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Compressed Sensing

Let x ∈ IRN be a givensignal.

Suppose we obtain a vectorb ∈ IRn of noisy linear
measurements

b = Ax + e,

whereA ∈ IRn×N is themeasurement matrix, ande is noise.
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Let x ∈ IRN be a givensignal.

Suppose we obtain a vectorb ∈ IRn of noisy linear
measurements

b = Ax + e,

whereA ∈ IRn×N is themeasurement matrix, ande is noise.

We assume:

• n < N

⇒ underdetermined system

• x sparse withk < n non-zeros



Algorithms for Compressed Sensing
• Optimization algorithms for theconvex relaxation

min
x∈IRN

‖x‖1 subject to ‖Ax − b‖2 ≤ η



Algorithms for Compressed Sensing
• Optimization algorithms for theconvex relaxation

min
x∈IRN

‖x‖1 subject to ‖Ax − b‖2 ≤ η

• Greedy methods



Algorithms for Compressed Sensing
• Optimization algorithms for theconvex relaxation

min
x∈IRN

‖x‖1 subject to ‖Ax − b‖2 ≤ η

• Greedy methods
• Iterative Hard Thresholding(Blumensath/Davies 2008):

xl+1 = Hk

(

xl + ωA∗(b − Axl)
)

whereHk : IRN → IRN keeps thek largest entries.

≡ gradient projection for min
x∈IRN

‖b − Ax‖2
2 s.t. ‖x‖0 ≤ k



Algorithms for Compressed Sensing
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• Greedy methods
• Iterative Hard Thresholding(Blumensath/Davies 2008):

xl+1 = Hk

(

xl + ωA∗(b − Axl)
)

whereHk : IRN → IRN keeps thek largest entries.

≡ gradient projection for min
x∈IRN

‖b − Ax‖2
2 s.t. ‖x‖0 ≤ k

• We analyse recovery guarantees for three recently

proposed greedy algorithms.
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Example: ForAΛ n × k i.i.d.

GaussianN (0, 1/n) entries,

as(k, n) → ∞: in expectation,

λmin(A∗
ΛAΛ) → (1 −

√

k/n)2,

λmax(A
∗
ΛAΛ) → (1 +

√

k/n)2.



Convergence result for IHT

Let x bek-sparse and letb = Ax + e whereA ∈ IRn×N .

Theorem: There existµiht(k, n,N) andξiht(k, n,N) which are

functions ofL(k, n,N) andU(k, n,N), such that, provided

µiht(k, n,N) < 1,

‖xl − x‖2 ≤
[

µiht(k, n,N)
]l ‖x‖2 +

ξiht(k, n,N)

1 − µiht(k, n,N)
‖e‖2.
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Theorem: There existµiht(k, n,N) andξiht(k, n,N) which are

functions ofL(k, n,N) andU(k, n,N), such that, provided

µiht(k, n,N) < 1,

‖xl − x‖2 ≤
[

µiht(k, n,N)
]l ‖x‖2 +

ξiht(k, n,N)

1 − µiht(k, n,N)
‖e‖2.

Corollary: e = 0 ⇒ xl → x at a linear rate.

But when is it true thatµiht(k, n,N) < 1?



Gaussian RIP Upper Bounds
(Blanchard, Cartis and Tanner, 2009)

Theorem: Let A be a matrix of sizen × N whose entries

are drawn i.i.d. fromN (0, 1
n
).

Let (k, n,N) → ∞ with k
n
→ ρ and n

N
→ δ.

Then there exist numerically computable functionsL(δ, ρ)

andU(δ, ρ) such that, for anyǫ > 0,

IP{L(k, n,N) < L(δ, ρ) + ǫ} → 1,

IP{U(k, n,N) < U(δ, ρ) + ǫ} → 1.
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Gaussian RIP Upper Bounds

Lower bound onL(k, n,N) Lower bound onU(k, n,N)

⇒ Gaussian RIP upper bounds are always within a factor

of 1.83 of the exact RIP constants.

• Bounds further improved upon by Bah & Tanner (2010).



IHT with Gaussian Matrices
Let x bek-sparse and letb = Ax + e, with entries inA drawn

i.i.d. fromN (0, 1
n
). Consider IHT withω = ω[L,U(δ, 3ρ)].

Theorem: There existµiht(δ, ρ) andξiht(δ, ρ) which are

functions ofL(δ, 3ρ) andU(δ, 3ρ), such that for anyǫ > 0, as

(k, n,N) → ∞ with n/N → δ ∈ (0, 1) andk/n → ρ, there is

an exponentially high probability on the draw ofA that

‖xl − x‖2 ≤
[

µiht(δ, ρ)
]l ‖x‖2 +

ξiht(δ, ρ)

1 − µiht(δ, ρ)
‖e‖2,

provided thatρ < (1 − ǫ)ρiht(δ) whereρiht(δ) is defined to be

the solution ofµiht(δ, ρ) = 1.



