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Background Material
See the syllabus and reading material at

http://people.maths.ox.ac.uk/tillmann/CAT.html

Papers (all available on arxiv):
1. Essential

1 S. Abramsky and A. Brandenburger. The sheaf-theoretic structure of
non-locality and contextuality. New Journal of Physics, 13(2011):113036,
2011.

2 S. Abramsky, R. S. Barbosa and S. Mansfield, The Cohomology of
Non-Locality and Contextuality, in Proceedings of QPL 2011, EPTCS 2011.

3 S. Abramsky, R. S. Barbosa, K. Kishida, R. Lal and S. Mansfield,
Contextuality, Cohomology and Paradox (submitted).

2. Useful additional reading

S. Abramsky and L. Hardy. Logical Bell Inequalities. Phys. Rev. A 85,
062114 (2012).
S. Abramsky, G. Gottlob and P. Kolaitis, Robust Constraint Satisfaction and
Local Hidden Variables in Quantum Mechanics, Proceedings IJCAI 2013.
S. Abramsky, Relational Databases and Bell’s Theorem, In In Search of
Elegance in the Theory and Practice of Computation: Essays Dedicated to
Peter Buneman, Springer 2013.
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Beginnings . . .

The first axiom I learnt in Computer Science:

Computers might as well be made of green cheese

It is no longer safe to assume this!
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Some Agendas for Quantum Computer Science

Information processing systems are physically embodied. The underlying
physics is ultimately quantum-mechanical. Taking this seriously forces us to
re-examine many of our basic assumptions about Computer Science.

It has already led to some exciting developments: remarkable new algorithms,
cryptographic schemes, and basic questions in computational complexity.

Beyond algorithms and complexity it offers new challenges and opportunities
across the range of Computer Science: in programming languages and
methods, logic and semantics.

There is a fascinating two-way interplay developing between Computer
Science and Physics, extending to the foundations of both, as well as to more
practical matters. Quantum technology — “hacking matter” — will be a
huge feature of 21st Century science and engineering, and a lot of it will be
to do with information.

This is an exciting emerging area, attracting students with backgrounds in
CS, Physics, Mathematics, Philosophy, . . .

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 14 / 24



Some Agendas for Quantum Computer Science

Information processing systems are physically embodied. The underlying
physics is ultimately quantum-mechanical. Taking this seriously forces us to
re-examine many of our basic assumptions about Computer Science.

It has already led to some exciting developments: remarkable new algorithms,
cryptographic schemes, and basic questions in computational complexity.

Beyond algorithms and complexity it offers new challenges and opportunities
across the range of Computer Science: in programming languages and
methods, logic and semantics.

There is a fascinating two-way interplay developing between Computer
Science and Physics, extending to the foundations of both, as well as to more
practical matters. Quantum technology — “hacking matter” — will be a
huge feature of 21st Century science and engineering, and a lot of it will be
to do with information.

This is an exciting emerging area, attracting students with backgrounds in
CS, Physics, Mathematics, Philosophy, . . .

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 14 / 24



Some Agendas for Quantum Computer Science

Information processing systems are physically embodied. The underlying
physics is ultimately quantum-mechanical. Taking this seriously forces us to
re-examine many of our basic assumptions about Computer Science.

It has already led to some exciting developments: remarkable new algorithms,
cryptographic schemes, and basic questions in computational complexity.

Beyond algorithms and complexity it offers new challenges and opportunities
across the range of Computer Science: in programming languages and
methods, logic and semantics.

There is a fascinating two-way interplay developing between Computer
Science and Physics, extending to the foundations of both, as well as to more
practical matters. Quantum technology — “hacking matter” — will be a
huge feature of 21st Century science and engineering, and a lot of it will be
to do with information.

This is an exciting emerging area, attracting students with backgrounds in
CS, Physics, Mathematics, Philosophy, . . .

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 14 / 24



Some Agendas for Quantum Computer Science

Information processing systems are physically embodied. The underlying
physics is ultimately quantum-mechanical. Taking this seriously forces us to
re-examine many of our basic assumptions about Computer Science.

It has already led to some exciting developments: remarkable new algorithms,
cryptographic schemes, and basic questions in computational complexity.

Beyond algorithms and complexity it offers new challenges and opportunities
across the range of Computer Science: in programming languages and
methods, logic and semantics.

There is a fascinating two-way interplay developing between Computer
Science and Physics, extending to the foundations of both, as well as to more
practical matters. Quantum technology — “hacking matter” — will be a
huge feature of 21st Century science and engineering, and a lot of it will be
to do with information.

