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Suppose disk-shaped sensors wander in a planar domain. A 
sensor doesn't know its location but does know which sensors 
it overlaps. We say that an evasion path exists in this sensor 
network if a moving evader can avoid detection. Vin de Silva 
and Robert Ghrist give a necessary condition, depending only 
on the time-varying connectivity graph of the sensors, for an 
evasion path to exist. Can we sharpen this result? We'll 
consider an example where the existence of an evasion path 
depends not only on the network's connectivity data but also 
on its embedding. 

Abstract 
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Evasion problem 
D ⊂ R2 I

•  Sensors move in a bounded, simply-connected domain             
           over time interval    .  

•  Fixed sensors cover         . 
•  Sensors measure only local connectivity. 
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•  An evasion path is a section                       . 
•  Using coordinate-free input, can we determine if an evasion     
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•  Theorem (Gabriel) 
     Quiver        has a finite number of indecomposables 
     it’s a union of certain Dynkin diagrams. 

⇔
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Although there are infinitely many indecomposable
representations, they can still be parametrized by a
discrete parameter nand a continuous parameter λ.

Example 8. In Example 3, one can identify a 
2-dimensional family of pairwise nonisomorphic 
indecomposable representations, namely,

where Va1 , . . . , Va5 are given by the matrices

(
1
0

)
,
(

0
1

)
,
(

1
1

)
,
(

1
λ

)
,
(

1
µ

)
,

respectively, with λ, µ ∈ K .

Furthermore, there exist other families of inde-
composables for this particular star quiver, where
the number of parameters of the family is arbitrarily
large. In this example, describing explicitly the set
of indecomposable representations is essentially an
impossible task.

Theorems of Gabriel and Kac
We have observed different behavior of indecom-
posables for various quivers. If a quiver has only
finitely many indecomposable representations, it
is called a quiver of finite type. If there are infinitely
many indecomposables, but they appear in fami-
lies of dimension at most 1, then the quiver is
called of tame type.2 If the representation theory
of the quiver is at least as complicated as the rep-
resentation theory of the double loop quiver, then
the quiver is called of wild type. These definitions
given here are imprecise but hopefully convey the
right intuition. The precise definitions of tame and
wild type are omitted. It is known that every quiver
is either of finite type, tame, or wild. We will later
see that such a trichotomy is true in a more gen-
eral setting.

Forgetting the orientations of the arrows yields
the underlying undirected graph of a quiver. The
following amazing theorem is due to Gabriel (see [8],
[13]).

Theorem 9 [Gabriel’s Theorem, part 1]. A quiver
is of finite type if and only if the underlying undi-

rected graph is a union of Dynkin graphs of type
A , D, or E, shown below:

The Dynkin graphs play an important role in the
classification of simple Lie algebras, of finite crys-
tallographic root systems and Coxeter groups, and
other objects of “finite type”.

For quivers of tame type, a similar description
exists, namely:

Theorem 10 ([5], [14]). A quiver Q which is not of
finite type is of tame type if and only if the un-
derlying directed graph is a union of Dynkin graphs
and extended Dynkin graphs of type Â , D̂, or Ê ,
shown below:

Gabriel proved a stronger statement for quivers
of finite type:

Theorem 11 [Gabriel’s Theorem, part 2]. The in-
decomposable representations are in one-to-one
correspondence with the positive roots of the 
corresponding root system. For a Dynkin quiver 
Q , the dimension vectors of indecomposable 
representations do not depend on the orientation
of the arrows in Q .

Amazingly, this result is just the tip of an ice-
berg. Define the Euler form (or Ringel form) of a

2In some papers, the definition of tame type includes finite
type.

K

K

K

K

K

2
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n
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Dependence on embedding X ↪→ D × I

•  These two networks       are fibrewise homotopy equivalent but 
their complements        are not. 

