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ABSTRACT of a time-interleaved ADC is to send the analog input signal

c'simultaneously throughv parallel ADCs, each operating at

A bandlimited signal can be reconstructed from its periodi 1 -
rate and whose sampling instants are spaced such that

nonuniformly spaced samples provided the average sampli ) ) .
rate is at least the Nyquist rate. Unlike many previously-pub!'€ Multiplexed output corresponds to a single ADC opegatin

N . . .
lished methods, the algorithm derived in this paper is dedt fatez . Unfortunately, slight skews in the sample times
signed that pays special attention to various practicat corP! the individual ADCs destroy the overall uniform sampling
straints. In particular, we propose a fast and numericatly r Pattérn and resuit in a periodic nonuniform sampled output
bust reconstruction method which can utilize FIR filtershwit aftér multiplexing [2]. If the errors remain uncorrectedeon

a small number of taps and requires only a modest amouRgYS the price of a significant performance loss [2].

of oversampling to achieve high accuracy. The efficiency Th(_e correction of timing errors of t|me_-|n_terleaved ADCs
and accuracy of the algorithm is obtained by fully exploit-COMPrises two steps. In the first step the timing offsets kave
ing the sampling structure combined with utilizing locatiz be estimated. Several algorithms have bgen pubh;hedlﬁjr th
Fourier analysis. We discuss applications in time-inertel ~ PUrPose, cf. [2] and the references therein. A particulesty
analog-to-digital converters where nonuniform periodims bust and Computa.tlonally efﬂqent method can be found.m [3]
pling arises due to timing mismatches. Finally, numerical ~Here, we are interested in the second step, in which we

simulations demonstrate the performance of our algorithm. have to eliminate the timing error effects, once the timing e
rors have been estimated. While this could be done by ad-

Index Terms— Signal sampling, Signal reconstruction, j,sting the sampling clock for each ADC, a better way is to

Digital filters, Numerical analysis, Numerical stability. apply interpolation to achieve the correct values at thalide
sampling instances [4], since the latter approach can be im-
1. INTRODUCTION plemented using digital signal-processing circuits, \urace

portable and will benefit from evolving scaled CMOS tech-
The ever-increasing desire for higher data rate and la@tb  nologies.
width of modern communication systems, such as ultrawide-  Thus, our goal in this paper is to design a method that can
band communications, demands high-speed and high-resoluyieconstruct a signal from such a sampling pattern. While lit
sampling systems. Furthermore, new methods in Sigma-Deligature offers a variety of methods for this purpose, e.c5,[5
quantization require ADCs to operate at a substantial overz g 9], we focus on developing a method that pays particular
sampling rate to achieve the required precision [1]. attention to practical constraints — such as the fact thigtan

Current ADC technologies can on the one hand no longefinite number of samples is available — as well as numerical
meet these demands and on the other hand they cannot readifficiency and robustness.
and cost-efficiently pushed further. A simple and appealing
solution is to employ time-interleaved ADCs. A conventibna
ADC uniformly samples an analog signal and subsequently 2. UNIFORM (OVER)SAMPLING

converts the discrete-time samples through quantizatitm i . . , .

a digital signal, which is then further processed. The kewnid We briefly review some aspects 9f Shannon S sgmpllng Fhe'
orem from an angle that we be instrumental in introducing
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The uniform sampling operation induces periodization ofwith S the vector with the samples entrigsand¥ the diago-
a signal’'s Fourier transform. Fer—bandlimited signals this nal matrix of the filter’s entried,. Alternatively, an approx-
periodization can be removed if the sampling rate matches omation of the signal can be computed on the translated mesh
exceeds the corresponding Nyquist réfe,, = 1/20; the  to+¢T/p by incorporating a modulation in the frequency do-

classical Shannon Sampling Theorem. Quantitatively, main,
kT .
) ) 5in(2 Sy | —+to) = F"" M, VFS 6
s(t) =Y s(kT)sinG (t — kT), sing(t) := sin(2ot) i < p O> fo ©)
2mot ] ) )
kezZ () whereM,, is the diagonal matrix
ifand only if I' < T},,, ands € B, whereB, is the space —9mitelp
of c—bandlimited signafs For a multitude of practical rea- M, := diag <6XP <m)> for |¢| <pL. (7)

