New directions for trace methods

Andrew J. Blumberg (blumberg@math.utexas.edu)

July 27, 2012

Andrew J. Blumberg (blumberg@math.utexas.edu) New directions for trace methods

- Question: how to compute algebraic K-theory?
 Direct computation possible only in limited examples
- One kind of answer: map to it something we can understand more easily.
- We do this using a massive generalization of taking the trace of a matrix.
 - \implies Trace methods

- Question: how to compute algebraic *K*-theory? Direct computation possible only in limited examples.
- One kind of answer: map to it something we can understand more easily.
- We do this using a massive generalization of taking the trace of a matrix.
 - \implies Trace methods

- Question: how to compute algebraic *K*-theory? Direct computation possible only in limited examples.
- One kind of answer: map to it something we can understand more easily.
- We do this using a massive generalization of taking the trace of a matrix.
 - \implies Trace methods

- Question: how to compute algebraic *K*-theory? Direct computation possible only in limited examples.
- One kind of answer: map to it something we can understand more easily.
- We do this using a massive generalization of taking the trace of a matrix.

\implies Trace methods

- Question: how to compute algebraic *K*-theory? Direct computation possible only in limited examples.
- One kind of answer: map to it something we can understand more easily.
- We do this using a massive generalization of taking the trace of a matrix.
 - \implies Trace methods

Dennis trace map:

 $BGL_n(R) \to B^{cyc}GL_n(R) \to B^{cyc}M_n(R) \to B^{cyc}R \simeq HH(R),$

- B^{cyc} is the cyclic bar construction
- $B^{\text{cyc}}M_n(R) \to B^{\text{cyc}}R$ is the trace map realizing Morita equivalence.
- Induces map $K(R) \rightarrow HH(R)$.

Even better: work over *S* rather than \mathbb{Z} (Waldhausen)

Leads to topological Hochschild homology (THH) and the Bokstedt trace

 $K(R) \rightarrow THH(R).$

This is better, but still not that close e.g., $HH(\mathbb{Z})$ is trivial, and $THH(\mathbb{Z})$ is infinite but far from K(Z)

Dennis trace map:

 $BGL_n(R) \to B^{\operatorname{cyc}}GL_n(R) \to B^{\operatorname{cyc}}M_n(R) \to B^{\operatorname{cyc}}R \simeq HH(R),$

• B^{cyc} is the cyclic bar construction

- $B^{\text{cyc}}M_n(R) \to B^{\text{cyc}}R$ is the trace map realizing Morita equivalence.
- Induces map $K(R) \rightarrow HH(R)$.

Even better: work over S rather than \mathbb{Z} (Waldhausen)

Leads to topological Hochschild homology (THH) and the Bokstedt trace

 $K(R) \rightarrow THH(R).$

This is better, but still not that close e.g., $HH(\mathbb{Z})$ is trivial, and $THH(\mathbb{Z})$ is infinite but far from K(Z)

Dennis trace map:

 $BGL_n(R) \to B^{\operatorname{cyc}}GL_n(R) \to B^{\operatorname{cyc}}M_n(R) \to B^{\operatorname{cyc}}R \simeq HH(R),$

- B^{cyc} is the cyclic bar construction
- $B^{\text{cyc}}M_n(R) \rightarrow B^{\text{cyc}}R$ is the trace map realizing Morita equivalence.
- Induces map $K(R) \rightarrow HH(R)$.

Even better: work over S rather than \mathbb{Z} (Waldhausen)

Leads to topological Hochschild homology (THH) and the Bokstedt trace

 $K(R) \rightarrow THH(R).$

This is better, but still not that close e.g., $HH(\mathbb{Z})$ is trivial, and $THH(\mathbb{Z})$ is infinite but far from K(Z)

Dennis trace map:

 $BGL_n(R) \to B^{\operatorname{cyc}}GL_n(R) \to B^{\operatorname{cyc}}M_n(R) \to B^{\operatorname{cyc}}R \simeq HH(R),$

- B^{cyc} is the cyclic bar construction
- $B^{\text{cyc}}M_n(R) \rightarrow B^{\text{cyc}}R$ is the trace map realizing Morita equivalence.
- Induces map $K(R) \rightarrow HH(R)$.

Even better: work over S rather than \mathbb{Z} (Waldhausen)

Leads to topological Hochschild homology (*THH*) and the Bokstedt trace

 $K(R) \rightarrow THH(R).$

This is better, but still not that close e.g., $HH(\mathbb{Z})$ is trivial, and $THH(\mathbb{Z})$ is infinite but far from K(Z)

Dennis trace map:

 $BGL_n(R) \to B^{\operatorname{cyc}}GL_n(R) \to B^{\operatorname{cyc}}M_n(R) \to B^{\operatorname{cyc}}R \simeq HH(R),$

- B^{cyc} is the cyclic bar construction
- $B^{\text{cyc}}M_n(R) \rightarrow B^{\text{cyc}}R$ is the trace map realizing Morita equivalence.
- Induces map $K(R) \rightarrow HH(R)$.

Even better: work over S rather than \mathbb{Z} (Waldhausen)

Leads to topological Hochschild homology (*THH*) and the Bokstedt trace

 $K(R) \rightarrow THH(R).$

This is better, but still not that close e.g., $HH(\mathbb{Z})$ is trivial, and $THH(\mathbb{Z})$ is infinite but far from K(Z)

Dennis trace map:

 $BGL_n(R) \to B^{\operatorname{cyc}}GL_n(R) \to B^{\operatorname{cyc}}M_n(R) \to B^{\operatorname{cyc}}R \simeq HH(R),$

- B^{cyc} is the cyclic bar construction
- $B^{\text{cyc}}M_n(R) \rightarrow B^{\text{cyc}}R$ is the trace map realizing Morita equivalence.
- Induces map $K(R) \rightarrow HH(R)$.

Even better: work over S rather than \mathbb{Z} (Waldhausen)

Leads to topological Hochschild homology (THH) and the Bokstedt trace

 $K(R) \rightarrow THH(R).$

This is better, but still not that close e.g., $HH(\mathbb{Z})$ is trivial, and $THH(\mathbb{Z})$ is infinite but far from K(Z).

Dennis trace map:

 $BGL_n(R) \to B^{cyc}GL_n(R) \to B^{cyc}M_n(R) \to B^{cyc}R \simeq HH(R),$

- B^{cyc} is the cyclic bar construction
- $B^{\text{cyc}}M_n(R) \rightarrow B^{\text{cyc}}R$ is the trace map realizing Morita equivalence.
- Induces map $K(R) \rightarrow HH(R)$.

Even better: work over S rather than \mathbb{Z} (Waldhausen)

Leads to topological Hochschild homology (THH) and the Bokstedt trace

 $K(R) \rightarrow THH(R).$

This is better, but still not that close e.g., $HH(\mathbb{Z})$ is trivial, and $THH(\mathbb{Z})$ is infinite but far from K(Z).

Dennis trace map:

 $BGL_n(R) \to B^{\operatorname{cyc}}GL_n(R) \to B^{\operatorname{cyc}}M_n(R) \to B^{\operatorname{cyc}}R \simeq HH(R),$

- B^{cyc} is the cyclic bar construction
- $B^{\text{cyc}}M_n(R) \rightarrow B^{\text{cyc}}R$ is the trace map realizing Morita equivalence.
- Induces map $K(R) \rightarrow HH(R)$.

