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We assume:

n<N
= underdetermined system

x sparse witht < n non-zeros
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Optimization algorithms for theonvex relaxation
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Iterative Hard Thresholdin(Blumensath/Davies 2008):
2t = Hy (2" + wA* (b — Az"))
whereH,, : RY — IR" keeps the: largest entries.

= gradient projection for min ||b — Az||5 s.t. ||z|lo < &
rcRN

We analyse recovery guarantees for three recently
proposed greedy algorithms.
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Example: For Ay n x kl.1.d.
GaussianV (0, 1/n) entries,
as(k,n) — oo in expectation,
Amin (A3 Ax) — (1 — \/%)2’
Amaz (A3 Ax) — (1 + \/W)2




Convergenceresult for IHT

Let x bek-sparse and leét = Az + e where4 € R,

Theorem: There existu'"(k,n, N) and¢” (k,n, N) which are
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p(k.n,N) < 1,
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Convergenceresult for IHT

Let x bek-sparse and leét = Az + e where4 € R,

Theorem: There existu'"(k,n, N) and¢” (k,n, N) which are
functions of L(k,n, N) andU (k,n, V'), such that, provided
p(k.n,N) < 1,

&M (kyn, N)

T (ko N) 2

i [
o' =2l < [ (k,n, N)| [l2]l2 +
Corollary: e = 0 = 2! — « at alinear rate.

But when is it true that*"! (k,n, N) < 1?



Gaussian RIP Upper Bounds

(Blanchard, Cartis and Tanner, 2009)

Theorem: Let A be a matrix of sizex x N whose entries
are drawn i.i.d. fromV (0, ).

Let (k,n, N) — oo with % — pandx — 9.

Then there exist numerically computable functidis, p)
andU (0, p) such that, for any > 0,

P{L(k,n,N) < L(3,p) + €} — 1,
P{U(k,n,N) < U(5,p)+ e} — 1.



Gaussian RIP Upper Bounds
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Gaussian RIP Upper Bounds

Lower bound onl.(k,n, N) Lower bound orU (k,n, N)
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= Gaussian RIP upper bounds are always within a factor
of 1.83 of the exact RIP constants.
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Lower bound onl.(k,n, N) Lower bound orU (k,n, N)

15 /‘ o ; ; 9
0.9fF 4 005 0.9F® . 6
. / N
08} — 08 © .
9997 4

E 409 12 o P77
0.7t 0.7f b?‘)

+ Ho0.85 16
0.6 0.6

| F 15
05f F Ho.8 05f B
04r" 0.4} ’ 4 r 14
0.75

0318 0.3}

0.2{-0 9% 0.2

o1r 0.1F%

= Gaussian RIP upper bounds are always within a factor
of 1.83 of the exact RIP constants.

Bounds further improved upon by Bah & Tanner (2010)



IHT with Gaussian M atrices

Let x bek-sparse and let = Ax + e, with entries inA drawn
.i.d. from A (0, +). Consider IHT withw = w[L, U(4, 3p)].

Theorem: There existu"!(4, p) and&™ (4, p) which are
functions ofL(4, 3p) andU (6, 3p), such that for any > 0, as
(k,n,N) — ocowithn/N — § € (0,1) andk/n — p, there is
an exponentially high probability on the draw dfthat

§M (3, p)
L — ph*(4, p)

provided thap < (1 — €)p" () wherep™ () is defined to be
the solution of* (4, p) = 1.

i [
|2 —zll2 < [1™(6,p)] llz[l2 + lell2;



Lower boundson IHT phasetransition
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Recovery guaranteed with exponentially high probabilay f
Gaussian matrices witfd, p) values below the curve.



| nver se of phasetransition for IHT
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At leastn = 907k measurements needed to guarantee recove
— pessimistic result compared with average-case behaviol



Stability tonoisefor IHT
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Comparison of greedy algorithms

We performed similar analysis for two other greedy alganth

CoSaM P (Needell/Tropp, 2009):.

A more sophisticated algorithm which employs a project
step to find the ‘best’ approximation to the signal for a
given support.

Subspace Pursuit (Dai/Milenkovic, 2008):
Differs from CoSaMP only in the size of the support sets
(2k — k); and includes an extra projection step.



CoSaM P algorithm

(Needell/Tropp, 2009)
T. : RV — R" keepss largest entries

Inputs: b, A andk.
Initialize z° = 0 andy = b, and choose > 0.
Forl =0,1,2,...,until |4z’ — b||, < n, do:

1. Formg = —A*(Ax' —b)
2. LetQ = supga!) UsupTak(g)) Q| < 3k
3. Letzg ' =Ty (Pa, (b)) and setrl/c = 0

End; outputt = 2.



Greedy phasetransitions
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| nver se of the phase transition
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RIP Conditionsfor [; Recovery
min, g~ ||z]|1 subjectto Az =0
Chartrand (2007):
bL([b+ 1k,n,N) + U(bk,n,N) <b—1; b> 2
Candes (2008):
(14 V2)L(2k,n,N) + U(2k,n, N) < v/2
Foucart, Lai (2009):

1+ U(2k,n,N)
13—
1= L(2k,n, N) v2-3




RIP Conditionsfor [; Recovery
min, g~ ||z]|1 subjectto Az =0
Chartrand (2007):
bL(6,[b+ 1]p) + U(0,bp) <b—1; b>2
Candes (2008):
(14 V2)L(6,2p) + U(6,2p) < V2

Foucart, Lai (2009):

1+ U(d,2p)
Av2 —
1—L(5,2p)< v2-3



Comparison of [; Phase Transitions
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The highest phase transitions are obtained by takigl1 in
the result by Chartrand:1L(12k,n, N) + U(11k,n, N) < 10.
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Conclusions

It is iImportant to understand what RIP conditions mean
guantitatively: the phase transition framework combinec
with RIP bounds for Gaussian matrices is a useful tool 1
Investigate this.

Recovery guarantees for the simpler IHT algorithm are
fact superior to those for the more complex CoSaMP ar
SP, with SP outperforming CoSaMP.

Recovery guarantees for all three greedy algorithms are
still inferior to those for convex relaxation.

Clear need for algorithm-specific methods of analysis.

It is not always quantitatively beneficial to have RIP
conditions with the smallest possible support sizes.
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Actual form of ;4 and & for IHT

For a given step-size, the functions:"*(k,n, N) and
¢t (k,n, N) take the form:

,uiht(/f, n, N)
= 2v2max {w[l + U(3k,n,N)] — 1,1 — w[l — L(3k,n, N)|};

EM(k,n, N) = 2w\/1+U(2k,n, N).

For step-sizev = 2/(2 4+ U(6,3p) — L(9, 3p)|, the functions
ph (6, p) and& (4, p) take the form:

s o 2V2[L(5,3p) + U(4,3p)]
#0:p) 24+ U(0,3p) — L(9,3p)
fiht(é, 0) 41+ U(9,2p)]
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