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Non-Locality and Contextuality

The concepts of non-locality and contextuality play a central rôle in quantum
foundations: Bell’s theorem, the Kochen-Specker theorem etc.

They also play an important rôle in quantum information: entanglement as a
resource, now contextuality as a resource . . .

These notions are not inherently quantum-mechanical in nature. Indeed, the
importance of Bell’s theorem is that it is about the entire space of physical
theories. We shall study non-locality and contextuality in a general setting.

The structures we shall expose arise in many different contexts: from
quantum mechanics to relational databases, (in)dependence logics, and social
choice.

We use the mathematical language of sheaf theory. We show that non-locality
and contextuality can be characterized precisely in terms of the existence of
obstructions to global sections.

We give linear algebraic methods for computing these obstructions.

Direct path from sheaf theory to computing global sections using MathematicaTM!
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The Basic Scenario

a

b
c

d ·
a

b
c

d ·

Alice Bob

Think e.g. of making observations at different nodes of a network.
Different quantities which can be measured.

Observations: tuples of values. Repeated observations give sets of such tuples.
Give rise to probabilities as relative frequencies.

Can we tell from this observational history if there is interference/dependence
between different parts of the system?
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The Quantum Case: Spin Measurements

States of the system can be described by complex unit vectors in C2. These can
be visualized as points on the unit 2-sphere:

|+〉

|−〉

|+〉

|−〉

|Ψ〉

Spin can be measured in any direction; so there are a continuum of possible
measurements. There are two possible outcomes for each such measurement;
spin in the specified direction, or in the opposite direction. These two directions
are represented by a pair of orthogonal vectors. They are represented on the
sphere as a pair of antipodal points.

Note the appearance of quantization here: there are not a continuum of possible
outcomes for each measurement, but only two!
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The Stern-Gerlach Experiment
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Quantum Entanglement

Bell state:

|00〉+ |11〉

EPR state:

|01〉+ |10〉

Compound systems are represented by tensor product: H1 ⊗H2. Typical
element: ∑

i

λi · φi ⊗ ψi

Superposition encodes correlation.

Einstein’s ‘spooky action at a distance’. Even if the particles are spatially
separated, measuring one has an effect on the state of the other.

Bell’s theorem: QM is essentially non-local.

Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 6 / 36



Quantum Entanglement
Bell state:

|00〉+ |11〉

EPR state:

|01〉+ |10〉

Compound systems are represented by tensor product: H1 ⊗H2. Typical
element: ∑

i

λi · φi ⊗ ψi

Superposition encodes correlation.

Einstein’s ‘spooky action at a distance’. Even if the particles are spatially
separated, measuring one has an effect on the state of the other.

Bell’s theorem: QM is essentially non-local.

Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 6 / 36



Quantum Entanglement
Bell state:

|00〉+ |11〉

EPR state:

|01〉+ |10〉

Compound systems are represented by tensor product: H1 ⊗H2. Typical
element: ∑

i

λi · φi ⊗ ψi

Superposition encodes correlation.

Einstein’s ‘spooky action at a distance’. Even if the particles are spatially
separated, measuring one has an effect on the state of the other.

Bell’s theorem: QM is essentially non-local.

Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 6 / 36



Quantum Entanglement
Bell state:

|00〉+ |11〉

EPR state:

|01〉+ |10〉

Compound systems are represented by tensor product: H1 ⊗H2. Typical
element: ∑

i

λi · φi ⊗ ψi

Superposition encodes correlation.

Einstein’s ‘spooky action at a distance’. Even if the particles are spatially
separated, measuring one has an effect on the state of the other.

Bell’s theorem: QM is essentially non-local.

Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 6 / 36



Quantum Entanglement
Bell state:

|00〉+ |11〉

EPR state:

|01〉+ |10〉

Compound systems are represented by tensor product: H1 ⊗H2. Typical
element: ∑

i

λi · φi ⊗ ψi

Superposition encodes correlation.

Einstein’s ‘spooky action at a distance’. Even if the particles are spatially
separated, measuring one has an effect on the state of the other.