Even better: work over S rather than \mathbb{Z} (Waldhausen)

Leads to topological Hochschild homology (THH) and the Bokstedt trace

 $K(R) \rightarrow THH(R).$

This is better, but still not that close e.g., $HH(\mathbb{Z})$ is trivial, and $THH(\mathbb{Z})$ is infinite but far from K(Z).

SOA

• Lift of the Dennis trace map:

$$K(R) \rightarrow HC^{-}(R) \rightarrow HH(R),$$

where $HC^{-}(R)$ is negative cyclic homology.

- Goodwillie shows this an infinitesimal rational equivalence.
- Lift of the Bokstedt trace map (Bokstedt-Hsiang-Madsen):

$$K(R) \rightarrow TC(R) \rightarrow THH(R),$$

- Dundas and McCarthy show this is an infinitesimal *p*-adic equivalence.
- "often" a p-adic equivalence.

• Lift of the Dennis trace map:

$$K(R) \rightarrow HC^{-}(R) \rightarrow HH(R),$$

where $HC^{-}(R)$ is negative cyclic homology.

- Goodwillie shows this an infinitesimal rational equivalence.
- Lift of the Bokstedt trace map (Bokstedt-Hsiang-Madsen):

$$K(R) \rightarrow TC(R) \rightarrow THH(R),$$

- Dundas and McCarthy show this is an infinitesimal *p*-adic equivalence.
- "often" a p-adic equivalence.

• Lift of the Dennis trace map:

$$K(R) \rightarrow HC^{-}(R) \rightarrow HH(R),$$

where $HC^{-}(R)$ is negative cyclic homology.

- Goodwillie shows this an infinitesimal rational equivalence.
- Lift of the Bokstedt trace map (Bokstedt-Hsiang-Madsen):

$$K(R) \rightarrow TC(R) \rightarrow THH(R),$$

- Dundas and McCarthy show this is an infinitesimal *p*-adic equivalence.
- "often" a *p*-adic equivalence.

• Lift of the Dennis trace map:

$$K(R) \rightarrow HC^{-}(R) \rightarrow HH(R),$$

where $HC^{-}(R)$ is negative cyclic homology.

- Goodwillie shows this an infinitesimal rational equivalence.
- Lift of the Bokstedt trace map (Bokstedt-Hsiang-Madsen):

$$K(R) \rightarrow TC(R) \rightarrow THH(R),$$

- Dundas and McCarthy show this is an infinitesimal *p*-adic equivalence.
- "often" a *p*-adic equivalence.

• Lift of the Dennis trace map:

$$K(R) \rightarrow HC^{-}(R) \rightarrow HH(R),$$

where $HC^{-}(R)$ is negative cyclic homology.

- Goodwillie shows this an infinitesimal rational equivalence.
- Lift of the Bokstedt trace map (Bokstedt-Hsiang-Madsen):

$$K(R) \rightarrow TC(R) \rightarrow THH(R),$$

- Dundas and McCarthy show this is an infinitesimal *p*-adic equivalence.
- "often" a *p*-adic equivalence.

THH can be computed in all sorts of ways. For example,

- natural filtration spectral sequences
- algebraic Hochschild homology computations

TC derives from the equivariant structure on *THH* studied using equivariant stable homotopy theory.

THH can be computed in all sorts of ways.

For example,

- natural filtration spectral sequences
- algebraic Hochschild homology computations

TC derives from the equivariant structure on THH studied using equivariant stable homotopy theory.

THH can be computed in all sorts of ways. For example,

- natural filtration spectral sequences
- algebraic Hochschild homology computations

TC derives from the equivariant structure on *THH* studied using equivariant stable homotopy theory.

THH can be computed in all sorts of ways. For example,

- natural filtration spectral sequences
- algebraic Hochschild homology computations

TC derives from the equivariant structure on THH

studied using equivariant stable homotopy theory.

THH can be computed in all sorts of ways. For example,

- natural filtration spectral sequences
- algebraic Hochschild homology computations

TC derives from the equivariant structure on *THH* studied using equivariant stable homotopy theory.

THH can be computed in all sorts of ways. For example,

- natural filtration spectral sequences
- algebraic Hochschild homology computations

TC derives from the equivariant structure on *THH* studied using equivariant stable homotopy theory.

THH can be computed in all sorts of ways. For example,

- natural filtration spectral sequences
- algebraic Hochschild homology computations

TC derives from the equivariant structure on *THH* studied using equivariant stable homotopy theory.

Through a lot of ingenuity and hard work, we now know how to calculate all sorts of things:

- $K(Z_p^{\wedge})$ (Bokstedt-Madsen)
- Ø Many cases of Quillen-Lichtenbaum (Hesselholt-Madsen)
- K(S) = A(*) [at some primes] (Rognes),
- $A(\Sigma X)$ (Bokstedt-Carlsson-Cohen-Goodwillie-Hsiang-Madsen)
- K(ku) [after V(1)-localization] (Ausoni, Ausoni-Rognes)

- For one thing, we know the answers for many of the ring spectra we have names for.
- For another, it's become increasingly difficult to push these techniques.
- There are new ideas. For example,
 - homological approach of Bruner-Rognes
 - Segal conjecture approach by Lunoe-Nielsen and Rognes building off Carlsson's work
 - work stemming from Gerhardt's thesis

- For one thing, we know the answers for many of the ring spectra we have names for.
- For another, it's become increasingly difficult to push these techniques.
- There are new ideas. For example,
 - homological approach of Bruner-Rognes
 - Segal conjecture approach by Lunoe-Nielsen and Rognes building off Carlsson's work
 - work stemming from Gerhardt's thesis

- For one thing, we know the answers for many of the ring spectra we have names for. Notable exception: *K*(*MU*). More on this point later.
- For another, it's become increasingly difficult to push these techniques.
- There are new ideas. For example,
 - homological approach of Bruner-Rognes
 - Segal conjecture approach by Lunoe-Nielsen and Rognes building off Carlsson's work
 - work stemming from Gerhardt's thesis

- For one thing, we know the answers for many of the ring spectra we have names for. Notable exception: *K*(*MU*). More on this point later.
- For another, it's become increasingly difficult to push these techniques.

There are new ideas. For example,

- homological approach of Bruner-Rognes
- Segal conjecture approach by Lunoe-Nielsen and Rognes building off Carlsson's work
- work stemming from Gerhardt's thesis

- For one thing, we know the answers for many of the ring spectra we have names for. Notable exception: *K*(*MU*). More on this point later.
- For another, it's become increasingly difficult to push these techniques.
- There are new ideas. For example,
 - homological approach of Bruner-Rognes
 - Segal conjecture approach by Lunoe-Nielsen and Rognes building off Carlsson's work
 - work stemming from Gerhardt's thesis

- For one thing, we know the answers for many of the ring spectra we have names for. Notable exception: *K*(*MU*). More on this point later.
- For another, it's become increasingly difficult to push these techniques.
- There are new ideas. For example,
 - homological approach of Bruner-Rognes
 - Segal conjecture approach by Lunoe-Nielsen and Rognes building off Carlsson's work
 - work stemming from Gerhardt's thesis

Goal of this talk: new directions

Some questions we might pursue:

- What kind of a thing is *THH* or *TC*?
 What structural properties do these theories have? (e.g., in analogy with *K*-theory)
- How can we interpret them conceptually? (e.g., from a motivic standpoint)
- Where do these theories (particularly *TC*) fit into the emerging story of field theories?
- Can we find new approaches to computing remaining named examples (i.e., *K*(*MU*))?

