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Abstract

As shown in [13, 3], signals whose wavelet coefficients exhibit a rooted tree structure can be recovered
using specially-adapted compressed sensing algorithms from just n = O(k) measurements, where k is the
sparsity of the signal. Motivated by these results, we introduce a simplified proportional-dimensional
asymptotic framework which enables the quantitative evaluation of recovery guarantees for tree-based
compressed sensing. In the context of Gaussian matrices, we apply this framework to existing worst-
case analysis of the Iterative Tree Projection (ITP) algorithm [13, 3] which makes use of the tree-based
Restricted Isometry Property (RIP). Within the same framework, we then obtain quantitative results
based on a new method of analysis, recently introduced in [18], which considers the fixed points of the
algorithm. By exploiting the realistic average-case assumption that the measurements are statistically
independent of the signal, we obtain significant quantitative improvements when compared to the tree-
based RIP analysis. Our results have a refreshingly simple interpretation, explicitly determining a bound
on the number of measurements that are required as a multiple of the sparsity. For example we prove
that exact recovery of binary tree-based signals from noiseless Gaussian measurements is asymptotically
guaranteed for ITP with constant stepsize provided n ≥ 50k. All our results extend to the more realistic
case in which measurements are corrupted by noise.

1 Introduction

Compressed sensing is motivated by the observation that many signals have an approximately sparse rep-
resentation in some basis. Under this assumption, it has been proven that, to guarantee signal recovery,
the sampling rate need only be proportional to the sparsity of the signal’s approximation, rather than the
signal dimension [22, 15]. Given an unknown signal x∗ of dimension N , our aim is to recover x∗ from n < N
undersampled linear measurements of the form b = Ax∗ + e, where e is sampling noise. Many signals have
additional structure that can be exploited in the recovery process, and one such example occurs when a
wavelet basis is used to represent the signal. Wavelet representations are now widely used in a variety of
signal processing contexts, most notably image processing, due to the fact that piecewise smooth signals have
sparse representations in wavelet bases [39]. Wavelet representations have a multi-scale tree structure, in
which signals are decomposed from coarse to fine scales, with the nested support properties of wavelets induc-
ing a parent/child relationship between wavelet coefficients at different scales. One-dimensional wavelets, for
example, have a binary tree structure, in which almost all coefficients have precisely two children. Section 2.1
gives a precise characterization of the tree structures we consider here.

Since wavelets essentially work as local discontinuity detectors, signal discontinuities give rise to a chain
of large coefficients along a single branch [3]. For this reason, if a particular wavelet coefficient is large, its
parent wavelet coefficient is also likely to be large, which means that the large wavelet coefficients of many
signals can be modelled as forming a connected subset of the whole tree which is itself a rooted tree. This
motivates an alternative model of data simplicity: assume that the image is supported on some rooted tree
of cardinality k, for some sparsity parameter k.

Several algorithms have been proposed which approximately perform the Euclidean projection onto the
set of vectors supported on a rooted tree of given cardinality [4, 29, 30]. Algorithms guaranteed to exactly
calculate the projection were proposed in [17, 5]. Consequently, certain iterative projection algorithms for
compressed sensing can be adapted to the tree-based setting. One such algorithm proposed in [3], and also
in [13], is an adaptation of the well-known Iterative Hard Thresholding (IHT) algorithm [11], which we
choose to call Iterative Tree Projection (ITP). Section 2.2 gives precise details on the ITP algorithm and
associated stepsize variants.
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ITP is one of several algorithms that have been proposed for the tree-based compressed sensing problem.
Also relying upon tree projection, an adaptation of the CoSaMP algorithm [40] was proposed in [3]. Tree-
based variants of matching pursuit algorithms were proposed in [24, 38]. Convex relaxations of the tree-based
compressed sensing problem have also been considered [25, 37, 2, 35, 34].

Worst-case recovery guarantees for ITP (with exact tree projection) were obtained in [13, 3] in the case
of binary trees, by extending the notion of the ubiquitous Restricted Isometry Property [16] to the tree-
based setting. More recently, worst-case recovery guarantees based on tree-based RIP have been proved for
approximate versions of ITP and tree-based CoSaMP in which the tree projections are computed to a given
accuracy [32].

Bounds on tree-based RIP for random matrices with subgaussian entries were obtained in [13, 3] in terms
of the ratio k/n. The bounds imply that it suffices to take only n = C ·k measurements to guarantee recovery,
for some implicitly quantified constant C. The value of the constant C is an issue of crucial importance
to practitioners since it essentially determines how many measurements must be taken as a multiple of the
signal sparsity. The main contribution of this paper is to determine explicit bounds on the constant C
guaranteeing recovery. While our bounds are likely to be pessimistic compared to observed behaviour, they
makes clear the extent of current theory in explicit quantitative terms. We obtain results in the context of
one particular family of measurement matrices, the Gaussian ensemble, in which each entry of the matrix is
i.i.d. Gaussian.

Since a Gaussian matrix is stochastic by nature, it is not possible to obtain deterministic results. However,
by exploiting the remarkable concentration of measure properties of Gaussian matrices, it is possible to
obtain limiting results as one lets the matrix dimensions grow. In the context of simple sparsity, Donoho
introduced a proportional-dimensional asymptotic framework as a way of quantifying results for recovery
using l1 minimization [23]. More precisely, let (k, n,N) → ∞ such that n/N → δ ∈ (0, 1] and k/n → ρ ∈
(0, 1], where δ is the undersampling ratio and ρ is the oversampling ratio. Following this framework, limiting
results were obtained in [8] for three state-of-the-art greedy algorithms including IHT, the algorithm on
which ITP is based. These results, which are worst-case in nature, make use of analysis in [12] which relies
upon the RIP. More recently, by introducing a new method of analysis and by switching to an average-case
framework, the present authors obtained improved quantitative results for IHT in [18].

We now describe the main contributions of this paper.
1) We introduce a simplified proportional growth asymptotic to enable quantitative com-

parison of recovery guarantees for tree-based compressed sensing. The aforementioned results
from [13, 3] show that tree-based compressed sensing recovery depends only upon the ratio between n and k,
and is independent of N , the ambient signal dimension. This suggests that recovery results may be captured
by a simplified proportional-growth asymptotic in which we dispense with the undersampling ratio δ and
consider only the oversampling ratio ρ.

Definition 1.1 (Simplified proportional-growth asymptotic) We say that a sequence of problem sizes
(k, n,N), where 0 < k ≤ n ≤ N , obeys the simplified proportional-growth asymptotic if, for some ρ ∈ (0, 1],

k

n
→ ρ as (k, n,N)→∞.1

While the commmon two-variable asymptotic framework leads to recovery phase transitions in the (δ, ρ)-
plane, our recovery conditions take the refreshingly simple form of a threshold ρ̂, such that stable recovery
is asymptotically guaranteed provided the oversampling ratio satisfies ρ < ρ̂. The framework allows a direct
comparison of recovery conditions for different tree-based recovery algorithms, and for different methods of
analysis.

A possible objection to our claim that our results are of practical relevance is that they are asymptotic
in nature. However, our recovery results take the form of asymptotic bounds which hold for a sequence of
increasing problem sizes, except with probability which decays exponentially in the problem dimension. We
therefore believe that it is reasonable to expect recovery behaviour in practice to rapidly approach asymptotic
limits, or be even better (since our asymptotic bounds are likely to be pessimistic).

2) We obtain explicit quantitative recovery guarantees for ITP algorithms with Gaussian
measurement matrices in this simplified asymptotic framework. Our results are based upon a
translation of the RIP analysis in [26] to the tree-based setting, and require the derivation of upper bounds on
tree-based RIP constants for Gaussian matrices in the simplified proportional-growth asymptotic. We tighten
the implicit bounds on tree-based RIP from [13] (see discussion in Section 3.3). We quantify oversampling
thresholds for ITP and Gaussian matrices, the precise recovery values being dependent on the ITP stepsize

1Note that the only restriction that the simplified proportional-growth asymptotic places upon N is that we must have
N →∞ such that N ≥ n.
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scheme variant used (see Section 2.2). In the case of zero noise, we have exact recovery of the original
signal. In the case of noise, we derive stability factors which bound the approximation error of the output
of ITP as a multiple of the noise level. The analysis in the present paper broadly follows the approach used
to analyze IHT in [43], and deviates from it by tightening union bound arguments by exploiting the fact
that only certain support sets (those corresponding to rooted trees) are permissible in the tree-based model.
We compare our quantification with that obtainable from the existing analysis in [13, 3] for binary trees,
demonstrating a dramatic improvement in the value of the constant.

3) We obtain improved quantitative recovery guarantees for ITP algorithms by exploiting
average-case assumptions. We obtain results in the same framework based upon a translation of the
stable point approach recently introduced by the present authors in [18] to the tree-based setting. Whereas
the RIP is entirely worst-case, this alternative approach is more amenable to probabilistic analysis under
the average-case (but realistic) assumption that the original signal and measurement matrix are statistically
independent. Just as for the RIP analysis, the extension of the results in [18] involves the tightening of union
bound arguments. The stable point condition is especially amenable to probabilistic analysis for Gaussian
matrices under the average-case (but realistic) assumption that Central to the analysis are large deviations
results for quantities related to Gaussian matrices, which are used to bound the constituent terms of the
stable point condition, employing union bounds over all permissible support sets. We obtain oversampling
thresholds for the same stepsize schemes, enabling a quantitative comparison with those derived from tree-
based RIP analysis. For both stepsize schemes, the incorporation of average-case assumptions leads to a
significant quantitative improvement in recovery guarantees for ITP and Gaussian matrices. We also extend
our stable point recovery analysis to the case of noisy measurements, obtaining stability factors that show a
substantial quantitative improvement over those derived from tree-based RIP analysis.

Outline of the paper. The rest of the paper is structured as follows: In Section 2, we give full
technical details of the tree-based compressed sensing problem, describe in more detail the generic ITP
algorithm along with two possible stepsize schemes, and give a brief roadmap to the proofs. We describe our
main results in Sections 3 and 4, first for those derived from tree-based RIP analysis (Section 3), followed by
the results derived from our stable point analysis (Section 4. A discussion of all our main results then follows
in Section 5. All proofs can be found in the appendix. We present the tree-based RIP analysis in Appendix A,
and the stable point analysis in Appendix B. Both analyses rely crucially upon large deviations results for
quantities related to Gaussian matrices (including bounds on tree-based RIP constants), and proofs of these
subsidiary results can be found in Appendix C.

2 Problems and algorithms

2.1 Problem statement

Suppose we have a signal y∗ ∈ RN which has a sparse rooted-tree representation x∗ ∈ RN in some orthogonal
wavelet basis, so that x∗ = Ψy∗ where Ψ ∈ RN×N is an orthogonal discrete wavelet transform matrix. We
obtain the measurements b = Φy∗ + e ∈ Rn, where Φ ∈ Rn×N , where e is sampling noise, and where we
assume n < N . Referring to A = ΦΨ−1 ∈ Rn×N from now on as the measurement matrix, we have

b = Ax∗ + e. (2.1)

We say that a vector x∗ is k-tree sparse if it is supported on a rooted tree of cardinality k, and denote
by Tk the set of supports permitted by the model. Denoting by ‖ · ‖ the Euclidean norm ‖ · ‖2, and defining

Ψ(x) :=
1

2
‖b−Ax‖2, (2.2)

we can formulate signal recovery as the following optimization problem.

min
x∈RN

Ψ(x) subject to supp(x) ∈ Tk, (2.3)

where supp(x) denotes the support of the signal x. We write Pk for the (exact) Euclidean projection onto
the set {x : supp(x) ∈ Tk}, namely

Pk(z) := arg min
supp(x)∈Tk

‖x− z‖. (2.4)

Our analysis will consider arbitrary tree structures, characterized only by the existence of a root coefficient
(that is, a coefficient with no parents) a tree order d, defined to be the maximum number of children of
any coefficient in the tree. We will at times refer to a tree of order d as a d-ary tree. The coefficients
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of one-dimensional wavelet transforms typically have a binary tree structure, that is tree order d = 2.
The two-dimensional wavelet transforms often used in image processing typically form quad-trees (d = 4).
Orthogonal discrete wavelet transforms often have a particular canonical tree structure, in which every
coefficient essentially has the same number of children, but this condition is never enforced in our analysis.

Our challenge, then, is to recover the wavelet representation x∗ (and therefore the original signal y∗)
from the measurements (2.1), which we formally state as the following two problems.

Problem 1 (Tree-sparse recovery from exact measurements) Recover exactly a k-tree sparse x∗ ∈
RN from the noiseless measurements b = Ax∗ ∈ Rn, where k ≤ n ≤ N .

Problem 2 (Tree-sparse recovery from noisy measurements) Recover a k-tree sparse x∗ ∈ RN from
the noisy measurements b = Ax∗ + e ∈ Rn, where k ≤ n ≤ N .

We consider the case where Φ is chosen to be a Gaussian matrix with entries distributed i.i.d. as
{Φij} ∼ N (0, 1/n). The orthogonality assumption on the wavelet transform Ψ then implies that the entries
of A are also distributed i.i.d. as {Aij} ∼ N (0, 1/n), i.e. A is also i.i.d. Gaussian. Assuming Φ to be
Gaussian is therefore equivalent to placing the same assumption on A, which we formalize as follows.

Assumption 1 The measurement matrix A has i.i.d. N (0, 1/n) entries.

It can be shown that x∗ is the unique global solution to problem (2.3) whenever A is a Gaussian ma-
trix [18, Sections 3 and 4.1].

Notation. Given some index set Γ ⊆ {1, 2, . . . N}, we define the complement of Γ to be ΓC = {1, 2, . . . N}\Γ.
We write xΓ for the restriction of the vector x to the coefficients indexed by the elements of Γ, and we write
AΓ for the restriction of the matrix A to those columns indexed by the elements of Γ.

2.2 ITP algorithms and stepsize schemes

In this section, we describe in more detail the ITP algorithm along with two possible stepsize schemes.
Generically, on each iteration m, a steepest descent step, possibly with linesearch, is calculated for the
objective Ψ in (2.3), namely, a move is performed from the current iterate xm along the negative gradient
of Ψ,

−∇Ψ(xm) = −AT (Axm − b).

Recalling the definition of Pk from Section 2.1, the resulting step is then projected onto the (nonconvex)
constraint in (2.3) which defines the set of all vectors supported on rooted trees of cardinality k.

Algorithm 2.1 Generic ITP [13, 3]

Inputs: A, b, k.
Initialize x0 = 0; m = 0.
While some termination criterion is not satisfied, do:

1. xm+1 := Pk
{
xm + αmAT (b−Axm)

}
, where Pk(·) is defined in (2.4) and αm > 0 is a stepsize.

2. m := m+ 1

End; output x̂ = xm.

To avoid a situation in which the support set Γ is not uniquely defined, if for instance some of the
coefficients are equal in magnitude, then a support set for the identical components can be selected either
randomly or according to some predefined ordering. In our analysis, we will consider the possibly infinite
sequence of iterates generated by ITP, though in practice a useful termination criterion such as requiring
the residual to be sufficiently small, would need to be employed.

