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1. Simplicial complexes

1.1. Definitions

An abstract, finite simplicial complex K is a

collection of non-empty subsets of a finite set

of vertices K0 that satisfy the condition

α ∈ K, β ⊂ α =⇒ β ∈ K.

β ⊂ α is called a face of α.

The dimension of K is one less than the car-

dinality of the largest element of K:

dim(K) := max
α∈K

{#α− 1}.

The subset Kp ⊂ K of sets of size p+1 are the

p-simplices.

The union Kp of all subsets of size p+1 or less

is a subcomplex of K called the p-skeleton.



The Euler characteristic of K is defined by

χ(K) := Σp (−1)
p#Kp.

Example: K0 = {0,1,2,3,4,5,6},

K1 = {{0,1}, {1,2}, {2,3}, {3,4}, {4,5},

{5,6}, {6,3}, {3,5}},

K2 = {{3,4,5}, {3,5,6}}

χ(K) = 7− 8+ 2 = 1
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1.2. Geometric realization

The simplex spanned by {v0, . . . , vp} ⊂ Rn is

the set of points

{Σp
i=0 tivi |0 ≤ ti ∈ R, Σi ti = 1}.

{v0, . . . , vp} are affinely independent if they span

a p-simplex, or equivalently, if {v1−v0, . . . , vn−

v0} are linearly independent.

Assume we have an assignment of the vertex

set K0 to points in Rn such that the images

of the elements for every σ ∈ K are affinely

independent. Let |σ| be the simplex spanned

by the images of the elements in σ. The set

|K| :=
⋃

σ∈K

|σ|

is a geometric realization of K.

Lemma: Let K be a simplicial complex and

N = #K0. Then K has a geometric realisa-

tion in RN .



Proof: Map the elements in K0 to the stan-

dard basis elements in RN . |K| is the union

of all simplices spanned by the images of the

elements in K. ♦

A simplicial map f : K → L is a map of vertices

f : K0 → L0 such that f(σ) ∈ L for all σ ∈ K.

It induces a continuous map on realizations by

setting

f(Σ
p
i=0 tivi) = Σ

p
i=0 tif(vi),

where vi is the realisation of the i-th vertex of

a p-simplex in K and f(vi) is the realization of

the image of this vertex in |L|.

Exercise: Show that any two geometric real-

izations are homeomorphic.



1.3. Subdivision and approximation

The barycenter of the realization of p-simplex

is the point corresponding to t0 = · · · = tp =

1/(p+1).

The barycentric subdivision Sd(K) of a simpli-

cial complex K is constructed by induction: at

the p-th stage, for every p-simplex σ, add the

barycenter of σ and all the (p − 1)-simplicies

(and their faces) containing the barycenter and

any other vertices and barycenters of any face

of σ.

Simplicial Approximation Theorem: For any

continuous map g : |K| → |L| there is an n and

a simplicial map f : Sdn(K) → L such that f

and g are homotopic.



2. Homology

2.1. Basic definitions

A chain complex (C, d) over a field k is a se-

quence of k-vector spaces and maps

. . . Cn+1
dn+1
−→ Cn

dn−→ Cn−1
dn−1
−→ . . . C0 −→ 0

such the dn ◦ dn+1 = 0. A map of chain com-

plexes F : (C, d) → (C′, d′) is a collection of k-

linear maps Fn : Cn → C′n such that Fn−1◦dn =

d′n ◦ Fn.

n-th boundary map: dn
n-chains: Cn
n-cycles: Zn := Ker(dn)

n-boundaries: Bn := Im(dn+1)

n-th homology group of C:

Hn(C) := Zn/Bn = Ker(dn)/Im(dn+1)

Exercise: A map of chain complexes induces a

map of homology groups.



2.2. F2-homology of a simplicial complex

Let K be a simplicial complex and let

Cn(K) := F2[Kn]

be the F2-vector space with basis Kn. Define

on basis elements

dn(α) := Σβ⊂α,#β=n β

and extend dn linearly to all chains.