I'll talk about work in these directions, providing some answers and many more questions and conjectures.

Some questions we might pursue:

- What kind of a thing is *THH* or *TC*?
 - What structural properties do these theories have? (e.g., in analogy with *K*-theory)
- How can we interpret them conceptually? (e.g., from a motivic standpoint)
- Where do these theories (particularly *TC*) fit into the emerging story of field theories?
- Can we find new approaches to computing remaining named examples (i.e., *K*(*MU*))?

I'll talk about work in these directions, providing some answers and many more questions and conjectures. Some questions we might pursue:

- What kind of a thing is *THH* or *TC*? What structural properties do these theories have? (e.g., in analogy with *K*-theory)
- How can we interpret them conceptually? (e.g., from a motivic standpoint)
- Where do these theories (particularly *TC*) fit into the emerging story of field theories?
- Can we find new approaches to computing remaining named examples (i.e., *K*(*MU*))?

I'll talk about work in these directions, providing some answers and many more questions and conjectures.
- What kind of a thing is *THH* or *TC*? What structural properties do these theories have? (e.g., in analogy with *K*-theory)
- How can we interpret them conceptually? (e.g., from a motivic standpoint)
- Where do these theories (particularly *TC*) fit into the emerging story of field theories?
- Can we find new approaches to computing remaining named examples (i.e., *K*(*MU*))?

- What kind of a thing is *THH* or *TC*? What structural properties do these theories have? (e.g., in analogy with *K*-theory)
- How can we interpret them conceptually? (e.g., from a motivic standpoint)
- Where do these theories (particularly *TC*) fit into the emerging story of field theories?
- Can we find new approaches to computing remaining named examples (i.e., *K*(*MU*))?

- What kind of a thing is *THH* or *TC*?
 What structural properties do these theories have? (e.g., in analogy with *K*-theory)
- How can we interpret them conceptually? (e.g., from a motivic standpoint)
- Where do these theories (particularly *TC*) fit into the emerging story of field theories?
- Can we find new approaches to computing remaining named examples (i.e., *K*(*MU*))?

- What kind of a thing is *THH* or *TC*? What structural properties do these theories have? (e.g., in analogy with *K*-theory)
- How can we interpret them conceptually? (e.g., from a motivic standpoint)
- Where do these theories (particularly *TC*) fit into the emerging story of field theories?
- Can we find new approaches to computing remaining named examples (i.e., *K*(*MU*))?

- What kind of a thing is *THH* or *TC*? What structural properties do these theories have? (e.g., in analogy with *K*-theory)
- How can we interpret them conceptually? (e.g., from a motivic standpoint)
- Where do these theories (particularly *TC*) fit into the emerging story of field theories?
- Can we find new approaches to computing remaining named examples (i.e., K(MU))?

- What kind of a thing is *THH* or *TC*? What structural properties do these theories have? (e.g., in analogy with *K*-theory)
- How can we interpret them conceptually? (e.g., from a motivic standpoint)
- Where do these theories (particularly *TC*) fit into the emerging story of field theories?
- Can we find new approaches to computing remaining named examples (i.e., K(MU))?

Question first studied by Dundas and McCarthy:

Which of the structural theorems of K-theory are possessed by THH and TC?

We have complete answers to these questions (joint work with Mandell):

Essentially, THH and TC have all the same properties as K-theory:

- Additivity
- Localization
- Approximation

Question first studied by Dundas and McCarthy:

Which of the structural theorems of K-theory are possessed by THH and TC?

We have complete answers to these questions (joint work with Mandell):

Essentially, THH and TC have all the same properties as K-theory:

- Additivity
- Localization
- Approximation

Question first studied by Dundas and McCarthy:

Which of the structural theorems of K-theory are possessed by THH and TC?

We have complete answers to these questions (joint work with Mandell):

Essentially, THH and TC have all the same properties as K-theory:

- Additivity
- Localization
- Approximation

Question first studied by Dundas and McCarthy:

Which of the structural theorems of K-theory are possessed by THH and TC?

We have complete answers to these questions (joint work with Mandell):

Essentially, THH and TC have all the same properties as K-theory:

- Additivity
- Localization
- Approximation

Theorem about spectral categories (lifting triangulated categories)

Theorem

THH and TC satisfy Neeman's generalized version of Thomason-Trobaugh's localization theorem: exact sequence of triangulated categories $\mathcal{A} \to \mathcal{B} \to \mathcal{B}/\mathcal{A}$ yields

$$T(\mathcal{A})
ightarrow T(\mathcal{B})
ightarrow T(\mathcal{B}/\mathcal{A})
ightarrow$$

a cofiber sequence of spectra.

 \implies Mayer-Vietoris for schemes, projective bundle theorem.

Theorem about spectral categories (lifting triangulated categories)

Theorem

THH and TC satisfy Neeman's generalized version of Thomason-Trobaugh's localization theorem: exact sequence of triangulated categories $\mathcal{A} \rightarrow \mathcal{B} \rightarrow \mathcal{B}/\mathcal{A}$ yields

$$T(\mathcal{A})
ightarrow T(\mathcal{B})
ightarrow T(\mathcal{B}/\mathcal{A})
ightarrow$$

a cofiber sequence of spectra.

 \implies Mayer-Vietoris for schemes, projective bundle theorem.

Theorem about spectral categories (lifting triangulated categories)

Theorem

THH and TC satisfy Neeman's generalized version of Thomason-Trobaugh's localization theorem: exact sequence of triangulated categories $\mathcal{A} \rightarrow \mathcal{B} \rightarrow \mathcal{B}/\mathcal{A}$ yields

$$T(\mathcal{A})
ightarrow T(\mathcal{B})
ightarrow T(\mathcal{B}/\mathcal{A})
ightarrow$$

a cofiber sequence of spectra.

 \implies Mayer-Vietoris for schemes, projective bundle theorem.

Theorem about spectral categories (lifting triangulated categories)

Theorem

THH and TC satisfy Neeman's generalized version of Thomason-Trobaugh's localization theorem: exact sequence of triangulated categories $\mathcal{A} \rightarrow \mathcal{B} \rightarrow \mathcal{B}/\mathcal{A}$ yields

$$T(\mathcal{A})
ightarrow T(\mathcal{B})
ightarrow T(\mathcal{B}/\mathcal{A})
ightarrow$$

a cofiber sequence of spectra.

 \implies Mayer-Vietoris for schemes, projective bundle theorem.

This is not the localization sequence in the Hesselholt-Madsen K-theory computations.

- Let R be a discrete valuation ring,
- k = residue field
- F = field of fractions

Thomason-Trobaugh cofiber sequence is $THH(R \text{ on } k) \rightarrow THH(R) \rightarrow THH(F) \rightarrow$ THH(R on k) is not THH of a ring but is THH of a spectral category (with derived category the *F*-acyclic perfect complexes).