Two stepsize choices will be addressed in this paper: constant stepsize αm = α ∈ (0, 1) for all m, which
we will hereafter refer to simply as ITP [13, 3], and a variable stepsize scheme which we will call Normalised
ITP (NITP), which adopts the same stepsize scheme as prescribed in the Normalised IHT variant of IHT
algorithms proposed in [14]. The constant stepsize ITP variant can be summarized as follows.

The NITP variant defined below follows [14], having the stepsize αm chosen according to an exact
linesearch [42] when the support set of consecutive iterates stays the same, and using a shrinkage strategy
when the support set changes, in order to ensure sufficient decrease in the objective of (2.3).
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Algorithm 2.2 ITP [13, 3]

Given some α > 0, on step 1 of each iteration m ≥ 0 of generic ITP, set

αm := α. (2.5)

Algorithm 2.3 NITP

Given some c ∈ (0, 1) and κ > 1/(1− c), on step 1 of each iteration m ≥ 0 of generic ITP, do:

1.1. Exact linesearch.

(a) Set Γm := supp(xm).

(b) Compute

αm :=
‖ATΓm(b−Axm)‖2

‖AΓmATΓm(b−Axm)‖2
. (2.6)

(c) Let x̃m+1 := Pk
{
xm + αmAT (b−Axm)

}
.

1.2. Backtracking. If supp(x̃m+1) = supp(xm), end; output αm.

Else, while αm ≥ (1− c) ‖x̃m+1−xm‖2
‖A(x̃m+1−xm)‖2 , do:

(a) αm := αm/(κ(1− c)).
(b) x̃m+1 := Pk

{
xm + αmAT (b−Axm)

}
.

End; output αm.

In practice, the choice of κ constitutes a trade-off between recovery performance and computational
efficiency: for optimal performance, κ close to 1 should be chosen, while increasing κ will lead to fewer
shrinkage steps, making the algorithm more computationally efficient. The shrinkage strategy ensures a
potentially desirable property of the NITP algorithm, namely that, provided the measurement matrix satisfies
mild linear independence assumptions, it is guaranteed to converge (see Section B.1.2). A practical scheme
similar to the one in [14] was proposed in [36] which does not employ a shrinkage strategy.

An important property of the operator Pk is that it preserves the value of selected coefficients.

{Pk(x)}i :=

{
xi i ∈ Γ
0 i /∈ Γ

where Γ := arg max
Γ∈Tk

‖xΓ‖ . (2.7)

See [43, Lemma 6.1] for a proof of (2.7) given its definition. It follows from (2.7) that Pk can be framed as
an integer program with {0, 1} decision variables. This problem can either be solved exactly using dynamic
programming [17] or approximately by solving its linear programming or Lagrangian relaxations [4, 21]. We
refer the reader to [17] for further details on methods for performing the projection onto rooted trees.

3 Recovery results for tree-based RIP analysis

3.1 Results for deterministic matrices

Our first analysis relies upon a deterministic recovery condition originally given in [26]. Our contribution
is to extend it to the tree-based setting and then obtain from it quantitative results for Gaussian matrices.
We consider an extension of the ubiquitous (asymmetric) Restricted Isometry Property (RIP) [16, 6] to the
tree-based setting.

Definition 3.1 (Tree-based RIP [13, 3]) For a given matrix A, define TLs and TUs, the lower and
upper tree-based RIP constants of order s, to be, respectively,

TLs := 1− min
∅6=supp(y)⊆Γ∈Ts

‖Ay‖2

‖y‖2
and TUs := max

∅6=supp(y)⊆Γ∈Ts

‖Ay‖2

‖y‖2
− 1. (3.8)

We obtain deterministic recovery results of the following form for both ITP and NITP.
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Theorem 3.2 (Deterministic recovery result for ITP variants) Consider Problem 2. Let µALG and
ξALG be defined as in Definition 3.3. Then, there exists functions µALG and ξALG such that, provided
µALG < 1, the output, x̂, at iteration m of variant ALG of ITP satisfies

‖x̂− x∗‖ ≤
(
µALG

)m ‖x∗‖+
ξALG

1− µALG
‖e‖. (3.9)

Proof: See Appendix A. 2

The functions µALG and ξALG will play the role of a convergence factor and a factor controlling stabil-
ity to noise. Though Theorem 3.2 gives a limiting bound on the approximation error, it does not necessarily
imply convergence of the algorithm. In the simplified noiseless case however, the result implies convergence
to x∗ at a linear rate.

Specifically, Theorem 3.2 holds for ITP with stepsize α if µALG := µITPα and ξALG := ξITPα , while
Theorem 3.2 holds for NITP with shrinkage parameter κ if µALG := µNITPκ and ξALG := ξNITPκ , defined
as follows.

Definition 3.3 (Deterministic convergence and stability factor for ITP) Provided 3k ≤ n, define

µITPα :=
√

3 max{α(1 + TU3k)− 1, 1− α(1− TL3k)}, (3.10)

ξITPα := α
√

3(1 + TU2k), (3.11)

µNITPκ :=
√

3 max

{
1 + TU3k

1− TLk
− 1, 1− 1− TL3k

κ[1 + TU2k]

}
, (3.12)

ξNITPκ :=

√
3(1 + TU2k)

1− TLk
, (3.13)

where TU and TL are defined in Definition 3.1.

3.2 Asymptotic results for Gaussian matrices

We derive quantitative recovery conditions for Gaussian matrices by means of upper bounds on tree-based
RIP constants in the simplified proportional-growth asymptotic of Definition 1.1. We follow the broad
approach used for the standard notion of RIP in [6, 10, 18], in which a union bound was performed over
the maximum/minimum singular values of all

(
N
k

)
submatrices of A of size n × k. In the present work,

however, the assumed tree structure means that the number of permissible support sets for iterates of
the algorithm is much diminished, which means that union bound arguments can be tightened, leading to
improved quantitative results.

The number, |Tk|, of permissible support sets in the d-ary tree-based framework, is bounded above by
T (k), the total number of ordered, rooted d-ary trees of cardinality k. Fortunately, a formula for T (k) is
known.

Lemma 3.4 (Tree counting result [28]) The total number of ordered, rooted d-ary trees of cardinality k
is

T (k) =
1

(d− 1)k + 1

(
dk

k

)
. (3.14)

In particular, note that T (k) depends only upon the tree order d and the sparsity k, and not upon
the signal length N . It is for this reason that we are able to obtain quantitative bounds in the simplified
proportional-growth asymptotic, i.e. in terms of d and the variable ρ := limn→∞

k
n only.

Before defining bounds, it will be useful to define the Shannon entropy in the usual way.

Definition 3.5 (Shannon entropy [6]) Given p ∈ (0, 1), define the Shannon entropy with base e loga-
rithms as

H(p) := −p ln(p)− (1− p) ln(1− p). (3.15)

We define the following bounds on tree-based RIP constants for Gaussian matrices.
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Definition 3.6 (Tree-based RIP bounds) Define, for ρ ∈ (0, 1) and λ > 0,

ψmax(λ, ρ) =
1

2
[(1 + ρ) lnλ+ 1 + ρ− ρ ln ρ− λ] (3.16)

and

ψmin(λ, ρ) = H(ρ) +
1

2
[(1− ρ) lnλ+ 1− ρ+ ρ ln ρ− λ] , (3.17)

where H(·) is defined in (3.15). Define λmax(ρ) and λmin(ρ) as the unique solution to (3.18) and (3.19)
respectively:

ψmax (λmax(ρ), ρ) + dρ ·H(d−1) = 0 for λmax(ρ) > 1 + ρ; (3.18)

ψmin
(
λmin(ρ), ρ

)
+ dρ ·H(d−1) = 0 for λmin(ρ) < 1− ρ, (3.19)

and define T U(ρ) = λmax(ρ)− 1 and T L(ρ) = 1− λmin(ρ).

That there exists a unique solution to (3.18) follows since ψmax[λ, ρ] is positive for λ = 1 + ρ, tends to
−∞ as λ→∞, and is strictly decreasing in λ. Similarly, that there exists a unique solution to (3.19) follows
since ψmin[λ, ρ] is positive for λ = 1− ρ, tends to −∞ as λ→∞, and is strictly decreasing in λ.

Intuition behind the form of the bounds given in Definition 3.6 is as follows. For a given n×k submatrix
AΓ, the asymptotic distributions of λmax and λmin, the extreme eigenvalues of its corresponding Gram matrix
ATΓAΓ, depend asymptotically upon ρ, and both decay exponentially away from 1, with exponents given by
γmax(λmax(ρ), ρ) and γmin(λmin(ρ), ρ) respectively. To bound the extreme eigenvalues of all possible such
Gram matrices requires a union bound over the number of permissible support sets. For the standard notion
of RIP analyzed in [6], all

(
N
k

)
support sets must be considered, which leads to an exponent which depends

upon ρ and also δ := limn→∞ n/N . In the tree-based setting, however, the number of permissible support
sets is given by (3.14), which has no dependence upon the ambient dimension N , and the resulting exponent
dρ ·H(d−1) depends only upon ρ (for a given tree order d). The asymptotic bounds T U(ρ) and T L(ρ) are
defined in such a way that they are satisfied in the asymptotic limit when the net exponents in (3.18) and
(3.19) respectively are negative.

Counterparts of the bounds in Definition 3.6 for the standard notion of asymmetric RIP constants were
shown to hold asymptotically for Gaussian matrices in [6]. Following their method of proof, we obtain an
analogous result for tree-based RIP constants in the simplified proportional-growth asymptotic.

Lemma 3.7 (Validity of tree-based RIP bounds) Suppose Assumption 1 holds and let ε > 0. In the
simplified proportional-growth asymptotic,

P (TUk ≥ T U(ρ) + ε)→ 0, (3.20)

P (TLk ≤ T L(ρ)− ε)→ 0, (3.21)

both exponentially in n.

Proof: See Appendix C.

Closely following the approach in [8], we show that a naive replacement of each TLpk and TUqk by the

tree-based RIP bounds T L(pρ) and T U(qρ) is valid, provided the functions µITPαRIP and ξITPαRIP satisfy certain
properties given in Appendix A.2. We finally arrive at asymptotic recovery results of the following form for
both variants of ITP and Gaussian matrices.

Theorem 3.8 (RIP-based recovery) Consider Problem 2 and suppose Assumption 1 holds. Define ρ̂ALGRIP

as the unique solution to µALGRIP (ρ) = 1. Choose ε ∈ (0, 1) and suppose that

ρ < (1− ε)ρ̂ALGRIP . (3.22)

Suppose x̂ is the output of variant ALG of ITP at iteration m. Then

µALGRIP ((1 + ε)ρ) < 1, (3.23)

and, in the simplified proportional-growth asymptotic2,

‖x̂− x∗‖ ≤
(
µALGRIP ((1 + ε)ρ)

)m ‖x∗‖+
ξALGRIP ((1 + ε)ρ)

1− µALGRIP ((1 + ε)ρ)
‖e‖, (3.24)

for all k-tree sparse vectors x∗, with probability tending to 1 exponentially in n.

2In other words, we consider instances of the Gaussian random variables A for a sequence of triples (k, n,N) where n→∞,
where n is the number of measurements, N , the signal dimension and k, the sparsity of the underlying signal.
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Proof: See Appendix A. 2

In the idealized case of zero measurement noise, we can deduce from Theorem 3.8 guaranteed convergence
of ITP variants at a linear rate.

Corollary 3.9 (RIP-based recovery: noiseless case) Consider Problem 1 and suppose Assumption 1
holds. Choose ε ∈ (0, 1) and suppose that (3.22) holds, where ρ̂ALGRIP and µALGRIP (ρ) are defined as in Theo-
rem 3.8. Then, in the simplified proportional-growth asymptotic, the iterates of variant ALG of ITP converge
to x∗ at a linear rate, for all k-tree sparse vectors x∗, with probability tending to 1 exponentially in n.

Proof: See Appendix A. 2

Specifically, Theorem 3.8 and Corollary 3.9 hold for ITP with stepsize α if µALGRIP (ρ) := µITPαRIP (ρ) and

ξALG := ξITPαRIP (ρ), while Theorem 3.8 and Corollary 3.9 hold for NITP with shrinkage parameter κ if

µALGRIP (ρ) := µNITPκRIP (ρ) and ξALG := ξNITPκRIP (ρ), defined as follows (compare with Definition 3.3).

Definition 3.10 (Asymptotic convergence and stability factors) Define, for ρ ∈ (0, 1/3),

µITPαRIP (ρ) :=
√

3 max{α[1 + T U(3ρ)]− 1, 1− α[1− T L(3ρ)]}, (3.25)

ξITPαRIP (ρ) := α
√

3[1 + T U(2ρ)], (3.26)

µNITPκRIP (ρ) :=
√

3 max

{
1 + T U(3ρ)

1− T L(ρ)
− 1, 1− 1− T L(3ρ)

κ[1 + T U(2ρ)]

}
, (3.27)

ξNITPκRIP (ρ) :=

√
3[1 + T U(2ρ)]

1− T L(ρ)
, (3.28)

where T U and T L are given in Definition 3.6.

In the case of ITP with constant stepsize, Theorem 3.8 and Corollary 3.9 give a continuous range of
oversampling thresholds for any 0 < α < 2. For α ≥ 2, the result gives ρ̂IHTαRIP = 0 for all δ ∈ (0, 1). It is

clear that µIHTαRIP (ρ) takes its minimum value when the two expressions inside the maximum in (3.25) are
equal, which implies that the optimal oversampling threshold is obtained when the stepsize is taken to be

α̂ := 2/[2 + T U(3ρ)− T L(3ρ)]. (3.29)

We will adopt the optimal stepsize choice α̂ in all our numerical computations of oversampling thresholds3.

3.3 Prior bounds on tree-based RIP

A result quantifying tree-based RIP for Gaussian matrices was proved in [13] as a special case of a more
general result on restricted isometry constants for subgaussian random matrices and signals drawn from a
union of linear subspaces. A symmetric notion of tree-based RIP was considered, in which no distinction is
made between the upper and lower tails. For a given measurement matrix, the symmetric tree-based RIP
constant TRk is thus

TRk := max(TLk, TUk). (3.30)

Theorem 3.11 ([13, Corollary 4.2]) Suppose Assumption 1 holds and choose t > 0 and let the tree order
be d = 2. Then, with probability at least 1− e−t, TRk ≤ r provided

n ≥
(
r2

144
− r3

1296

)−1 [
k

(
1 + ln

72

r

)
− ln

(
k + 1

2

)
+ t

]
We may deduce from this result a bound on (symmetrical) tree-based RIP, T R(ρ), within the simplified
proportional-growth asymptotic. The resulting bound is plotted in Figure 1 alongside the bounds T U(ρ)
and T L(ρ) of Definition 3.6.