Fundamental Lemma: dn ◦ dn+1 = 0.

Proof: It is enough to check this on basis ele-

ments. Let α = {v0, . . . , vn+1} be an (n+ 1)-

simplex. Then

dn(dn+1(α)) = dn(Σ
n+1
i=0 {v0, . . . , v̂i, . . . vn+1})

= 2Σj 6=i{v0, . . . , v̂j, . . . , v̂i, . . . vn+1} = 0

♦



Caveat: When the characteristic of k is not 2,

one has to take in the definition of the bound-

ary map dn the alternating sum over the n+

1 faces. Otherwise the Fundamental Lemma

does not hold.

The n-th homology group of a simplicial com-

plex K is

Hn(K)(= Hn(K,F2)) := Hn(C(K))

The p-th Betti number of K is

bp := dimHp(K).

Proposition: χ(K) = Σp (−1)p bp.

Proof: Use rank-nullity formula. ♦



Example 1: K a one-point union of the bound-

ary of two triangles. Then C1(K) =< a, b, c, d, e, f >

and C0(K) =< v0, v1, v2, v3, v4 >, and d1 has

matrix

1 0 1 1 0 1
1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 1 1
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Using column and row operations this can be

transformed to

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

Hence by the rank-nullity theorem H0(K) = F2

and H1(K) = F2 ⊕ F2. All other homology

groups are zero.

Example 2: K an n-simplex (i.e. an n-ball).

Then Hp(K) = F2 when p = 0 and is zero

otherwise.

Example 3: K is the boundary of an n-simplex

(i.e. an n−1 sphere). Then Hp(K) = F2 when

p = n− 1,0 and is zero otherwise.



2.2. Relative homology

Let A ⊂ C be a sub chain complex of C (i.e.

An ⊂ Cn and dn(An) ⊂ An−1 for all n). Then

C/A is the quotient chain complex with n-chains

Cn/An and boundary map induced by dn.

Theorem: A short exact sequence of chain

complexes 0 −→ A −→ C −→ C/A −→ 0 in-

duces a long exact sequence on homology groups

. . . Hn+1(C/A)
δ
→ Hn(A)→ Hn(C)→

Hn(C/A)
δ
→ Hn−1(A) . . . H0(C/A)→ 0

The connecting homomorphims δ takes a cycle

in Cn/An which is represented by a chain c ∈ Cn
to dn(c) ∈ An−1.

Example: n-simplex Bn and its boundary Sn−1.

Then C(Sn−1) is a sub-complex of C(Bn), and

the long exact sequence yields Hp(Bn, Sn−1) =

F2 if p = n and zero otherwise.



2.3. Mayer-Vietoris sequence

Theorem: Let K = A∪B be the union of two

simplicial subcomplexes. Then there is a long

exact sequence

. . . Hn(A ∩B)→ Hn(A)⊕Hn(B)→ Hn(K)
δ
→

Hn−1(A ∩B)→ · · · → H0(K)→ 0.

The first two maps are induced by the inclu-

sions of complexes with c 7→ (c, c) and (a, b) 7→

a−b. To define the connecting homomorphism

δ, write a chain c ∈ Cn(K) as a sum of chains

a ∈ Cn(A) and b ∈ Cn(B). Then c is taken to

the chain dn(a) = dn(b) in A ∩B.

Proof: The maps induce an exact sequence of

chain complexes

0→ C(A ∩B)→ C(A)⊕ C(B)→ C(K)→ 0.

♦



2.4. Homology of Sd(K)

Let K be a simplicial complex of dimension d

and Sd(K) be its barycentric subdivision. On

chain complexes we have a map

C(K) −→ C(Sd(K)), σ 7→ Σµ⊂σ µ

that sends a p-simplex σ ∈ K to the sum of all

p-simplices µ ∈ Sd(K) with µ ⊂ σ. This is a

map of chain complexes as

dσ = Σµ⊂σ dµ

Block Lemma: The induced map on homol-

ogy induces an isomorphism

H(K) = H(C(K))
≃
−→ H(Sd(K)).