Hesselholt-Madsen localization sequence

 $THH(k) \rightarrow THH(R) \rightarrow THH(R \mid F) \rightarrow$

э

- Let R be a discrete valuation ring,
- k = residue field
- F = field of fractions

Thomason-Trobaugh cofiber sequence is

```
THH(R \text{ on } k) \rightarrow THH(R) \rightarrow THH(F) \rightarrow
```

THH(R on k) is not THH of a ringbut is THH of a spectral category(with derived category the F-acyclic perfect complexes).

Hesselholt-Madsen localization sequence

 $THH(k) \rightarrow THH(R) \rightarrow THH(R \mid F) \rightarrow$

» Э

- Let R be a discrete valuation ring,
- k = residue field
- F = field of fractions

Thomason-Trobaugh cofiber sequence is

```
THH(R \text{ on } k) \rightarrow THH(R) \rightarrow THH(F) \rightarrow
```

THH(R on k) is not THH of a ringbut is THH of a spectral category(with derived category the F-acyclic perfect complexes).

Hesselholt-Madsen localization sequence

 $THH(k) \rightarrow THH(R) \rightarrow THH(R \mid F) \rightarrow$

- Let R be a discrete valuation ring,
- k = residue field
- F = field of fractions

Thomason-Trobaugh cofiber sequence is

```
THH(R \text{ on } k) \rightarrow THH(R) \rightarrow THH(F) \rightarrow
```

THH(R on k) is not THH of a ringbut is THH of a spectral category(with derived category the F-acyclic perfect complexes).

Hesselholt-Madsen localization sequence

 $THH(k) \rightarrow THH(R) \rightarrow THH(R \mid F) \rightarrow$

- Let R be a discrete valuation ring,
- k = residue field
- F = field of fractions

Thomason-Trobaugh cofiber sequence is

```
THH(R \text{ on } k) \rightarrow THH(R) \rightarrow THH(F) \rightarrow
```

THH(R on k) is not THH of a ringbut is THH of a spectral category(with derived category the F-acyclic perfect complexes).

Hesselholt-Madsen localization sequence

```
THH(k) \rightarrow THH(R) \rightarrow THH(R \mid F) \rightarrow
```

THH(R | F) is not THH of a ring but is THH of a simplicial exact category $a \to a \to a$

- Mapping spaces (e.g., simplicial categories).
- Weak equivalences (e.g., model categories).

We're used to these two agreeing: mapping complexes in simplicial model categories vs. the Dwyer-Kan simplicial localization.

We typically invert (localize) by changing both. \implies Thomason-Trobaugh localization.

But instead can invert one set of equivalences in the mapping space and a different one in the weak equivalences $\longrightarrow THH(R \mid F)$ $\longrightarrow Hesselholt-Madsen localization$

- Mapping spaces (e.g., simplicial categories).
- Weak equivalences (e.g., model categories).

We're used to these two agreeing: mapping complexes in simplicial model categories vs. the Dwyer-Kan simplicial localization.

We typically invert (localize) by changing both. \implies Thomason-Trobaugh localization.

But instead can invert one set of equivalences in the mapping space and a different one in the weak equivalences $\longrightarrow THH(R \mid F)$ \implies Hesselholt-Madsen localization

- Mapping spaces (e.g., simplicial categories).
- Weak equivalences (e.g., model categories).

We're used to these two agreeing: mapping complexes in simplicial model categories vs. the Dwyer-Kan simplicial localization.

We typically invert (localize) by changing both. ⇒ Thomason-Trobaugh localization.

But instead can invert one set of equivalences in the mapping space and a different one in the weak equivalences $\longrightarrow THH(R \mid F)$ \implies Hesselholt-Madsen localization

- Mapping spaces (e.g., simplicial categories).
- Weak equivalences (e.g., model categories).

We're used to these two agreeing: mapping complexes in simplicial model categories vs. the Dwyer-Kan simplicial localization.

We typically invert (localize) by changing both.

 \implies Thomason-Trobaugh localization.

But instead can invert one set of equivalences in the mapping space and a different one in the weak equivalences $\longrightarrow THH(R \mid F)$ \longrightarrow Hesselholt-Madsen localization

- Mapping spaces (e.g., simplicial categories).
- Weak equivalences (e.g., model categories).

We're used to these two agreeing: mapping complexes in simplicial model categories vs. the Dwyer-Kan simplicial localization.

We typically invert (localize) by changing both. \implies Thomason-Trobaugh localization.

But instead can invert one set of equivalences in the mapping space and a different one in the weak equivalences $\longrightarrow THH(R \mid F)$ \implies Hesselholt-Madsen localization

- Mapping spaces (e.g., simplicial categories).
- Weak equivalences (e.g., model categories).

We're used to these two agreeing: mapping complexes in simplicial model categories vs. the Dwyer-Kan simplicial localization.

We typically invert (localize) by changing both. \implies Thomason-Trobaugh localization.

But instead can invert one set of equivalences in the mapping space and a different one in the weak equivalences $\longrightarrow THH(R \mid F)$ \implies Hesselholt-Madsen localization.

- Mapping spaces (e.g., simplicial categories).
- Weak equivalences (e.g., model categories).

We're used to these two agreeing: mapping complexes in simplicial model categories vs. the Dwyer-Kan simplicial localization.

We typically invert (localize) by changing both. \implies Thomason-Trobaugh localization.

But instead can invert one set of equivalences in the mapping space and a different one in the weak equivalences

- \longrightarrow THH($R \mid F$)
- \implies Hesselholt-Madsen localization.

- Mapping spaces (e.g., simplicial categories).
- Weak equivalences (e.g., model categories).

We're used to these two agreeing: mapping complexes in simplicial model categories vs. the Dwyer-Kan simplicial localization.

We typically invert (localize) by changing both. \implies Thomason-Trobaugh localization.

But instead can invert one set of equivalences in the mapping space and a different one in the weak equivalences

- \longrightarrow THH($R \mid F$)
- \implies Hesselholt-Madsen localization.

Questions

What does this mean, conceptually?

- What role does connectivity play here?
- Relation to log geometry of Rognes?
- Relation to Barwick's "virtual Waldhausen categories"?

Figure: Miriam explaining a subtle point in the argument.

回 と く ヨ と く ヨ と

æ

But easy to handle *THH* over arbitrary ground rings (EKMM).

This seems to lose the cyclotomic structure: Want

$$\phi^{\mathcal{C}}(X^{\wedge \mathcal{C}})\simeq X.$$

But easy to handle THH over arbitrary ground rings (EKMM).

This seems to lose the cyclotomic structure: Want

$$\phi^{\mathcal{C}}(X^{\wedge \mathcal{C}})\simeq X.$$

But easy to handle THH over arbitrary ground rings (EKMM).

This seems to lose the cyclotomic structure: Want

$$\phi^{\mathsf{C}}(X^{\wedge \mathsf{C}})\simeq X.$$

But easy to handle THH over arbitrary ground rings (EKMM).

This seems to lose the cyclotomic structure: Want

$$\phi^{\mathsf{C}}(X^{\wedge \mathsf{C}})\simeq X.$$

But easy to handle THH over arbitrary ground rings (EKMM).

This seems to lose the cyclotomic structure: Want

$$\phi^{\mathsf{C}}(X^{\wedge \mathsf{C}})\simeq X.$$

Hill-Hopkins-Ravenel norm

Instead, we can use HHR norm!

Then *THH*(*R*) is *N*^{S1}_e*R*. (Joint with Angeltveit, Gerhardt, Hill, and Lawson.)