Bell’s theorem: QM is essentially non-local.
Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 6 / 36



A Probabilistic Model Of An Experiment

Example: The Bell Model

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 0 1/2 1/2 0

a1 b2 3/8 1/8 1/8 3/8

a2 b1 3/8 1/8 1/8 3/8

a2 b2 3/8 1/8 1/8 3/8

Important note: this is physically realizable!

Generated by Bell state
|00〉 + |11〉√

2
,

subjected to measurements in the XY -plane, at relative angle π/3.

Extensively tested experimentally.
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Structural properties of probability tables

Constraints between rows: forms of independence.

No-signalling: the probability distribution Alice sees on outcomes of her
chosen measurement cannot depend on Bob’s choice of measurement.

Necessary for consistency with SR. Satisfied by QM.

Locality/non-contextuality. Probability of joint outcomes of (Alice, Bob)
measurement factors as a product of the probabilities observed by Alice and
Bob individually (i.e. ‘locally’), subject to some additional information which
may be hidden from us.

This is exactly a form of conditional independence assumption.

Is is, famously, not satisfied by QM (Bell’s theorem).

Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 8 / 36



Structural properties of probability tables

Constraints between rows: forms of independence.

No-signalling: the probability distribution Alice sees on outcomes of her
chosen measurement cannot depend on Bob’s choice of measurement.

Necessary for consistency with SR. Satisfied by QM.

Locality/non-contextuality. Probability of joint outcomes of (Alice, Bob)
measurement factors as a product of the probabilities observed by Alice and
Bob individually (i.e. ‘locally’), subject to some additional information which
may be hidden from us.

This is exactly a form of conditional independence assumption.

Is is, famously, not satisfied by QM (Bell’s theorem).

Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 8 / 36



Structural properties of probability tables

Constraints between rows: forms of independence.

No-signalling: the probability distribution Alice sees on outcomes of her
chosen measurement cannot depend on Bob’s choice of measurement.

Necessary for consistency with SR. Satisfied by QM.

Locality/non-contextuality. Probability of joint outcomes of (Alice, Bob)
measurement factors as a product of the probabilities observed by Alice and
Bob individually (i.e. ‘locally’), subject to some additional information which
may be hidden from us.

This is exactly a form of conditional independence assumption.

Is is, famously, not satisfied by QM (Bell’s theorem).

Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 8 / 36



Structural properties of probability tables

Constraints between rows: forms of independence.

No-signalling: the probability distribution Alice sees on outcomes of her
chosen measurement cannot depend on Bob’s choice of measurement.

Necessary for consistency with SR. Satisfied by QM.

Locality/non-contextuality. Probability of joint outcomes of (Alice, Bob)
measurement factors as a product of the probabilities observed by Alice and
Bob individually (i.e. ‘locally’), subject to some additional information which
may be hidden from us.

This is exactly a form of conditional independence assumption.

Is is, famously, not satisfied by QM (Bell’s theorem).

Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 8 / 36



Structural properties of probability tables

Constraints between rows: forms of independence.

No-signalling: the probability distribution Alice sees on outcomes of her
chosen measurement cannot depend on Bob’s choice of measurement.

Necessary for consistency with SR. Satisfied by QM.

Locality/non-contextuality. Probability of joint outcomes of (Alice, Bob)
measurement factors as a product of the probabilities observed by Alice and
Bob individually (i.e. ‘locally’), subject to some additional information which
may be hidden from us.

This is exactly a form of conditional independence assumption.

Is is, famously, not satisfied by QM (Bell’s theorem).

Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 8 / 36



Structural properties of probability tables

Constraints between rows: forms of independence.

No-signalling: the probability distribution Alice sees on outcomes of her
chosen measurement cannot depend on Bob’s choice of measurement.

Necessary for consistency with SR. Satisfied by QM.

Locality/non-contextuality. Probability of joint outcomes of (Alice, Bob)
measurement factors as a product of the probabilities observed by Alice and
Bob individually (i.e. ‘locally’), subject to some additional information which
may be hidden from us.

This is exactly a form of conditional independence assumption.

Is is, famously, not satisfied by QM (Bell’s theorem).

Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 8 / 36



Structural properties of probability tables

Constraints between rows: forms of independence.

No-signalling: the probability distribution Alice sees on outcomes of her
chosen measurement cannot depend on Bob’s choice of measurement.