This is an exciting emerging area, attracting students with backgrounds in
CS, Physics, Mathematics, Philosophy, . . .

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 14 / 24



Some Agendas for Quantum Computer Science

Information processing systems are physically embodied. The underlying
physics is ultimately quantum-mechanical. Taking this seriously forces us to
re-examine many of our basic assumptions about Computer Science.

It has already led to some exciting developments: remarkable new algorithms,
cryptographic schemes, and basic questions in computational complexity.

Beyond algorithms and complexity it offers new challenges and opportunities
across the range of Computer Science: in programming languages and
methods, logic and semantics.

There is a fascinating two-way interplay developing between Computer
Science and Physics, extending to the foundations of both, as well as to more
practical matters. Quantum technology — “hacking matter” — will be a
huge feature of 21st Century science and engineering, and a lot of it will be
to do with information.

This is an exciting emerging area, attracting students with backgrounds in
CS, Physics, Mathematics, Philosophy, . . .

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 14 / 24



Some Agendas for Quantum Computer Science

Information processing systems are physically embodied. The underlying
physics is ultimately quantum-mechanical. Taking this seriously forces us to
re-examine many of our basic assumptions about Computer Science.

It has already led to some exciting developments: remarkable new algorithms,
cryptographic schemes, and basic questions in computational complexity.

Beyond algorithms and complexity it offers new challenges and opportunities
across the range of Computer Science: in programming languages and
methods, logic and semantics.

There is a fascinating two-way interplay developing between Computer
Science and Physics, extending to the foundations of both, as well as to more
practical matters. Quantum technology — “hacking matter” — will be a
huge feature of 21st Century science and engineering, and a lot of it will be
to do with information.

This is an exciting emerging area, attracting students with backgrounds in
CS, Physics, Mathematics, Philosophy, . . .

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Computational Algebraic Topology Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality Lecture 14 / 24



Contextuality

At the heart of quantum non-classicality are the phenomena of non-locality,
contextuality and entanglement.

These concepts play a central rôle in the rapidly developing field of quantum
information, in delineating how quantum resources can transcend the bounds
of classical information processing.

They also have profound consequences for our understanding of the very
nature of physical reality.

We shall describe recent work in which tools from Computer Science are used
to shed new light on these phenomena.

There are also striking and unexpected connections with a number of topics
in classical computer science, including relational databases and constraint
satisfaction.
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Contextual Semantics

Contextuality. Key to the “magic” of quantum computation. Experimentally
verified, highly non-classical feature of physical reality. And pervasive in
logic, computation, and beyond.

In a nutshell: data which is locally consistent, but globally inconsistent.

We find a direct connection between the structure of quantum contextuality
and classic semantic paradoxes such as “Liar cycles”. Conversely,
contextuality offers a novel perspective on these paradoxes.

Cohomology. Sheaf theory provides the natural mathematical setting for our
analysis, since it is directly concerned with the passage from local to global.
In this setting, it is furthermore natural to use sheaf cohomology to
characterise contextuality. Cohomology is one of the major tools of modern
mathematics, which has until now largely been conspicuous by its absence,
in logic, theoretical computer science, and quantum information.

Our results show that cohomological obstructions to the extension of
local sections to global ones witness a large class of contextuality
arguments.
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Alice and Bob look at bits

0/1

a1 a2

Alice 0/1

b1 b2

Bob

Target

a2 = 1 b1 = 0
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A Probabilistic Model Of An Experiment

Example: The Bell Model

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1/2 0 0 1/2

a1 b2 3/8 1/8 1/8 3/8

a2 b1 3/8 1/8 1/8 3/8

a2 b2 1/8 3/8 3/8 1/8

The entry in row 2 column 3 says:

If Alice looks at a1 and Bob looks at b2, then 1/8th of the time,
Alice sees a 0 and Bob sees a 1.

How can we explain this behaviour?
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Classical Correlations

0/1

a1 a2

Alice 0/1

b1 b2

Bob

Target

a2 = 1 b1 = 0

0 1 0 1

...

Source
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A Simple Observation

Suppose we have propositional formulas φ1, . . . , φN

Suppose further we can assign a probability pi = Prob(φi ) to each φi .

(Story: perform experiment to test the variables in φi ; pi is the relative frequency
of the trials satisfying φi .)

Suppose that these formulas are not simultaneously satisfiable. Then (e.g.)