Proof: Let Xp ⊂ Sd(K) be the sub-complex of

all simplices (and their faces) that are used to

describe the image of Kp.

Clearly, X0 ⊂ X1 ⊂ · · · ⊂ Xd = Sd(K).



Claim: Hq(Xp, Xp−1) = Cp(K) if p = q and 0

otherwise.

Cp+1(K) 0=Hp−1(Xp−2)

↓ e ↓

Hp(Xp)
f
→ Cp(K)

g
→ Hp−1(Xp−1)

↓ l ↓ h
Hp(Xp+1) Cp−1(K)

↓
0 = Hp(Xp+1, Xp)

Using the long exact sequence for relative ho-

mology one sees that the diagram has exact

columns and row. A diagram chase gives

Hp(K) = ker(hg)/im(fe) = im(f)/im(fe)

= Hp(Xp)/im(e) = Hp(Xp)/ker(l)

= Hp(Xp+1) = Hp(Sd(K)).

♦



2.5. Cohomology

The dual of a k-vector spaces V is

V ∗ := Hom(V, k).

If T : V → W is a map of vector spaces then

its adjoint

T ∗ :W ∗ → V ∗

is defined by T ∗(f)(v) := f(T (v)). If the matrix

presentation of T with respect to some bases

of V and W is A then matrix presentation of

T ∗ with respect to the dual bases is AT , the

transpose of A.

A cochain complex (C, d) has an associated

dual cochain complex (C∗, d∗)

· · ·
d∗n+1
←− Cn

d∗n←− Cn−1
d∗n−1
←− . . . C0 ←− 0

where Cn = (Cn)∗ = Hom(Cn, k).



n-cocycles: Zn := Ker(d∗n+1)

n-coboundaries: Bn := Im(d∗n)

n-th cohomology group:

Hn(C) := Zn/Bn

For a simplicial complex K,

Hn(K) := Hn(C(K))

Example 1: Let K be connected. Then the

only non-trivial 0-cocycle is the map that as-

signs 1 to every vertex of K. Hence, H0(K) =

F2.

Example 2: K the one-point union of the bound-

ary of two triangles as in section 2.2. Then

C0 = (F2)
5 and C1 = (F2)

6. As d∗ is the

transpose of d, it has rank 4. So H0(K) = F2

and H1(K) = (F2)
2.



Universal Coefficient Theorem:

dim(Hn(C)) = dim(Hn(C))

Proof: dim(Hn) = dim(Zn)− dim(Bn) and

dim(Hn) = dim(Zn)− dim(Bn).

So the theorem follows from

dimZn+ dimBn = dimCn

= dimCn = dimZn+ dimBn

Bn

Zn

C n Cn−1

Z n−1

B n−1

d
*

d

0

0



3. Manifolds and duality

3.1 Combinatorial d-manifolds

A manifold of dimension d is a topological

space M for which every point lies in an open

neighbourhood homeomorphic to the open d-
dimensional unit disk Dd. M is triangulated by

a simplicial complex K if M is a realization of

K. K is also called a triangulation of M . For

a p simplex σ ∈ K define

star(σ) := {τ ∈ K|σ ≤ τ}

link(σ) := {τ ∈ star(σ)| τ ∩ σ = ∅}

star ( star () )

link = S 1 link = S
0

link = empty

star ( )



A combinatorial d-manifold is a d-dimensional

manifold with a triangulation such that

(**) the link of every i-simplex triangulates a

sphere of dimension d− i− 1.

Caveat: Not every triangulation of a manifold

satisfies condition (**).

Exercise: If K satisfies condition (**) then so

does Sd(K).



