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Abstract

Suppose disk-shaped sensors wander in a planar domain. A
sensor doesn't know 1ts location but does know which sensors
it overlaps. We say that an evasion path exists in this sensor
network i1f a moving evader can avoid detection. Vin de Silva
and Robert Ghrist give a necessary condition, depending only
on the time-varying connectivity graph of the sensors, for an
evasion path to exist. Can we sharpen this result? We'll
consider an example where the existence of an evasion path
depends not only on the network's connectivity data but also
on its embedding.



Evasion problem

* Sensors move in a bounded, simply-connected domain
D C R? over time interval 1.

* Fixed sensors cover 0D.
* Sensors measure only local connectivity.

V. de Silva and R. Ghrist, Coordinate-free Coverage in Sensor Networks with
Controlled Boundaries via Homology, Int. J. Rob. Res. 25 (2006), 1205-1222.
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Evasion problem

 The Cech complex is the nerve of the disks.

* The Vietoris—Rips complex is the maximal simplicial
complex on the connectivity graph.

VR(V/3/2) c Cech(1) C VR(1)
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Evasion problem
« Let X C D X I bethe covered region.

« X — I and X — I are fibrewise spaces.
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Evasion problem
« Let X C D X I bethe covered region.
« X — I and X — I are fibrewise spaces.
* An evasion path is asection s: 1 — X©.

* Using coordinate-free mput, can we determine 1f an evasion

path exists?
i
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« Let X C D X I bethe covered region.
« X — I and X — I are fibrewise spaces.

* An evasion path is asection s: 1 — X©.

* Using coordinate-free mput, can we determine 1f an evasion
path exists?
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Evasion problem

« Stacked complex SC encodes the Cech complex over all
times, and is fibrewise homotopy equivalent to X .
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Evasion problem

« Stacked complex SC encodes the Cech complex over all
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« Stacked complex SC encodes the Cech complex over all
times, and is fibrewise homotopy equivalent to X .
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Evasion problem

e Theorem 7 (reformulated)
Ifthereisan o € Ho(SC, 0D x I) with

0 # 6 € H1(OD x I), then no evasion path exists.
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Evasion problem

e Theorem 7 (reformulated)
Ifthereisan o € Ho(SC, 0D x I) with

0 # 6 € H1(OD x I), then no evasion path exists.
* Coordinate-free.

V. de Silva and R. Ghrist, Coordinate-free Coverage in Sensor Networks with
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Evasion problem

e Theorem 7 (reformulated)
Ifthereisan o € Ho(SC, 0D x I) with

0 # 6 € H1(OD x I), then no evasion path exists.

e (Coordinate-free.

* Not sharp. Can it be sharpened?
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Z1gzag persistence

e Letquiver Q be @ <> @ <= ... <> @ <> @
* The category of zigzag modules 1s (k—Vect)Q.

G. Carlsson and V. de Silva, Zigzag Persistence, Found. Comput. Math. 10 (2010), 367-405.
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Z1gzag persistence

e Letquiver Q be @ <> @ <= ... <> @ <> @
* The category of zigzag modules is (k—Vect)Q.
* The indecomposables are classified by bars.
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/1gzag persistence

e Letquiver Q be @ <> @ <= ... <> @ <> @
* The category of zigzag modules is (k—Vect)Q.
* The indecomposables are classified by bars.

d d
)« ... — 0« >k<z—>,,,sz<—>OH,,,HO

* Zigzag modules are classified by barcodes.

G. Carlsson and V. de Silva, Zigzag Persistence, Found. Comput. Math. 10 (2010), 367-405.



Z1gzag persistence
* Theorem (Gabriel)

Quiver () has a finite number of indecomposables <

it’s a union of certain Dynkin diagrams.
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 Form levelset zigzag of SC, apply H .
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 Form levelset zigzag of SC, apply H .
« Zigzag module is called zigzag Hq of X.
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Z1gzag persistence

 Form levelset zigzag of SC, apply H .
« Zigzag module is called zigzag H{ of X.
» By Alexander duality, gives zigzag H° of X¢.
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* Hypothesis: there 1s an evasion path <= there 1s a long bar.
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Z1gzag persistence

 Form levelset zigzag of SC, apply H .
« Zigzag module is called zigzag H{ of X.
» By Alexander duality, gives zigzag H° of X¢.
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* Hypothesis: there 1s an evasion path <= there 1s a long bar.
e —> 1S true, but <= 1s false.

G. Carlsson and V. de Silva, Zigzag Persistence, Found. Comput. Math. 10 (2010), 367-405.
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No approach with input SC can determine (sharply) whether
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 Two networks with the same SC. Top contains evasion path
while bottom does not.
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Dependence on embedding X — D x [

~

« These two networks X are fibrewise homotopy equivalent but
their complements X © are not.
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/1gzag persistence
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Z1gzag persistence
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Z1gzag persistence
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o Zigzag H" of X tracks linear combinations of components.
* We need zigzag 7.
G. Carlsson and V. de Silva, Zigzag Persistence, Found. Comput. Math. 10 (2010), 367-405.
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o Zigzag HY of X ¢ tracks linear combinations of components.

* We need zigzag 7.
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/1gzag persistence
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o Zigzag HY of X ¢ tracks linear combinations of components.
* We need zigzag 7.
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Fat graphs
What minimal sensing capabilities might we add?

A fat graph structure specifies the cyclic ordering of edges
adjacent to each vertex.

Equivalent to a set of boundary cycles.
Determines at most one embedding in S 2 up to isotopy.
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Fat graphs
* Suppose sensor network 1s connected at each time.
If given the alpha complex (less coordinate-free than Cech)

and fat graph structure at each time, one can determine sharply
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Fat graphs
* Suppose sensor network 1s connected at each time.
If given the alpha complex (less coordinate-free than Cech)
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and fat graph structure at each time, one can determine sharply
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* Question: are the Cech complex and fat graph structure at each
time sufficient?
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Homotopy theory?

R™ x I?
What’s the space of evasion paths?

Can we relate embedding invariants
...to the unstable invariants of X ©
...to the space of sections?

Simple example: zigzag H" of X € with cup products
determines zigzag 7.

Stable and unstable Adams spectral sequence for fibrewise
spaces or diagrams of spaces?

B3 = Bxtl, (H'(2), H*(Y)) = (Y. Z),



Thank you