N−1∧
i=1

φi → ¬φN , or equivalently φN →
N−1∨
i=1

¬φi .

Using elementary probability theory, we can calculate:

pN ≤ Prob(
N−1∨
i=1

¬φi ) ≤
N−1∑
i=1

Prob(¬φi ) =
N−1∑
i=1

(1− pi ) = (N − 1)−
N−1∑
i=1

pi .

Hence we obtain the inequality

N∑
i=1

pi ≤ N − 1.
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(Story: perform experiment to test the variables in φi ; pi is the relative frequency
of the trials satisfying φi .)

Suppose that these formulas are not simultaneously satisfiable. Then (e.g.)

N−1∧
i=1

φi → ¬φN , or equivalently φN →
N−1∨
i=1

¬φi .

Using elementary probability theory, we can calculate:

pN ≤ Prob(
N−1∨
i=1

¬φi ) ≤
N−1∑
i=1

Prob(¬φi ) =
N−1∑
i=1

(1− pi ) = (N − 1)−
N−1∑
i=1

pi .

Hence we obtain the inequality

N∑
i=1

pi ≤ N − 1.
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Logical analysis of the Bell table

(0, 0) (1, 0) (0, 1) (1, 1)

(a, b) 1/2 0 0 1/2

(a, b′) 3/8 1/8 1/8 3/8

(a′, b) 3/8 1/8 1/8 3/8

(a′, b′) 1/8 3/8 3/8 1/8

If we read 0 as true and 1 as false, the highlighted positions in each row of the
table are represented by the following propositions:

ϕ1 = a ∧ b ∨ ¬a ∧ ¬b = a ↔ b

ϕ2 = a ∧ b′ ∨ ¬a ∧ ¬b′ = a ↔ b′

ϕ3 = a′ ∧ b ∨ ¬a′ ∧ ¬b = a′ ↔ b

ϕ4 = ¬a′ ∧ b′ ∨ a′ ∧ ¬b′ = a′ ⊕ b′.

These propositions are easily seen to be contradictory.
The violation of the logical Bell inequality is 1/4.
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Example: the Hardy model
The support of the Hardy model:

(0, 0) (1, 0) (0, 1) (1, 1)

(a, b) 1 1 1 1

(a′, b) 0 1 1 1

(a, b′) 0 1 1 1

(a′, b′) 1 1 1 0

If we interpret outcome 0 as true and 1 as false, then the following formulas all
have positive probability:

a ∧ b, ¬(a ∧ b′), ¬(a′ ∧ b), a′ ∨ b′.

However, these formulas are not simultaneously satisfiable.

In this model, p2 = p3 = p4 = 1.

Hence the Hardy model achieves a violation of p1 = Prob(a ∧ b) for the logical
Bell inequality.
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Quantum Mechanics changes the game

It seems then that the kind of behaviour exhibited in these tables is not realisable.

However, if we use quantum rather than classical resources, it is realisable!

More specifically, if we use an entangled qubit as a shared resource between
Alice and Bob, who may be spacelike separated, then behaviour of exactly the
kind we have considered can be achieved.

Alice and Bob’s choices are now of measurement setting (e.g. which direction
to measure spin) rather than “which register to load”.
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The Quantum Case: Spin Measurements

States of the system can be described by complex unit vectors in C2. These can
be visualized as points on the unit 2-sphere:

|+〉

|−〉

|+〉

|−〉

|Ψ〉

Spin can be measured in any direction; so there are a continuum of possible
measurements. There are two possible outcomes for each such measurement;
spin in the specified direction, or in the opposite direction. These two directions
are represented by a pair of orthogonal vectors. They are represented on the
sphere as a pair of antipodal points.

Note the appearance of quantization here: there are not a continuum of possible
outcomes for each measurement, but only two!
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The Stern-Gerlach Experiment
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The Bloch sphere representation of qubits

|ψ〉

φ

θ

Z = |↑〉

|↓〉

Y

X
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Properties of the Qubit
Note the following key features:

States of the qubit are represented as points on the surface of the sphere.
Note that there are a continuum of possible states.

Each pair (Up,Down) of antipodal points on the sphere define a possible
measurement that we can perform on the qubit. Each such measurement has
two possible outcomes, corresponding to Up and Down in the given direction.
We can think of this physically e.g. as measuring Spin Up or Spin Down in a
given direction in space.