Necessary for consistency with SR. Satisfied by QM.

Locality/non-contextuality. Probability of joint outcomes of (Alice, Bob)
measurement factors as a product of the probabilities observed by Alice and
Bob individually (i.e. ‘locally’), subject to some additional information which
may be hidden from us.

This is exactly a form of conditional independence assumption.

Is is, famously, not satisfied by QM (Bell’s theorem).

Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 8 / 36



Compatibility

It may not be possible, in general, to perform all measurements together. This is
implicit in the idea that each agent makes a choice of measurement from several
alternatives; only the measurements which are chosen are actually performed.

If measurements reveal objective properties of the systems being measured, it
seems that it should be the case that for any combination of measurements, it
makes sense to ask at least for a probability distribution on their possible
outcomes, which is consistent with the actually observed outcomes.

Quantum mechanics denies this.

Moreover, as we shall see, there are probability tables for which, as a
mathematical fact, there is no consistent extension to a joint distribution on
outcomes; so we must consider certain combinations of measurements as not
jointly performable in principle, under any physical theory whatever.
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Anatomy of a Probability Table

A B (0, 0) (1, 0) (0, 1) (1, 1)

a b 0 1/2 1/2 0

a′ b 3/8 1/8 1/8 3/8

a b′ 3/8 1/8 1/8 3/8

a′ b′ 3/8 1/8 1/8 3/8

The measurement contexts are

{a, b}, {a′, b}, {a, b′}, {a′, b′}.

Each measurement has possible outcomes 0 or 1. The matrix entry at row (a′, b)
and column (0, 1) indicates the event

{a′ 7→ 0, b 7→ 1}.

Each row of the table specifies a probability distribution on events OC for a
given choice of measurements C .
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The Presheaf of Distributions

We fix a set of measurements X , and a set of outcomes O.

For each set of measurements U ⊆ X , we define DRE(U) to be the set of
probability distributions on events s : U → O. Such an event specifies that
outcome s(m) occurs for each measurement m ∈ U.

Given U ⊆ U ′, we have an operation of restriction:

DRE(U ′)→ DRE(U) :: d 7→ d |U,

where for each s ∈ E(U):

d |U(s) :=
∑

s′∈E(U′),s′|U=s

d(s ′).

Thus d |U is the marginal of the distribution d , which assigns to each section s in
the smaller context U the sum of the weights of all sections s ′ in the larger
context which restrict to s.

Mathematical notes: (i) This is functorial, hence defines a presheaf.
(ii) We could vary R.
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Empirical Models: Reconstructing Probability Tables

Corresponding to the choices of measurements by agents, or more generally to the
idea that it may not be possible to perform all measurements together, we
consider a measurement structure M: a family of subsets of X which covers X ,⋃
M = X .

The sets C ∈M are the measurement contexts; the sets of measurements
which can be performed together.

These are the sets which index the rows of a generalized probability table.

An empirical model for M is a family {eC}C∈M, eC ∈ DRE(C ).

Thus each eC is a probability distribution on the row indexed by C ; it specifies a
probability for the events corresponding to the observation of an outcome for each
measurement in C .
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Compatibility And No-Signalling

We shall consider models {eC | C ∈M} which are compatible in the sense of
agreeing on overlaps: for all C ,C ′ ∈M,

eC |C ∩ C ′ = eC ′ |C ∩ C ′.

This ‘geometric’ compatibility condition corresponds to the physical condition of
no-signalling.

E.g. in the bipartite case, consider C = {ma,mb}, C ′ = {ma,m
′
b}.

Fix s0 ∈ E({ma}). Compatibility implies∑
s∈E(C),s|ma=s0

eC (s) =
∑

s′∈E(C ′),s′|ma=s0

eC ′(s ′).

This says that the probability for Alice to get the outcome s0(ma) is the same,
whether we marginalize over the possible outcomes for Bob with measurement
mb, or with m′b.

In other words, Bob’s choice of measurement cannot influence Alice’s outcome.
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Global Sections

We are given an empirical model {eC}C∈M.

Question: does there exist a global section for this family?

I.e. d ∈ DRE(X ) such that, for all C ∈M

d |C = eC .

A distribution, defined on all measurements, which marginalizes to yield the
empirically observed probabilities?