3.2. Dual bock complex

Let K be a triangulation of a combinatorial

d-dimensional manifold. Label the vertices of

Sd(K) by the dimension of the simplex in K

that they belong to. For a p-simplex σ define

its dual block σ̂ as the union of simplices in

Sd(K) that contain the barycenter of σ as their

lowest vertex.

simplices (in blue) and

their dual blocks (in red)

The boundary ∂(σ̂) of a block is the union
⋃
σ⊂τ τ̂ of blocks τ̂ ; the block is homeomorphic

to a d− p− 1 sphere by the condition (**) on

links in the triangulation K.



The dual block chain complex D is the chain

complex in which the dual blocks of p-simplices

form a basis for Dd−p and the boundary map

is given by ∂.

Exercise: ∂ ◦ ∂ = 0.

Block Lemma: The map that sends a block

µ ∈ Dp to the sum Σσ⊂µ σ ∈ Cp(Sd(K)) in-

duces an isomorphism in homology

Hp(D) = Hp(Sd(K)) = Hp(K).

Proof: The proof is the same as that in section

2.4. Here Xp is the subcomplex of Sd(K) which

contains all simplices in a block of dimension p

or less. Note that as before Hq(Xp, Xp−1) = Dp

if p = q and 0 otherwise. ♦



3.3. Poincaré Duality

Theorem: LetM be a combinatorial d-dimensional

manifold. For all 0 ≤ p ≤ d,

Hd−p(M) ≃ Hp(M)

Proof: LetM be triangulated by K and σ ∈ Kp.

The linear map

ψ : Dd−p −→ Cp(K), σ̂ 7→ σ∗

that sends the dual block σ̂ to the dual basis

element σ∗ is a bijection on basis elements and

hence an isomorphism of vector spaces. To

prove the theorem, it remains to show that ψ

commutes with the boundary maps:

ψ(∂(σ̂)) = ψ(Σσ⊂τ τ̂) = Σσ⊂τ τ
∗

d∗(ψ(σ̂)) = d∗(σ∗) = Σσ⊂τ τ
∗

♦



Corollary: Hd−p(M) ≃ Hp(M)

Proof: This follows from Poincare Duality and

the Universal Coefficient Theorem. ♦

Example 1: If d is odd then χ(M) = 0.

Example 2: If M is connected then

Hd(M) ≃ H0(M) ≃ F2

and the only non-zero d-dimensional cycle is

the fundamental class [M ] := Σσ∈Kd σ.



3.4. Intersection theory

Let M be a d-dimensional combinatorial mani-

fold with triangulation K.

Goal: to get a better geometric picture of P.D.

For σ, τ ∈ Kp the intersection σ∩τ̂ is the barycen-

ter of σ if τ = σ and is empty if τ 6= σ. Define

< σ, τ̂ >:= 1 if σ = τ, and = 0 if σ 6= τ

and extend this bilinearly to a pairing

Cp(K)×Dd−p −→ F2

<c, d> = 1



Claim: The intersection number < c, d > does

not change if c or d is replaced by a homologous

cycle.

Proof: If c is homologous to c0 then there ex-

ists a p+1-chain e with ∂(e) = c+ c0.

Let τ be a summand of e.

Then for any (d−p)-simplex σ̂ (of d), τ∩σ̂ is ei-

ther empty or, if σ is a face of τ , the 1-simplex

from the barycenter of τ to the barycenter of

σ.

As d is a cycle, the path of which σ̂ is a part

needs to continue. The possibilities are that

the path goes in and out of τ through faces

both belonging to c, or both belonging to c0,

or one belonging to c and one belonging to c0.

In all cases the intersection number with c is

the same as that with c0. ♦



|K| = Möbius band

c = core of the Möbius band – blue

c0 = core: one blue simplex replaced by two green

d = cycle in D∗ homotopic to the core – red



Theorem: The bilinear map

Hp(M)×Hd−p(M) −→ F2

([c], [d]) 7→< c, d >

defines a perfect pairing, i.e. the map

[d] 7→< , d >

defines an isomorphisms Hd−p(M)→ (Hp(M))∗.