sons (such as robustness to noise and greater localization,
which leads to smaller truncation error since in practice we  The error in the approximation (5) is given by
are always dealing with finitely many samples) signals are

traditionally oversampled < 7,4, which allows for more
general reconstruction pulses These pulses must satisfy
the conditions)(t) * sing, (t) = sinG,(t) andvy € By or,
that is,«’s Fourier transform being 1 fdw| < ¢ and 0 for . AN
lw| > 1/2T. For exampley(-), can be constructed to have Mt?; As stated before, root-exponential localizatié{y) <

root-exponential decayy(t)| < C - 771;“‘1/2 with 7, > 1 un wheren,, > 1 andfs < 1, can be achieved by using

(C is a constant) by smoothly connecting the region of 1 for.Gevrey regular functions such as (2). The error in the approx

lw| < o to O for|w| > 1/2T with dilation and translations of imation, (5) comes primarily from the finite number of sam-
- - ples, and to a lesser extent by replacing the Fourier Tramsfo

p(w) := exp(—y(1 —w) ' exp(—=1/w)), w € (0,1), (2)  with the discrete Fourier transform. In fact, the errorsdnt

_— ) duced by the discrete Fourier transform are bounded by the
with< v > 0, [11]. The root-exponential decay can be trans-nite sample error, [11].

lated into finite-tap pulses with SNR gains (measured in dB)

proportional to the number of taps squared, cf. Sections 3

and 4. 3. RECONSTRUCTION ALGORITHM FOR
The approximation of a signal via Shannon’s Sampling UNIFORM INTERLEAVED SAMPLING

Theorem from its finite number of sampled, + 1, can be

computed inO(L log L) operations. Let{s/} <, be the

2L + 1 uniform set of samples; := s(¢T"). ProvidedT" <

2
s() 50| < € L sl BT~ i) @)

whereB(|t|) is a monotonically decreasing bound of the pulse

We consider the case d@f time-interleaved ADCs, the-th
ADC is supposed to sample the sigiaat instants{kT" +

T4, @n approximation of the signal can be recovered on the:.Tl)T}kez’ n=1,...,N. Comb!n|ng the outputs 9f the in-
refined mesh with stepsizE/p, p an integer, via frequency dividual A]E/)Cs correspondsto a single ADC operating at sam-
space filtering. Toward this end, let pling ratez. Due to the mentioned relative time skews of the
o individual sampling clocks, the-th ADC actually samples
Fip = T exp <_27”P7k) 3) the signal atinstant&cT+ A, }rez, With A, = Wﬂsn,
’ pV2m 2pL +1 where thej,, are the undesired timing offsets. Combining the

N individual sampling sets yields the periodic nonuniform
sampling sef{s(kT + A,)}, withk € Zandn =1,..., N.

Of course, the combined average sampling rate is%till

i V2 2mijk The following algorithm generalizes Shannon’s Sampling
ik T T(2pL + 1) x <2pL ¥ 1) 4 Theoremto this sampling structure,

be the rectangular discrete Fourier transform of é$ize. +
1) x (2L 4 1) with |j| < pL and|k| < L; and let

be the squard2pL + 1) x (2pL + 1), discrete inverse Fourier N
transform. Let, be the pulses Fouriertransformonthemesh  s(t) = Y > s(kT + Ao (t — (KT + Ay)).
pl/T(2pL + 1) for |¢| < pL. Then, the approximation of the n=1kezZ

) . < 7S qi
signals(-) on the mesiT'/p for |(] < pL is given by We also present a fast discrete algorithm, similar to (5), fo

implementing the reconstruction.
Define then'" uniform set of samples s, ¢} ¢|<;, Where

- _ _ o sng = s({T + A,,), and letS,, be the vector with entries
_ Thr_oughout tk_us paper we will use lower case Igtters to ded@ysignals S, 4= s, for |€| < Landn =1,2,..., N. Uniform sam-

in the time domain, and upper case for the Fourier transfdrtihe same 2 o . g
signal. pling with offsetA,, induces periodization of tha,, modu-