Note that s ∈ E(X ) := OX specifies an outcome for every measurement
simultaneously, independent of the measurement context.
For every context C , it restricts to yield s|C .

Thus it can be seen as a deterministic hidden variable.

If d is a global section for the model {eC}, we recover the predictions of the
model by averaging over the values of these hidden variables:

eC (s) = d |C (s) =
∑

s′∈E(X ),s′|C=s

d(s ′) =
∑

s′∈E(X )

δs′|C (s) · d(s ′).
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empirically observed probabilities?

Note that s ∈ E(X ) := OX specifies an outcome for every measurement
simultaneously, independent of the measurement context.

For every context C , it restricts to yield s|C .

Thus it can be seen as a deterministic hidden variable.
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Global Sections Subsume Hidden-Variable Theories

Note also that this is a local model:

δs |C (s ′) =
∏
x∈C

δs|x(s ′|x).

The joint probabilities determined by s factor as a product of the probabilities
assigned to the individual measurements, independent of the context in which
they appear. This subsumes Bell locality .

So a global section is a deterministic local hidden-variable model.

The general result is as follows:

Theorem

Any factorizable (i.e. local) hidden-variable model defines a global section.
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δs|x(s ′|x).

The joint probabilities determined by s factor as a product of the probabilities
assigned to the individual measurements, independent of the context in which
they appear. This subsumes Bell locality .

So a global section is a deterministic local hidden-variable model.

The general result is as follows:

Theorem

Any factorizable (i.e. local) hidden-variable model defines a global section.

Hence:

No such h.v. model exists (the empirical model is non-local/contextual)
IFF

there is an obstruction to the existence of a global section
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Existence of Global Sections

Linear algebraic method.

Define system of linear equations MX = V.

Solutions ←→ Global sections

Incidence matrix M (0/1 entries). Depends only on M and E .

Enumerate
∐

C∈M E(C ) as s1, . . . , sp.

Enumerate OX as t1, . . . , tq.

M[i , j ] = 1 ⇐⇒ tj |C = si (si ∈ E(C )).

Conceptually, boolean matrix representation of the map

E(X ) −→
∏

C∈M

E(C ) :: s 7→ (s|C )C∈M.

Bell scenarios (n, k, l): matrix is (kl)n × lkn.

Incidence matrix for (2, 2, 2) is 16× 16.
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The (2, 2, 2) Incidence Matrix



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1



This matrix has rank 9.
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The Linear System

A model e determines a vector V = [e(s1), . . . , e(sp)].

Solve
MX = V

for X over the semiring R.

The solution yields weights in R for the global assignments in OX ; i.e. a
distribution in DRE(X ).

The equations enforce the constraints that this distribution marginalizes to yield
the probabilities of the empirical model.

Hence solutions correspond exactly to global sections — which as we have seen,
correspond exactly to local hidden-variable realizations!
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The Bell Model

(0, 0) (1, 0) (0, 1) (1, 1)

(a, b) 0 1/2 1/2 0

(a′, b) 3/8 1/8 1/8 3/8

(a, b′) 3/8 1/8 1/8 3/8

(a′, b′) 3/8 1/8 1/8 3/8

Solutions in the non-negative reals: this corresponds to solving the linear system
over R, subject to the constraint that X ≥ 0 (linear programming problem).
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Bell’s Theorem

Proposition

The Bell model has no global section.

Proof We focus on 4 out of the 16 equations, corresponding to rows 3, 7, 11
and 14 of the incidence matrix. We write Xi rather than X[i ].

X9 + X10 + X11 + X12 = 1/2

X9 + X11 + X13 + X15 = 1/8

X3 + X4 + X11 + X12 = 1/8

X2 + X6 + X10 + X14 = 1/8

Adding the last three equations yields

X2 + X3 + X4 + X6 + X9 + X10 + 2X11 + X12 + X13 + X14 + X15 = 3/8.

Since all these numbers must be non-negative, the left-hand side of this equation
must be greater than or equal to the left-hand side of the first equation, yielding
the required contradiction. �
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The Hardy Model

We consider the possibilistic version of the Hardy model, specified by the following
table.