X
Xc
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Fat graphs 
•  What minimal sensing capabilities might we add?                          
•  A fat graph structure specifies the cyclic ordering of edges 

adjacent to each vertex. 
•  Equivalent to a set of boundary cycles. 
•  Determines at most one embedding in       up to isotopy. S2



Fat graphs 
•  Suppose sensor network is connected at each time.                   

If given the alpha complex (less coordinate-free than Čech)    
and fat graph structure at each time, one can determine sharply 
if an evasion path exists. 

Computational Topology (Jeff Erickson) Examples of Cell Complexes

A Delaunay triangulation, with four Delaunay balls emphasized.

intersection of the ε-ball centered at p and the Voronoi region of p. The regions B̌ε(p) exactly cover
the union of ε-balls centered at points in P. The alpha complex αε(P) is the intersection complex of
the set {B̌ε(p) | p ∈ P}. The underlying space |αε(P)| is called an alpha shape of P.3 The Nerve Lemma
immediately implies that the alpha shape is homotopy equivalent to the union of the ε-balls; see also
Edelsbrunner [26] for a self-contained proof.

If the point set P is in general position, the alpha complex αε(P) can also be defined as the
intersection of the Delaunay triangulation of P and the Aleksandrov-Čech complex AČε(P). Thus, k+ 1
points in P define a simplex in the alpha complex if and only if they lie in a closed ball B with diameter
at most ε that contains no other point in P.

An alpha complex and a decomposed union of balls. The corresponding Aleksandrov-Čech complex.

Alpha shapes were introduced by Edelsbrunner, Kirkpatrick, and Seidel, but only for points in the
plane [27]; they were later generalized to points in !3 by Edelsbrunner and Mücke [28] and to weighted
points in any Euclidean space by Edelsbrunner [26]. Of course, the definition is sensible for points in
any metric space.

15.1.4 Witness Complexes

Witness complexes were introduced by Carlsson and de Silva [15, 19, 20] as ‘weak’ versions of the
Delaunay complex. 〈〈Maybe next time; sorry, Vin!〉〉!©=⇒

15.2 Configuration/State Complexes

The following more abstract example was proposed by Abrams [3], modifying a similar construction by
Ghrist and Kodischek [32, 31, 34]; see also Abrams and Ghrist [1, 2]. Imagine a set of k distinguished
points, called agents, located on the vertices and edges of a graph G, subject to the following rules
designed to prevent collisions:

• If an agent is located at a vertex v, no other agent is located at v or inside any edge incident to v.

• If an agent is located inside an edge e, no other agent is located in e or at its endpoints.

3Originally, these were called the α-complex and α-shape, where α denoted the proximity radius. Unfortunately, this usage
leads to considerable confusion if α is set to any particular value—What’s a

#
2-complex?

4

Computational Topology (Jeff Erickson) Examples of Cell Complexes

Corollary 15.1. For any points set P and radius ε, the Aleksandrov-Čech complex AČε(P) is homotopy-
equivalent to the union of balls of radius ε centered at points in P.

Aleksandrov-Čech complexes and unions of balls for two different radii. 2-simplices are yellow; 3-simplices are green.

15.1.2 Vietoris-Rips Complexes: Flags and Shadows

The proximity graph Nε(P) is the geometric graph whose vertices are the points P and whose edges join
all pairs of points at distance at most 2ε; in other words, Nε(P) is the 1-skeleton of the Aleksandrov-Čech
complex. The Vietoris-Rips complex VRε(P) is the flag complex or clique complex of the proximity
graph Nε(P). A set of k+ 1 points in P defines a k-simplex in VRε(P) if and only if every pair defines an
edge in Nε(P), or equivalently, if the set has diameter at most 2ε. Again, the Vietoris-Rips complex is an
abstract simplicial complex.

The Vietoris-Rips complex was used by Leopold Vietoris [57] in the early days of homology theory as
a means of creating finite simplicial models of metric spaces.2 The complex was rediscovered by Eliayu
Rips in the 1980s and popularized by Mikhail Gromov [35] as a means of building simplicial models for
group actions. ‘Rips complexes’ are now a standard tool in geometric and combinatorial group theory.

