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1. Simplicial complexes

1.1. Definitions

An (abstract)simplicial complex K• is a collection of
non-empty subsets of a set of vertices K0 that satisfy
the condition

α ∈ K•, β ⊂ α =⇒ β ∈ K•.
β ⊂ α is called a face of α. Without loss of generality,
we will always assume that the singleton set for each
element of K0 is in K•.

The dimension K• is one less than the cardinality of
the largest element of K•:

dim(K•) := max
α∈K

{#α− 1}.



The subset Kp ⊂ K• of sets of size p + 1 are the p-
simplices. The union K

p
• of all subsets of size p+ 1 or

less is a subcomplex of K• called the p-skeleton.

We will mainly be interested in finite abstract simplicial
complexes. For such we can define the Euler charac-
teristic of K• as

χ(K•) := Σp (−1)p#Kp.

Example: sphere ' boundary of a tetrahedra

K0 = {0,1,2,3},
K1 = {{0,1}, {0,2}, {0,3}, {1,2}, {1,3}, {2,3}}
K2 = {{0,1,2}, {0,1,3}, {0,2,3}, {1,2,3}}

χ(K•) = 4− 6 + 4 = 2
dim(K•) = 2



1.2. Geometric realization

The simplex spanned by {v0, . . . , vp} ⊂ Rn is the set of
points

{Σp
i=0 tivi |0 ≤ ti ∈ R, Σi ti = 1}.

{v0, . . . , vp} are affinely independent if they span a
p-simplex, or equivalently, if
{v1 − v0, . . . , vn − v0} are linearly independent.

Assume we have an assignment of the finite vertex set
K0 to points in Rn such that the images are affinely
independent. The geometric realization of K• (de-
termined by the assignment K0 → Rn) is the topological
space

|K•| :=
⋃

σ∈K•
|σ|.



Lemma: Let K• be a simplicial complex with N ver-

tices. Then K• has a geometric realization in RN .

Proof: Map the elements in K0 to the standard ba-

sis elements in RN . |K•| is the union of all simplices

spanned by the images of the elements in K•.



A simplicial map f : K• → L• is a map of vertices

f : K0 → L0 such that f(σ) ∈ L• for all σ ∈ K•.

It induces a continuous map |f | on realizations by set-

ting

|f |(Σp
i=0 tivi) = Σp

i=0 tif(vi),

where vi is the realization of the i-th vertex of a p-

simplex in K• and f(vi) is the realization of the image

of this vertex in |L•|.

Note: Any two geometric realizations are canonically

homeomorphic via piecewise linear maps.



1.3. Subdivision and approximation

The barycentric subdivision of a simplicial set K• is

the simplicial set with p-simplices formed by ’flags’ of

length p+ 1 of strict inclusion:

Sd(K•)p = {{σ0 ⊂ · · · ⊂ σp}|σi ∈ K•, p ≥ 1}.

Thus vertices of Sd(K•) are the simplices of K•.



The barycenter of the realization of a p-simplex is the

point corresponding to t0 = · · · = tp = 1/(p+ 1).

Given a realization of K•, we may construct a realization

of the barycentric subdivision Sd(K•) by induction: at

the p-th stage, for every p-simplex σ i |k•|, add the

barycenter of σ and all the (p− 1)-simplicies (and their

faces) containing the barycenter and any other vertices

and barycenters of any face of σ.



Simplicial Approximation Theorem: For any contin-

uous map g : |K•| → |L•| there is an n and a simplicial

map f : Sdn(K•) → L• such that |f | and g are homo-

topic.

Here Sdn denotes the n-times repeated application of

Sd.

Proof: [Hatcher 2002, p.177]



Recall: f, g : X → Y are homotopic if there exists H :

X × [0,1] → Y with H(−,0) = f and H(−,1) = g. For

example, if Y is the n-disk then every map is homotopic

to the constant map to 0.

Two spaces are homotopy equivalent if there are con-

tinuous maps f : X → Y and g : Y → X such that f ◦ g
and g ◦ f are homotopic to the identity on Y and X.

A space is contractible if it is homotopic to a point.

Example: The n-dimensional ball Bn is homotopic to

a point and hence contractible. In Euclidean space Rn

the intersection of any number of round balls of fixed

radius ε is contractible.



