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Background: K -theory is hard to compute

Question: how to compute algebraic K -theory?
Direct computation possible only in limited examples.

One kind of answer: map to it something we can understand
more easily.

We do this using a massive generalization of taking the trace
of a matrix.

=⇒ Trace methods
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Trace methods

Dennis trace map:

BGLn(R)→ BcycGLn(R)→ BcycMn(R)→ BcycR ' HH(R),

Bcyc is the cyclic bar construction

BcycMn(R)→ BcycR is the trace map realizing Morita
equivalence.

Induces map K (R)→ HH(R).

Even better: work over S rather than Z (Waldhausen)

Leads to topological Hochschild homology (THH) and the
Bokstedt trace

K (R)→ THH(R).

This is better, but still not that close
e.g., HH(Z) is trivial, and THH(Z) is infinite but far from K (Z ).
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Trace methods and cyclic theories

Lift of the Dennis trace map:

K (R)→ HC−(R)→ HH(R),

where HC−(R) is negative cyclic homology.

Goodwillie shows this an infinitesimal rational equivalence.

Lift of the Bokstedt trace map (Bokstedt-Hsiang-Madsen):

K (R)→ TC (R)→ THH(R),

where TC (R) is topological cyclic homology.

Dundas and McCarthy show this is an infinitesimal p-adic
equivalence.

“often” a p-adic equivalence.
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Using TC to compute K -theory

Although K -theory is hard to compute, TC and especially THH
are much easier to compute.

THH can be computed in all sorts of ways.
For example,

natural filtration spectral sequences

algebraic Hochschild homology computations

TC derives from the equivariant structure on THH

studied using equivariant stable homotopy theory.

In some important cases K (R) 'p TC (R)[0,∞)
=⇒ can use TC to compute K
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Trace methods are wickedly successful

Through a lot of ingenuity and hard work, we now know how to
calculate all sorts of things:

1 K (Z∧p ) (Bokstedt-Madsen)

2 Many cases of Quillen-Lichtenbaum (Hesselholt-Madsen)

3 K (S) = A(∗) [at some primes] (Rognes),

4 A(ΣX ) (Bokstedt-Carlsson-Cohen-Goodwillie-Hsiang-Madsen)

5 K (ku) [after V (1)-localization] (Ausoni, Ausoni-Rognes)
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What’s next?

We may have come to the end of this line of attack.

For one thing, we know the answers for many of the ring
spectra we have names for.

Notable exception: K (MU). More on this point later.

For another, it’s become increasingly difficult to push these
techniques.

There are new ideas. For example,

homological approach of Bruner-Rognes

Segal conjecture approach by Lunoe-Nielsen and Rognes
building off Carlsson’s work

work stemming from Gerhardt’s thesis

We’re going to look at other directions.
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Goal of this talk: new directions

Some questions we might pursue:

What kind of a thing is THH or TC ?
What structural properties do these theories have?
(e.g., in analogy with K -theory)

How can we interpret them conceptually?
(e.g., from a motivic standpoint)

Where do these theories (particularly TC ) fit into the
emerging story of field theories?

Can we find new approaches to computing remaining named
examples (i.e., K (MU))?

I’ll talk about work in these directions, providing some answers and
many more questions and conjectures.
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Properties of THH / TC

Question first studied by Dundas and McCarthy:

Which of the structural theorems of K -theory are possessed by
THH and TC ?

We have complete answers to these questions
(joint work with Mandell):

Essentially, THH and TC have all the same properties as
K -theory:

Additivity

Localization

Approximation

But the story of localization is a funny one.
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Thomason-Trobaugh localization sequence

Theorem about spectral categories
(lifting triangulated categories)

Theorem

THH and TC satisfy Neeman’s generalized version of
Thomason-Trobaugh’s localization theorem: exact sequence of
triangulated categories A → B → B/A yields

T (A)→ T (B)→ T (B/A)→

a cofiber sequence of spectra.