The triangle inequality immediately implies the nesting relationship AČε(P) ⊆ VRε(P) ⊆ AČ2ε(P)
for any ε, where ⊆ indicates containment as abstract simplicial complexes. The upper radius 2ε can be
reduced to

"
3ε/2 if the underlying metric space is Euclidean [21], but for arbitrary metric spaces, these

bounds cannot be improved.
One big advantage of Vietoris-Rips complexes is that they determined entirely by their underlying

proximity graphs; thus, they can be applied in contexts like sensor-network modeling where the
underlying metric is unknown. In contrast, the Aleksandrov-Čech complex also depends on the metric of
the ambient space that contains P; even if we assume that the underlying space is Euclidean, we need
the lengths of the edges of the proximity complex to reconstruct the Aleksandrov-Čech complex.

On the other hand, there is no result like the Nerve Lemma for flag complexes. Indeed, it is easy to
construct Vietoris-Rips complexes for points in the Euclidean plane that contain topological features of
arbitrarily high dimension.

2Vietoris actually defined a slightly different complex. Let U = {U1, U2, . . .} be a set of open sets that cover some topological
space X . The Vietoris complex of U is the abstract simplicial complex whose vertices are points in X , and whose simplices
are finite subsets of X that lie in some common set Ui . Thus, the Vietoris complex of an open cover is the dual of its
Aleskandrov-Čech nerve. Dowker [25] proved that these two simplicial complexes have isomorphic homology groups.

2
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Mobile Sensors and Pursuit-Evasion: Can Directed Algebraic Topology Help?
Henry Adams, Stanford Mathematics

Geometric and Topological Methods in Computer Science, Aalborg University, January 2010

Introduction

This poster describes an interesting problem.

Applied Setting

This is roughly the set-up of Section 11 of
Coordinate-free Coverage in Sensor Networks
with Controlled Boundaries via Homology by Vin
de Silva and Robert Ghrist [1].

Sensors and evaders move continuously in a
bounded simply-connected domain D ⊂ R2 during
the time interval t ∈ [0, 1]. Each sensor covers a unit
ball about its center. Let Ut ⊂ D be the covered re-
gion at time t. Except for a cycle of immobile sensors
which cover the boundary of the domain, ∂D, we do
not know the sensor locations. Instead, for all time
we know the abstract communication graph of the
sensors:
• The vertices are the sensors.
• An edge exists if its two sensors are within

distance
√

3.
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Sensors, their communication graph, and
their Rips complex.

Note: the constant
√

3 is chosen so that a triangle
in the communication graph corresponds to three
overlapping sensors with no gap in the middle.

We would like to use this coordinate-free in-
formation to determine: is there an evasion path
p : [0, 1]→ D with p(t) /∈ Ut?

Pure Setting

The space-cross-time region D× [0, 1] has a time-
induced partial order.

(x, t) & (x′, t′) ⇐⇒ t ≤ t′

Let U ⊂ D × [0, 1] be the region covered by the
sensors. What information about U does one need in
order to determine if there is a directed evasion path
in its complement D × [0, 1] \ U? Are there ideas,
invariants, or tools from directed algebraic topology
which could be helpful?

Can the Criterion of [1] be
Sharpened?

The main idea of Theorem 7 of [1] is that if there
exists a relative 2-cycle in H2(U , ∂D× [0, 1]) whose
boundary wraps nontrivially around ∂D × [0, 1],
then no evasion path exists. The actual statement
uses Rips complexes instead of U , providing a com-
putable criterion.

A relative 2-cycle ⇒ no path.

Unfortunately, a physically impossible
undirected path in the complement of U

⇒ no relative 2-cycle.