This is closely related to perspective of Brun-Carlsson-Dundas.

Why useful?

- Gives TC over other ground rings. Base-change spectral sequences, computations. (Mandell)
- Progress towards TC of Thom spectra (extending work with Cohen and Schlichtkrull on THH of Thom spectra)

Theorem

Equivariant of homotopy type of THH of Thom spectrum is itself an equivariant Thom spectrum.

Hill-Hopkins-Ravenel norm

Instead, we can use HHR norm!

Then THH(R) is $N_e^{S^1}R$. (Joint with Angeltveit, Gerhardt, Hill, and Lawson.)

This is closely related to perspective of Brun-Carlsson-Dundas.

Why useful?

- Gives TC over other ground rings. Base-change spectral sequences, computations. (Mandell)
- Progress towards TC of Thom spectra (extending work with Cohen and Schlichtkrull on THH of Thom spectra)

Theorem

Equivariant of homotopy type of THH of Thom spectrum is itself an equivariant Thom spectrum.
Instead, we can use HHR norm!

Then THH(R) is $N_e^{S^1}R$. (Joint with Angeltveit, Gerhardt, Hill, and Lawson.)

This is closely related to perspective of Brun-Carlsson-Dundas.

Why useful?

- Gives TC over other ground rings. Base-change spectral sequences, computations. (Mandell)
- Progress towards TC of Thom spectra (extending work with Cohen and Schlichtkrull on THH of Thom spectra)

Theorem

Equivariant of homotopy type of THH of Thom spectrum is itself an equivariant Thom spectrum.

Instead, we can use HHR norm!

Then THH(R) is $N_e^{S^1}R$.

(Joint with Angeltveit, Gerhardt, Hill, and Lawson.)

This is closely related to perspective of Brun-Carlsson-Dundas.

Why useful?

- Gives TC over other ground rings. Base-change spectral sequences, computations. (Mandell)
 - Progress towards TC of Thom spectra (extending work with Cohen and Schlichtkrull on THH of Thom spectra)

Theorem

Equivariant of homotopy type of THH of Thom spectrum is itself an equivariant Thom spectrum.

Instead, we can use HHR norm!

Then THH(R) is $N_e^{S^1}R$.

(Joint with Angeltveit, Gerhardt, Hill, and Lawson.)

This is closely related to perspective of Brun-Carlsson-Dundas.

Why useful?

- Gives TC over other ground rings. Base-change spectral sequences, computations. (Mandell)
- Progress towards TC of Thom spectra (extending work with Cohen and Schlichtkrull on THH of Thom spectra)

Theorem

Equivariant of homotopy type of THH of Thom spectrum is itself an equivariant Thom spectrum.

Instead, we can use HHR norm!

Then THH(R) is $N_e^{S^1}R$.

(Joint with Angeltveit, Gerhardt, Hill, and Lawson.)

This is closely related to perspective of Brun-Carlsson-Dundas.

Why useful?

- Gives TC over other ground rings. Base-change spectral sequences, computations. (Mandell)
- Progress towards TC of Thom spectra (extending work with Cohen and Schlichtkrull on THH of Thom spectra)

Theorem

Equivariant of homotopy type of THH of Thom spectrum is itself an equivariant Thom spectrum.

Figure: Uncertainty about the use of ∞ -categories

回 と く ヨ と く ヨ と

э

Andrew J. Blumberg (blumberg@math.utexas.edu) New directions for trace methods

Motivic means different things to different people.

For our purposes, it means co-representability of some motivic cohomology theory:

 $K_n(X) \cong \pi_n \operatorname{Rhom}(\mathbb{U}, \mathbb{M}(X)),$

where \mathbb{U} is the unit and \mathbb{M} denotes the realization functor (i.e., the associated motive).

Motivic means different things to different people.

For our purposes, it means co-representability of some motivic cohomology theory:

 $K_n(X) \cong \pi_n \operatorname{Rhom}(\mathbb{U}, \mathbb{M}(X)),$

where $\mathbb U$ is the unit and $\mathbb M$ denotes the realization functor (i.e., the associated motive).

Motivic means different things to different people.

For our purposes, it means co-representability of some motivic cohomology theory:

 $K_n(X) \cong \pi_n \operatorname{Rhom}(\mathbb{U}, \mathbb{M}(X)),$

where $\mathbb U$ is the unit and $\mathbb M$ denotes the realization functor (i.e., the associated motive).

Question

How can we interpret *THH* and *TC* in this fashion?

THH yields an equivariant structure called a cyclotomic spectrum, generalizing properties of $\Sigma^{\infty}_{+}\Lambda X$.

More basic question: how should we think about the homotopy theory of cyclotomic spectra?

One answer (joint with Mandell).

- There is a model category of pre-cyclotomic spectra.
- Cyclotomic spectra are a full triangulated subcategory.
- We have the following property in this category:

- *THH* as a functor from ring spectra to cyclotomic spectra provides the realization functor M.
- This resolves a conjecture of Kaledin.

THH yields an equivariant structure called a cyclotomic spectrum, generalizing properties of $\Sigma^{\infty}_{+}\Lambda X$.

More basic question: how should we think about the homotopy theory of cyclotomic spectra?

One answer (joint with Mandell).

- There is a model category of pre-cyclotomic spectra.
- Cyclotomic spectra are a full triangulated subcategory.
- We have the following property in this category:

TC(R) =Rhom(S, THH(R)).

- *THH* as a functor from ring spectra to cyclotomic spectra provides the realization functor M.
- This resolves a conjecture of Kaledin.

THH yields an equivariant structure called a cyclotomic spectrum, generalizing properties of $\Sigma^{\infty}_{+}\Lambda X$.

More basic question: how should we think about the homotopy theory of cyclotomic spectra?

One answer (joint with Mandell).

- There is a model category of pre-cyclotomic spectra.
- Cyclotomic spectra are a full triangulated subcategory.
- We have the following property in this category:

TC(R) =Rhom(S, THH(R)).

- *THH* as a functor from ring spectra to cyclotomic spectra provides the realization functor M.
- This resolves a conjecture of Kaledin.

THH yields an equivariant structure called a cyclotomic spectrum, generalizing properties of $\Sigma^{\infty}_{+}\Lambda X$.

More basic question: how should we think about the homotopy theory of cyclotomic spectra?

One answer (joint with Mandell).

- There is a model category of pre-cyclotomic spectra.
- Cyclotomic spectra are a full triangulated subcategory.
- We have the following property in this category:

TC(R) =Rhom(S, THH(R)).

- *THH* as a functor from ring spectra to cyclotomic spectra provides the realization functor M.
- This resolves a conjecture of Kaledin.

THH yields an equivariant structure called a cyclotomic spectrum, generalizing properties of $\Sigma^{\infty}_{+}\Lambda X$.

More basic question: how should we think about the homotopy theory of cyclotomic spectra?

One answer (joint with Mandell).

- There is a model category of pre-cyclotomic spectra.
- Cyclotomic spectra are a full triangulated subcategory.
- We have the following property in this category:

- *THH* as a functor from ring spectra to cyclotomic spectra provides the realization functor M.
- This resolves a conjecture of Kaledin.

THH yields an equivariant structure called a cyclotomic spectrum, generalizing properties of $\Sigma^{\infty}_{+}\Lambda X$.

