally, a simple calculation shows that an approximation to
the signals(·) on the meshℓT/p for |ℓ| ≤ pL is given by

s̃ψ

(

kT

p

)

:= F inv
N

∑

n=1

ΨnM∆nFSn, (14)

whereΨn is the diagonal2pL+ 1 square matrix with entries
Ψn(ℓ, ℓ) :=

∑κ
j=1 ckj ,nΦkj (ℓp/T (2pL + 1)). An approxi-

mation ofs(·) on at0-translated mesh can be obtained by in-
serting the modulationMt0 , (7), betweenF inv and the filters
Ψn.

The above process is summarized in the following recon-
struction algorithm for nonuniform periodic sampling.

Algorithm 1:

1. Select the mesh on which the approximation of the sig-
nal will be computed; that is, select the shiftt0 and
integer refinementp for the2pL+ 1 length mesh{t0 +
kT/p}|k≤pL.

2. From the signals(·)’s bandwidth,σ, and the number
of uniform sampling sets,N , select theκ partition of
unity, (12), functionsΦkj (·).

3. From the sampling rate,T , and offsets of the uniform
interleaved sampling sets,{∆n}Nn=1, solve (11) for the
filter coefficients{ckj ,n}Nn=1 for j = 1, 2, . . . , κ.

4. Combine the sets ofΦkj (·) andckj ,n from steps 1 and
2 to construct the filtersΨn for n = 1, 2, . . . , N as in
(13).

5. Form the samplessℓ,n into N vectorsSn with entries
Sn(ℓ) := sℓ,n.

6. Apply the rectangular discrete Fourier transformF , (3),
to each sampling setSn.

7. Apply modulationM∆n , (7), to the results from step 5,
M∆nFSn.

8. Apply the filtersΨn, (13), to the results from step 6,
ΨnM∆nFSn.

9. Sum the results from step 7, multiply the result byMt0

(7), and apply the square discrete inverse Fourier Trans-
formF inv, (4).

As in the case of (5), the accuracy of the approximation
s̃ψ(·) is determined by the localization properties of the pulses,
ψn(·). The pulse localization follows directly from the smooth-
ness of the partitions of unity,Φkj (·). A simple yet effective
construction of the filter partitions is discussed in the next
section.

4. IMPLEMENTATION AND COMPLEXITY

4.1. A simple partition of unity

A particularly simple construction of the partition of unity
is to select the subsetkj so that the intervalsIk only overlap
with their immediate neighbors,Im

⋂

In = ∅ for |m−n| > 1.
To maintain a high degree of localization it is also advisable
to have the overlap of the intervals as large as possible. These
two natural conditions are satisfied with

κ = min

(

N,

⌊

N + 1 + T/Tnyq
N + 1 − T/Tnyq

⌋)



and

kj = round

(

j
N + 1

κ+ 1
−N

)

.

The individual partitions,Φkj (·), can then be constructed to
be 1 in regions where they do not overlap with their neighbors,
and smoothly connecting for 0 forw /∈ Ik using dilation and
translations ofρ(·), (2), and1 − ρ(·). Explicit constructions
for Φkj (·) are given in [11]. Note that the partition-filters are
independent of the translates∆n, depending only upon the
signal’s bandwidth,σ, and the number of uniform sampling
sets,N .

The error for this reconstruction is

|s(t) − s̃ψ(t)| ≤ C · N
2

σ
‖f‖L∞‖A−1‖ · B(LT − |t|) (15)

whereB(|t|) is a monotonically decreasing bound of the pulses
ψn. The above construction withρ(·) in (2) yieldsB(t) ≤
η
−|t|1/2

ψ . For full details of the partition construction see [11].

4.2. Computational complexity

The direct implementation for uniform oversampling has a
computational cost, limited by the FFT, ofO(L logL) where
L is the number of samples used in the reconstruction. The
overall computational cost for Algorithm 1 isO(NL logL)
whereL is the total number of samples used in the approx-
imation, cf. [11]. Thus, Algorithm 1 requires an additional
factor ofN in the total computational cost, when compared
to uniform sampling at the same effective sampling rate, and
number of available samples.

5. NUMERICAL SIMULATIONS

We consider the case of 16 time-interleaved sampling sets and
an overall oversampling rate of only 5%. The input signals
were generated as bandlimited AWGN, the timing errorsδn
are assumed to be Gaussian i.i.d. We truncate the pulsesψn
so that we utilize FIR pulses with a finite number taps, here
the number of used taps ranges from 1 to 100. For each fixed
number of taps we compute the error between the exact sam-
pling values of the input signal and those computed by Algo-
rithm 1. We perform 2000 experiments and plot the average
result in Figure 5. This experiment clearly demonstrates that
the algorithm achieves high precision of the reconstructedsig-
nal with a modest number of taps and that the SNR increases
exponentially (i.e., linearly on a dB-scale) with the squared
number of taps, which is very desirable for an efficient DSP
implementation of the proposed algorithm.
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