(0, 0) (1, 0) (0, 1) (1, 1)

(a, b) 1 1 1 1

(a′, b) 0 1 1 1

(a, b′) 0 1 1 1

(a′, b′) 1 1 1 0

This is obtained from a standard probabilistic Hardy model by replacing all positive
entries by 1; thus it can be interpreted as the support of the probabilistic model.

Now we are interested in solutions over the boolean semiring, i.e. a boolean
satisfiability problem. E.g. the equation specified by the first row of the incidence
matrix gives the clause

X1 ∨ X2 ∨ X3 ∨ X4

while the fifth yields the formula

¬X1 ∧ ¬X3 ∧ ¬X5 ∧ ¬X7.
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The ‘Hardy paradox’

A solution is an assignment of boolean values to the variables which
simultaneously satisfies all these formulas. Again, it is easy to see by a direct
argument that no such assignment exists.

Proposition

The possibilistic Hardy model has no global section over the booleans.

Proof We focus on the four formulas corresponding to rows 1, 5, 9 and 16 of
the incidence matrix:

X1 ∨ X2 ∨ X3 ∨ X4

¬X1 ∧ ¬X3 ∧ ¬X5 ∧ ¬X7

¬X1 ∧ ¬X2 ∧ ¬X9 ∧ ¬X10

¬X4 ∧ ¬X8 ∧ ¬X12 ∧ ¬X16

Since every disjunct in the first formula appears as a negated conjunct in one of
the other three formulas, there is no satisfying assignment. �
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Boolean obstructions are stronger than probabilistic ones

Proposition

Let V be the vector over R≥0 for a probabilistic model, Vb the boolean vector
obtained by replacing non-zero elements of V by 1. If MX = V has a solution
over R≥0, then MX = Vb has a solution over the booleans.

Proof Simply because
0 7→ 0, r > 0 7→ 1

is a semiring homomorphism. �

So:

non-existence of solution over booleans
⇒

non-existence of solution over R≥0

Bell: no solution over R≥0; solution over the booleans.
Hardy: no solution over the booleans.

Conclusion: Bell < Hardy.
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Quantum Realizations of Probability Models

A quantum realization of the system type (M,O) of arity n is given by:

Finite dimensional Hilbert spaces H1, . . . ,Hn.

For each i ∈ n, m ∈ Mi , and o ∈ Oi , a unit vector ψm,o in Hi , subject to the
condition that the vectors {ψm,o | o ∈ Oi} form an orthonormal basis of Hi .

A state ψ, i.e. a unit vector in H1 ⊗ · · · ⊗ Hn.

For each choice of measurement m ∈ M, and outcome o ∈ O, the usual
‘statistical algorithm’ of quantum mechanics defines a probability pm(o) for
obtaining outcome o from performing the measurement m on ρ:

pm(o) = |〈ψ | ψm,o〉|2,

where ψm,o = ψm1,o1 ⊗ · · · ⊗ ψmn,on .

To compute the tensor product of vectors:∑
i

ai |i〉 ⊗
∑
j

bj |j〉 =
∑
i,j

aibj |ij〉.
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Quantum Realization of the Hardy Model

We consider the two-qubit system, with X2 and Y2 measurement in the
computational basis. We take R = 0, G = 1. The eigenvectors for X1 are taken to
be √

3

5
|0〉+

√
2

5
|1〉, −

√
2

5
|0〉+

√
3

5
|1〉

and similarly for Y1. The state is taken to be√
3

8
|10〉 +

√
3

8
|01〉 − 1

2
|00〉.

One can then calculate the probabilities to be

pX1Y2(RR) = pX2Y1(RR) = pX2Y2(GG ) = 0,

and pX1Y1(RR) = 0.09, which is very near the maximum attainable value.

The possibilistic collapse of this model is thus a Hardy model.
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Negative Probabilities And No-Signalling

Distributions over R: signed measures (‘negative probabilities’).
Wigner, Dirac, Feynman, Sudarshan, . . .

Feynman:

The only difference between a probabilistic classical world and the
equations of the quantum world is that somehow or other it appears as if
the probabilities would have to go negative . . .

Theorem

Probabilistic models have local hidden-variable realizations with negative
probabilities if and only if they satisfy no-signalling.