Proof: By Poincaré Duality, the pairing

Hp(K)×Hd−p(D) −→ F2

(Σσi,Σ τ̂j) 7→ Σ < σi, τ̂j >

is the same as the pairing

Hp(K)×Hp(K) −→ F2

(Σσi,Σ τ∗j ) 7→ Σ τ∗j (σi)

as < σ, τ̂ >= τ∗(σ) for all σ, τ ∈ Kp.

The second pairing induces by the Universal

Coefficient Theorem a perfect pairing

Hp(K) ≃ (Hp(K))∗. ♦



3.5. Lefschetz Duality

A manifold with boundary of dimension d is

a topological space M for which every point

lies in an open neighbourhood homeomorphic

to the open d-dimensional unit disk Dd or the

half disk Dd∩(R≥0×R
d−1). The points with an

open neighbourhood of the second kind form

the boundary ∂M of M .

A combinatorial d-manifold with boundary is

a d-dimensional manifold with boundary and a

triangulation such that

(**) the link of every i-simplex triangulates a

sphere or a half-sphere of dimension d− i− 1.



Theorem For a d-dimensional combinatorial

manifold M with boundary, there are isomor-

phisms

Hd−p(M,∂M) ≃ Hp(M) and Hd−p(M) ≃ Hp(M,∂M)

Equivalently, intersection defines a perfect pair-

ing

Hp(M)×Hd−p(M,∂M) −→ F2

intersection of a cycle

with a relative cycle

in an annulus

Example: Annulus A

H0(A) = H2(A, ∂A) = F2

H1(A) = H1(A, ∂A) = F2

H2(A) = H0(A, ∂A) = 0



3.6. Alexander Duality

Let X ⊂ Sd be the realization of a simplicial

complex. Consider its ǫ-neighbourhood

N(X) := {y ∈ Bǫ(x) | x ∈ X}.

Its closure N(X) is a compact d-manifold with

boundary. Its complement Y := Sd \ N(X)

is also a compact d-manifold with (the same)

boundary.

Note: A simplicial complex version of N(X)

and its complement can be constructed as fol-

lows. Let Sd be triangulated by K such that X

is the realization of a subcomplex of K. Con-

sider Sd2(K) and let S(X) be its subcomplex

representing X. Then N(X) can be replaced

by the simplicial d-manifold (with boundary)

N :=
⊔

u∈S(X)

star(u)



Theorem: For all p,

H̃p(X) = H̃d−p−1(Y )

Notation: H̃p(X) := Hp(X, ∗).

Example 1: X = {0} ⊂ Sd

N(X) = Bd ⊂ Sd

Y = Sd \Bd

H̃∗(X) = 0 = H̃∗(Y )

Example 2: X = S1 ⊂ S3

N(X) is a solid torus in S3

Y = S3 \N(X) is another solid torus in S3

H̃0(X) = 0 = H̃2(Y )

H̃1(X) = F2 = H̃1(Y )

H̃2(X) = 0 = H̃0(Y )

Note: Alexander Duality implies that the ho-

mology of all knot complements are the same

and can therefore not be used to distinguish

knots.



Proof: Let p < d− 1. Then

H̃d−p−1(Y ) = Hd−p−1(Y )
= Hp+1(Y, ∂Y ) by L.D.

= Hp+1(S
d, N(X))

= H̃p(N(X)) by l.e.s.
= H̃p(X)

Let p = d− 1. Then by a similar argument

H̃0(Y )⊕ F2 = H0(Y )
= Hd(Y, ∂Y )

= Hd(S
d, N(X))

= H̃d−1(N(X))⊕ F2
= H̃d−1(X)⊕ F2

as the l.e.s. (in relative homology) gives

0→ Hd(S
d)→ Hd(S

d, N(X))→ H̃d−1(N(X))→ 0

We have used here that by L.D.

Hd(N(X)) = H0(N(X), ∂N(X)) = 0

as every component of N(X) has non-empty

boundary.