More basic question: how should we think about the homotopy theory of cyclotomic spectra?

One answer (joint with Mandell).

- There is a model category of pre-cyclotomic spectra.
- Cyclotomic spectra are a full triangulated subcategory.
- We have the following property in this category:

- *THH* as a functor from ring spectra to cyclotomic spectra provides the realization functor M.
- This resolves a conjecture of Kaledin.

THH yields an equivariant structure called a cyclotomic spectrum, generalizing properties of $\Sigma^{\infty}_{+}\Lambda X$.

More basic question: how should we think about the homotopy theory of cyclotomic spectra?

One answer (joint with Mandell).

- There is a model category of pre-cyclotomic spectra.
- Cyclotomic spectra are a full triangulated subcategory.
- We have the following property in this category:

- *THH* as a functor from ring spectra to cyclotomic spectra provides the realization functor M.
- This resolves a conjecture of Kaledin.

THH yields an equivariant structure called a cyclotomic spectrum, generalizing properties of $\Sigma^{\infty}_{+}\Lambda X$.

More basic question: how should we think about the homotopy theory of cyclotomic spectra?

One answer (joint with Mandell).

- There is a model category of pre-cyclotomic spectra.
- Cyclotomic spectra are a full triangulated subcategory.
- We have the following property in this category:

- *THH* as a functor from ring spectra to cyclotomic spectra provides the realization functor M.
- This resolves a conjecture of Kaledin.

K-theory is the initial functor from stable categories to spectra that "splits exact sequences". (Joint with Gepner and Tabuada.)

(related characterization by Barwick)

- The category Cat^{ex}_{stab} of small stable categories has internal homs: exact functors C → D are *right-compact* C^{op} ∧ D-modules.
- Moral construction: Applying K-theory to Fun^{ex}(C, D) to get Mot, the category of non-commutative motives.
- Colimit preserving functors Mot \rightarrow Sp are filtered-colimit preserving functors $Cat_{stab}^{ex} \rightarrow$ Sp that split exact sequences.
- This is designed to give co-representability:

$$K(R) = \operatorname{Rhom}_{\operatorname{Mot}}(S, R).$$

K-theory is the initial functor from stable categories to spectra that "splits exact sequences". (Joint with Gepner and Tabuada.)

(related characterization by Barwick)

- The category Cat^{ex}_{stab} of small stable categories has internal homs: exact functors C → D are *right-compact* C^{op} ∧ D-modules.
- Moral construction: Applying K-theory to Fun^{ex}(C, D) to get Mot, the category of non-commutative motives.
- Colimit preserving functors Mot \rightarrow Sp are filtered-colimit preserving functors $Cat_{stab}^{ex} \rightarrow$ Sp that split exact sequences.
- This is designed to give co-representability:

$$K(R) = \operatorname{Rhom}_{\operatorname{Mot}}(S, R).$$

K-theory is the initial functor from stable categories to spectra that "splits exact sequences". (Joint with Gepner and Tabuada.)

(related characterization by Barwick)

- The category Cat^{ex}_{stab} of small stable categories has internal homs: exact functors C → D are *right-compact* C^{op} ∧ D-modules.
- Moral construction: Applying K-theory to Fun^{ex}(C, D) to get Mot, the category of non-commutative motives.
- Colimit preserving functors Mot \rightarrow Sp are filtered-colimit preserving functors $Cat_{stab}^{ex} \rightarrow$ Sp that split exact sequences.
- This is designed to give co-representability:

$$K(R) = \operatorname{Rhom}_{\operatorname{Mot}}(S, R).$$

★ 3 → < 3</p>

K-theory is the initial functor from stable categories to spectra that "splits exact sequences". (Joint with Gepner and Tabuada.)

(related characterization by Barwick)

- The category Cat^{ex}_{stab} of small stable categories has internal homs: exact functors C → D are *right-compact* C^{op} ∧ D-modules.
- Moral construction: Applying K-theory to Fun^{ex}(C, D) to get Mot, the category of non-commutative motives.
- Colimit preserving functors Mot \rightarrow Sp are filtered-colimit preserving functors $Cat_{stab}^{ex} \rightarrow$ Sp that split exact sequences.
- This is designed to give co-representability:

 $K(R) = \operatorname{Rhom}_{\operatorname{Mot}}(S, R).$

K-theory is the initial functor from stable categories to spectra that "splits exact sequences". (Joint with Gepner and Tabuada.)

(related characterization by Barwick)

- The category Cat^{ex}_{stab} of small stable categories has internal homs: exact functors C → D are *right-compact* C^{op} ∧ D-modules.
- Moral construction: Applying K-theory to Fun^{ex}(C, D) to get Mot, the category of non-commutative motives.
- Colimit preserving functors Mot \rightarrow Sp are filtered-colimit preserving functors $Cat_{stab}^{ex} \rightarrow$ Sp that split exact sequences.
- This is designed to give co-representability:

$$K(R) = \operatorname{Rhom}_{\operatorname{Mot}}(S, R).$$

Question

What is the motivic interpretation of *THH* and *TC*?

Co-representability result implies that the cyclotomic trace corresponds to

$1 \in \pi_0(THH(S)) \cong \pi_0(S) \cong \mathbb{Z}$

One answer: produce Mot_{TC} and Mot_{THH} by "applying THH or TC to $Fun^{ex}(\mathcal{C}, \mathcal{D})$ ".

Related to Morava's Tannakian viewpoint.

Question

What is the multiplication on TC(S) and K(S)?

Another answer given by Bloch's *p*-typical curves.

Andrew J. Blumberg (blumberg@math.utexas.edu) New directions for trace methods

Question

What is the motivic interpretation of *THH* and *TC*?

Co-representability result implies that the cyclotomic trace corresponds to

$1\in \pi_0(\mathit{THH}(S))\cong \pi_0(S)\cong \mathbb{Z}$

One answer: produce Mot_{TC} and Mot_{THH} by "applying THH or TC to $Fun^{ex}(\mathcal{C}, \mathcal{D})$ ".

Related to Morava's Tannakian viewpoint.

Question

What is the multiplication on TC(S) and K(S)?

Another answer given by Bloch's *p*-typical curves.

Andrew J. Blumberg (blumberg@math.utexas.edu) New directions for trace methods

Question

What is the motivic interpretation of *THH* and *TC*?

Co-representability result implies that the cyclotomic trace corresponds to

$$1 \in \pi_0(THH(S)) \cong \pi_0(S) \cong \mathbb{Z}$$

One answer: produce Mot_{TC} and Mot_{THH} by "applying THH or TC to $Fun^{ex}(\mathcal{C}, \mathcal{D})$ ".

Related to Morava's Tannakian viewpoint.

Question

What is the multiplication on TC(S) and K(S)?

Another answer given by Bloch's *p*-typical curves.

Question

What is the motivic interpretation of *THH* and *TC*?

Co-representability result implies that the cyclotomic trace corresponds to

$$1 \in \pi_0(THH(S)) \cong \pi_0(S) \cong \mathbb{Z}$$

One answer: produce Mot_{TC} and Mot_{THH} by "applying THH or TC to $Fun^{ex}(\mathcal{C}, \mathcal{D})$ ".

Related to Morava's Tannakian viewpoint.

Question

What is the multiplication on TC(S) and K(S)?