3Note that this optimal stepsize α̂ is closely related to the (constant) maximal stepsize in gradient methods for strongly
convex optimization that ensures global linear rate of convergence (see [41, Theorem 2.1.15]). In particular, the objective (2.2)
restricted to a face of Tk is a strongly convex objective and ITP is taking a steepest descent step on this face, scaled by α̂. Then
µ := 1−T L(3ρ) can be regarded as a lower bound on the smallest eigenvalue of the reduced Hessian of the objective (2.2) and
L := 1 + T U(3ρ) as an upper bound on the largest eigenvalue of the same matrix. With this correspondence, the constant step
sizes prescribed by (3.29) and the maximal one in [41, Theorem 2.1.15] coincide; see [1] for full details and similar analogies.
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Definition 3.12 If ρ ∈ (0, 0.024)4, define T R(ρ) to be the unique solution in r > 0 to

r2(9− r) = 1296ρ

[
1 + ln

(
72

r

)]
. (3.31)

ρ
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Figure 1: A comparison of T L(ρ) (red), T U(ρ) (blue) and T R(ρ) (black) where defined, for ρ ∈ (0, 0.1).

To make the quantification of recovery results for ITP algorithms explicit, one may combine the bound
T R(ρ) with the symmetric versions of the RIP-based recovery results for each variant. For ITP, the condition
TR3k < 1/

√
3 was proved in [26]. For NIHT, the condition TR3k < (11−

√
3)/(11 + 21

√
3) ≈ 0.1956 follows

by combining (3.30) with Theorem 3.2 and Definition 3.3, taking κ := 1.1. A quantitative comparison in the
case of binary trees between the recovery conditions obtainable from this prior analysis and those presented
in Sections 3.1 and 3.2 is given in Section 5.1.

4 Recovery results using a tree-based stable point analysis

Our second analysis, which broadly follows the approach used to analyze IHT in [18], considers the stable
points of ITP, a concept which can be viewed as a generalization of the notion of a fixed point to accommodate
variable stepsize schemes, see [18, Section 3.1].

Definition 4.1 (Stable points of generic ITP) Given α > 0 and an index set Γ ∈ Tk, we say x̄ ∈ RN
is an α-stable point of generic ITP on Γ if supp(x̄) ⊆ Γ and{

AT (b−Ax̄)
}

Γ
= 0 and (4.32)

‖x̄Γ\Ω‖ ≥ α‖ATΩ\Γ(b−Ax̄)‖ ∀ Ω ∈ Tk. (4.33)

For brevity’s sake, we will often drop the ‘of generic ITP’ label, and at times we will also drop the
reference to the support set Γ. We will be interested in values of α that lower bound the stepsize αm of
generic ITP.

4.1 Results for ITP

First considering ITP with constant stepsize α, our approach is two-stage: on the one hand, we give conditions
guaranteeing convergence of ITP to some stable point. Meanwhile, by analysing a necessary condition for
the existence of a stable point on a given support (which we refer to as the stable point condition), we give
conditions guaranteeing that all stable points are ‘close’ to the original signal. Thus, if both conditions are
satisfied, we ensure recovery of the original signal.

We will require the following assumption for the deterministic results given in this section.

4Elementary calculus shows that (3.31) only has a solution for ρ below approximately 0.02407 for d = 2 (binary trees).
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Assumption 2 The columns of A are in 2k-general position, namely any collection of 2k of its columns are
linearly independent.

Assumption 2 is a typical (weak) assumption in compressed sensing, and which guarantees a unique

solution to Problem 1. We denote by A†Γ the Moore-Penrose pseudoinverse (ATΓAΓ)−1ATΓ , which is well-
defined under Assumption 2. We next state a necessary condition for a stable point on a given support Γ in
terms of only x∗, A and e and their restrictions to certain support sets.

We next give a deterministic condition guaranteeing convergence to some α-stable point in terms of the
tree-based RIP.

Theorem 4.2 (ITP convergence) Consider Problem 2. Suppose that Assumption 2 holds, and suppose
that the stepsize in ITP satisfies

α <
1

1 + TU2k
, (4.34)

where TU is defined in (3.1). Then ITP with stepsize α converges to an α-stable point x̄ of generic ITP.

We next state the stable point condition, that is, a necessary condition for the existence of a stable point
on a given support. It will help to first define Λ ∈ Tk to be the support of the original signal, namely

Λ := supp(x∗), (4.35)

so that |Λ| = k.

Theorem 4.3 (Stable point condition) Consider Problem 2. Suppose Assumption 2 holds and suppose
there exists an α-stable point on some Γ such that Γ 6= Λ. Then∥∥∥A†ΓAΛ\Γx

∗
Λ\Γ

∥∥∥+
∥∥∥A†Γe∥∥∥ ≥ α{∥∥∥ATΛ\Γ(I −AΓA

†
Γ)AΛ\Γx

∗
Λ\Γ

∥∥∥− ∥∥∥ATΛ\Γ(I −AΓA
†
Γ)e
∥∥∥} , (4.36)

where Λ is defined in (4.35).

Proof: See Appendix B.1. 2

While it would be possible to analyse the stable point condition using the tree-based RIP, we take a different
approach. The stable point condition is especially amenable to probabilistic analysis for Gaussian matri-
ces under the average-case (but realistic) assumption that the original signal and measurement matrix are
statistically independent.

Assumption 3 The original signal x∗ and the measurement matrix A are statistically independent.

The crucial independence assumption will allow us to obtain better quantitative results than could be
achieved through the purely worst-case RIP-based analysis of Section 3. However, it is worth noting that
independence is the only average-case assumption we invoke: we assume nothing further about the coefficient
values of x∗. In keeping with the spirit of average-case analysis, we also assume that the noise is Gaussian
and independent of both A and x∗, which we formalize as follows.

Assumption 4 The noise vector e has i.i.d. Gaussian entries ei ∼ N(0, σ2/n), independently of A and x∗.

Note that, under Assumption 4, IE‖e‖2 = σ2, so that ‖e‖ ≈ σ.
Assumption 2 is satisfied with probability 1 by a Gaussian matrix, see [18, Section 4.1], and so may now

be replaced with Assumption 1.
Under Assumptions 1, 3 and 4, each of the terms in (4.36), viewed as a Rayleigh quotient over ‖xΛ\Γ‖2, is

distributed according to either the χ2 or the F distribution. We write χ2
s for the (univariate) χ2-distribution

with s ≥ 1 degrees of freedom. Furthermore, if P ∼ 1
sχ

2
s and Q ∼ 1

tχ
2
t are independent random variables,

we say that P/Q follows the F-distribution, and we write P/Q ∼ F(s, t). The following lemma, which was
proved in [18], gives the precise distributions.

Lemma 4.4 (Distribution results for the stable point condition [18, Lemma 4.4]) Suppose Assump-
tions 1, 3 and 4 hold, and let Γ be an index set of cardinality k, where k < n. Then

‖A†ΓAΛ\ΓxΛ\Γ‖2

‖xΛ\Γ‖2
= FΓ, where FΓ ∼

k

n− k + 1
F(k, n− k + 1); (4.37)
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‖ATΛ\Γ(I −AΓA
†
Γ)AΛ\ΓxΛ\Γ‖2

‖xΛ\Γ‖2
≥
(
n− k
n

)2

·R2
Γ, where RΓ ∼

1

n− k
χ2
n−k; (4.38)

‖A†Γe‖ ≤ σ ·
√
GΓ, where GΓ ∼

k

n− k + 1
F(k, n− k + 1); (4.39)

‖ATΛ\Γ(I −AΓA
†
Γ)e‖ ≤ σ

√
k(n− k)

n2
· (SΓ)(TΓ), where SΓ ∼

1

n− k
χ2
n−k, TΓ ∼

1

k
χ2
k. (4.40)

Recalling the stable point condition, we wish to show that all stable points are ‘close’ to the original
signal, which can be achieved by bounding each of the constituent terms over all permissible support sets.
We can make an analogy with the tree-based RIP, where upper bounds on tree-based RIP constants are
obtained in the simplified porportional-growth asymptotic by union bounding the tail probabilities of extreme
singular values of submatrices of A corresponding to permissible support sets. Similarly, large deviation
bounds over |Tk| instances of χ2 and F distributed random variables can be derived in the same asymptotic
framework. One can view the resulting bounds as a kind of ‘independent RIP’, where the assumption of
independence between the measurement matrix and the original signal allows the tightening of bounds on
Rayleigh quotients. Such an analysis is only possible if matrix-vector independence can be assumed, which
is the case for the stable point condition (4.36). We define three tail bound functions.

Definition 4.5 (χ2 tail bounds) Let ρ ∈ (0, 1) and λ ∈ (0, 1]. Let T IU(ρ, λ) be the unique solution to

ν − ln(1 + ν) =
2dρ ·H(d−1)

λ
for ν > 0, (4.41)

and let T IL(ρ, λ) be the unique solution to

−ν − ln(1− ν) =
2dρ ·H(d−1)

λ
for ν ∈ (0, 1), (4.42)

where H(·) is defined in (3.15).

That T IU is well-defined follows since the left-hand side of (4.41) is zero at ν = 0, tends to infinity as
ν →∞, and is strictly increasing on ν > 0. Similarly, T IL is well-defined since the left-hand side of (4.42)
is zero at ν = 0, tends to infinity as ν → 1, and is strictly increasing on ν ∈ (0, 1).

Definition 4.6 (F tail bound) Let ρ ∈ (0, 1/2]. Let T IF(ρ) be the unique solution in f to

ln(1 + f)− ρ ln f = 2dρ ·H(d−1) +H(ρ) for f >
ρ

1− ρ
, (4.43)

where H(·) is defined in (3.15).

That T IF is well-defined follows since the left-hand side of (4.43) is equal to H(ρ) at f = ρ/(1 − ρ),
tends to infinity as f →∞, and is strictly increasing on f > ρ/(1− ρ).

The bounds given in Definitions 4.5 and 4.6 are related to those given in the context of standard sparsity
in [18, Definitions 4.4 and 4.5], and their intuition is as follows. The expressions on the left-hand sides of
(4.41), (4.42) and (4.43) capture the rate of exponential decay of the χ2 and F distributions, and these
expressions are identical to the corresponding expressions in [18]. The difference lies in the expressions on
the right-hand side, which capture the effect of the union bound over all permissible support sets. As was
observed for the bounds on tree-based RIP in Section 3, the number of permissible support sets in the tree-
based setting is given by (3.14), which has no dependence upon the ambient dimension N , which is why the
expressions on the right-hand sides of (4.41), (4.42) and (4.43) depend only upon ρ (for a given tree order
d).

Lemma 4.7 (Tree-based large deviations result for χ2) Let l ∈ {1, . . . , n} and let the random vari-

ables Xi
l ∼

1

l
χ2
l for all i ∈ Sn, where |Sn| = T (k), and let ε > 0. In the simplified proportional growth

asymptotic, let l/n→ λ ∈ (0, 1]. Then

P
{
∪i∈Sn [Xi

l ≥ 1 + T IU(ρ, λ) + ε]
}
→ 0 (4.44)

and
P
{
∪i∈Sn [Xi

l ≤ 1− T IL(ρ, λ)− ε]
}
→ 0, (4.45)

exponentially in n, where T IU(ρ, λ) and T IL(ρ, λ) are defined in (4.41) and (4.42) respectively.
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Lemma 4.8 (Tree-based large deviations results for F ) Let the random variables Xi
n ∼ k

n−k+1 F(k, n−
k + 1) for all i ∈ Sn, where |Sn| = T (k), and let ε > 0. In the simplified proportional growth asymptotic,

P
{
∪i∈Sn [Xi

n ≥ T IF(ρ) + ε]
}
→ 0, (4.46)

exponentially in n, where T IF(ρ) is defined in (4.43).

We define oversampling thresholds for ITP algorithms in terms of the above tail bounds.

Definition 4.9 (Stable point recovery oversampling threshold for ITP) Define ρ̂ITPSP to be the unique
solution to √

T IF(ρ)

(1− ρ) [1− T IL(ρ, 1− ρ)]
=

1

1 + T U(2ρ)
for ρ ∈ (0, 1/2], (4.47)

where T IF is defined in (4.43), T IL is defined in (4.42) and T U is defined in Definition 3.6.

The oversampling threshold (4.47) is a counterpart of the phase transitions given in [43, Section 5.2] for
IHT algorithms, with the only changes being the switch to tree-based tail bounds and the disappearance of
the δ variable. A proof that (4.47) admits a unique solution proceeds analogously to the one given for the
counterpart phase transitions in [43, Section 5.2]. Next, we define a function ξITPαSP (ρ) which will represent
a stability factor in our results, bounding the approximation error of the output of ITP as a multiple of the
noise level σ.

Definition 4.10 (Stability factor for ITP) Consider Problem 2. Given ρ ∈ (0, 1/2] and α > 0, provided

ρ < ρ̂ITPSP , (4.48)

define

a(ρ) :=

√
T IF(ρ) + α

√
ρ(1− ρ)[1 + T IU(ρ, 1− ρ)][1 + T IU(ρ, ρ)]

α(1− ρ)[1− T IL(ρ, 1− ρ)]−
√
T IF(ρ)

, (4.49)

and

ξITPαSP (ρ) :=

√
T IF(ρ) [1 + a(ρ)]

2
+ [a(ρ)]

2
, (4.50)

where T IF is defined in (4.43), and where T IU and T IL are defined in (4.41) and (4.42) respectively.

Note that (4.48) ensures that the denominator in (4.49) is strictly positive and that a(ρ) is therefore
well-defined. We proceed to our recovery result for constant stepsize ITP.

Theorem 4.11 (Stable point recovery for ITP) Consider Problem 2 and suppose Assumptions 1, 3
and 4 hold. If (4.48) holds and the stepsize α satisfies√

T IF(ρ)

(1− ρ) [1− T IL(ρ, 1− ρ)]
< α <

1

1 + T U(2ρ)
, (4.51)

then, in the simplified proportional-growth asymptotic5, ITP with stepsize α converges to x̄ such that

‖x̄− x∗‖ ≤ ξITPαSP (ρ) · σ, (4.52)

with probability tending to 1 exponentially in n.

Proof: See Appendix B. 2

In the special case of Problem 1, the same oversampling threshold guarantees exact recovery of the un-
derlying signal x∗.

Corollary 4.12 (Stable point recovery for ITP: noiseless case) Consider Problem 1. Suppose As-
sumptions 1 and 3 hold, suppose that (4.48) holds, and suppose that α satisfies (4.51). Then, in the sim-
plified proportional-growth asymptotic, ITP with stepsize α converges to x∗ with probability tending to 1
exponentially in n.

Proof: See Appendix B. 2

5In other words, we consider instances of k-tree sparse vectors x∗ and Gaussian random variables A and e for a sequence
of triples (k, n,N) where n → ∞, where n is the number of measurements, N , the signal dimension and k, the sparsity of the
underlying signal.
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4.1.1 Results for NITP

We now turn our attention to NITP, and define the following oversampling threshold and stability factor in
this case.

Definition 4.13 (Stable point recovery oversampling threshold for ITP) Define ρ̂NITPκSP to be the
unique solution to √

T IF(ρ)

(1− ρ) [1− T IL(ρ, 1− ρ)]
=

1

κ[1 + T U(2ρ)]
for ρ ∈ (0, 1/2], (4.53)

where T IF is defined in (4.43), T IL is defined in (4.42) and T U is defined in Definition 3.6.

A proof that (4.53) admits a unique solution proceeds analogously to the one given for the counterpart
phase transitions in [43, Section 5.2]. We define the following stability factor for NITP.