2Selectingy = €2 /3 gives good localization of(-) for small|¢| lated signal's Fourier Transform. The sampling rate for any

5y <%T> = QRS (5)




one of the uniform sampling sets being insufficient to recovewhereV,, is the diagona2pL + 1 square matrix with entries

the signal, that isl" > T;,,,, corresponds to a periodiza-

U, (0,0) i= 325 iy @i, (0p/T(2pL + 1)). An approxi-

tion of the signal’'s Fourier Transform which overlaps with mation ofs(-) on aty-translated mesh can be obtained by in-

itself. However, if the effective sampling rate is suffidien
T/N < T,yq, and provided the sampling translatag are
distinct, the overlapping modulated periodization can be fi
tered to recover the original signal. Th&uniform sampling
sets are used to recover the original signal’s Fourier toans
inintervalsly, := [c+ (-N+k—1)/T,—o +k/T]. Thisis
achieved by solving for the filter coefficiengs;. ,,})_; that
satisfy

N
> cknMa,FS, =F/ss, 9)
n=1
where - S
full . — 24T
: = e 10
PR pyen Xp<2pL+1) (10)

is the square discrete Fourier Transform &), is com-
posed of the desired entries «f); that is,s(¢T'/p) for |¢] <

pL. This is possible provided the effective sampling rate is

equal to or exceeds the Nyquist rai&/N < T,,,. The de-

pendence ok in equation (9) cancels, resulting in a small

N x N system of equations fofcy .} ;. Let R(k) :=
diag(y1(k)y2(k) - - -y (K)) With 3, (k) = exp(2miln (k —
N —1)/T). Leten_x+1 be the usual unit direction with en-
tries zero except for th&/ — & + 1** which is one, and let
c(k) be the column vector with entrigg;. ,, }__,. The filter
coefficients¢(k), are determined by the system

AR(k)e(k) = en—gt1,  Amn = exp(2miA,m/T).

(11)

We note that the matriX appears also in several other recon-

struction algorithms, however it is important to note thas i
utilized in a rather different way here.
Equipped with the filter coefficients, ,,, thel,-frequency

band ofs(-) can be recovered by multiplying the left hand side

of (9) by a filter® (w) which is non-zero i, and zero out-
sidel;. Repeating this process over a set/pf which cover
[—o, o] and using filtersp,, which are a partition of unity,

> O (w)=1 for |uw| <o, (12)
J

allows for the recovery of(-) over its entire bandwidth. The
overall effect of this process upon a given sampling%ets
given by the filter

U, (w) := Z Ch; P, (W). (13)
j=1

Finally, a simple calculation shows that an approximation t
the signals(-) on the mesHT /p for |¢| < pL is given by

= (5)

N
= F" Y "W, Ma, FS,,

n=1

(14)

serting the modulation,,,, (7), between"* and the filters
U,.

The above process is summarized in the following recon-
struction algorithm for nonuniform periodic sampling.

Algorithm 1:

1. Select the mesh on which the approximation of the sig-
nal will be computed; that is, select the shift and
integer refinement for the2pL + 1 length mesHt, +
kT/p}|k§pL-

. From the signak(-)’'s bandwidth,o, and the number
of uniform sampling setslV, select thex partition of
unity, (12), functionsby, (-).

. From the sampling ratd;, and offsets of the uniform
interleaved sampling setsA,, }2V_,, solve (11) for the
filter coefficients{cy, ,, }A_, for j =1,2,... k.

. Combine the sets @y, (-) andcy; , from steps 1 and
2 to construct the filter¥,, forn = 1,2,..., N asin
(13).

. Form the samples, ,, into IV vectorssS,, with entries
Sn(g) = ng.

. Apply the rectangular discrete Fourier transfdrin(3),
to each sampling s&t,, .

. Apply modulationMa , (7), to the results from step 5,
Mna, FSy.

. Apply the filters¥,,, (13), to the results from step 6,
U, Ma, FS,.