Thus negative probabilities characterize the no-signalling rather than the quantum
realm.
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Linear Span Theorem
The fact that all probabilistic models have such global sections over signed
measures is a consequence of the following:

Theorem
The linear subspace generated by the local models over an arbitrary measurement
cover M coincides with that generated by the no-signalling models. Their
common dimension is

D :=
∑
U∈U

(l − 1)|U|

where l = |O| and U is the abstract simplicial complex generated by M.

Since the local models are included in the no-signalling models, this is proved by
showing that every compatible model is determined by linear equations in D
variables; while there are D linearly independent local models.

As a special case, we derive a formula for the dimension for Bell-type
(n, k, l)-scenarios:

D = (k · (l − 1) + 1)n.
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Reasons

In the case of (n, 2, 2, ) systems, this result can be visualized in terms of elegant
self-similarity properties of the inductively defined incidence matrices M(n):

M(1) =


1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

 M(n + 1) =


M(n) M(n) 0 0

0 0 M(n) M(n)

M(n) 0 M(n) 0

0 M(n) 0 M(n)


and of the probability vectors V corresponding to no-signalling models, from
which it follows that

rank(M(n)) = rank([M(n)|V]) = 3n.
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Example: PR Boxes have global sections over R

The ‘Popescu-Rohrlich box’:

(0, 0) (1, 0) (0, 1) (1, 1)

(a, b) 1/2 0 0 1/2

(a′, b) 1/2 0 0 1/2

(a, b′) 1/2 0 0 1/2

(a′, b′) 0 1/2 1/2 0

The PR boxes exhibit super-quantum correlations, and cannot be realized in
quantum mechanics.

Example solution:

[1/2, 0, 0, 0,−1/2, 0, 1/2, 0,−1/2, 1/2, 0, 0, 1/2, 0, 0, 0].

This vector can be taken as giving a local hidden-variable realization of the
PR box using negative probabilities. Similar explicit realizations can be given
for the other PR boxes.
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Strong Contextuality

If we wish to maintain a realistic view of the nature of physical reality, then when
we measure a system with respect to some quantity, there should be a definite
value possessed by the system for this quantity, independent of the
measurement which we perform.

This value may be influenced by some unseen factors, and hence our
measurements yield only frequencies, not certain outcomes. Nevertheless, these
definite, objective values should exist.

From this perspective, the following fact is shocking:

It is not possible to assign definite values to all measurements,
independently of the selected measurement context (i.e. the set of measurements
which we perform), consistently with the predictions of quantum mechanics.

Equivalently, the model has no global section compatible with its support.

Note that this is a very weak requirement: just that some assignment is possible.
The negative result is correspondingly very strong.

Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 30 / 36



Strong Contextuality

If we wish to maintain a realistic view of the nature of physical reality, then when
we measure a system with respect to some quantity, there should be a definite
value possessed by the system for this quantity, independent of the
measurement which we perform.

This value may be influenced by some unseen factors, and hence our
measurements yield only frequencies, not certain outcomes. Nevertheless, these
definite, objective values should exist.

From this perspective, the following fact is shocking:

It is not possible to assign definite values to all measurements,
independently of the selected measurement context (i.e. the set of measurements
which we perform), consistently with the predictions of quantum mechanics.

Equivalently, the model has no global section compatible with its support.

Note that this is a very weak requirement: just that some assignment is possible.
The negative result is correspondingly very strong.

Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 30 / 36



Strong Contextuality

If we wish to maintain a realistic view of the nature of physical reality, then when
we measure a system with respect to some quantity, there should be a definite
value possessed by the system for this quantity, independent of the
measurement which we perform.

This value may be influenced by some unseen factors, and hence our
measurements yield only frequencies, not certain outcomes. Nevertheless, these
definite, objective values should exist.

From this perspective, the following fact is shocking:

It is not possible to assign definite values to all measurements,
independently of the selected measurement context (i.e. the set of measurements
which we perform), consistently with the predictions of quantum mechanics.

Equivalently, the model has no global section compatible with its support.

Note that this is a very weak requirement: just that some assignment is possible.
The negative result is correspondingly very strong.

Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 30 / 36



Strong Contextuality

If we wish to maintain a realistic view of the nature of physical reality, then when
we measure a system with respect to some quantity, there should be a definite
value possessed by the system for this quantity, independent of the
measurement which we perform.