When we subject a qubit to a measurement (Up,Down), the state of the
qubit determines a probability distribution on the two possible outcomes. The
probabilities are determined by the angles between the qubit state |ψ〉 and
the points (|Up〉, |Down〉) which specify the measurement. In algebraic terms,
|ψ〉, |Up〉 and |Down〉 are unit vectors in the complex vector space C2, and
the probability of observing Up when in state |ψ〉 is given by the square
modulus of the inner product:

|〈ψ|Up〉|2.

This is known as the Born rule. It gives the basic predictive content of
quantum mechanics.
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Truth makes an angle with reality

|Up〉

|Down〉

|ψ〉

θU

θD
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Qubits vs. Bits

The sense in which the qubit generalises the classical bit is that, for each question
we can ask — i.e. for each measurement — there are just two possible answers.
We can view the states of the qubit as superpositions of the classical states 0 and
1, so that we have a probability of getting each of the answers for any given state.

But in addition, we have the important feature that there are a continuum of
possible questions we can ask. However, note that on each run of the system, we
can only ask one of these questions. We cannot simultaneously observe Up or
Down in two different directions. Note that this corresponds to the feature of the
scenario we discussed, that Alice and Bob could only look at one their local
registers on each round.

Note in addition that a measurement has an effect on the state, which will no
longer be the original state |ψ〉, but rather one of the states Up or Down, in
accordance with the measured value.
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possible questions we can ask. However, note that on each run of the system, we
can only ask one of these questions. We cannot simultaneously observe Up or
Down in two different directions. Note that this corresponds to the feature of the
scenario we discussed, that Alice and Bob could only look at one their local
registers on each round.

Note in addition that a measurement has an effect on the state, which will no
longer be the original state |ψ〉, but rather one of the states Up or Down, in
accordance with the measured value.
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Quantum Entanglement

Bell state:

|00〉+ |11〉

EPR state:

|01〉+ |10〉

Compound systems are represented by tensor product: H1 ⊗H2. Typical
element: ∑

i

λi · φi ⊗ ψi

Superposition encodes correlation.

Einstein’s ‘spooky action at a distance’. Even if the particles are spatially
separated, measuring one has an effect on the state of the other.

Bell’s theorem: QM is essentially non-local.
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A Probabilistic Model Of An Experiment

Example: The Bell Model

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1/2 0 0 1/2

a1 b2 3/8 1/8 1/8 3/8

a2 b1 3/8 1/8 1/8 3/8

a2 b2 1/8 3/8 3/8 1/8

Important note: this is physically realizable!

Generated by Bell state
|00〉 + |11〉√

2
,

subjected to measurements in the XY -plane, at relative angle π/3.

Extensively tested experimentally.
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Computing the Bell table

|ψ〉

φ

θ

Z = |↑〉

|↓〉

Y

X

Spin measurements lying in the equatorial plane of the Bloch sphere
Spin Up: (|↑〉+ e iφ|↓〉)/

√
2, Spin Down: (|↑〉+ e i(φ+π)|↓〉)/

√
2

X itself, φ = 0:
Spin Up (|↑〉+ |↓〉)/

√
2 and Spin Down (|↑〉 − |↓〉)/

√
2.
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Computing the Bell table

A B (0, 0) (1, 0) (0, 1) (1, 1)

a b 0 1/2 1/2 0

a′ b 3/8 1/8 1/8 3/8

a b′ 3/8 1/8 1/8 3/8

a′ b′ 3/8 1/8 1/8 3/8

Alice: a = X , a′ at φ = π/3 (on first qubit)
Bob: b = X , b′ at φ = π/3 (on second qubit)

The event in yellow is represented by

|↑〉+ |↓〉√
2
⊗ |↑〉+ e i4π/3|↓〉√

2
=
|↑↑〉+ e i4π/3|↑↓〉+ |↓↑〉+ e i4π/3|↓↓〉

2
.

Probability of this event M when measuring (a, b′) on B = (|↑↑〉+ |↓↓〉)/
√

2 is
given by Born rule:

|〈B|M〉|2.
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Computing Bell by Born

Since the vectors |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉 are pairwise orthogonal, |〈B|M〉|2 simplifies
to ∣∣∣∣1 + e i4π/3

2
√

2

∣∣∣∣2 =
|1 + e i4π/3|2

8
.

Using the Euler identity e iθ = cos θ + i sin θ, we have

|1 + e iθ|2 = 2 + 2 cos θ.

Hence
|1 + e i4π/3|2

8
=

2 + 2 cos(4π/3)

8
=

1

8
.

The other entries can be computed similarly.
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