1.4 Čech complex

Let X be a nice ∗ topological space and U = {Ui}i∈I be

a cover, i.e. a collection of subset of X such that the

union equals X. We define the p-simplices of the Čech

complex of U (also called ’nerve complex’) to be

Proof: See [Hatcher p.459, 2002].

∗For example, paracompact; all realizationa of finite simplicial
complexes are paracompact.



The Nerve Theorem is a fundamental fact for Topo-

logical Data Aanalysis.

In data analysis one often starts with a point cloud

set S contained in some Euclidean space. Sometimes

we view this set S as the sample set from a space X

whose topological characteristics we are then interested

to recover. Other times we simply associate a space to

S whose topology will then tell us something about the

set S itself.

Main example: Let S ⊂ Rd be finite and U = {Bε(s)}s∈S
the collection of open ε-balls around the points of S.

Then the realization of the Čech complex Čechε(S) has

the homotopy type of the union of these balls.



Figure: The Čech complex for a point cloud data set

S and a collection of balls around its elements.



1.5 Vietoris-Rips complex

The Čech complex is ’expensive’ as all intersection have
to be computed. Instead one considers an approxima-
tion.

Let S ⊂ Rd (or some metric space X) be finite and
consider the ε-Vietoris-Rips complex with p-simplices

V Rε(S)p := {σ ⊂ S | #σ = p+ 1 and diam(σ) < 2ε}
We ’save’ computational time as only distances be-
tween all pairs of points have to be computed.
Note:

Čechε(S) ⊂ V Rε(S) ⊂ Čech√2ε(S).

The first inclusion is immediate and true for any metric
space. To show the second is an inclusion one uses the
fact that S is a subset of Euclidean space. Exercise!



1.6 Voronoi diagram, Delaunay and alpha complex

We note here that it is very easy to come up with exam-

ples where the dimension of the Čech or VR-complex

exceeds the dimension of the background spaces (e.g.

the dimension d of the ambient Euclidean space), and

ultimately neither of these complexes gives an efficient

representation of the underlying spaces.

Let S ⊂ Rd be finite and consider for s ∈ S the set

V (s) := {x ∈ Rd | ||x− s|| ≤ ||x− v|| for all v ∈ S}

Each V (s) is a closed polyhedra (possibly with one ver-

tex at infinity) and their union is all of Rd. The Voronoi

diagram of S is the collection of Voronoi cells of its

points.



The Delaunay complex of S is the Čech complex asso-

ciated to the collection U = {V (s)}s∈S of Voronoi cells.

Hence its p-simplices are

Delaunay(S)p := {σ ⊂ S | #σ = p+1 and
⋂
s∈σ

V (s) 6= ∅}

Exercise*: If the points of S are in general position,

i.e. no d + 2 points lie on the same sphere, then the

Delaunay complex has dimension at most d.

The ε-alpha complex of S is the Čech complex as-

sociated to the collection U = {Bε(s) ∩ V (s)}s∈S. Its

p-simplices are the sets

Alphaε(S) := {σ ⊂ S | #σ = p+1 and
⋂
s∈σ

Bε(s)∩V (s) 6= ∅}



Figure: A Voronoi diagram with its Delaunay triangu-

lation superimposed and an associated alpha complex

for some fixed radius.

Note: The Delaunay complex by itself does not model

the underlying data set.



2. Homology

2.1. Basic definitions

A chain complex (C, d) over a field F is a sequence of
F-vector spaces and maps

. . . Cn+1
dn+1−→ Cn

dn−→ Cn−1
dn−1−→ . . . C0 −→ 0

such the dn ◦ dn+1 = 0.

n-th boundary map: dn
n-chains: Cn
n-cycles: Zn := Ker(dn)
n-boundaries: Bn := Im(dn+1)
n-th homology group of C:

Hn(C) := Zn/Bn = Ker(dn)/Im(dn+1)



A map of chain complexes F : (C, d) → (C′, d′) is

a collection of F-linear maps Fn : Cn → C′n such that

Fn−1 ◦ dn = d′n ◦ Fn.

Exercise: A map of chain complexes induces a map of

homology groups.