Lower bounds on IHT phase transition
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Inverse of phase transition for IHT
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Stability to noise for IHT

0.3 0.3 0.3
0.4 0.4 0.4

0.5 0.5 0.50.6

0.6 0.60.
7

0.7
0.7 0.7

0.
8

0.8
0.8

0.8

0.
9

0.9

0.9
0.9

1

1

1
1

δ

ρ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

5

6

7

8

9

10

11

x 10
−4

(a) µiht(δ, ρ)

4
4 4 4

6

6 6 6
9

9
9

9

12

12
12

12

15

15
15

15

20

20
20

20

30

30

30
30

50

50

50
50

10
0

100

100
100

δ

ρ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

5

6

7

8

9

10

11

x 10
−4

(b) ξiht(δ, ρ)/(1 − µiht(δ, ρ))



Comparison of greedy algorithms
We performed similar analysis for two other greedy algorithms:

• CoSaMP (Needell/Tropp, 2009):

A more sophisticated algorithm which employs a projection

step to find the ‘best’ approximation to the signal for a

given support.

• Subspace Pursuit (Dai/Milenkovic, 2008):

Differs from CoSaMP only in the size of the support sets

(2k → k); and includes an extra projection step.



CoSaMP algorithm
(Needell/Tropp, 2009)

Ts : IRN → IRN keepss largest entries

Inputs:b, A andk.

Initialize x0 = 0 andy0 = b, and chooseη > 0.

For l = 0, 1, 2, . . ., until ‖Axl − b‖2 < η, do:

1. Formg = −A∗(Axl − b)

2. LetΩ = supp(xl) ∪ supp(T2k(g)) |Ω| ≤ 3k

3. Letxl+1
Ω = Tk (PAΩ

(b)) and setxl+1
ΩC = 0

End; output̂x = xl.



Greedy phase transitions
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Inverse of the phase transition
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RIP Conditions for l1 Recovery
minx∈IRN ‖x‖1 subject to Ax = b

Chartrand (2007):

bL([b + 1]k, n,N) + U(bk, n,N) < b − 1; b > 2

Candès (2008):

(1 +
√

2)L(2k, n,N) + U(2k, n,N) <
√

2

Foucart, Lai (2009):

1 + U(2k, n,N)

1 − L(2k, n,N)
< 4

√
2 − 3



RIP Conditions for l1 Recovery
minx∈IRN ‖x‖1 subject to Ax = b

Chartrand (2007):

bL(δ, [b + 1]ρ) + U(δ, bρ) < b − 1; b > 2

Candès (2008):

(1 +
√

2)L(δ, 2ρ) + U(δ, 2ρ) <
√

2

Foucart, Lai (2009):

1 + U(δ, 2ρ)

1 − L(δ, 2ρ)
< 4

√
2 − 3



Comparison of l1 Phase Transitions
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The highest phase transitions are obtained by takingb ≈ 11 in

the result by Chartrand:11L(12k, n,N) + U(11k, n,N) < 10.
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Conclusions
• It is important to understand what RIP conditions mean

quantitatively: the phase transition framework combined

with RIP bounds for Gaussian matrices is a useful tool to

investigate this.

• Recovery guarantees for the simpler IHT algorithm are in

fact superior to those for the more complex CoSaMP and

SP, with SP outperforming CoSaMP.

• Recovery guarantees for all three greedy algorithms are

still inferior to those for convex relaxation.

• Clear need for algorithm-specific methods of analysis.

• It is not always quantitatively beneficial to have RIP

conditions with the smallest possible support sizes.
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Actual form of µ and ξ for IHT

For a given step-sizeω, the functionsµiht(k, n,N) and

ξiht(k, n,N) take the form:

µiht(k, n,N)

= 2
√

2 max {ω[1 + U(3k, n,N)] − 1, 1 − ω[1 − L(3k, n,N)]};

ξiht(k, n,N) = 2ω
√

1 + U(2k, n,N).

For step-sizeω = 2/[2 + U(δ, 3ρ) − L(δ, 3ρ)], the functions

µiht(δ, ρ) andξiht(δ, ρ) take the form:

µiht(δ, ρ) =
2
√

2[L(δ, 3ρ) + U(δ, 3ρ)]

2 + U(δ, 3ρ) − L(δ, 3ρ)
;

ξiht(δ, ρ) =
4[1 + U(δ, 2ρ)]

2 + U(δ, 3ρ) − L(δ, 3ρ)
.
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