Another answer given by Bloch's p-typical curves.

Question

What is the motivic interpretation of *THH* and *TC*?

Co-representability result implies that the cyclotomic trace corresponds to

$$1 \in \pi_0(THH(S)) \cong \pi_0(S) \cong \mathbb{Z}$$

One answer: produce Mot_{TC} and Mot_{THH} by "applying THH or TC to $Fun^{ex}(\mathcal{C}, \mathcal{D})$ ".

Related to Morava's Tannakian viewpoint.

Question

What is the multiplication on TC(S) and K(S)?

Another answer given by Bloch's *p*-typical curves.

For a ring R, have truncated polynomial rings $R[x]/x^n$.

Following Betley-Schlichtkrull, we can index $\{K(R[x]/x^n)\}$ on the category I with objects natural numbers and maps $F_s, R_s: rs \to s$ (usual cyclotomic relations).

Projection maps and transfer maps (associated to $x \mapsto x^n$) assemble to form a diagram over \mathbb{I} .

Can form two *p*-typical curve limits:

$$C(R) = \lim_{\mathcal{I}} \Omega \tilde{K}(R[x]/x^n).$$

(using all maps, and only using projections)

For a ring R, have truncated polynomial rings $R[x]/x^n$.

Following Betley-Schlichtkrull, we can index $\{K(R[x]/x^n)\}$ on the category I with objects natural numbers and maps $F_s, R_s: rs \to s$ (usual cyclotomic relations).

Projection maps and transfer maps (associated to $x \mapsto x^n$) assemble to form a diagram over \mathbb{I} .

Can form two *p*-typical curve limits:

$$C(R) = \lim_{\mathcal{I}} \Omega \tilde{K}(R[x]/x^n).$$

(using all maps, and only using projections)

For a ring R, have truncated polynomial rings $R[x]/x^n$.

Following Betley-Schlichtkrull, we can index $\{K(R[x]/x^n)\}$ on the category I with objects natural numbers and maps $F_s, R_s: rs \to s$ (usual cyclotomic relations).

Projection maps and transfer maps (associated to $x \mapsto x^n$) assemble to form a diagram over \mathbb{I} .

Can form two *p*-typical curve limits:

 $C(R) = \lim_{\mathcal{I}} \Omega \tilde{K}(R[x]/x^n).$

(using all maps, and only using projections)

For a ring R, have truncated polynomial rings $R[x]/x^n$.

Following Betley-Schlichtkrull, we can index $\{K(R[x]/x^n)\}$ on the category \mathbb{I} with objects natural numbers and maps $F_s, R_s: rs \to s$ (usual cyclotomic relations).

Projection maps and transfer maps (associated to $x \mapsto x^n$) assemble to form a diagram over \mathbb{I} .

Can form two *p*-typical curve limits:

$$C(R) = \lim_{\mathcal{I}} \Omega \tilde{K}(R[x]/x^n).$$

< 注 → < 注 → □ 注

(using all maps, and only using projections)

For a ring R, have truncated polynomial rings $R[x]/x^n$.

Following Betley-Schlichtkrull, we can index $\{K(R[x]/x^n)\}$ on the category I with objects natural numbers and maps $F_s, R_s: rs \to s$ (usual cyclotomic relations).

Projection maps and transfer maps (associated to $x \mapsto x^n$) assemble to form a diagram over \mathbb{I} .

Can form two *p*-typical curve limits:

$$C(R) = \lim_{\mathcal{I}} \Omega \tilde{K}(R[x]/x^n).$$

(using all maps, and only using projections)

Related to *K*-theory of *R*-modules equipped with an endomorphism. (Joint with Gepner and Tabuada.)

Theorem

$$K \operatorname{End}(\mathcal{C}) = \operatorname{Rhom}_{\operatorname{Mot}}(S[t], \mathcal{C})$$

Also gives a characterization of the rational Witt vectors. (Dwyer)

Can define $C(\mathcal{C})$ entirely with Mot

 \implies theorem identifies trace with unit of Witt vectors.

Question

```
When does C(\mathcal{C}) recover TR(\mathcal{C}) and TC(\mathcal{C})?
```

Question

Related to *K*-theory of *R*-modules equipped with an endomorphism. (Joint with Gepner and Tabuada.)

Theorem

$K \operatorname{End}(\mathcal{C}) = \operatorname{Rhom}_{\operatorname{Mot}}(S[t], \mathcal{C})$

Also gives a characterization of the rational Witt vectors. (Dwyer)

Can define $C(\mathcal{C})$ entirely with Mot

 \implies theorem identifies trace with unit of Witt vectors.

Question

When does $C(\mathcal{C})$ recover $TR(\mathcal{C})$ and $TC(\mathcal{C})$?

Question

Related to *K*-theory of *R*-modules equipped with an endomorphism. (Joint with Gepner and Tabuada.)

Theorem

$$K \operatorname{End}(\mathcal{C}) = \operatorname{Rhom}_{\operatorname{Mot}}(S[t], \mathcal{C})$$

Also gives a characterization of the rational Witt vectors. (Dwyer)

Can define $C(\mathcal{C})$ entirely with Mot

 \implies theorem identifies trace with unit of Witt vectors.

Question

When does $C(\mathcal{C})$ recover $TR(\mathcal{C})$ and $TC(\mathcal{C})$?

Question

Related to *K*-theory of *R*-modules equipped with an endomorphism. (Joint with Gepner and Tabuada.)

Theorem

$$K \operatorname{End}(\mathcal{C}) = \operatorname{Rhom}_{\operatorname{Mot}}(S[t], \mathcal{C})$$

Also gives a characterization of the rational Witt vectors. (Dwyer)

Can define $C(\mathcal{C})$ entirely with Mot

 \implies theorem identifies trace with unit of Witt vectors.

Question

When does $C(\mathcal{C})$ recover $TR(\mathcal{C})$ and $TC(\mathcal{C})$?

Question

Related to *K*-theory of *R*-modules equipped with an endomorphism. (Joint with Gepner and Tabuada.)

Theorem

$$K \operatorname{End}(\mathcal{C}) = \operatorname{Rhom}_{\operatorname{Mot}}(S[t], \mathcal{C})$$

Also gives a characterization of the rational Witt vectors. (Dwyer)

Can define $C(\mathcal{C})$ entirely with Mot

 \implies theorem identifies trace with unit of Witt vectors.

Question

When does $C(\mathcal{C})$ recover $TR(\mathcal{C})$ and $TC(\mathcal{C})$?

Question
Motivic view of all this

Related to *K*-theory of *R*-modules equipped with an endomorphism. (Joint with Gepner and Tabuada.)

Theorem

$$K \operatorname{End}(\mathcal{C}) = \operatorname{Rhom}_{\operatorname{Mot}}(S[t], \mathcal{C})$$

Also gives a characterization of the rational Witt vectors. (Dwyer)

Can define $C(\mathcal{C})$ entirely with Mot

 \implies theorem identifies trace with unit of Witt vectors.

Question

When does $C(\mathcal{C})$ recover $TR(\mathcal{C})$ and $TC(\mathcal{C})$?

Question

Dundas-McCarthy's theorem about relative K-theory and relative TC in Mot?

Figure: Sometimes arguments fall apart. . .