Finally, let p ≥ d. Then Hd−p−1(Y ) = 0 and so

is

Hp(X) = Hp(N(X)) = Hd−p(N(X), ∂N(X)) = 0

by L.D. ♦

Example 3: X a torus embedded in S3

By Alexander Duality,

H̃0(X) = 0 = H̃2(Y )

H̃1(X) = F2 × F2 = H̃1(Y )

H̃2(X) = F2 = H̃0(Y )

The last equation implies that Y has two con-

nected components. Indeed, Y ≃ S1 ∪ S1, one

circle corresponding to the interior of the torus

and one to the exterior.

Exercise: Prove the Jordan Curve Theorem

that says that every closed embedded curve in

the plane divides the plane in an outside and

an inside.



4. Persistent Homology

Motivation: data analysis.

4.1. Definitions

Let (K(•), φ•) be a sequence of finite simpli-

cial complexes K(i), i = 0, . . . N and simplicial

maps φi

K(0)
φ0−→ · · ·

φi−1
−→ K(i)

φi−→ · · ·
φN−1
−→ K(N).

For each degree p ≥ 0, this gives rise to a

sequence of maps in homology

HpK(0)
φ0−→ · · ·

φi−1
−→ HpK(i)

φi−→ · · ·
φN−1
−→ HpK(N).

The p-th persistent homology groups are the

images

Hi,j
p := Im (φj−1 ◦ · · · ◦ φi : HpK(i)→ HpK(j))



A non-zero homology class α ∈ HpK(i) is said

to be born in HpK(i) if it is not in the image

of φi−1 and it is said to die in HpK(j) if

φj−2 ◦ · · · ◦ φi(α) 6= 0 and φj−1 ◦ · · · ◦ φi(α) = 0

For such a class α, define

persistence (α) := j − i

If α does not die for any j, define

persistence (α) :=∞

Graphically we represent the persistence of the

class α in the two cases by the half open inter-

vals [i, j) and [i,∞), its barcode .



4.2. Examples

Example 1: Consider the sphere S2 embed-

ded in R3 and height function h : S2 → R

as in the figure below. Triangulate S2 by K

such that each h−1([0, ai]) is triangulated by a

sub-complex K(i) ⊂ K. Consider the system

(K(•), φ•) where each φi is the inclusion map.

Note the following homotopies

K(0) = ∅

K(1) ≃ D2 ≃ ∗

K(2) ≃ D2 ⊔D2 ≃ ∗ ⊔ ∗

K(3) ≃ D2 ≃ ∗

K(4) ≃ S2 \ (D2 ⊔D2) ≃ S1

K(5) ≃ D2

K(6) = S2

We track the birth and death of classes for

each p = 0,1,2 in barcodes as in the figure

below.



h

a
0

a
1

a
2

a3

a
4

a5

a6

H 0 H1 H 2



Example 2: Let K be the 2-skeleton of a stan-

dard 3-simplex and filter it by skeletons:

K0 = K0 ⊂ K
1 ⊂ K2 = K

K(0) has 4 points: v0, v1, v2, v3

K(1) is a graph with 4 vertices and 6 edges

which is homotopic to the one-point union of

3 circles. To see this, contract the 4 edges

containing v0 to zero length. Then the 3 cir-

cles are formed by the edges e1 = [v1, v2], e2 =

[v2, v3] and e3 = [v1, v3].

K(2) is homotopic to the sphere.



We describe the persistent homology for each

degree p = 0,1,2.

H0K(0) = (F2)
4 =< v0, v1, v2, v3 > is gener-

ated by the four vertices. Change the basis

to

α0 = v0, α1 = v1−v0, α2 = v2−v0, α3 = v3−v0

which have persistence ∞,1,1,1 respectively,

with associated barcodes [0,∞), [0,1), [0,1), [0,1).

H1K(1) = (F2)
3 =< e1, e2, e3 > and all three

die in H1K(2) = 0. So e1, e2, e3 have persis-

tence 1,1,1 with associated barcodes [1,2), [1,2),

[1,2).