A chain homotopy between two chain maps

F,G : (C, d)→ (C′, d′) is a collection of linear maps

hp : Cp → C′p+1 such that

hp−1 ◦ dp + d′p+1 ◦ hp = Fp −Gp.

Exercise: If F and G are chain homotopic then they

induce the same map on homology.



2.2. F2-homology of a simplicial complex

Let K• be a simplicial complex and let

Cn(K•) := F2[Kn]

be the F2-vector space with basis Kn. Define on basis

elements

dn(α) := Σβ⊂α,#β=n β

and extend dn linearly to all chains.

Fundamental Lemma: dn ◦ dn+1 = 0.



Proof: It is enough to check this on basis elements.

Let α = {v0, . . . , vn+1} be an (n+ 1)-simplex. Then

dn(dn+1(α)) = dn(Σn+1
i=0 {v0, . . . , v̂i, . . . vn+1})

= 2 Σj 6=i{v0, . . . , v̂j, . . . , v̂i, . . . vn+1} = 0.

Caveat: When the characteristic of F is not 2, one has

to take in the definition of the boundary map dn the

alternating sum over the faces. Otherwise the Funda-

mental Lemma does not hold.

Geometric interpretation: The boundary of a bound-

ary is always empty.



The n-th homology group of a simplicial complex K•
is

Hn(K•)(= Hn(K•,F2)) := Hn(C(K•))

Exercise: A map f : K• → L• of simplicial complexes

induces a map on chain complexes and hence on ho-

mology

Hn(f) : Hn(K•)→ Hn(L•).



Example: K• a one-point union of the boundary of

two triangles with vertices {v0, v1, v2} and {v0, v3, v4}.
Then:

C0(K•) =< v0, v1, v2, v3, v4 >,

C1(K•) =< {v0, v1}, {v1, v2}, {v0, v2}, {v0, v3}, {v3, v4} {v0, v4} >
and d1 has matrix

1 0 1 1 0 1
1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 1 1
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b
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e
f



Using column and row operations this can be trans-

formed to Smith normal form

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

Hence by the rank-nullity theorem H0(K•) = F2 and

H1(K•) = F2⊕F2. All other homology groups are zero.

Exercise: Compute the map in homology induced by

f : K• → K• which takes the vertices v0, v1, v2, v3, v4 to

v0, v1, v2, v0, v0.



The p-th Betti number of K• is

bp := dimHp(K•).

Euler-Poincaré formula: For finite simplicial com-

plexes

χ(K•) = Σp≥0 (−1)p bp

Proof: This follows form the rank-nullity formula.



Exercise: K• is an n-simplex (i.e. n-ball Bn). Then

Hp(K•) = F2 when p = 0 and is zero otherwise.

Exercise: K• is the boundary of an n-simplex (i.e. n−1

sphere Sn−1). Then Hp(K•) = F2 when p = n−1,0 and

is zero otherwise.



2.3. Homotopy invariance

Theorem If f, g : K• → L• induce homotopic maps

|f |, |g| on the realizations then the induced maps on

Hn(K•)→ Hn(L•) are identical for all n ≥ 0.

Proof: See [Hatcher p.111 and p.128, 2002]. The idea

is that from the homotopy one can construct a chain

homotopy.



2.4. Relative homology

Let A ⊂ C be a sub chain complex of C (i.e. An ⊂ Cn
and dn(An) ⊂ An−1 for all n). Then C/A is the quotient
chain complex with n-chains Cn/An and boundary map
induced by dn.

Theorem: A short exact sequence of chain complexes
0 −→ A −→ C −→ C/A −→ 0 induces a long exact
sequence on homology groups

. . . Hn+1(C/A)
δ→ Hn(A)→ Hn(C)→

Hn(C/A)
δ→ Hn−1(A) . . . H0(C/A)→ 0

The connecting homomorphims δ takes a cycle in Cn/An
which is represented by a chain c ∈ Cn to dn(c) ∈ An−1.



Note: As the k-simplex Bk is homotopy equivalent to

a point it follows that it has the homology of a point.

(Exercise 1 in 2.2.)

Example: n-simplex Bn and its boundary Sn−1. Then

C(Sn−1) is a sub-complex of C(Bn), and the long exact

sequence yields Hp(Bn, Sn−1) = F2 if p = n and zero

otherwise.