Definition 4.14 (Stability factor for NITP) Consider Problem 1. Given ρ ∈ (0, 1/2], provided

ρ < ρ̂NITPκSP , (4.54)

define

a(ρ) :=

√
T IF(ρ) + {κ[1 + T U(2ρ)]}−1

√
ρ(1− ρ)[1 + T IU(ρ, 1− ρ)][1 + T IU(ρ, ρ)]

(1− ρ){κ[1 + T U(2ρ)]}−1[1− T IL(ρ, 1− ρ)]−
√
T IF(ρ)

, (4.55)

and

ξNITPκSP (ρ) :=

√
T IF(ρ) [1 + a(ρ)]

2
+ [a(ρ)]

2
, (4.56)

where T IF is defined in (4.43), where T IU and T IL are defined in (4.41) and (4.42) respectively, and
where T U is defined in Definition 3.7.

Theorem 4.15 (Stable point recovery for NITP) Consider Problem 2, suppose Assumptions 1, 3 and 4
hold, and suppose (4.54) holds. Then, in the simplified proportional-growth asymptotic, NITP with shrinkage
parameter κ converges to x̄ such that

‖x̄− x∗‖ ≤ ξNITPκSP (ρ) · σ, (4.57)

with probability tending to 1 exponentially in n.

Proof: See Appendix B. 2

In the case of Problem 1, Theorem 4.15 also simplifies to an exact recovery result.

Corollary 4.16 (Stable point recovery for NITP: noiseless case) Consider Problem 1. Suppose As-
sumptions 1 and 3 hold and suppose that (4.54) holds. Then, in the simplified proportional-growth asymptotic,
NITP with shrinkage parameter κ converges to x∗ with probability tending to 1 exponentially in n.

Proof: See Appendix B. 2

5 Discussion of recovery results

5.1 Tree-based RIP recovery results

Noiseless case. The oversampling thresholds for ITP and NITP given by Definition 3.10 and Corollary 3.9
are displayed in Figure 2(a) for different tree orders d. For binary trees, for example, we have ρ̂ITPα̂RIP ≈ 0.00875

for ITP and ρ̂NITPκRIP ≈ 0.00146 for NITP (taking κ = 1.1 for the shrinkage parameter in NITP). In both
cases, exact recovery in the noiseless case is asymptotically guaranteed provided the limiting value of the
ratio ρ is less than the given threshold. We see a measured deterioration in the results for higher tree orders:
the corresponding thresholds for quad-trees (d = 4) – which arise in image analysis using 2D wavelets – are
0.00705 and 0.00123 for ITP and NITP respectively. Figure 2(b) shows the inverse of the oversampling ratio,
which indicates the number of measurements required by the analysis as a multiple of the sparsity. We find,
for binary trees, that n ≥ 115k measurements guarantees recovery by ITP, while n ≥ 683k measurements
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Figure 2: (a) Critical ρ-values for different tree orders from tree-based RIP analysis: ITP – unbroken; NITP
– dashed. (b) Corresponding oversampling factors (reciprocals of ρ̂).

guarantees recovery by NITP. Provided the oversampling thresholds are respected, convergence to the original
signal is guaranteed at a linear rate. The quantities µITPα̂RIP (ρ) and µNITP1.1

RIP (ρ) represent guaranteed bounds
on the convergence rate for each variant.

While in the present paper we have dispensed with the undersampling ratio δ = n/N , we may also frame
our results in the (δ, ρ) asymptotic in order to make a comparison with analogous results derived in the
non-tree-based setting for IHT based upon the standard notion of RIP [43]. Since there is no dependence
upon δ in our case, the phase transitions we obtain are simply horizontal lines in the (δ, ρ)-plane. Exact
recovery phase transitions for binary trees are displayed in Figure 3 alongside the phase transitions derived
in [18]: recovery is guaranteed asymptotically beneath the respective curves. We observe that the switch to
the tree-based setting leads to significantly improved results, especially for small δ.
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Figure 3: (a) Phase transitions from RIP analysis in the (δ, ρ) framework for binary trees (ITP – unbroken;
NITP – dashed) and non-tree-based (IHT – dash-dot; NIHT – dotted). (b) Corresponding inverses of the
phase transition.

Comparison with prior work Analogous oversampling ratios can be explicitly obtained in the case
of binary trees using the prior analysis in [13]. We observe that the oversampling thresholds given by
Definition 3.10 and Corollary 3.9 represent a scale factor improvement of around 100 over those obtainable
using the analysis in [13]. The precise thresholds for binary trees are given in Table 1 for comparison, along
with the scale factor improvement. For the prior analysis, the optimal stepsize for ITP is α := 1, and the
parameter κ is again taken to be 1.1. The dramatic improvement in oversampling thresholds is due to the
tightening of the tree-based RIP bounds in Definition 3.6 over those in Definition 3.12. This tightening is
achieved through an asymmetric treatment of the tree-based RIP accompanied by a tighter large deviations
analysis based on the PDF of the extreme singular values of the submatrices of Gaussian matrices, as opposed
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Current paper Analysis in [13] Factor
ρ ρ−1 ρ ρ−1 improvement

ITP 8.75× 10−3 115 1.24× 10−4 8068 70
NITP 1.46× 10−3 683 1.25× 10−5 79705 116

Table 1: Comparison of oversampling thresholds obtained from the current analysis and the prior analysis
in [13], in the case of binary trees.

to the more generic sphere-covering argument relied upon in [13].
Extension to noise. In the case where measurements are contaminated by noise, exact recovery of

the original signal is an unrealistic aim. However, provided the limiting value of the ratio ρ falls below
the respective oversampling threshold, Theorem 3.8 gives bounds on the limiting approximation error. More
precisely, the results state that the limiting approximation error of the iterates of ITP/NITP is asymptotically
bounded by some known stability factor multiplied by the noise level σ. However, neither result necessarily
implies convergence of the algorithm in the case of noise. The Figure 4 plots the noise stability factor
ξ(ρ)/[1 − µ(ρ)] for binary trees, for each of the two stepsize schemes considered (κ = 1.1 for NITP). In
keeping with [6], [8] and [18], we observe that the stability factor tends to infinity as the transition point
is reached, i.e. ξ(ρ)/[1 − µ(ρ)] → ∞ as ρ → ρ̂. For both ITP and NITP, given any value of ρ for which
the stability factors derived in this paper are defined, they are always lower than the corresponding stability
factors derived from analysis of IHT based upon the standard RIP [26]; see [43, Section 2.4] for a comparison.
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Figure 4: Plot of the stability factor ξ(ρ)/[1− µ(ρ)] from tree-based RIP analysis for binary trees: (a) ITP;
(b) NITP.

5.2 Recovery results from the tree-based stable point analysis

Noiseless case. The oversampling thresholds for ITP and NITP defined in Corollaries 4.12 and 4.16 are
displayed in Figure 5(a) for different tree orders d. For binary trees, we have ρ̂ITPαRIP ≈ 0.0202 for ITP and

ρ̂NITP 1.1

RIP ≈ 0.0184 for NITP, and the corresponding thresholds for quad-trees (d = 4) are 0.0147 and 0.0134
respectively. Figure 5(b) shows the inverse of the oversampling ratio: we find, for binary trees, that n ≥ 50k
measurements guarantees recovery by ITP, while n ≥ 55k measurements guarantees recovery by NITP. The
same exact recovery thresholds for binary trees are presented in the form of phase transitions in the (δ, ρ)
asymptotic in Figure 6, alongside the phase transitions for IHT/NIHT derived in [18]. Again, we observe
improved results by switching to the tree-based setting, especially for small δ.

Comparing the oversampling thresholds derived from the stable point analysis (Figure 5) with those
derived from tree-based RIP analysis (Figure 2), we observe a significant quantitative improvement for both
algorithm variants, by over a factor of 10 for NITP in fact for all tree orders under consideration. We have
obtained improved oversampling thresholds by exploiting average-case assumptions, and we should point
out the difference between the results in Sections 5.1 and 5.2. The tree-based RIP results are worst-case
in nature: given a sequence of randomly generated Gaussian matrices, it is asymptotically guaranteed that
ITP/NITP will in fact recover an accurate approximation to any k-tree sparse signal vector. On the other
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Figure 5: (a) Critical ρ-values for different tree orders from stable point analysis: ITP – unbroken; NITP –
dashed. (b) Corresponding oversampling factors (reciprocals of ρ̂).
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Figure 6: (a) Phase transitions from stable point analysis in the (δ, ρ) framework for binary trees (ITP –
unbroken; NITP – dashed) and non-tree-based (IHT – dash-dot; NIHT – dotted). (b) Corresponding inverses
of the phase transition.

hand, the results derived from our stable point analysis have a more average-case flavour: given a sequence
of randomly generated Gaussian measurement matrices along with a sequence of signal and noise vectors
which are both independent of the measurement matrix, recovery is asymptotically guaranteed in this sense.
It is not surprising that our average-case framework leads to an improvement over tree-based RIP since the
assumption of independence between signal and measurement matrix rules out the practically unlikely case
in which one chooses the very worst possible signal for a given measurement matrix. For a comparison of
phase transitions derived from both stable point and RIP analysis in the context of IHT and simple sparsity,
we refer the reader to [18, Section 6].

Extension to noise. Below the same oversampling thresholds, Theorems 4.11 and 4.15 go further than
the tree-based RIP analysis in proving convergence of ITP/NITP to a limit point — whose approximation
error is asymptotically bounded by some known stability factor multiplied by the noise level σ. Figure 7
plots the noise stability factor ξ(ρ) for binary trees, for each of the two stepsize schemes considered (κ = 1.1
for NITP). For both ITP and NITP, given any value of ρ for which the stability factors derived in this paper
are defined, they are always lower than the corresponding stability factors derived from analysis of IHT
based upon the standard RIP [26]; see [43, Section 2.4] for a comparison.

Comparing Figure 7 with Figure 4, we also observe a significant quantitative improvement in the stability
factors for both algorithm variants compared with those achieved by means of tree-based RIP, in the case
of binary trees. It should be pointed out that we have obtained improved stability results by imposing
additional restrictions upon the noise, namely that the noise is Gaussian distributed and independent of
the signal and measurement matrix. This assumption is in keeping with our aim of exploiting average-case
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assumptions. Our analysis could, however, be altered to deal with the case of non-independent noise by
making more use of the RIP, though this would lead to larger stability constants.
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Figure 7: Plot of the stability factor ξ(ρ) from stable point analysis for binary trees: (a) ITP; (b) NITP.

5.3 Extension to tree compressible signals

While we have assumed so far in this paper that signals are exactly k-tree sparse, it is more realistic to
expect that signals are tree compressible, meaning that they are well approximated by a k-tree sparse vector.
An important consideration for any compressed sensing recovery analysis is, therefore, whether it can be
extended to the tree compressible case. From the point of view of worst-case analysis, a difference emerges
in this respect between standard and tree-based compressed sensing. In the case of standard compressed
sensing, the extension to compressible signals can be achieved using the RIP, which can be used to bound
the amplification factor of the signal tail [40]. However, it was argued in [3] that the RIP is not sufficient
to control this amplification factor for more general structured sparsity models (including the tree-based
model). This deficit was partially addressed by the introduction of the Restricted Amplification Property
(RAmP), and the extension to model-compressible signals was established provided the sparsity model has
a certain ‘nested’ property [3], which unfortunately is not the case for the rooted tree model.

On the other hand, the stable point approach in which we consider independent Gaussian noise is much
more amenable to the analysis of the tree-compressible case. In [43, Chapter 7], the main results of the
present paper are extended to the tree-compressible case. More precisely, the assumption that x∗ is k-tree
sparse is relaxed, and x∗k is defined to be the closest k-tree sparse approximation to x∗, namely x∗k := Pk(x∗).
Defining Λk to be the support of this optimal tree-sparse approximation, that is Λk := supp(x∗k), a measure
of unrecoverable energy, Σ, is defined to be

Σ := σ + ‖x∗Λk‖,

which represents the combined inaccuracy due to both measurement noise and signal model violation. It is
shown in [43, Theorems 7.23 and 7.29] that, beneath the same oversampling thresholds given in Theorems 4.11
and 4.15 of the present paper, the approximation error of the output of ITP/NITP amplifies the unrecoverable
energy by no more than some (different) stability factor. See [43, Chapter 7] for an explicit quantification
of the stability factor in this case.

The observation that controlling stability to noise in tree-based compressed sensing is alleviated by
switching to average-case assumptions is not new, see for example [19, 33, 31].

6 Concluding remarks and future directions

We have introduced a simplified proportional-growth asymptotic framework, and used it to quantify recovery
guarantees for ITP algorithms. Recovery guarantees in terms of tree-based RIP have also been obtained for
tree-based CoSaMP [3], while recovery guarantees based on the standard notion of RIP for other greedy algo-
rithms including Conjugate Gradient Iterative Hard Thresholding [9], Subspace Pursuit [20] and Orthogonal
Matching Pursuit [27] could also be translated into the tree-based framework. Our asymptotic framework
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could equally well be used to quantify the existing RIP-based recovery guarantees for these algorithms and
for Gaussian matrices.

Our focus in this paper has been on the tree-based model, but other variants of the model-based com-
pressed sensing paradigm are possible, including block sparsity [3]. Many of the arguments we have presented
for the tree-based model would apply equally to other union-of-subspaces model. We leave the extension of
our analysis to other models as future work.

The calculation of an exact tree projection is computationally burdensome, and the more recently pro-
posed approximate ITP algorithm [32] is attractive in practice. An interesting direction for future work is
to extend our results by obtaining quantified oversampling thresholds for approximate ITP algorithms.

A Proofs for the tree-based RIP analysis

We begin with a brief roadmap of the proofs found in the following appendices. The current appendix gives
proofs for the tree-based RIP analysis, and Appendix B gives proofs for the stable point analysis. In both
cases, we first obtain recovery conditions for deterministic matrices (in Sections A.1 and B.1 respectively). We
then perform a probabilistic analysis of these conditions for Gaussian matrices in the simplified proportional-
growth asymptotic (in Sections A.2 and B.2 respectively). In both cases, the analysis for Gaussian matrices
relies on large deviations results for certain quantities related to Gaussian matrices (including bounds on
tree-based RIP constants). These large deviations results, which extend to the tree-based setting those given
originally in [6, 18], are stated and proved in Appendix C.

A.1 Deterministic recovery conditions

The following lemma gives some further consequences of the tree-based RIP.

Lemma A.1 (Consequences of the tree-based RIP) Given some positive integer s, suppose that A ∈
Rn×N has lower and upper tree-based RIP constants TLs and TUs respectively, as defined in (3.1). Let
Ω ∈ Ts, and let Ω = Ω1 ∪ Ω2 where |Ω1| = s1, |Ω2| = s2 and s = s1 + s2. Then

‖ATΩy‖ ≤
√

1 + TUs‖y‖ for all y ∈ Rn; (A.58)

(1− TLs)‖x‖ ≤ ‖ATΩAΩx‖ ≤ (1 + TUs)‖x‖ for all x ∈ Rs; (A.59)

1

1 + TUs
‖x‖ ≤ ‖(ATΩAΩ)−1x‖ ≤ 1

1− TLs
‖x‖ for all x ∈ Rs; (A.60)

‖A†Ωy‖ ≤
1√

1− TLs
‖y‖ for all y ∈ Rn, provided A†Ω is well-defined; (A.61)

‖ATΩ1
AΩ2z‖ ≤

1

2
(TLs + TUs)‖z‖ for all z ∈ Rs2 ; (A.62)

‖(I − ωATΩAΩ)x‖ ≤ max{ω(1 + TUs)− 1, 1− ω(1− TLs)}‖x‖ for all x ∈ Rs and all ω > 0. (A.63)

Proof: All the above results were proved for the standard notion of RIP in [7, Lemma 15]. The results
extend trivially by restricting all support sets to rooted trees. 2

Next, by largely following the analysis in [26], we use the tree-based RIP to obtain a result for generic
ITP with bounded stepsize.