Dependence on the Embedding

Below are two pairs of sensor networks, drawn as snapshots with time increasing from left to right. The
networks in each pair have the same communication graphs for all times. There is also a directed homeo-
morphism, which acts as the identity on the time coordinate, between the shadows of the Rips complexes in
D × [0, 1]. However, the first sensor network in each pair has an evasion path while the second does not.
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Pair A: Top row contains evasion path; bottom does not.
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Pair B: Top row contains evasion path; bottom does not.

What minimal sensor capabilites might one add to distinguish these examples? Each covered region Ut is
homotopic to a graph, and the embedding type of a possibly disconnected planar graph in R2 is determined
by the cyclic order of the edges around each vertex, the external boundary of each connected component,
and the void containing each component. In Pair A, one could identify evasion paths if each sensor knew the
cyclic order of its neighbors, a plausible assumption. In Pair B, one would like to track the void containing
each connected component. This may require significantly smarter sensors.

Thanks

I would like to thank Robert Ghrist for sharing this problem with me, and Martin Raussen, Lisbeth
Fajstrup, and Amra Ibrisevic for organizing the workshop.
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we know the abstract communication graph of the
sensors:
• The vertices are the sensors.
• An edge exists if its two sensors are within

distance
√

3.
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Sensors, their communication graph, and
their Rips complex.

Note: the constant
√

3 is chosen so that a triangle
in the communication graph corresponds to three
overlapping sensors with no gap in the middle.

We would like to use this coordinate-free in-
formation to determine: is there an evasion path
p : [0, 1]→ D with p(t) /∈ Ut?

Pure Setting

The space-cross-time region D× [0, 1] has a time-
induced partial order.

(x, t) & (x′, t′) ⇐⇒ t ≤ t′

Let U ⊂ D × [0, 1] be the region covered by the
sensors. What information about U does one need in
order to determine if there is a directed evasion path
in its complement D × [0, 1] \ U? Are there ideas,
invariants, or tools from directed algebraic topology
which could be helpful?

Can the Criterion of [1] be
Sharpened?

The main idea of Theorem 7 of [1] is that if there
exists a relative 2-cycle in H2(U , ∂D× [0, 1]) whose
boundary wraps nontrivially around ∂D × [0, 1],
then no evasion path exists. The actual statement
uses Rips complexes instead of U , providing a com-
putable criterion.

A relative 2-cycle ⇒ no path.

Unfortunately, a physically impossible
undirected path in the complement of U

⇒ no relative 2-cycle.

Dependence on the Embedding

Below are two pairs of sensor networks, drawn as snapshots with time increasing from left to right. The
networks in each pair have the same communication graphs for all times. There is also a directed homeo-
morphism, which acts as the identity on the time coordinate, between the shadows of the Rips complexes in
D × [0, 1]. However, the first sensor network in each pair has an evasion path while the second does not.
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Pair A: Top row contains evasion path; bottom does not.
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Pair B: Top row contains evasion path; bottom does not.

What minimal sensor capabilites might one add to distinguish these examples? Each covered region Ut is
homotopic to a graph, and the embedding type of a possibly disconnected planar graph in R2 is determined
by the cyclic order of the edges around each vertex, the external boundary of each connected component,
and the void containing each component. In Pair A, one could identify evasion paths if each sensor knew the
cyclic order of its neighbors, a plausible assumption. In Pair B, one would like to track the void containing
each connected component. This may require significantly smarter sensors.

Thanks

I would like to thank Robert Ghrist for sharing this problem with me, and Martin Raussen, Lisbeth
Fajstrup, and Amra Ibrisevic for organizing the workshop.
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•               ? 
•  What’s the space of evasion paths? 
•  Can we relate embedding invariants                                              

   …to the unstable invariants of                                                    
       …to the space of sections? 

•  Simple example: zigzag         of         with cup products 
determines zigzag       .  

•  Stable and unstable Adams spectral sequence for fibrewise 
spaces or diagrams of spaces? 

Homotopy theory? 
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