2.5. Homology of Sd(K•)

Let K• be a simplicial complex of dimension d and
Sd(K•) be its barycentric subdivision. On chain com-
plexes we have a map

C(K•) −→ C(Sd(K•)), σ 7→ Σµ={σ0⊂···⊂σp=σ} µ

that sends a p-simplex σ ∈ K• to the sum of all p-
simplices µ ∈ Sd(K•) which are part of σ. This is a
map of chain complexes as

dσ = Σµ dµ

Block Lemma: The induced map on homology in-
duces an isomorphism

H(K•)
'−→ H(Sd(K•)).



2.6. Mayer-Vietoris sequence

Theorem: Let K• = A•∪B• be the union of two simpli-
cial subcomplexes. Then there is a long exact sequence

. . . Hn(A• ∩B•)→ Hn(A•)⊕Hn(B•)→ Hn(K•)
δ→

Hn−1(A• ∩B•)→ · · · → H0(K•)→ 0.

The first two maps are induced by the inclusions of
complexes with c 7→ (c, c) and (a, b) 7→ a − b. To de-
fine the connecting homomorphism δ, write a cycle c ∈
Zn(K•) as a sum of chains a ∈ Cn(A•) and b ∈ Cn(B•).
Then c is taken to the chain dn(a) = dn(b) in A• ∩B•.

Proof: Apply Theorem 2.3 to the exact sequence of
chain complexes induced by the given maps

0→ C(A• ∩B•)→ C(A•)⊕ C(B•)→ C(K•)→ 0



2.7. Cohomology

Consider a finite dimensional k-vector spaces V and its

dual

V ∗ := Hom(V, k).

If T : V →W is a map of vector spaces then the adjoint

T ∗ : W ∗ → V ∗

is defined by T ∗(f)(v) := f(T (v)). If the matrix presen-

tation of T with respect to some bases of V and W is

A then the matrix presentation of T ∗ with respect to

the dual bases is AT , the transpose of A.



A cochain complex (C, d) has an associated dual cochain

complex (C∗, d∗)

· · ·
d∗n+1←− Cn

d∗n←− Cn−1 d∗n−1←− . . . C0 ←− 0

where Cn = (Cn)∗ = Hom(Cn, k).

n-cocycles: Zn := Ker(d∗n+1)

n-coboundaries: Bn := Im(d∗n)

n-th cohomology group:

Hn(C) := Zn/Bn

For a simplicial complex K•,

Hn(K•) := Hn(C(K•))



Example: Let K• be connected. Then the only non-

trivial 0-cocycle is the map that assigns 1 to every ver-

tex of K•. Hence, H0(K•) = F2.

Example: K• the one-point union of the boundary of

two triangles as in section 2.2. Then C0 = (F2)5 and

C1 = (F2)6. As d∗ is the transpose of d, it has rank 4.

So H0(K•) = F2 and H1(K•) = (F2)2.



Universal Coefficient Theorem:

dim(Hn(C)) = dim(Hn(C)).

Proof: dim(Hn) = dim(Zn)− dim(Bn) and

dim(Hn) = dim(Zn)− dim(Bn).

So the theorem follows from

dimZn + dimBn = dimCn

= dimCn = dimZn + dimBn.
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Remark: This proves that cohomology encodes the

information given by the homology groups. It well-

known that cohomology also has addition structure, a

multiplication which makes it into a finer invariant than

homology. For example this allows one to distinguish

a torus from the one point union of two circles and

a 2-sphere. They have the same cohomology but the

product structure distinguishes them.

We will not develop the ring structure here. So far this

extra information has proved difficult to take advantage

of in TDA.



3. Persistent Homology

Motivation: data analysis.

More specifically, when given a point cloud S, we do

not know in advance which choice of ε associates a

meaningful topological space/ homology groups to S.



3.1. Definitions

Let (K(•), φ•) be a sequence of finite simplicial com-

plexes K(i), i = 0, . . . N and simplicial maps φi

K(0)
φ0−→ · · ·

φi−1−→ K(i)
φi−→ · · ·

φN−1−→ K(N).

For each degree p ≥ 0, this gives rise to a sequence of

maps in homology

HpK(0)
φ0−→ · · ·

φi−1−→ HpK(i)
φi−→ · · ·

φN−1−→ HpK(N).