This value may be influenced by some unseen factors, and hence our
measurements yield only frequencies, not certain outcomes. Nevertheless, these
definite, objective values should exist.

From this perspective, the following fact is shocking:

It is not possible to assign definite values to all measurements,
independently of the selected measurement context (i.e. the set of measurements
which we perform), consistently with the predictions of quantum mechanics.

Equivalently, the model has no global section compatible with its support.

Note that this is a very weak requirement: just that some assignment is possible.
The negative result is correspondingly very strong.

Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 30 / 36



Strong Contextuality

If we wish to maintain a realistic view of the nature of physical reality, then when
we measure a system with respect to some quantity, there should be a definite
value possessed by the system for this quantity, independent of the
measurement which we perform.

This value may be influenced by some unseen factors, and hence our
measurements yield only frequencies, not certain outcomes. Nevertheless, these
definite, objective values should exist.

From this perspective, the following fact is shocking:

It is not possible to assign definite values to all measurements,
independently of the selected measurement context (i.e. the set of measurements
which we perform), consistently with the predictions of quantum mechanics.

Equivalently, the model has no global section compatible with its support.

Note that this is a very weak requirement: just that some assignment is possible.
The negative result is correspondingly very strong.

Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 30 / 36



Strong Contextuality

If we wish to maintain a realistic view of the nature of physical reality, then when
we measure a system with respect to some quantity, there should be a definite
value possessed by the system for this quantity, independent of the
measurement which we perform.

This value may be influenced by some unseen factors, and hence our
measurements yield only frequencies, not certain outcomes. Nevertheless, these
definite, objective values should exist.

From this perspective, the following fact is shocking:

It is not possible to assign definite values to all measurements,
independently of the selected measurement context (i.e. the set of measurements
which we perform), consistently with the predictions of quantum mechanics.

Equivalently, the model has no global section compatible with its support.

Note that this is a very weak requirement: just that some assignment is possible.
The negative result is correspondingly very strong.

Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 30 / 36



Strong Contextuality

If we wish to maintain a realistic view of the nature of physical reality, then when
we measure a system with respect to some quantity, there should be a definite
value possessed by the system for this quantity, independent of the
measurement which we perform.

This value may be influenced by some unseen factors, and hence our
measurements yield only frequencies, not certain outcomes. Nevertheless, these
definite, objective values should exist.

From this perspective, the following fact is shocking:

It is not possible to assign definite values to all measurements,
independently of the selected measurement context (i.e. the set of measurements
which we perform), consistently with the predictions of quantum mechanics.

Equivalently, the model has no global section compatible with its support.

Note that this is a very weak requirement: just that some assignment is possible.

The negative result is correspondingly very strong.

Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 30 / 36



Strong Contextuality

If we wish to maintain a realistic view of the nature of physical reality, then when
we measure a system with respect to some quantity, there should be a definite
value possessed by the system for this quantity, independent of the
measurement which we perform.

This value may be influenced by some unseen factors, and hence our
measurements yield only frequencies, not certain outcomes. Nevertheless, these
definite, objective values should exist.

From this perspective, the following fact is shocking:

It is not possible to assign definite values to all measurements,
independently of the selected measurement context (i.e. the set of measurements
which we perform), consistently with the predictions of quantum mechanics.

Equivalently, the model has no global section compatible with its support.

Note that this is a very weak requirement: just that some assignment is possible.
The negative result is correspondingly very strong.

Samson Abramsky (Department of Computer Science, University of Oxford)CAT L4: Quantum Non-Locality and Contextuality 30 / 36



Strong Contextuality

Given an empirical model e, we define the set

Se := {s ∈ E(X ) : ∀C ∈M. s|C ∈ supp(eC )}.

A consequence of the extendability of e is that Se is non-empty.

We say that the model e is strongly contextual if this set Se is empty. Thus
strong non-contextuality implies non-extendability.

In fact, it is strictly stronger. The Hardy model, which as we saw in the previous
section is possibilistically non-extendable, is not strongly contextual. The Bell
model similarly fails to be strongly contextual.

The question now arises: are there models arising from quantum mechanics which
are strongly contextual in this sense?