. Sum the results from step 7, multiply the resultigy,
(7), and apply the square discrete inverse Fourier Trans-
form Fmv, (4).

As in the case of (5), the accuracy of the approximation
y(-) is determined by the localization properties of the pulses,
¥, (+). The pulse localization follows directly from the smooth-
ness of the partitions of unit®;, (-). A simple yet effective
construction of the filter partitions is discussed in thetnex
section.

4. IMPLEMENTATION AND COMPLEXITY

4.1. A simple partition of unity

A particularly simple construction of the partition of upit
is to select the subséy so that the intervalg, only overlap
with theirimmediate neighbor$,, () I,, = 0 for [m—n| > 1.

To maintain a high degree of localization it is also advisabl
to have the overlap of the intervals as large as possiblesélhe
two natural conditions are satisfied with

. N+1+T/T,
— N nyq
o (S



Reconstruction error for 16 sampling sets

and

N+]. 120 T T T T
k; =round( j——— — N | .
’ <] H+1 ) 100

The individual partitions®, (-), can then be constructed to
be 1in regions where they do not overlap with their neighbors
and smoothly connecting for O far ¢ I, using dilation and
translations op(-), (2), andl — p(-). Explicit constructions
for @, (-) are given in [11]. Note that the partition-filters are
independent of the translatés,, depending only upon the
signal’'s bandwidthg, and the number of uniform sampling
sets,N.

The error for this reconstruction is

801

60-

SNR in dB

a0t

20r

N? ‘ ‘ i ‘
|s(t) — 5y (t)| < C - —||fllL=<|A~"| - B(LT — |t]) (15) % 20 0 80 100
o umber of taps
whereB(|t|) is amonotonically decreasing bound of the pulses

¥,. The above construction with(-) in (2) yields B(t) < Fig. 1. The error in recovering the signal from 16 time-
Zje/? interleaved sampling sets with 5% oversampling. The SNR

My . For full details of the partition construction see [11]. increases exponentially (i.e., linearly on a dB-scalejlie
squared number of taps of the pulsgs demonstrating that

4.2. Computational complexity very high accuracy can be reached with short FIR pulses.

The direct implementation for uniform oversampling has a
computational cost, limited by the FFT, 6f( L log L) where

L is the number of samples used in the reconstruction. The2] c. Vogel and H. Johansson, “Time-interleaved analog-to

overall computational cost for Algorithm 1 (N Llog L)
whereL is the total number of samples used in the approx-
imation, cf. [11]. Thus, Algorithm 1 requires an additional

factor of NV in the total computational cost, when compared [3] J. Xu and T. Strohmer,

to uniform sampling at the same effective sampling rate, and
number of available samples.

[4] W. Namgoong,

5. NUMERICAL SIMULATIONS

digital converters: Status and future directions,” Firoceed-
ings of the 2006 |EEE International Symposium on Circuits
and Systems (ISCAS 2006), 2006, pp. 3386—3389.

“Efficient calibration of time-
interleaved ADCs via separable nonlinear least squaré68,2
preprint.

“Finite-length synthesis filters for non-
uniformly time-interleaved analog-to-digital conveftetfEEE
Trans. on Sgnal Processing, vol. 4, pp. 815-818, May 2002.

We consider the case of 16 time-interleaved sampling sets an(s; a. papoulis,Sgnal analysis, McGraw-Hill, New York, 1977.

an overall oversampling rate of only 5%. The input signals
were generated as bandlimited AWGN, the timing ergys
are assumed to be Gaussian i.i.d. We truncate the pulses
so that we utilize FIR pulses with a finite number taps, here
the number of used taps ranges from 1 to 100. For each ﬁxﬂ

number of taps we compute the error between the exact sam-

pling values of the input signal and those computed by Algo-
rithm 1. We perform 2000 experiments and plot the average
result in Figure 5. This experiment clearly demonstratas th
the algorithm achieves high precision of the reconstrusigd

exponentially (i.e., linearly on a dB-scale) with the saadar
number of taps, which is very desirable for an efficient DSP
implementation of the proposed algorithm.

(10]
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