The p-th persistent homology groups are the images

Hi,j
p := Im (φj−1 ◦ · · · ◦ φi : HpK(i)→ HpK(j))



A non-zero homology class α ∈ HpK(i) is said to be

born in HpK(i) if it is not in the image of φi−1 and it

is said to die in HpK(j) if

φj−2 ◦ · · · ◦ φi(α) 6= 0 and φj−1 ◦ · · · ◦ φi(α) = 0

For such a class α, we define

persistence (α) := j − i

and similarly, if α does not die for any j,

persistence (α) :=∞



Graphically we can represent the persistence of the class

α in the two cases by the half open intervals [i, j) and

[i,∞), its barcode . This would lead to a complicated

tree structure. Instead we adopt the following rule.

Elder rule: At a juncture, the older of the two mer-

ing paths continues and the younger path ends. When

two different classes x, y ∈ HpK(i − 1) are identified in

HpK(i), i.e.

φi−1(x) = φi−1(y)

then the path for y ends at i if x is born before y.

Problem: This does not deal with the case when both

x and y are born at the same time.



To come: It is a fundamental theorem of persistent

homology that for finite sequences of finite simplicial

complexes a basis of the persistent homology can be

chosen such that the associated barcodes respect the

elder rule. Furthermore, up to reordering of the ’bars’,

the resulting barcode is independent of the choice of

such a basis.



3.2. Examples

Example 1: Consider the sphere S2 embedded in R3

and height function h : S2 → R as in the figure below.
Triangulate S2 by K such that each h−1([0, ai]) is tri-
angulated by a sub-complex K(i) ⊂ K. Consider the
system (K(•), φ•) where each φi is the inclusion map.
Note the following homotopies
K(0) = ∅
K(1) ' D2 ' ∗
K(2) ' D2 tD2 ' ∗ t ∗
K(3) ' D2 ' ∗
K(4) ' S2 \ (D2 tD2) ' S1

K(5) ' D2

K(6) = S2

We track the birth and death of classes for each p =
0,1,2 in barcodes as in the figure below.
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Example 2: Let K be the 2-skeleton of a standard 3-

simplex and filter it by skeletons:

K0 = K0 ⊂ K1 ⊂ K2 = K

K(0) has 4 points: v0, v1, v2, v3

K(1) is a graph with 4 vertices and 6 edges which is

homotopic to the one-point union of 3 circles. To

see this, contract the 4 edges containing v0 to zero

length. Then the 3 circles are formed by the edges

e1 = [v1, v2], e2 = [v2, v3] and e3 = [v1, v3].

K(2) is homotopic to the sphere.



We describe the persistent homology for each degree
p = 0,1,2.

H0K(0) = (F2)4 =< v0, v1, v2, v3 > is generated by the
four vertices. Change the basis to

α0 = v0, α1 = v1 − v0, α2 = v2 − v0, α3 = v3 − v0

which have persistence ∞,1,1,1 respectively, with as-
sociated barcodes [0,∞), [0,1), [0,1), [0,1).

H1K(1) = (F2)3 =< e1, e2, e3 > and all three die in
H1K(2) = 0. So e1, e2, e3 have persistence 1,1,1 with
associated barcodes [1,2), [1,2), [1,2).

H2K(2) = F2 and the non-zero class has persistence ∞
and associated barcode [2,∞).



3.3 Existence of barcodes

Module Structure

Consider the total p-th persistent homology group of a

sequence (K(•), φ•)

PHp =
N⊕
i=0

Hp(K(i))

PHp has a natural, graded module structure over the

ring of polynomials F2[t] where t acts on a class α ∈
HpK(i) by t.α := φi(α).



Theorem: (Carlsson, Zomorodian 2005)

PHp '
N⊕
i=0

⊕
j>i

U(i, j)βij

where i ∈ N and j ∈ N ∪ {∞} and

U(i, j) = Σi(F2[t]/(tj−i))

Note that Σi denotes a shift in degree by i and U(i,∞) =

Σi(F2[t]).



Sketch: F2[t] is a principal ideal domain and {PHp}≥p is

a finitely generated, graded module over it as we only

consider finite sequences of finite simplicial complexes.

Furthermore, the module is graded and the theorem fol-

lows by the general structure theory for such modules.