Lemma A.2 (Iteration invariant for bounded stepsize) Consider Problem 2. Let the stepsizes of generic
ITP satisfy

α ≤ αm ≤ α (A.64)

for all m ≥ 0. Then

‖xm+1 − x∗‖ ≤
√

3 max{α(1 + TU3k)− 1, 1− α(1− TL3k)}‖xm − x∗‖+ α
√

3(1 + TU2k)‖e‖. (A.65)

Proof: Let us write ym := xm + αmAT (b−Axm), which can be rearranged to give

ym = xm + αmAT (Ax∗ + e−Axm) = x∗ + (I − αmATA)(xm − x∗) + αmAT e. (A.66)
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Let Γm = supp(xm), let Γm+1 = supp(xm+1) and let us further define

Ω = Λ ∪ Γm ∪ Γm+1, (A.67)

where Λ is defined in (4.35). By (2.4), we have

‖ymΛ ‖2 ≤ ‖ymΓm+1‖2,

which cancels to give
‖ymΛ\Γm+1‖2 ≤ ‖ymΓm+1\Λ‖

2. (A.68)

Substituting (A.66) into (A.68) gives∥∥∥{x∗ + (I − αmATA)(xm − x∗) + αmAT e
}

Λ\Γm+1

∥∥∥
≤
∥∥∥{x∗ + (I − αmATA)(xm − x∗) + αmAT e

}
Γm+1\Λ

∥∥∥ ,
and the triangle inequality, along with x∗Γm+1\Λ = 0, implies∥∥∥x∗Λ\Γm+1

∥∥∥− ∥∥∥{(I − αmATA)(xm − x∗) + αmAT e
}

Λ\Γm+1

∥∥∥
≤
∥∥∥{(I − αmATA)(xm − x∗) + αmAT e

}
Γm+1\Λ

∥∥∥ . (A.69)

The sets Λ \ Γm+1 and Γm+1 \ Λ are disjoint, and we may therefore apply the Cauchy-Schwarz inequality,
namely (a+ b)2 ≤

√
2(a2 + b2), to (A.69), yielding∥∥∥x∗Λ\Γm+1

∥∥∥ ≤ √2
∥∥{(I − αmATA)(xm − x∗) + αmAT e

}
Λ∪Γm+1

∥∥ ,
from which a further application of the triangle inequality and (A.67) leads us to deduce∥∥∥x∗Λ\Γm+1

∥∥∥ ≤ √2
{∥∥(I − αmATΩAΩ)(xm − x∗)Ω

∥∥+ αm
∥∥ATΛ∪Γm+1e

∥∥} . (A.70)

Meanwhile, splitting on Γm+1 and Λ \ Γm+1, and using the definition of Γm+1 = supp(xm+1),

‖xm+1 − x∗‖2 =
∥∥(xm+1 − x∗)Γm+1

∥∥2
+
∥∥(xm+1 − x∗)Λ\Γm+1

∥∥2

=
∥∥{(I − αmATA)(xm − x∗) + αmAT e

}
Γm+1

∥∥2
+
∥∥∥x∗Λ\Γm+1

∥∥∥2

,

where the second inequality follows from (A.66). We then apply the triangle inequality and (A.67) to deduce

‖xm+1 − x∗‖2 ≤
{∥∥{(I − αmATA)(xm − x∗)

}
Γm+1

∥∥+
∥∥{αmAT e}

Γm+1

∥∥}2
+
∥∥∥x∗Λ\Γm+1

∥∥∥2

≤
{∥∥(I − αmATΩAΩ)(xm − x∗)Ω

∥∥+ αm
∥∥ATΛ∪Γm+1e

∥∥}2
+
∥∥∥x∗Λ\Γm+1

∥∥∥2

. (A.71)

Substituting (A.70) into (A.71) then gives

‖xm+1 − x∗‖2 ≤ 3
{∥∥(I − αmATΩAΩ)(xm − x∗)Ω

∥∥+ αm
∥∥ATΛ∪Γm+1e

∥∥}2
. (A.72)

Since |Ω| ≤ 3k and |Λ∪Γm+1| ≤ 2k, the result now follows by applying (A.58), (A.63) and (A.64) to (A.72),
and taking square roots. 2

Both the ITP and NITP stepsize schemes have bounded stepsizes: trivially in the case of ITP, and bounds
for NITP are given next.

Lemma A.3 (NITP stepsize bounds) Let αm be chosen according to Algorithm 2.2. Then

1

κ(1 + TU2k)
≤ αm ≤ 1

1− TLk
. (A.73)
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Proof of Lemma A.3: If (2.6) is accepted, then αm ≤ 1/(1−TLk) by (3.8). On the other hand, if (2.6)
is rejected, the backtracking phase can only reduce the stepsize further, which proves the upper bound in
(A.73). To prove the lower bound, we also distinguish two cases. If (2.6) is accepted, then αm ≥ 1/(1+TUk)
by (3.8). Since κ > 1, and since TU2k ≥ TUk by the nonincreasing property of tree-based RIP constants,
the lower bound in (A.73) holds in this case. On the other hand, if (2.6) is rejected, the penultimate stepsize
calculated in the backtracking phase must also have been rejected. Writing α̃m for the penultimate stepsize,
since α̃m was rejected, we have

α̃m ≥ (1− c) ‖x̃
m+1 − xm‖2

‖A(x̃m+1 − xm)‖2
≥ 1− c

1 + TU2k
, (A.74)

where the last step follows from (3.8). But αm = α̃m/[κ(1 − c)], which combines with (A.74) to give the
lower bound in (A.73) in this case also. 2

We may therefore deduce the following results.

Theorem A.4 (Iteration invariant for ITP) Consider Problem 2. Then the iterates of ITP with step-
size α satisfy

‖xm+1 − x∗‖ ≤ µITPα‖xm − x∗‖+ ξITPα‖e‖, (A.75)

where µITPα and ξITPα are defined in (3.10) and (3.11) respectively.

Proof: For ITP with stepsize α, we have α = α and α = α, and the result follows by applying Lemma A.2.
2

Theorem A.5 (Iteration invariant for NITP) Consider Problem 2 and suppose Assumption 2 holds.
Then the iterates of NITP with shrinkage parameter κ satisfy

‖xm+1 − x∗‖ ≤ µNITPκ‖xm − x∗‖+ ξNITPκ‖e‖, (A.76)

where µITPα and ξITPα are defined in (3.12) and (3.13) respectively.

Proof: For a given κ > 1, the stepsize bounds (A.3) apply to NITP, and the result follows by applying
Lemma A.2 with α := 1/(1− Lk) and α := 1/[κ(1 + U2k)]. 2

In order to prove recovery results, we will need the following lemma.

Lemma A.6 Suppose there exist µ ∈ [0, 1) and ξ > 0 such that the sequence of iterates {xm} satisfies, for
each m ≥ 0,

‖xm+1 − x∗‖ ≤ µ‖xm − x∗‖+ ξ‖e‖. (A.77)

Then, for all m ≥ 0,

‖x̄− x∗‖ ≤ µm‖x∗‖+
ξ

1− µ
‖e‖. (A.78)

Proof: We first prove by induction that, for all m ≥ 0,

‖xm − x∗‖ ≤ µm‖x∗‖+ ξ

(
1− µm

1− µ

)
‖e‖. (A.79)

Supposing (A.79) holds for some m ≥ 0, then we may apply (A.77) to (A.79) to deduce

‖xm+1 − x∗‖ ≤ µ
[
µm‖x∗‖+ ξ

(
1−µm
1−µ

)
‖e‖
]

+ ξ‖e‖

= µm+1‖x∗‖+
[
ξ
(

1 + µ−µm+1

1−µ

)]
‖e‖

= µm+1‖x∗‖+ ξ
(

1−µm+1

1−µ

)
‖e‖,

and so (A.79) also holds for m + 1. Since x0 = 0, the result holds trivially for m = 0, and therefore for all
m ≥ 0 by induction. Since µm ∈ (0, 1) for all m ≥ 0, (A.78) now follows. 2

Provided µ < 1, the µm‖x∗‖ term in (A.78) tends to zero, and the expression ξ/(1− µ) may be viewed
as a stability factor, giving a limiting bound on the approximation error as a multiple of the noise level ‖e‖.
We now proceed to the proof of the recovery results for arbitrary matrices.

Proof of Theorem 3.2: The result for ITP follows by combining Theorem A.4 and Lemma A.6. The
result for NITP follows by combining Theorem A.5 and Lemma A.6. 2

Though Theorems 3.2 gives a limiting bound on the approximation error, it does not necessarily imply
convergence of the algorithm. In the simplified noiseless case however, both results can be used to deduce
convergence to x∗ at a linear rate.
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A.2 Analysis for Gaussian matrices

The next two lemmas are needed to enable a translation of Theorem 3.2 for arbitrary matrices into the
asymptotic framework for Gaussian matrices.

Lemma A.7 For some τ < 1, define the set Z := (0, τ)p × (0,∞)q and let F : Z → R be continuously
differentiable on Z. Let A ∈ Rn×N be a Gaussian matrix with tree-based RIP constants TLk, . . . , TLpk and
TUk, . . . , TUqk, and let T L(ρ), . . . , T L(pρ) and T U(ρ), . . . , T U(qρ) be defined as in Definition 3.6. Define
1 to be the vector of all ones, and

z(k, n,N) := [TLk, . . . , TLpk, TUk, . . . , TUqk],

z(ρ) := [T L(ρ), . . . , T L(pρ), T U(ρ), . . . , T U(qρ)].

Suppose, for all t ∈ Z, (∇F [t])i ≥ 0 for all i = 1, . . . , p + q and there exists j ∈ {1, . . . , p} such that
(∇F [t])j > 0. Then, for any ε ∈ (0, 1), in the simplified proportional-growth asymptotic,

P (F [z(k, n,N)] < F [z((1 + ε)ρ)])→ 1 as n→∞, (A.80)

exponentially in n on the draw of A. Also, F [z(ρ)] is strictly increasing in ρ.

Proof: A proof was given in [8, Lemma 12] for the case where T L(·) and T U(·) are replaced by L(δ, ·) and
U(δ, ·), bounds on the standard notion of RIP constants given in [6]. Note first that a function that depends
only upon ρ is a trivial special case of a function that depends upon both δ and ρ. Only two assumptions are
made in the proof concerning the bounds: first that they are indeed upper bounds, and second that L(δ, ρ) is
strictly increasing in ρ and U(δ, ρ) is nondecreasing in ρ. The first condition holds in our case by Lemma 3.7,
and it is straightforward to show that the second property also holds in our case. More precisely, T L(ρ) and
T U(ρ) are both strictly increasing on ρ ∈ (0, 1). It follows that the argument in [8, Lemma 12] extends. 2

Lemma A.8 For some τ < 1, define the set Z := (0, τ)p × (0,∞)q and let F,G,H : Z → R satisfy the
conditions of Lemma A.7. Suppose that

µ(k, n,N) = max
{
F [z(k, n,N)], G[z(k, n,N)]

}
, ξ(k, n,N) = H[z(k, n,N)], (A.81)

and
µ(ρ) = max

{
F [z(ρ)], G[z(ρ)]

}
, ξ(ρ) = H[z(ρ)]. (A.82)

Then µ(ρ) and ξ(ρ) are both strictly increasing in ρ and, for any ε ∈ (0, 1), in the proportional-growth
asymptotic,

P
{
µ(k, n,N) ≥ µ((1 + ε)ρ)

}
→ 0, (A.83)

and
P
{
ξ(k, n,N) ≥ ξ((1 + ε)ρ)

}
→ 0, (A.84)

both exponentially in n. Furthermore, define ρ̂ as the unique solution to µ(ρ) = 1, and suppose that

ρ < (1− ε)ρ̂. (A.85)

Then
µ((1 + ε)ρ) < 1, (A.86)

and, in the simplified proportional-growth asymptotic,

P
{
µ(k, n,N) ≥ 1

}
→ 0, (A.87)

exponentially in n.

Proof: By assumption, we may apply Lemma A.7 to each of F (z), G(z) and H(z), deducing from (A.80)
that

P (F [z(k, n,N)] < F [(1 + ε)ρ)])→ 1 as n→∞, (A.88)

P (G[z(k, n,N)] < G[z((1 + ε)ρ)])→ 1 as n→∞, (A.89)

P (H[z(k, n,N)] < H[z((1 + ε)ρ)])→ 1 as n→∞, (A.90)
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exponentially in n, and that F [z(ρ)], G[z(ρ)] and H[z(ρ)] are each strictly increasing in ρ, from which it
immediately follows that both µ(ρ) and ξ(ρ) are also strictly increasing in ρ. Combining (A.81), (A.82),
(A.89) and (A.90), we have

P
{
µ(k, n,N) ≥ µ((1 + ε)ρ)

}
= P

{
max

{
F [z(k, n,N)], G[z(k, n,N)]

}
≥ max

{
F [z((1 + ε)ρ)], G[z((1 + ε)ρ)]

}}
≤ P

{
F [z(k, n,N)] ≥ F [z((1 + ε)ρ)]

}
+ P

{
G[z(k, n,N)] ≥ G[z((1 + ε)ρ)]

}
→ 0 as n→∞, (A.91)

and therefore (A.83) holds. Meanwhile, combining (A.81), (A.82) and (A.90) immediately yields (A.84).
Now suppose (A.85) holds. Since 1− ε < (1 + ε)−1 for any ε ∈ (0, 1), (A.85) implies that

(1 + ε)ρ < ρ̂, (A.92)

Since µ(ρ) is strictly increasing in ρ, it follows from (A.92) and the definition of ρ̂ that

µ((1 + ε)ρ) < µ(ρ̂) = 1,

which proves (A.86), and from which it also follows that

P
{
µ(k, n,N) ≥ 1

}
≤ P

{
µ(k, n,N) ≥ µ((1 + ε)ρ)

}
,

to which we may apply (A.91) to deduce (A.87). 2

We now proceed to the proofs of the main results.

Proof of Theorem 3.8 for ITP: Select ε ∈ (0, 1), fix τ < 1 and let

z(k, n,N) := [TL3k, TU2k, TU3k] and z(ρ) := [T L(3ρ), T U(2ρ), T U(3ρ)].