H2K(2) = F2 and the non-zero class has per-

sistence ∞ and associated barcode [2,∞).



4.3. Module Structure

Consider the total p-th persistent homology

group of a sequence (K(•), φ•)

PHp =
N⊕

i=0

Hp(K(i))

PHp has a natural, graded module structure

over the ring of polynomials F2[t] where t acts

on a class α ∈ HpK(i) by t.α := φi(α).

Theorem: (Carlsson, Zomorodian 2005)

PHp ≃
N⊕

i=0

⊕

j>i

U(i, j)βij

where i ∈ N and j ∈ N ∪ {∞} and

U(i, j) = (F2[t]/(t
j))(ti)

In other words, U(i, j) ∩ HpK(l) = F
βi,j
2 if l ∈

[i, j) and zero otherwise.



Sketch: F2[t] is a principal ideal domain and

{PHp}≥p is a finitely generated module over it

as we only consider finite sequences of finite

simplicial complexes. Furthermore, the mod-

ule is graded and the theorem follows by the

general structure theory for such modules. ♦

The isomorphism class of PHp determines and

is determined uniquely by the multiplicities βij.

This is the rank of the subspace of elements in

Hp that are born at HpK(i) and die at HpK(j).

Corollary: To each PHp we can associate a

well-defined barcode: the union of βij copies

of half open intervals [i, j) for each i = 0, . . . , N



4.4. Stability

In Example 4.2.1, the persistent homology one

calculates clearly depends on

• the choice of intervals,

i.e. the choice of {a0, . . . , a6}, and

• the choice of height function h.

Example: Consider the standard embedding

of the sphere S2 in R3. Whatever intervals

we choose, there will be exactly two half in-

finite intervals describing the one dimensional

persistent homology in degree 0 and 2 respec-

tively. This differs from the barcode computed

in Example 4.2.1 only by some short intervals

in the barcodes, which should be interpreted

as ‘noise’.

In the example we see that persistent homol-

ogy is stable. To express this stability more

formally we need a topology on the set of per-

sistence homologies.



For a fixed k, to the persistent homology data

{PHk} associate a persistence diagram D in

R2∪R×{∞}: a point (i, j) represents the multi-

set of independent classes born in degree i and

dying in degree j. In addition (to simplify def-

initions below) we add the points on the diag-

onal with infinite multiplicity.

The bottleneck-distance between two diagrams

D and D′ is defined by

dB(D,D
′) := inf

µ:D→D′
sup
x∈D
||x− µ(x)||∞.

where µ is a bijection.

Assumtions:

• X is triangulable, i.e. X = |K| for some finite

simplicial complex K, and

• h : X → R is such that the homology groups

Hk(h
−1(−∞, a]) are finite dimensional for all

a ∈ R, and change only at finitely many points



in between a0, . . . , aN (such as Morse functions

on a manifold).

Consider the persistent homology associated

to these finite ‘cut’ (similar to Example 4.2.1),

and let D(h) be the associated persistence di-

agram.

Theorem:

(Cohen-Steiner, Edelsbrunner, Harer 2007)

For height functions f, g : X → R,

dB(D(f), D(g)) ≤ ||f−g||∞ := sup
x∈X
|f(x)−g(x)|.



5. Persistent homology in applications

Data sets are finite sets often taken from some

background metric space such as R3. These

sets are discrete and have no interesting topol-

ogy as such. To capture the topology of the

underlying object, our first task is to associate

a simplicial complex to the data set that re-

flects its shape.

5.1. C̆ech complexes

Let X be a topological space and U = {Uα}α∈A
be a covering, or simply a collection of subsets

of X. We define the nerve NU of U to be the

abstract simplicial complex with one p-simplex

for each set {α0, . . . , αp} with

Uα0 ∩ · · · ∩ Uαp 6= ∅

The i-face is the set without Uαi.