♦

The isomorphism class of PHp determines and is de-

termined uniquely by the multiplicities βij. This is the

rank of the subspace of elements in Hp that are born

at HpK(i) and die at HpK(j).

Corollary: To each PHp we can associate a well-defined

barcode: the union of βij copies of half open intervals

[i, j) for each i = 0, . . . , N .



Warning: This theorem fails when working over the

integers or when a second parameter of filtration is

introduced (mutivariate persistence) as Z and F[s, t] are

not principal ideal domains.



3.4 Standard algorithm

Most examples arise as filtered complexes. In other

words, the maps φ : K(i)→ K(i+ 1) are inclusions and

K(N) = K is the total complex.

Lemma: Assume (K(•), φ•) is a filtration. Then

H
i,j
k =

Zik

B
j
k ∩ Z

i
k



If a simplex σ first appears in K(i) we say it has degree

i. Let {ej} be a homogeneous basis for Ck := Ck(K)

and {bi} for Ck−1. Then dk can be represented by a

matrix Mk satisfying:

deg(bi) + deg(Mk(ij)) = deg(ej)

Aim: represent dk relative to the standard basis of Ck
and a homogeneous basis for Zk−1.



As d0 = 0, Z0 = C0 and d1 is the standard representa-

tion.

Assume dk is of the desired form. Order the basis for

Zk−1 is reverse degree order. Transform Mk into lower

column-echelon form. Then

rank(Mk) = rank(Bk−1) = ] pivots

The basis elements corresponding to non-pivot columns

form a basis of Zk.

Lemma: Let M ′k be the column-echelon form of dk
relative to bases for Ck and Zk−1. If row i has pivot

M ′k(i, j) = tn, it contributes Σdeg bi(F2[t]/tn) to Hk−1,

and if the column is zero, it contributes Σdeg bi(F2[t]).



Standard algorithm: Let K be a filtered complex and

let σ1, . . . , σn be a total order of all the simplices such

that every face of σ goes before σ and all simplices

introduced at the k filtration go before those introduced

at later filtration steps.

Consider the upper triangular matrix M with mij = 1

if σi is a face of σj and zero otherwise. For every

j = 1, . . . , n, define low(j) to be the index of the lowest

row that contains a 1 in column j, i.e. low(j) = i

if mij = 1 and mkj = 0 for all k > i. If column j only

contains 0 entries, then the value of low(j) is undefined.

We say that the boundary matrix is reduced if the map

low is injective on its domain of definition.



.for i = 1 to n do

. while there exists i < j with low(i) = low(j) do

. add column i to column j

. end while

.end for



Reading off the intervals: Once the boundary matrix

is reduced, we can read off the intervals in a barcode

by pairing the simplices.

• If low(j) = i, then the simplex σj is paired with σi,

and the entrance of σi in the filtration causes the

birth of a feature that dies with the entrance of σj.

• If low(j) is undefined, then the entrance of the sim-

plex σj in the filtration causes the birth of a feature.

It there exists k such that low(k) = j, then σj is

paired with the simplex σk, whose entrance in the

filtration causes the death of the feature. If no such

k exists, then σj is unpaired.



4. Manifolds and duality

4.1 Combinatorial d-manifolds

A manifold of dimension d is a topological space M

for which every point lies in an open neighbourhood

homeomorphic to the open d-dimensional unit disk Dd.

M is triangulated by a simplicial complex K• if M is a

realization of K•. K• is also called a triangulation of

M . For a p simplex σ ∈ K• define

star(σ) := {τ ∈ K•|σ ≤ τ}

link(σ) := {τ ∈ star(σ)| τ ∩ σ = ∅}



star ( star () )

link = S
1

link = S
0

link = empty

star ( )

A combinatorial d-manifold is a d-dimensional mani-
fold with a triangulation such that
(**) the link of every i-simplex triangulates a sphere of
dimension d− i− 1.

Caveat: Not every triangulation of a manifold satisfies
condition (**).

Exercise: If K• satisfies condition (**) then so does
Sd(K•).