Define Z := (0, τ)× (0,∞)2, and define the functions Fα(z), Gα(z), Hα(z) : Z → R as

Fα(z) = Fα(z1, z2, z3) :=
√

3[α(1 + z3)− 1], (A.93)

Gα(z) = Gα(z1, z2, z3) :=
√

3[1− α(1− z1)], (A.94)

Hα(z) = Hα(z1, z2, z3) := α
√

3(1 + z2), (A.95)

noting that
µITPα = max

{
Fα[z(k, n,N)], Gα[z(k, n,N)]

}
, ξITPα = Hα[z(k, n,N)],

where µITPα and ξITPα are defined in (3.10) and (3.11) respectively, and

µITPα(ρ) = max
{
Fα[z(ρ)], Gα[z(ρ)]

}
, ξITPα(ρ) = Hα[z(ρ)],

where µITPα(ρ) and ξITPα(ρ) are defined in (3.25) and (3.26) respectively. Now Fα(z), Gα(z) and Hα(z)
are continuously differentiable and nondecreasing in (z1, z2, z3) ∈ Z, and strictly increasing in z3, z1 and z2

respectively due to α > 0, and therefore each satisfies the conditions of Lemma A.7. We may therefore apply
Lemma A.8, deducing

P
{
µITPα ≥ µITPαRIP ((1 + ε)ρ)

}
→ 0, (A.96)

and
P
{
ξITPα ≥ ξITPαRIP ((1 + ε)ρ)

}
→ 0, (A.97)

exponentially in n, and furthermore that µITPαRIP (ρ) and ξITPαRIP (ρ) are both strictly increasing in ρ, from

which it follows that ρ̂ITPαRIP is unique. Since (3.22) holds, we may also use Lemma A.8 to deduce (3.23), and
furthermore that

P
{
µITPα ≥ 1

}
→ 0, (A.98)

exponentially in n, and we may apply Theorem 3.2 to deduce (3.9) with probability tending to 1 exponen-
tially in n. Since µITPαRIP (ρ) and ξITPαRIP (ρ) are strictly increasing in ρ, (3.24) now follows from (3.9), (A.96)
and (A.97). 2
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Proof of Corollary 3.9 for ITP: Since we consider Problem 1, we have e := 0. Provided (3.22) holds,
we can apply Theorem 3.8 with e := 0, deducing that, for any m ≥ 0,

‖xm − x∗‖ ≤
(
µITPαRIP (δ, (1 + ε)ρ)

)m
‖x∗‖,

where
µITPαRIP ((1 + ε)ρ) < 1,

and so we have convergence to x∗ with convergence rate µITPαRIP ((1 + ε)ρ). 2

Proof of Theorem 3.8 for NITP: Select ε ∈ (0, 1), fix τ < 1 and let

z(k, n,N) := [TLk, TL3k, TU2k, TU3k] and z(ρ) := [T L(ρ), T L(3ρ), T U(2ρ), T U(3ρ)].

Define Z := (0, τ)2 × (0,∞)2, and define the functions Fα(z), Gα(z), Hα(z) : Z → R as

Fκ(z) = Fκ(z1, z2, z3, z4) :=
√

3

[
1 + z4

1− z1
− 1

]
,

Gκ(z) = Gκ(z1, z2, z3, z4) :=
√

3

[
1− 1− z2

κ(1 + z3)

]
,

Hκ(z) = Hκ(z1, z2, z3, z4) :=

√
3(1 + z3)

1− z1
,

noting that
µNITPκ = max

{
Fκ[z(k, n,N)], Gκ[z(k, n,N)]

}
, ξNITPκ = Hκ[z(k, n,N)],

where µNITPκ and ξNITPκ are defined in (3.12) and (3.13) respectively, and

µNITPκRIP (ρ) = max
{
Fκ[z(δ, ρ)], Gκ[z(ρ)]

}
, ξNITPκRIP (ρ) = Hκ[z(ρ)],

where µNITPκRIP (ρ) and ξNITPκRIP (ρ) are defined in (3.27) and (3.28) respectively. Now Fκ(z), Gκ(z) and Hκ(z)
are continuously differentiable and nondecreasing in (z1, z2, z3, z4), and strictly increasing componentwise in
(z1, z4), (z2, z3) and (z1, z3) respectively, and therefore each satisfies the conditions of Lemma A.7. We may
therefore apply Lemma A.8, deducing

P
{
µNITPκ ≥ µNITPκRIP ((1 + ε)ρ)

}
→ 0 (A.99)

and
P
{
ξNITPκ ≥ ξNITPκRIP ((1 + ε)ρ)

}
→ 0, (A.100)

exponentially in n, and furthermore that µNITPκRIP (ρ) and ξNITPκRIP (ρ) are both strictly increasing in ρ, from

which it follows that ρ̂NITPκRIP is unique. Since (3.22) holds, we may also use Lemma A.8 to deduce (3.23),
and furthermore that

P
{
µNITPκ ≥ 1

}
→ 0, (A.101)

exponentially in n, and we may apply Theorem 3.2 to deduce (3.9) with probability tending to 1 exponen-
tially in n. Since µNITPκRIP (ρ) and ξNIHTκRIP (ρ) are strictly increasing in ρ, (3.24) now follows from (3.9), (A.99)
and (A.100). 2

Proof of Corollary 3.9 for NITP: Since we consider Problem 1, we have e := 0. Provided (3.22)
holds, we can apply Theorem 3.8 with e := 0, deducing that, for any m ≥ 0,

‖xm − x∗‖ ≤
(
µNITPκRIP ((1 + ε)ρ)

)m
‖x∗‖,

where
µNIHTκRIP ((1 + ε)ρ) < 1,

and so we have convergence to x∗ with convergence rate µNITPκRIP ((1 + ε)ρ). 2
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B Proofs for the tree-based stable point analysis

B.1 Analysis for deterministic matrices

We will follow the approach first introduced by the present authors in [18], central to which is the concept
of an α-stable point, defined in Definition 4.1.

We will analyse the stable points of generic ITP, and our final goal is to prove quantitative conditions
that guarantee that all stable points of the algorithm are ‘close’ to the original signal x, in the context
of Gaussian matrices. Provided we also have guaranteed convergence to some stable point, we may then
conclude that ITP outputs a good approximation to x. For this reason, the results derived in this section
come in two parts: a necessary condition for there to be a stable point on some support Γ, and conditions
guaranteeing convergence to some stable point for our two stepsize schemes.

B.1.1 A necessary condition for the existence of a stable point

Any α-stable point of generic ITP may also be characterized as a minimum-norm solution on some k-subspace.

Lemma B.1 Suppose Assumption 2 holds and suppose x̄ is an α-stable point of generic ITP on Γ for some
α > 0. Then x̄Γ = A†Γb.

Proof : It follows from (4.32) that ATΓ (b − AΓx̄Γ) = 0 where supp(x̄) ⊆ Γ and |Γ| = k. Under Assump-

tion 2, the pseudoinverse A†Γ is well-defined and we may rearrange to give x̄Γ = A†Γb. 2

While this lemma tells us that any stable point is necessarily a minimum-norm solution on some k-
subspace, the converse may not hold. We next prove Theorem 4.3, which gives a necessary condition for a
stable point on a given support.

Proof of Theorem 4.3: Supposing that x̄ is an α-stable point on Γ, choosing Ω := Λ in (4.33) yields

‖x̄Γ\Λ‖2 ≥ α2‖ATΛ\Γ(b−Ax̄)‖2.

We may now follow the argument of [18, Theorem 3.2] to deduce (4.36). 2

B.1.2 Conditions guaranteeing convergence

In addition to the result of the previous section, in order to show recovery of x∗, we must also show that
ITP converges to an α-stable point. In this section we derive convergence conditions for generic ITP used in
conjunction with the two stepsize schemes introduced in Section 2.2. A sufficient condition for convergence
of generic ITP is given next.

Lemma B.2 (Sufficient condition for convergence) Consider Problem 2. Suppose Assumption 2 holds,
and suppose the iterates of generic ITP satisfy

‖xm+1 − xm‖2 ≤ c
[
Ψ(xm)−Ψ(xm+1)

]
for all m ≥ 0, (B.102)

for some c > 0 which does not depend upon m, where Ψ(·) is defined in (2.2). Assume that there exist
α ≥ α > 0 such that

α ≥ αm ≥ α for all m ≥ 0. (B.103)

Then xm → x̄ as m→∞, where x̄ is an α-stable point of generic ITP.

Proof: We may follow the proof of [18, Lemma 3.5] to deduce that xm → x̄ , where x̄Γ = A†Γb and
x̄ΓC = 0, for some Γ such that |Γ| = k. The proof still holds since all that is assumed about the hard
threshold projection Hk(·) is that it preserves the value of selected coefficients, a property which is also
shared by the tree projection Pk(·) by (2.7). Since Γ = Γm for some m ≥ 0, it follows that, in the case of
ITP, Γ ∈ Tk. Therefore (4.32) holds for x̄.
It remains to establish that x̄ satisfies (4.33). Defining

Γ1 = {i ∈ Γ : x̄i 6= 0}, (B.104)

it follows that Γ1 ⊆ Γm for all m sufficiently large. It follows from (2.7) that, for any Ω ∈ Tk,

‖xm+1
Γm+1‖2 ≥ ‖{xm − αmgm}Ω‖2, for all m ≥ 0.
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and therefore, for all m sufficiently large,

‖xm+1
Γ1
‖2 + ‖xm+1

Γm+1\Γ1
‖2 ≥ ‖xm+1

Ω∩Γ1
‖2 + ‖{xm − αmgm}Ω\Γ1

‖2,

which cancels to
‖xm+1

Γ1\Ω‖
2 + ‖xm+1

Γm+1\Γ1
‖2 ≥ ‖{xm + αmgm}Ω\Γ1

‖2. (B.105)

Furthermore, it follows from (B.104) that

‖xm+1
Γm+1\Γ1

‖2 → 0. (B.106)

By (B.103), there exists a convergent subsequence of stepsizes,

αmr → α̃ ≥ α as r →∞ (B.107)

Passing to the limit in (B.105) on the subsequence mr for which (B.107) holds, we deduce that ‖x̄Γ1\Ω‖ ≥
α‖{AT (b−Ax̄)}Ω\Γ1

‖, from which it follows trivially that

‖x̄Γ\Ω‖ ≥ α‖{AT (b−Ax̄)}Ω\Γ‖. (B.108)

Since (B.108) holds for any Ω ∈ Tk, x̄ satisfies (4.33), and the result is proved. 2

Proof of Theorem 4.2: We may follow the proof of [18, Theorem 3.6], replacing U2k with TU2k, to
deduce that (B.102) holds with c := 2α/[1 − α(1 + TU2k)]. Due to (4.34), (B.103) trivially holds with
α = α = α. Thus Lemma B.2 applies, and the ITP iterates xm converge to an α-stable point. 2

We next obtain a convergence result for NITP. In this case, there is no explicit requirement for a tree-based
RIP condition to be satisfied; however, the tree-based RIP this time appears in the choice of α.

Theorem B.3 (NITP convergence) Suppose Assumption 2 holds. Then NITP with shrinkage parameter
κ converges to a [κ(1 + TU2k)]−1-stable point x̄ of generic ITP.

Proof: By replacing L2k with TL2k, the proof given for [18, Theorem 3.7] holds. 2

B.2 Analysis for Gaussian matrices

In this section, we build upon the results for arbitrary matrices in Section B.1 and obtain quantitative
oversampling thresholds for ITP algorithms of the form ρ < ρ̂ in the case of Gaussian measurement matrices.

B.2.1 Proof for ITP

The present analysis broadly follows the same lines as that in [18], but differs in two respects. First, we
switch to using the tree-based tail bounds defined in Section C. Second, since there is now no dependence
upon δ, we can prove results in the simplified proportional-growth asymptotic (Definition 1.1). The changes
are nontrivial, and therefore we present full proofs of the new results. We begin by defining a support set
partition.

Definition B.4 (Support set partition for ITP) Consider Problem 2 and suppose ρ ∈ (0, 1/2] and α >
0. Given ζ > 0, let us write

a∗(ρ; ζ) := a(ρ) + ζ, (B.109)

let us write {Γi : i ∈ Tk} for the set of all possible support sets which form a rooted tree of cardinality k, and
let us disjointly partition Tk := Θ1

n ∪Θ2
n such that

Θ1
n :=

{
i ∈ Tk : ‖x∗Λ\Γi‖ > σ · a∗(ρ; ζ)

}
and Θ2

n :=
{
i ∈ Tk : ‖x∗Λ\Γi‖ ≤ σ · a

∗(ρ; ζ)
}
, (B.110)

where Λ is defined in (4.35).

The partition in (B.110) has been defined in such a way that, provided (4.48) holds, an analysis of the
stable point condition (4.36) shows that ITP must necessarily converge to some α-stable point on Γi such
that i ∈ Θ2

n, and this is proved in Lemma B.5. On the other hand, it is also possible to use the large
deviations results of Section C to bound the error in approximating x∗ by any α-stable point on Γi such
that i ∈ Θ2

n, which is achieved by Lemma B.6. It follows that, for any α > 0, all α-stable points have
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bounded approximation error. Combining these two results, we have convergence to some α-stable point
with guaranteed approximation error, provided the conditions in each lemma hold; combining the conditions
leads to the oversampling threshold defined in (4.47).

We first show that, asymptotically, there are no α-stable points on any Γi such that i ∈ Θ1
n, and we write

NSPα for this event.

Lemma B.5 Consider Problem 2 and choose ζ > 0. Suppose Assumptions 1, 3 and 4 hold, suppose (4.48)
holds, and suppose that α is chosen to satisfy

α <
1

1 + T U(2ρ)
. (B.111)

Then, in the proportional-growth asymptotic, ITP converges to an α-stable point supported on some Γi such
that i ∈ Θ2, with probability tending to 1 exponentially in n.

Proof : Given (B.111), we may apply Lemma 3.7 with ε sufficiently small to deduce α(1 + TU2k) < 1,
with probability tending to 1 exponentially in n. Under Assumption 1, we may apply Lemma 4.2 and deduce
convergence of ITP to an α-stable point. We now show that this stable point must be supported on Γi such
that i ∈ Θ2. For any Γi such that i ∈ Θ1

n, we have Γi 6= Λ, and we may therefore combine Theorem 4.3 with
Lemma 4.4 to deduce that a necessary condition for there to be an α-stable point on Γi is

‖x∗Λ\Γi‖ ·
√
FΓi + ‖x∗Γi\Λ‖+ σ ·

√
GΓi

≥ α
[(

n−k
n

)
‖x∗Λ\Γi‖ ·RΓi − σ

√
k(n−k)
n2 (SΓi)(TΓi)

]
,

(B.112)

where

FΓi ∼
k

n− k + 1
F (k, n− k + 1); GΓi ∼

k

n− k + 1
F (k, n− k + 1);

RΓi ∼
1

n− k
χ2
n−k; SΓi ∼

1

n− k
χ2
n−k; TΓi ∼

1

k
χ2
k.

We also have, by (B.110),

σ ≤
‖x∗Λ\Γi‖
a∗(ρ; ζ)

(B.113)

for any Γi such that i ∈ Θ1
n. Since Γi 6= Λ, ‖x∗Λ\Γ‖ > 0, and substitution of (B.113) into (B.112), rearrange-

ment and division by ‖x∗Λ\Γi‖ yields

a∗(ρ; ζ)

[
α

(
n− k
n

)
·RΓi −

√
FΓi

]
≤
√
GΓi + α

√
k(n− k)

n2
· SΓi · TΓi .