We will not prove the following theorems. Nev-

ertheless, they should give some feeling for the

topology of the nerve of a covering.

Theorem 1: Assume U is an open, numer-

able covering. Furthermore assume
⋂
α∈I Uα is

empty or contractible for all I ⊂ A. Then

|NU| ≃ X

♦

Let X be a metric space and for ǫ > 0 and

A ⊂ X a finite subset consider the open cov-

erings Uǫ = {Bǫ(x)}x∈X and UA,ǫ = {Bǫ(x)}x∈A
where Bǫ(x) denotes the open ǫ-ball around x.

Denote the corresponding nerve complexes by

C̆(X, ǫ) and C̆(A, ǫ).

Note that C̆(X, ǫ) → C̆(X,µ) and C̆(A, ǫ) →

C̆(A,µ) for all ǫ < µ.



Theorem 2: Let M be a compact Rieman-

nian manifold. Then there exists an e > 0 such

that for all 0 < ǫ < e

|C̆(X, ǫ)| ≃M

and for all 0 < ǫ < e there exists a finite set

A ⊂M such that

|C̆(A, ǫ)| ≃M

The complexes C̆(X, ǫ) and C̆(A, ǫ) are referred

to as the C̆ech complexes.



5.2. Applications to data sets

Let A be a finite set of points in some back-

ground metric space (such as R3). To capture

the topology of the underlying object we asso-

ciate a simplicial complex such as the C̆ech

complex C̆(A, ǫ). However, it is difficult to

choose the right ǫ. One can decide on an ap-

propriate ’scale’ (microscopic, normal, or tele-

scopic) but it would be difficult to decide at the

start what ǫ (with or without glasses) might

catch the most relevant information. We are

led to consider a sequence

0 < ǫ1 · · · < ǫN

and the persistent cohomology of

C̆(A, ǫ1) −→ . . . −→ C̆(A, ǫN)



Example 1: Let A be a collection of points on

the surface of a donut-shaped balloon floating

in 3-space. The surface is 2-dimensional torus.

In the light of Theorem 2, we expect

Hp C̆(A, ǫ) = Hp(S
1 × S1) (∗)

which equals F2, (F2)
2,F2 for p = 0,1,2 and

zero otherwise. Clearly, this depends on the

right choice of ǫ. But more crucially, the data

set A must be good enough:

it needs to be dense enough so that for some

choice of ǫ the union X =
⋃
x∈ABǫ(x) of the

ǫ balls contains the surface of the balloon and

at the same is homotopic to it, i.e. the holes

of the balloon are not filled in X.

Under these conditions, (*) will indeed hold.

[In order to apply Theorem 2, we need to inter-

sect the open balls in R3 with the torus to get

open balls on the torus which is a Riemannian

manifold with the induced metric from R3.]



If we only knew that the data was collected

from a balloon (i.e. an oriented, compact sur-

face without boundary) but did not know what

shape it was, the fact that the first homology

has rank 2 would now allow us to conclude (!)

that the balloon had the shape of a donut.

In this example, we assumed a near perfect

data set. This is quite unrealistic. In the next

example, we will see how persistent homology

can deal with noise and flaws in the data set.

X(1) X(2) X(3)



Example 2: Consider a data set A taken from

an annulus in the plane R2. Let us assume

that for ǫ1, ǫ2, ǫ3, the unions X(1), X(2), X(3)

of the ǫi balls are as pictured above. Then the

associated 1st persistent homology group is

PH1 = H1X(1)⊕H1X(2)⊕H1X(3)

= (F2)
3 ⊕ (F2)

2 ⊕ F2

with associated barcode

[1,∞), [1,2), [1,2), [2,3)

Recall that the annulus is homotopic to S1 and

has first homology F2. We see that the short

bars in the barcode correspond to errors in the

data: the first two, [1,2) and [1,2), are due to

the uneven distribution of the data collected,

while the third, [2,3), is due to data the loca-

tion of which was recorded incorrectly.
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