=⇒ Mayer-Vietoris for schemes, projective bundle theorem.

This is not the localization sequence in the Hesselholt-Madsen
K -theory computations.
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Hesselholt-Madsen localization sequence

Let R be a discrete valuation ring,
k = residue field
F = field of fractions

Thomason-Trobaugh cofiber sequence is

THH(R on k)→ THH(R)→ THH(F )→

THH(R on k) is not THH of a ring
but is THH of a spectral category
(with derived category the F -acyclic perfect complexes).

Hesselholt-Madsen localization sequence

THH(k)→ THH(R)→ THH(R | F )→

THH(R | F ) is not THH of a ring
but is THH of a simplicial exact category.
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Explanation

Two ways of encoding homotopy theory:

1 Mapping spaces (e.g., simplicial categories).

2 Weak equivalences (e.g., model categories).

We’re used to these two agreeing: mapping complexes in simplicial
model categories vs. the Dwyer-Kan simplicial localization.

We typically invert (localize) by changing both.
=⇒ Thomason-Trobaugh localization.

But instead can invert one set of equivalences in the mapping
space and a different one in the weak equivalences
−→ THH(R | F )
=⇒ Hesselholt-Madsen localization.
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Conceptual Explanation?

Questions

What does this mean, conceptually?

What role does connectivity play here?

Relation to log geometry of Rognes?

Relation to Barwick’s “virtual Waldhausen categories”?
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Figure: Miriam explaining a subtle point in the argument.
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New and improved models of THH and TC.

Classically, “do” THH and TC over S .

But easy to handle THH over arbitrary ground rings (EKMM).

This seems to lose the cyclotomic structure: Want

φC (X∧C ) ' X .

Bokstedt originally solved using special coherence machinery that
only works over S .
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Hill-Hopkins-Ravenel norm

Instead, we can use HHR norm!

Then THH(R) is NS1

e R.
(Joint with Angeltveit, Gerhardt, Hill, and Lawson.)

This is closely related to perspective of Brun-Carlsson-Dundas.

Why useful?

1 Gives TC over other ground rings. Base-change spectral
sequences, computations. (Mandell)

2 Progress towards TC of Thom spectra (extending work with
Cohen and Schlichtkrull on THH of Thom spectra)

Theorem

Equivariant of homotopy type of THH of Thom spectrum is itself
an equivariant Thom spectrum.
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Figure: Uncertainty about the use of ∞-categories
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Interpreting THH and TC from a motivic perspective

Motivic means different things to different people.

For our purposes, it means co-representability of some motivic
cohomology theory:

Kn(X ) ∼= πn Rhom(U,M(X )),

where U is the unit and M denotes the realization functor
(i.e., the associated motive).

Question

How can we interpret THH and TC in this fashion?
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Motivic approaches, take 1: Category of cyclotomic spectra

THH yields an equivariant structure called a cyclotomic spectrum,
generalizing properties of Σ∞+ ΛX .

More basic question: how should we think about the homotopy
theory of cyclotomic spectra?

One answer (joint with Mandell).

There is a model category of pre-cyclotomic spectra.

Cyclotomic spectra are a full triangulated subcategory.

We have the following property in this category:

TC (R) = Rhom(S ,THH(R)).

THH as a functor from ring spectra to cyclotomic spectra
provides the realization functor M.

This resolves a conjecture of Kaledin.
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Motivic approaches, take 2: Non-commutative motives

Universal property of K -theory

K -theory is the initial functor from stable categories to spectra
that “splits exact sequences”. (Joint with Gepner and Tabuada.)

(related characterization by Barwick)

The category Catexstab of small stable categories has internal
homs: exact functors C → D are right-compact
Cop ∧ D-modules.

Moral construction: Applying K -theory to Funex(C,D) to get
Mot, the category of non-commutative motives.

Colimit preserving functors Mot→ Sp are filtered-colimit
preserving functors Catexstab → Sp that split exact sequences.