Consequently,

P(NSPα) = P {∪i∈Θ1
(∃ an α-stable point supported on Γi)}

= P

{ ⋃
i∈Θ1

[
a∗(ρ; ζ)

[
α (1− ρn) ·RΓi −

√
FΓi

]
≤ 1 +

√
GΓi + α

√
ρn(1− ρn)(SΓi)(TΓi)

]}
,(B.114)

(B.115)

where we write ρn for the sequence of values of the ratio k/n. For brevity’s sake, let us define

Φ[ρ, F,G,R, S, T ] := 1 +
√
G+ α

√
ρ(1− ρ)(S)(T )− a∗(ρ; ζ) ·

[
α(1− ρ) ·R−

√
F
]
, (B.116)

so that (B.114) may equivalently be written as

P(NSPα) = P {∪i∈Θ1
(Φ[ρn, a

∗(ρ; ζ), FΓi , GΓi , RΓi , SΓi , TΓi ] ≥ 0)} . (B.117)

Given some ε > 0, we now define

F ∗ = G∗ := T IF(ρ)+ε; R∗ := 1−T IL(ρ, 1−ρ)−ε; S∗ := 1+T IU(ρ, 1−ρ)+ε; T ∗ := 1+T IU(ρ, ρ)+ε,
(B.118)
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Using (B.118), we deduce from (B.117) that

P(NSPα)

≤ P {∪i∈Θ1 (Φ[ρn, FΓi , GΓi , RΓi , SΓi , TΓi ] ≥ Φ[ρn, F
∗, G∗, R∗, S∗, T ∗])} (B.119)

+ P {Φ[ρn, F
∗, G∗, R∗, S∗, T ∗] ≥ Φ[ρ, F ∗, G∗, R∗, S∗, T ∗] + ε} (B.120)

+ P {Φ[ρ, F ∗, G∗, R∗, S∗, T ∗] + ε ≥ 0} , (B.121)

since the event in the right-hand side of (B.117) lies in the union of the three events in (B.119), (B.120) and
(B.121). Now (B.121) is a deterministic event, and a∗(ρ; ζ) has been defined in such a way that, for any
ζ > 0, provided ε is taken sufficiently small, the event has probability 0. This follows from (4.48), (4.49),
B.109, and by the continuity of Φ. The event (B.120) is also deterministic, and by continuity and since
ρn → ρ, it follows that there exists some ñ such that

P {Φ[ρn, F
∗, G∗, R∗, S∗, T ∗] ≥ Φ[ρ, F ∗, G∗, R∗, S∗, T ∗] + ε} = 0 for all n ≥ ñ.

Taking limits as n→∞, the terms (B.120) and (B.121) are zero, leaving only (B.119), and we have

lim
n→∞

P(NSPα)

≤ lim
n→∞

P {∪i∈Θ1
(Φ[ρn, a

∗(ρ; ζ), FΓi , GΓi , RΓi , SΓi , TΓi ] ≥ Φ[ρn, a
∗(ρ; ζ), F ∗, G∗, R∗, S∗, T ∗])}

≤ lim
n→∞

P {∪i∈Θ1
(FΓi ≥ F ∗)}+ lim

n→∞
P {∪i∈Θ1

(GΓi ≥ G∗)}+ lim
n→∞

P {∪i∈Θ1
(RΓi ≤ R∗)}

+ lim
n→∞

P {∪i∈Θ1
(SΓi ≥ S∗)}+ lim

n→∞
P {∪i∈Θ1

(TΓi ≥ T ∗)} , (B.122)

where the last line follows from the monotonicity of Φ with respect to F , G, R, S and T . Since Θ1 ⊆ Tk, we
may apply Lemmas 4.7 and 4.8 to (B.122), and since Θ1 and Θ2 partition Tk, the result follows. 2

Next we show that all α-stable points supported on some Γi ∈ Θ2 have bounded approximation error.

Lemma B.6 Suppose Assumptions 1, 3 and 4 hold, suppose that (4.48) holds, and suppose that α is chosen
to satisfy (B.111). There exists ζ sufficiently small such that, in the proportional-growth asymptotic, any
α-stable point x̄ of ITP on Γi such that i ∈ Θ2 satisfies

‖x̄− x∗‖ ≤ ξ(ρ) · σ, (B.123)

where ξ(ρ) is defined in (4.50).

Proof : Suppose x̄ is a minimum-norm solution on Γ, so that x̄Γ = A†Γb and x̄ΓC = 0. Then, using

A†ΓAΓ = I, we have

(x̄− x∗)Γ = A†Γ(AΓx
∗
Γ +AΓCx

∗
ΓC + e)− x∗Γ

= x∗Γ +A†Γ(AΛ\Γx
∗
Λ\Γ +A(Λ∪Γ)Cx

∗
(Λ∪Γ)C + e)− x∗Γ

= A†Γ(AΛ\Γx
∗
Λ\Γ + e) + x∗Γ − x∗Γ

= A†Γ(AΛ\Γx
∗
Λ\Γ + e), (B.124)

while
(x̄− x∗)ΓC = −x∗ΓC . (B.125)

Combining (B.124) and (B.125) using the triangle inequality, we may bound

‖x̄− x∗‖2 ≤ ‖(x̄− x∗)Γ‖2 + ‖(x̄− x∗)ΓC‖2

= ‖A†Γ(AΛ\Γx
∗
Λ\Γ + e)‖2 + ‖x∗ΓC‖

2

≤
[
‖A†ΓAΛ\Γx

∗
Λ\Γ‖+ ‖A†Γe‖

]2
+ ‖x∗Λ\Γ‖

2 + ‖x∗(Λ∪Γ)C‖
2. (B.126)

We may deduce, by (4.37) of Lemma 4.4,

‖A†ΓAΛ\Γx
∗
Λ\Γ‖

2 = ‖x∗Λ\Γ‖
2 · PΓ, where PΓ ∼

k

n− k + 1
F (k, n− k + 1), (B.127)
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and by (4.39) of Lemma 4.4,

‖A†Γe‖
2 = σ2 ·QΓ, where QΓ ∼

k

n− k + 1
F (k, n− k + 1). (B.128)

Substituting (B.127) and (B.128) into (B.126), we have

‖x̄− x∗‖2 ≤
[
‖x∗Λ\Γ‖ ·

√
PΓ + σ ·

√
QΓ

]2
+ ‖x∗Λ\Γ‖

2, (B.129)

and we may use (B.110) to further deduce

‖x̄− x∗‖2 ≤ σ2
[
a∗(ρ; ζ) ·

√
PΓ +

√
QΓ

]2
+ [a∗(ρ; ζ)]

2 · σ2

= σ2

{[
a∗(ρ; ζ) ·

√
PΓ +

√
QΓ

]2
+ [a∗(ρ; ζ)]

2

}
. (B.130)

For the sake of brevity, let us define

Ψ(P,Q) :=

√(
a∗(ρ; ζ) ·

√
P +

√
Q
)2

+ [a∗(ρ; ζ)]2, (B.131)

so that (B.130) may equivalently be written as

‖x̄− x∗‖ ≤ σ ·Ψ [PΓ, QΓ] . (B.132)

Given ζ > 0, let us define
P ∗ = Q∗ := T IF(ρ) + ζ. (B.133)

Now we use (B.132) to perform a union bound over all Γi such that i ∈ Θ2, writing x̄i for the minimum-norm
solution supported on Γi, giving

P {∃ some Γi such that i ∈ Θ2 and ‖x̄i − x∗‖ ≥ σ ·Ψ[P ∗, Q∗]}

= P

{ ⋃
i∈Θ2

(‖x̄i − x∗‖ ≥ σ ·Ψ[P ∗, Q∗])

}
(B.134)

≤ P

{ ⋃
i∈Θ2

(‖x̄i − x∗‖ ≥ σ ·Ψ[PΓi , QΓi ])

}
(B.135)

+ P

{ ⋃
i∈Θ2

(σ ·Ψ[PΓi , QΓi ] ≥ σ ·Ψ[P ∗, Q∗])

}
, (B.136)

since the event in (B.134) lies in the union of the two events in (B.135) and (B.136). It is an immediate
consequence of (B.130) that the event in (B.135) has probability 0. Taking limits of (B.136) as n→∞, we
have

lim
n→∞

P {∃ some Γi such that i ∈ Θ2 and ‖x̄i − x∗‖ ≥ σ ·Ψ[P ∗, Q∗]}

≤ lim
n→∞

P

{ ⋃
i∈Θ2

(σ ·Ψ[PΓi , QΓi ] ≥ σ ·Ψ[P ∗, Q∗])

}
≤ lim

n→∞
P {∪i∈Θ2

(PΓi ≥ P ∗)}+ lim
n→∞

P {∪i∈Θ2
(QΓi ≥ Q∗)} , (B.137)

where we used the monotonicity of Ψ with respect to P and Q in the last line. Since Θ2 ⊆ Tk, and using
(B.127) and (B.128), we may apply Lemma 4.8 to (B.137), yielding that each of the limits in the right-hand
side of (B.137) converges to zero exponentially in n, and so finally

lim
n→∞

P
{
∃ some Γi such that i ∈ Θ2

n and ‖x̄i − x∗‖ > σ ·Ψ [a∗(ρ; ζ), P ∗, Q∗]
}

= 0,

exponentially in n. Since, by Lemma B.1, any stable point is necessarily a minimum-norm solution, and
recalling the definition of a∗(ρ; ζ) in (B.109), Ψ(P,Q) in (B.131), and the definitions of P ∗ and Q∗ in (B.133),
we have

lim
n→∞

P
{
∃ some α-stable point x̄i on Γi such that i ∈ Θ2

n and ‖x̄i − x∗‖ ≥ σ ·Ψ[P ∗, Q∗]
}

= 0,
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with convergence exponential in n. Finally, by continuity,

‖x̄i − x‖ > σ
√
T IF(ρ)[1 + a(ρ)]2 + [a(ρ)]2

=⇒ ‖x̄i − x∗‖ ≥ σ
√
T IF(ρ)[1 + a(ρ) + ζ]2 + [a(ρ) + ζ]2,

for some ζ suitably small, and the result now follows from the definition of ξITPαSP (ρ) in (4.50). 2

It is now straightforward to prove the two main results for ITP.

Proof of Theorem 4.11: By Lemma B.5, we have convergence to an α-stable point supported on some
Γi such that i ∈ Θ2, to which we can apply Lemma B.6 deducing (B.123) with probability tending to 1
exponentially in n. 2

Proof of Corollary 4.12: The result follows by setting σ := 0 in Theorem 4.11. 2

B.2.2 Proof for NITP

In the case of NITP, it is possible to prove convergence to an α(ρ; ε)-stable point, where

α(ρ; ε) := {κ[1 + T U(2ρ) + ε]}−1, (B.138)

for some ε > 0.
The proof of Theorem 4.15 for NITP takes broadly the same approach as for the corresponding result

for ITP in Section B.2.1. However, in order to finally eliminate the dependence upon ε in α(ρ; ε), the results
corresponding to Lemmas B.5 and B.2 for ITP need to be combined together. This is accomplished by
Lemma B.8, which establishes that, provided (4.54) holds and ε is taken sufficiently small, NITP converges
to an α(ρ; ε)-stable point on some Γi such that i ∈ Θ2

n (the NITP support set partition is given in (B.140)
below). Lemma B.9 corresponds to Lemma B.6 for ITP, giving bounds on the approximation error of an
α(ρ; ε)-stable point on some Γi such that i ∈ Θ2

n, for any ε > 0. Combining the two lemmas leads us to
conclude that NITP converges to some limit point with bounded approximation error. We write NSPα for
the event that there is no α(ρ; ε)-stable point on any Γi such that i ∈ Θ1

n.
We next introduce the support set partition definition relevant for NITP.

Definition B.7 (Support set partition for NITP) Suppose ρ ∈ (0, 1/2]. Given ζ > 0, let us write

a∗(ρ; ζ) := a(ρ) + ζ, (B.139)

where a(ρ) is defined in (4.55), let us write {Γi : i ∈ Sn} for the set of all possible support sets of cardinality
k, and let us disjointly partition Sn := Θ1

n ∪Θ2
n such that

Θ1
n :=

{
i ∈ Sn : ‖x∗Λ\Γi‖ > Σ · a∗(ρ; ζ)

}
; Θ2

n :=
{
i ∈ Sn : ‖x∗Λ\Γi‖ ≤ Σ · a∗(ρ; ζ)

}
. (B.140)

Lemma B.8 Choose ζ > 0. Suppose Assumptions 1, 3 and 4 hold, and suppose that (4.54) holds. Then
there exists ε such that, in the proportional-growth asymptotic, NITP converges to an α(ρ; ε)-stable point on
some Γi such that i ∈ Θ2

n, with probability tending to 1 exponentially in n.

Proof: Under Assumption 1, we have by Theorem B.3 convergence of NITP to a [κ(1 +TU2k)]−1-stable
point. By Definition 4.1, for any α1 < α2, the set of α1-stable points includes the set of α2-stable points,
and this observation combines with Lemma 3.7 to imply convergence to an α(ρ; ε)-stable point, where α(ρ; ε)
is defined in (B.138), with probability tending to 1 exponentially in n. We now rehearse the argument of
Lemma B.5 to show that, provided ε is taken sufficiently small, this stable point must be on Γi such that
i ∈ Θ2

n. For any Γi such that i ∈ Θ1
n, we have Γi 6= Λ, and we may therefore use Theorem 4.3 and Lemma 4.4

with Γ := Γi to deduce that, given some ε > 0, a necessary condition for there to be an α(ρ; ε)-stable point
on Γi is

‖x∗Λ\Γi‖ ·
√
FΓi + σ ·

√
GΓi

≥ α(ρ; ε)

[(
n−k
n

)
‖x∗Λ\Γi‖ ·RΓi − σ ·

√
k(n−k)
n2 · SΓi · TΓi

]
,

(B.141)

where

FΓi ∼
k

n− k + 1
F(k, n− k + 1); GΓi ∼

k

n− k + 1
F(k, n− k + 1);

RΓi ∼
1

n− k
χ2
n−k; SΓi ∼

1

n− k
χ2
n−k; TΓi ∼

1

k
χ2
k.
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We also have, by (B.140),

σ ≤
‖x∗Λ\Γi‖
a∗(ρ; ζ)

(B.142)

for any Γi such that i ∈ Θ1
n. Since Γi 6= Λ, ‖x∗Λ\Γ‖ > 0, and substitution of (B.142) into (B.141), rearrange-

ment and division by ‖x∗Λ\Γi‖ yields

a∗(ρ; ζ)

[
α(ρ; ε)

(
n− k
n

)
·RΓi −

√
FΓi

]
≤
√
GΓi + α(ρ; ε)

√
k(n− k)

n2
· SΓi · TΓi ,

and consequently

P(NSPα(δ,ρ;ζ)) = P
{
∪i∈Θ1

n
(∃ an α(ρ; ε)-stable point supported on Γi)

}
≤ P

{
∪i∈Θ1

n
(Φ[ρn, FΓi , GΓi , RΓi , SΓi , TΓi ] ≥ 0)

}
, (B.143)

where we write ρn for the sequence of values of the ratio k/n, and where

Φ[ρ, F,G,R, S, T ] :=
√
G+ α(ρ; ε)

√
ρ(1− ρ)(S)(T )− a∗(ρ; ζ) ·

[
α(ρ; ε)(1− ρ) ·R−

√
F
]
. (B.144)

We now define
F ∗ = G∗ := T IF(ρ) + ε; R∗ := 1− T IL(ρ, 1− ρ)− ε;
S∗ := 1 + T IU(ρ, 1− ρ) + ε; T ∗ := 1 + T IU(ρ, ρ) + ε.