We shall now show that the well-known GHZ models, of type (n, 2, 2) for all
n > 2, are strongly contextual. This will establish a strict hierarchy

Bell < Hardy < GHZ

of increasing strengths of obstructions to non-contextual behaviour for these
salient models.
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section is possibilistically non-extendable, is not strongly contextual. The Bell
model similarly fails to be strongly contextual.

The question now arises: are there models arising from quantum mechanics which
are strongly contextual in this sense?

We shall now show that the well-known GHZ models, of type (n, 2, 2) for all
n > 2, are strongly contextual. This will establish a strict hierarchy

Bell < Hardy < GHZ

of increasing strengths of obstructions to non-contextual behaviour for these
salient models.
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Spin Right or Left along the x-axis.

Spin Forward or Back along the y -axis.

These directions determine observables X and Y .

Note that X and Y do not commute; hence according to quantum mechanics,
they are incompatible; they cannot be measured together.
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GHZ States

In each finite dimension n > 2 we have the GHZ state, written in the Z basis as

|↑ · · · ↑〉 + |↓ · · · ↓〉√
2

.

Physically, this corresponds to n particles prepared in a certain entangled state.

If we measure each particle with a choice of X or Y observable, the probability for
each outcome is given by the inner product

|〈GHZ|b1 · · · bn〉〉|2.
This computation is controlled by the product of the |↓〉-coefficients of the basis
vectors: cyclic group generated by i ∼= Z4.

1−1

−i

i

|↑〉

|↓〉
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Logical Specification Of GHZ Models

The GHZ model of type (n, 2, 2) can be specified as follows. We label the two
measurements at each part as X (i) and Y (i), and the outcomes as 0 and 1.

For each maximal context C , every s in the support of the model satisfies the
following conditions:

If the number of Y measurements in C is a multiple of 4, the number of 1’s
in the outcomes specified by s is even.

If the number of Y measurements is 4k + 2, the number of 1’s in the
outcomes is odd.

NB: a model with these properties can be realized in quantum mechanics.
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GHZ Models Are Strongly Contextual
We consider the case where n = 4k . Assume for a contradiction that we have a
global section.

If we take Y measurements at every part, the number of R outcomes under the
assignment has a parity P. Replacing any two Y ’s by X ’s changes the residue
class mod 4 of the number of Y ’s, and hence must result in the opposite parity
for the number of R outcomes under the assignment.

Thus for any Y (i), Y (j) assigned the same value, if we substitute X’s in those
positions they must receive different values. Similarly, for any Y (i), Y (j) assigned
different values, the corresponding X (i), X (j) must receive the same value.

Suppose not all Y (i) are assigned the same value. Then for some i, j, k, Y (i) is
assigned the same value as Y (j), and Y (j) is assigned a different value to Y (k).
Thus Y (i) is also assigned a different value to Y (k). Then X (i) is assigned the
same value as X (k), and X (j) is assigned the same value as X (k). By transitivity,
X (i) is assigned the same value as X (j), yielding a contradiction.

The remaining cases are where all Y’s receive the same value. Then any pair of
X’s must receive different values. But taking any 3 X’s, this yields a contradiction,
since there are only two values, so some pair must receive the same value.
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Final Remarks

Our approach is independent of quantum mechanics, since we aim to
study the general structure of physical theories. No Hilbert spaces in this talk!

Still, all the ideas we have discussed can be represented faithfully in quantum
mechanics. Leads to some interesting developments, e.g. a Generalized
No-Signalling Theorem.

A unified approach to non-locality and contextuality. Kochen-Specker
theorem also falls within the scope of our theory; it is exactly about the
non-existence of global sections.

The mathematical aspects can be pursued much more deeply. Opens the
prospect of applying the powerful tools developed in sheaf theory to the
study of quantum (and computational) foundations.

The same methods and structures can be applied to the study of notions of
locality and contextuality in other areas, e.g. relational databases, logics of
independence, social choice theory.

Interplay between abstract mathematics, foundations of physics, and
computational exploration.

S. Abramsky and A. Brandenburger, The Sheaf-Theoretic Structure of
Non-Locality and Contextuality. Available at arXiv:1102.0264.
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