4.2. Dual bock complex

Let K• be a triangulation of a combinatorial d-dimensional
manifold. Label the vertices of Sd(K•) by the dimen-
sion of the simplex in K that they belong to. For a
p-simplex σ define its dual block σ̂ as the union of
simplices in Sd(K•) that contain the barycenter of σ as
their lowest vertex.

simplices (in blue) and

their dual blocks (in red)

The boundary ∂(σ̂) of a block is the union
⋃
σ⊂τ τ̂ of



blocks τ̂ ; the block is homeomorphic to a d−p−1 sphere

by the condition (**) on links in the triangulation K.

The dual block chain complex D is the chain complex

in which the dual blocks of p-simplices form a basis for

Dd−p and the boundary map is given by ∂.

Exercise: ∂ ◦ ∂ = 0.

Block Lemma: The map that sends a block µ ∈ Dp to

the sum Σσ⊂µ σ ∈ Cp(Sd(K•)) induces an isomorphism

in homology

Hp(D) = Hp(Sd(K•)) = Hp(K•).



Proof: The proof is the same as that in section 2.4.

Here Xp is the subcomplex of Sd(K•) which contains all

simplices in a block of dimension p or less. Note that

as before Hq(Xp, Xp−1) = Dp if p = q and 0 otherwise.



4.3. Poincaré Duality

Theorem: Let M be a combinatorial d-dimensional

manifold. For all 0 ≤ p ≤ d,

Hd−p(M) ' Hp(M)

Proof: Let M be triangulated by K• and σ ∈ Kp. The

linear map

ψ : Dd−p −→ Cp(K•), σ̂ 7→ σ∗

that sends the dual block σ̂ to the dual basis element

σ∗ is a bijection on basis elements and hence an iso-

morphism of vector spaces. To prove the theorem, it



remains to show that ψ commutes with the boundary

maps:

ψ(∂(σ̂)) = ψ(Σσ⊂τ τ̂) = Σσ⊂τ τ∗

d∗(ψ(σ̂)) = d∗(σ∗) = Σσ⊂τ τ∗

Corollary: Hd−p(M) ' Hp(M)

Proof: This follows from Poincare Duality and the Uni-

versal Coefficient Theorem.

Example 1: If d is odd then χ(M) = 0.



Example 2: If M is connected then

Hd(M) ' H0(M) ' F2

and the only non-zero d-dimensional cycle is the fun-

damental class [M ] := Σσ∈Kd σ.



4.4. Intersection theory

Let M be a d-dimensional combinatorial manifold with

triangulation K•.
Goal: to get a better geometric picture of P.D.

For σ, τ ∈ Kp the intersection σ ∩ τ̂ is the barycenter of

σ if τ = σ and is empty if τ 6= σ. Define

< σ, τ̂ >:= 1 if σ = τ, and = 0 if σ 6= τ

and extend this bilinearly to a pairing

Cp(K•)×Dd−p −→ F2



Claim: The intersection number < c, d > does not
change if c or d is replaced by a homologous cycle.

Proof: If c is homologous to c0 then there exists a p+1-
chain e with ∂(e) = c+ c0.
Let τ be a summand of e.
Then for any (d − p)-simplex σ̂ (of d), τ ∩ σ̂ is either
empty or, if σ is a face of τ , the 1-simplex from the
barycenter of τ to the barycenter of σ.

As d is a cycle, the path of which σ̂ is a part needs
to continue. The possibilities are that the path goes
in and out of τ through faces both belonging to c, or
both belonging to c0, or one belonging to c and one
belonging to c0. In all cases the intersection number
with c is the same as that with c0.



|K•| = Möbius band

c = core of the Möbius band – blue

c0 = core: one blue simplex replaced by two green

d = cycle in D∗ homotopic to the core – red



Theorem: The bilinear map

Hp(M)×Hd−p(M) −→ F2

([c], [d]) 7→< c, d >

defines a perfect pairing, i.e. the map

[d] 7→< , d >

defines an isomorphisms Hd−p(M)→ (Hp(M))∗.

Proof: By Poincaré Duality, the pairing

Hp(K•)×Hd−p(D) −→ F2

(Σσi,Σ τ̂j) 7→ Σ < σi, τ̂j >

is the same as the pairing

Hp(K•)×Hp(K•) −→ F2



(Σσi,Σ τ∗j ) 7→ Σ τ∗j (σi)

as < σ, τ̂ >= τ∗(σ) for all σ, τ ∈ Kp.