(B.145)

Using (B.145), we deduce from (B.143) that

P(NSPα(δ,ρ;ζ))

≤ P
{
∪i∈Θ1

n
(Φ[ρn, FΓi , GΓi , RΓi , SΓi , TΓi ] ≥ Φ[ρn, F

∗, G∗, R∗, S∗, T ∗])
}

(B.146)

+ P {Φ[ρn, F
∗, G∗, R∗, S∗, T ∗] ≥ Φ[ρ, F ∗, G∗, R∗, S∗, T ∗] + ε} (B.147)

+ P {Φ[ρ, F ∗, G∗, R∗, S∗, T ∗] + ε ≥ 0} , (B.148)

since the event in (B.143) lies in the union of the three events in (B.146), (B.147) and (B.148). Now (B.148)
is a deterministic event, and a∗(ρ; ζ) has been defined in such a way that, for any ζ > 0, provided ε is
taken sufficiently small, the event has probability 0. This follows from (4.54), (4.55), (B.139), and by the
continuity of Φ. The event (B.147) is also deterministic, and by continuity and since ρn → ρ, it follows that
there exists some ñ such that

P {Φ[ρn, F
∗, G∗, R∗, S∗, T ∗] ≥ Φ[ρ, F ∗, G∗, R∗, S∗, T ∗] + ε} = 0 for all n ≥ ñ.

Taking limits as n→∞, the terms (B.147) and (B.148) are zero, leaving only (B.146), and we have

lim
n→∞

P(NSPα(δ,ρ;ζ))

≤ lim
n→∞

P
{
∪i∈Θ1

n
(Φ[ρn, FΓi , GΓi , RΓi , SΓi , TΓi ] ≥ Φ[ρn, F

∗, G∗, R∗, S∗, T ∗])
}

≤ lim
n→∞

P
{
∪i∈Θ1

n
(FΓi ≥ F ∗)

}
+ lim
n→∞

P
{
∪i∈Θ1

n
(GΓi ≥ G∗)

}
+ lim
n→∞

P
{
∪i∈Θ1

n
(RΓi ≤ R∗)

}
+ lim

n→∞
P
{
∪i∈Θ1

n
(SΓi ≥ S∗)

}
+ lim
n→∞

P
{
∪i∈Θ1

n
(TΓi ≥ T ∗)

}
, (B.149)

where the last line follows from the monotonicity of Φ with respect to F , G, R, S and T . Since Θ1
n ⊆ Sn,

we may apply Lemmas 4.7 and 4.8 to (B.149), and we deduce P(NSPα(δ,ρ;ζ))→ 0 as n→∞, exponentially
in n, as required. 2

Lemma B.9 Suppose Assumptions 1, 3 and 4 hold, and suppose that (4.54) holds. Given any ε > 0, there
exists ζ sufficiently small such that, in the proportional-growth asymptotic, any α(ρ; ε)-stable point on Γi
such that i ∈ Θ2

n satisfies (4.57), with probability tending to 1 exponentially in n.

Proof: Suppose x̄ is a minimum-norm solution on Γ, so that x̄Γ = A†Γb. Then we may follow the
argument of Lemma B.6 to deduce (B.129), where

PΓ ∼
k

n− k + 1
F(k, n− k + 1); QΓ ∼

k

n− k + 1
F(k, n− k + 1). (B.150)
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Combining (B.129) with (B.140), we may further deduce

‖x̄− x∗‖2 ≤ σ2
[
a∗(ρ; ζ) ·

√
PΓ +

√
QΓ

]2
+ [a∗(ρ; ζ)]

2 · σ2

= σ2

{[
a∗(ρ; ζ) ·

√
PΓ +

√
QΓ

]2
+ [a∗(ρ; ζ)]

2

}
. (B.151)

For the sake of brevity, let us define

Ψ[P,Q] :=

√(
a∗(ρ; ζ) ·

√
P +

√
Q
)2

+ a∗(ρ; ζ)2, (B.152)

so that (B.151) may equivalently be written as

‖x̄− x∗‖ ≤ σ ·Ψ [PΓ, QΓ] . (B.153)

First suppose that σ > 0. Given ζ > 0, let us define

P ∗ = Q∗ := T IF(ρ) + ζ. (B.154)

Now we use (B.153) to perform a union bound over all Γi such that i ∈ Θ2
n, writing x̄i for the minimum-norm

solution on Γi, giving

P
{
∃ some Γi such that i ∈ Θ2

n and ‖x̄i − x∗‖ > σ ·Ψ [P ∗, Q∗]
}

= P

 ⋃
i∈Θ2

n

(‖x̄i − x∗‖ > σ ·Ψ [P ∗, Q∗])

 (B.155)

≤ P

 ⋃
i∈Θ2

n

(‖x̄i − x∗‖ > σ ·Ψ [PΓi , QΓi ])

 (B.156)

+ P

 ⋃
i∈Θ2

n

(σ ·Ψ [PΓi , QΓi ] ≥ σ ·Ψ [P ∗, Q∗])

 ,

(B.157)

since the event in (B.155) lies in the union of the two events in (B.156) and (B.157). It is an immediate
consequence of (B.153) that the event in (B.156) has probability 0. Taking limits of (B.157) as n→∞, and
cancelling σ, we have

lim
n→∞

P
{
∃ some Γi such that i ∈ Θ2

n and ‖x̄i − x∗‖ > σ ·Ψ [P ∗, Q∗]
}

≤ lim
n→∞

P

 ⋃
i∈Θ2

n

(Ψ [PΓi , QΓi ] ≥ Ψ [P ∗, Q∗])


≤ lim

n→∞
P
{
∪i∈Θ2

n
(PΓi ≥ P ∗)

}
+ lim
n→∞

P
{
∪i∈Θ2

n
(QΓi ≥ Q∗)

}
, (B.158)

where we used the monotonicity of Ψ with respect to P and Q in the last line. Since Θ2
n ⊆ Sn, and using

(B.150), we may apply Lemma 4.8 to (B.158), yielding that each of the limits in the right-hand side of
(B.158) converges to zero exponentially in n, and so finally

lim
n→∞

P
{
∃ some Γi such that i ∈ Θ2

n and ‖x̄i − x∗‖ > σ ·Ψ [P ∗, Q∗]
}

= 0,

with convergence at a rate exponential in n also by Lemma 4.8. The same result also holds when σ = 0 by
(B.151). Since by Lemma B.1, any stable point is necessarily a minimum-norm solution, and recalling the
definition of Ψ(P,Q) in (B.152), and the definitions of P ∗, Q∗ in (B.154), we have

lim
n→∞

P

{
∃ some α-stable point x̄i on Γi such that i ∈ Θ2

n and

‖x̄i − x∗‖ > σ

√
T IF(ρ) [1 + a(ρ) + ζ]

2
+ [a(ρ) + ζ]

2

}
= 0, (B.159)

with convergence exponential in n. Finally, by continuity,

‖x̄i − x∗‖ > σ

√
T IF(ρ) [1 + a(ρ)]

2
+ 1 + [a(ρ)]

2

=⇒ ‖x̄i − x∗‖ > σ

√
T IF(ρ) [1 + a(ρ) + ζ]

2
+ [a(ρ) + ζ]

2
,
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for some ζ suitably small, and the result now follows from the definition of ξ(ρ) in (4.56). 2

It is now straightforward to prove the two main results for NITP.

Proof of Theorem 4.15: By Lemma B.8, there exists ε > 0 such that N-IHT converges to an α(δ, ρ; ε)-
stable point on some Γi such that i ∈ Θ2

n, and for this choice of ε, we can apply Lemma B.9 to deduce the
result. 2

Proof of Corollary 4.16: The result follows by setting σ := 0 in Theorem 4.15. 2

C Large deviations results in the tree-based setting

This appendix develops large deviation bounds in the simplified proportional-growth asymptotic of Defini-
tion 1.1 for various quantities related to Gaussian matrices, which are required to hold for all permissible
support sets.

In what follows, let the tree order d to be some fixed integer with d ≥ 2. We need to count |Tk|, the
number of permissible support sets in the d-ary tree-based framework, which is bounded above by T (k), the
total number of ordered, rooted d-ary trees of cardinality k. Recalling Lemma 3.4, we have

T (k) =
1

(d− 1)k + 1

(
dk

k

)
.

A similar result was proved in [3, Proposition 1] for the case of binary trees (d = 2), though the result
given above represents a generalization to any d > 2, and in fact also gives a tightening of the result in [3]
in the case where log2(N) > k. Note also that we have an upper bound on |Tk| which is independent of N .
This is in contrast to the total number of supports, which is

(
N
k

)
. However, |Tk| may not attain this upper

bound if additional structure is imposed. In a typical wavelet tree model, for example, the root node has
only d− 1 children [17]). In addition, the number of levels in a wavelet tree structure is typically limited to
J = logd(N), which represents a further restriction if logd(N) < k. It follows that, while it is possible to
give an upper bound on |Tk| which is valid for any N , |Tk| does in general depend on both k and N .

We will make use of the following limiting result for T (k).

Lemma C.1 (Tree counting limit)

lim
k→∞

1

k
lnT (k) = d ·H(d−1), (C.160)

where H(·) is defined in (3.15).

Proof :

lim
k→∞

1

k
lnT (k) = lim

k→∞

1

k
ln

[
1

(d− 1)k + 1

(
dk

k

)]
= lim

k→∞

1

k
ln

[
1

(d− 1)k + 1

]
+ lim
k→∞

1

k
ln

(
dk

k

)
= 0 + lim

k→∞
d · 1

dk
ln

(
dk

k

)
= d ·H(d−1),

where the last step follows from Stirling’s formula. 2

We proceed to proving the validity of the bounds on tree-based RIP constants for Gaussian matrices given
in Definition 3.1.

Proof of Lemma 3.7: We may follow the proof of [6, Proposition 2.6], replacing U(δ, ρ) with T U(ρ),
and replacing λmax(δ, ρ) with λmax(ρ), obtaining

P [TUk ≥ T U(ρn) + ε] ≤ 2|Tk| [λmax(ρn) + ε] gmax [k, n;λmax(ρn) + ε] ,

and we may furthermore apply [6, Lemma 2.5] to give

P [TUk ≥ T U(ρn) + ε] ≤ 2|Tk| [λmax(ρn) + ε] pmax [n, λmax(ρn) + ε] exp {n · ψmax (λmax(ρn) + ε, ρ)} ,
(C.161)
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where pmax(n, λ) is a polynomial in n and λ. Now we may take limits of both sides of (C.161), using (C.160),
to deduce

lim
n→∞

1

n
lnP [TUk ≥ T U(ρn) + ε] ≤ dρ ·H(d−1) + ψmax (λmax(ρ) + ε, ρ) ,

which is strictly negative by Definition 3.6, from which (3.20) now follows using the same argument as in
the proof of lemma 4.7. An analogous argument may be followed to prove (3.21) which we omit for the sake
of brevity. 2

The large deviations bounds for the χ2 and F distributions follow.

Proof of Lemma 4.7: By [18, Lemma A.2], we have for all i ∈ Sn,

lim
n→∞

1

n
lnP(Xi

l ≥ 1 + ν) ≤ −γ
2

[ν − ln(1 + ν)]. (C.162)

Union bounding P(Xi
l ≥ 1 + ν) over all i ∈ Sn gives

P{∪i∈Sn(Xi
l ≥ 1 + ν)} ≤

∑
i

P
(
Xi
l ≥ 1 + ν

)
≤ T (k) · P(X1

l ≥ 1 + ν). (C.163)

Taking logarithms and limits of the right-hand side of (C.163), using (C.162) and (C.160), we have

lim
n→∞

1

n
ln
[
T (k) · P(X1

l ≥ 1 + ν)
]

= dρ ·H(d−1)− λ

2
[ν − ln(1 + ν)],

and so (C.163) implies that, for any η > 0,

1

n
lnP

{
∪i∈Sn(Xi

l ≥ 1 + ν)
}
≤ dρ ·H(d−1)− λ

2
[ν − ln(1 + ν)] + η, (C.164)

for all n sufficiently large. By the definition of T IU(ρ, λ) in (4.41), and since [ν − ln(1 + ν)] is strictly
increasing on ν > 0, then, for any ε > 0, setting ν := ν∗ = T IU(ρ, λ) + ε and choosing η sufficiently small
in (C.164) ensures

1

n
lnP

{
∪i∈Sn(Xi

l ≥ 1 + ν∗)
}
≤ −cQ for all n sufficiently large,

where cQ is some positive constant, from which it follows that

P
{
∪i∈Sn(Xi

l ≥ 1 + ν∗)
}
≤ e−cQ·n for all n sufficiently large,

and (4.44) follows. Combining the same union bound argument with the lower tail result of [18, Lemma A.2]
shows that, if we take ν∗ = T IL(ρ, λ) + ε for some ε > 0, then

1

n
lnP

{
∪i∈Sn(Xi

l ≤ 1− ν∗)
}
≤ −cP for all n sufficiently large,

where cP is some positive constant, and (4.45) follows similarly to (4.44). 2

Proof of Lemma 4.8: By [18, Lemma A.5], we have for all i ∈ Sn,

lim
n→∞

1

n
lnP(Xi

n ≥ f) ≤ −1

2
[ln(1 + f)− ρ ln f −H(ρ)] . (C.165)

Union bounding P(Xi
n ≥ f) over all i ∈ Sn gives

P
{
∪i∈Sn(Xi

n ≥ f)
}
≤
∑
i∈Sn

P
(
Xi
n ≥ f

)
= |Sn| · P(X1

n ≥ f), (C.166)

Taking logarithms and limits of the right-hand side of (C.166), using (C.165) and (C.160), we have

lim
n→∞

1

n
ln
[
|Sn| · P(X1

n ≥ f)
]

= dρ ·H(d−1)− 1

2
[ln(1 + f)− ρ ln f −H(ρ)] ,

which combines with (C.166) to imply that, for any η > 0,

1

n
lnP

{
∪i∈Sn(Xi

n ≥ f)
}
≤ dρ ·H(d−1)− 1

2
[ln(1 + f)− ρ ln f −H(ρ)] + η, (C.167)
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for all n sufficiently large. By the definition of T IF(ρ) in (4.43), and since the left-hand side of (4.43) on

f >
ρ

1− ρ
is strictly increasing in f , then, for any ε > 0, setting f := f∗ = T IF(ρ) + ε and choosing η

sufficiently small in (C.167) ensures

1

n
lnP

{
∪i∈Sn(Xi

n ≥ f∗)
}
≤ −cI for all n sufficiently large,

where cI is some positive constant, from which the result follows using the same argument as in the proof
of lemma 4.7. 2
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