This is designed to give co-representability:

K (R) = RhomMot(S ,R).
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Whither THH and TC?

Question

What is the motivic interpretation of THH and TC ?

Co-representability result implies that the cyclotomic trace
corresponds to

1 ∈ π0(THH(S)) ∼= π0(S) ∼= Z

One answer: produce MotTC and MotTHH by “applying THH or
TC to Funex(C,D)”.

Related to Morava’s Tannakian viewpoint.

Question

What is the multiplication on TC (S) and K (S)?

Another answer given by Bloch’s p-typical curves.
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One answer: produce MotTC and MotTHH by “applying THH or
TC to Funex(C,D)”.

Related to Morava’s Tannakian viewpoint.

Question

What is the multiplication on TC (S) and K (S)?

Another answer given by Bloch’s p-typical curves.
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p-typical curves and endomorphism K -theory

For a ring R, have truncated polynomial rings R[x ]/xn.

Following Betley-Schlichtkrull, we can index {K (R[x ]/xn)} on the
category I with objects natural numbers and maps Fs ,Rs : rs → s
(usual cyclotomic relations).

Projection maps and transfer maps (associated to x 7→ xn)
assemble to form a diagram over I.

Can form two p-typical curve limits:

C (R) = lim
I

ΩK̃ (R[x ]/xn).

(using all maps, and only using projections)

After completion, these are respectively TR(R) and TC (R).
(Betley-Schlichtkrull, Hesselholt, Lindenstrauss-McCarthy).
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Motivic view of all this

Related to K -theory of R-modules equipped with an
endomorphism. (Joint with Gepner and Tabuada.)

Theorem

K End(C) = RhomMot(S [t], C)

Also gives a characterization of the rational Witt vectors. (Dwyer)

Can define C (C) entirely with Mot
=⇒ theorem identifies trace with unit of Witt vectors.

Question

When does C (C) recover TR(C) and TC (C)?

Question

Dundas-McCarthy’s theorem about relative K -theory and relative
TC in Mot?
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Figure: Sometimes arguments fall apart. . .
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Iterated K -theory and the K -theory of n-categories

Various approaches to thinking about iterated K -theory:

For a commutative ring spectrum R, K (R) is a commutative ring.
=⇒ iterate by forming K (K (R)).

But also can do “categorical” iterations.

1 Take K -theory of the stable category Mot (e.g., take the
dualizable or compact objects). (Kontsevich)

2 Take K -theory of a suitable Waldhausen structure on the
category of stable categories itself. (Toen-Vezzosi)

Conjecture

These are the same.
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Questions arise. . .

Question

Can we relate iterated K -theory to the theory of (∞, n)-categories?

Question

What do trace methods look like here?

More general concerns about field theories:

Question

The dimension of a field theory has a cyclotomic structure. What
does this mean?

Question

What’s up with CP∞−1?
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Algebraic K -theory of higher n-categories

(Joint with Ayala)

First idea: recursive definition. =⇒ Define K -theory of categories
enriched in Waldhausen categories, then categories enriched in
categories enriched in Waldhausen categories, etc.

Pre-theorem: Can also do all at once.

Recovers examples above when we take Mot or Catexstab!

Question

What relationship does this bear to K (K (S))?

And what about trace methods?
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A trace for the K -theory of higher n-categories

Perspective: should be a higher trace, related to the “iterated
trace”

K (K (· · ·K (C))→ THH(THH(· · ·THH(C)))

This arises as the “color by an object” map (generalizing the
Dundas-McCarthy inclusion of objects model of the trace) into
composition cohomology (Ayala-Rozenblyum).

Can take limits over finite-sheeted covers of framed n-manifolds to
form something like TC .

Recovers the “covering homology” of Brun-Carlsson-Dundas,
structures of Carlsson-Douglas-Dundas in the commutative case.

Once again, equivariant structure involves the norm!
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Th-th-th-that’s all, folks
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