The second pairing induces by the Universal Coefficient

Theorem a perfect pairing

Hp(K•) ' (Hp(K•))∗.



4.5. Lefschetz Duality

A manifold with boundary of dimension d is a topolog-

ical space M for which every point lies in an open neigh-

bourhood homeomorphic to the open d-dimensional unit

disk Dd or the half disk Dd ∩ (R≥0 × Rd−1). The points

with an open neighbourhood of the second kind form

the boundary ∂M of M .

A combinatorial d-manifold with boundary is a d-

dimensional manifold with boundary and a triangulation

such that

(**) the link of every i-simplex triangulates a sphere or

a half-sphere of dimension d− i− 1.



Theorem: For a d-dimensional combinatorial manifold

M with boundary, there are isomorphisms

Hd−p(M,∂M) ' Hp(M) and Hd−p(M) ' Hp(M,∂M)

Equivalently, intersection defines a perfect pairing

Hp(M)×Hd−p(M,∂M) −→ F2



intersection of a cycle

with a relative cycle

in an annulus

Example: Annulus A

H0(A) = H2(A, ∂A) = F2

H1(A) = H1(A, ∂A) = F2

H2(A) = H0(A, ∂A) = 0



4.6. Alexander Duality

Let X ⊂ Sd be the realization of a simplicial complex.

Consider its ε-neighbourhood

N(X) := {y ∈ Bε(x) | x ∈ X}.

Its closure N(X) is a compact d-manifold with bound-

ary. Its complement Y := Sd \N(X) is also a compact

d-manifold with (the same) boundary.



Note: A simplicial complex version of N(X) and its

complement can be constructed as follows. Let Sd be

triangulated by K• such that X is the realization of

a subcomplex of K•. Consider Sd2(K•) and let S(X)

be its subcomplex representing X. Then N(X) can be

replaced by the simplicial d-manifold (with boundary)

N :=
⊔

u∈S(X)

star(u)



Theorem: For all p, H̃p(X) = H̃d−p−1(Y ).

Notation: H̃p(X) := Hp(X, ∗).

Example 1: X = {0} ⊂ Sd

N(X) = Bd ⊂ Sd

Y = Sd \Bd

H̃∗(X) = 0 = H̃∗(Y )



Example 2: X = S1 ⊂ S3

N(X) is a solid torus in S3

Y = S3 \N(X) is another solid torus in S3

H̃0(X) = 0 = H̃2(Y )

H̃1(X) = F2 = H̃1(Y )

H̃2(X) = 0 = H̃0(Y )

Note: Alexander Duality implies that the homology of

all knot complements are the same and can therefore

not be used to distinguish knots.



Proof: Let p < d− 1. Then

H̃d−p−1(Y ) = Hd−p−1(Y )
= Hp+1(Y, ∂Y ) by L.D.
= Hp+1(Sd, N(X))
= H̃p(N(X)) by l.e.s.
= H̃p(X)

Let p = d− 1. Then by a similar argument

H̃0(Y )⊕ F2 = H0(Y )
= Hd(Y, ∂Y )
= Hd(S

d, N(X))
= H̃d−1(N(X))⊕ F2
= H̃d−1(X)⊕ F2

as the l.e.s. (in relative homology) gives

0→ Hd(S
d)→ Hd(S

d, N(X))→ H̃d−1(N(X))→ 0



We have used here that by L.D.

Hd(N(X)) = H0(N(X), ∂N(X)) = 0

as every component of N(X) has non-empty boundary.

Finally, let p ≥ d. Then Hd−p−1(Y ) = 0 and so is

Hp(X) = Hp(N(X)) = Hd−p(N(X), ∂N(X)) = 0

by L.D.

Example 3: X a torus embedded in S3

By Alexander Duality,

H̃0(X) = 0 = H̃2(Y )

H̃1(X) = F2 × F2 = H̃1(Y )

H̃2(X) = F2 = H̃0(Y )



The last equation implies that Y has two connected

components. Indeed, Y ' S1 ∪ S1, one circle corre-

sponding to the interior of the torus and one to the

exterior.

Exercise: Prove the Jordan Curve Theorem that says

that every closed embedded curve in the plane divides

the plane in an outside and an inside.