Andrew J. Blumberg (blumberg@math.utexas.edu) New directions for trace methods

Various approaches to thinking about iterated *K*-theory:

For a commutative ring spectrum *R*, *K*(*R*) is a commutative ring. ⇒ iterate by forming *K*(*K*(*R*)).

But also can do "categorical" iterations.

- Take K-theory of the stable category Mot (e.g., take the dualizable or compact objects). (Kontsevich)
- Take K-theory of a suitable Waldhausen structure on the category of stable categories itself. (Toen-Vezzosi)

Conjecture

Various approaches to thinking about iterated *K*-theory:

For a commutative ring spectrum R, K(R) is a commutative ring. \implies iterate by forming K(K(R)).

But also can do "categorical" iterations.

- Take K-theory of the stable category Mot (e.g., take the dualizable or compact objects). (Kontsevich)
- Take K-theory of a suitable Waldhausen structure on the category of stable categories itself. (Toen-Vezzosi)

Conjecture

Various approaches to thinking about iterated *K*-theory:

For a commutative ring spectrum R, K(R) is a commutative ring. \implies iterate by forming K(K(R)).

But also can do "categorical" iterations.

- Take K-theory of the stable category Mot (e.g., take the dualizable or compact objects). (Kontsevich)
- Take K-theory of a suitable Waldhausen structure on the category of stable categories itself. (Toen-Vezzosi)

Conjecture

Various approaches to thinking about iterated *K*-theory:

For a commutative ring spectrum R, K(R) is a commutative ring. \implies iterate by forming K(K(R)).

But also can do "categorical" iterations.

- Take K-theory of the stable category Mot (e.g., take the dualizable or compact objects). (Kontsevich)
- Take K-theory of a suitable Waldhausen structure on the category of stable categories itself. (Toen-Vezzosi)

Conjecture

Various approaches to thinking about iterated *K*-theory:

For a commutative ring spectrum R, K(R) is a commutative ring. \implies iterate by forming K(K(R)).

But also can do "categorical" iterations.

- Take K-theory of the stable category Mot (e.g., take the dualizable or compact objects). (Kontsevich)
- Take K-theory of a suitable Waldhausen structure on the category of stable categories itself. (Toen-Vezzosi)

Various approaches to thinking about iterated *K*-theory:

For a commutative ring spectrum R, K(R) is a commutative ring. \implies iterate by forming K(K(R)).

But also can do "categorical" iterations.

- Take K-theory of the stable category Mot (e.g., take the dualizable or compact objects). (Kontsevich)
- Take K-theory of a suitable Waldhausen structure on the category of stable categories itself. (Toen-Vezzosi)

Conjecture

Can we relate iterated K-theory to the theory of (∞, n) -categories?

Question

What do trace methods look like here?

More general concerns about field theories:

Question

The dimension of a field theory has a cyclotomic structure. What does this mean?

Question What's up with $\mathbb{C}P_{-1}^{\infty}$?

Can we relate iterated K-theory to the theory of (∞, n) -categories?

Question

What do trace methods look like here?

More general concerns about field theories:

Question

The dimension of a field theory has a cyclotomic structure. What does this mean?

Question What's up with $\mathbb{C}P_{-1}^{\infty}$?

Can we relate iterated K-theory to the theory of (∞, n) -categories?

Question

What do trace methods look like here?

More general concerns about field theories:

Question

The dimension of a field theory has a cyclotomic structure. What does this mean?

Question What's up with $\mathbb{C}P_{-1}^{\infty}$?

Can we relate iterated K-theory to the theory of (∞, n) -categories?

Question

What do trace methods look like here?

More general concerns about field theories:

Question

The dimension of a field theory has a cyclotomic structure. What does this mean?

Question

What's up with $\mathbb{C}P_{-1}^{\infty}$?

< 17 ▶

First idea: recursive definition. \implies Define K-theory of categories enriched in Waldhausen categories, then categories enriched in categories enriched in Waldhausen categories, etc.

Pre-theorem: Can also do all at once.

Recovers examples above when we take Mot or Cat_{stab}^{ex} !

Question

What relationship does this bear to K(K(S))?

First idea: recursive definition. \implies Define K-theory of categories enriched in Waldhausen categories, then categories enriched in categories enriched in Waldhausen categories, etc.

Pre-theorem: Can also do all at once.

Recovers examples above when we take Mot or $\operatorname{Cat}_{\operatorname{stab}}^{\operatorname{ex}}!$

Question

What relationship does this bear to K(K(S))?

First idea: recursive definition. \implies Define K-theory of categories enriched in Waldhausen categories, then categories enriched in categories enriched in Waldhausen categories, etc.

Pre-theorem: Can also do all at once.

Recovers examples above when we take Mot or $\operatorname{Cat}_{\operatorname{stab}}^{\operatorname{ex}}$!

Question

What relationship does this bear to K(K(S))?

First idea: recursive definition. \implies Define *K*-theory of categories enriched in Waldhausen categories, then categories enriched in categories enriched in Waldhausen categories, etc.

Pre-theorem: Can also do all at once.

Recovers examples above when we take Mot or Cat_{stab}^{ex} !

Question

What relationship does this bear to K(K(S))?

First idea: recursive definition. \implies Define K-theory of categories enriched in Waldhausen categories, then categories enriched in categories enriched in Waldhausen categories, etc.

Pre-theorem: Can also do all at once.

Recovers examples above when we take Mot or $Cat_{stab}^{ex}!$

Question

What relationship does this bear to K(K(S))?

First idea: recursive definition. \implies Define K-theory of categories enriched in Waldhausen categories, then categories enriched in categories enriched in Waldhausen categories, etc.

Pre-theorem: Can also do all at once.

Recovers examples above when we take Mot or $Cat_{stab}^{ex}!$

Question

What relationship does this bear to K(K(S))?

Perspective: should be a higher trace, related to the "iterated trace"

$\textit{K}(\textit{K}(\cdots\textit{K}(\mathcal{C})) \rightarrow \textit{THH}(\textit{THH}(\cdots\textit{THH}(\mathcal{C})))$

This arises as the "color by an object" map (generalizing the Dundas-McCarthy inclusion of objects model of the trace) into composition cohomology (Ayala-Rozenblyum).

Can take limits over finite-sheeted covers of framed n-manifolds to form something like TC.

Recovers the "covering homology" of Brun-Carlsson-Dundas, structures of Carlsson-Douglas-Dundas in the commutative case.

Perspective: should be a higher trace, related to the "iterated trace"

 $K(K(\cdots K(\mathcal{C})) \rightarrow THH(THH(\cdots THH(\mathcal{C})))$

This arises as the "color by an object" map (generalizing the Dundas-McCarthy inclusion of objects model of the trace) into composition cohomology (Ayala-Rozenblyum).

Can take limits over finite-sheeted covers of framed *n*-manifolds to form something like *TC*.

Recovers the "covering homology" of Brun-Carlsson-Dundas, structures of Carlsson-Douglas-Dundas in the commutative case.

Perspective: should be a higher trace, related to the "iterated trace"

 $\textit{K}(\textit{K}(\cdots\textit{K}(\mathcal{C})) \rightarrow \textit{THH}(\textit{THH}(\cdots\textit{THH}(\mathcal{C})))$

This arises as the "color by an object" map (generalizing the Dundas-McCarthy inclusion of objects model of the trace) into composition cohomology (Ayala-Rozenblyum).

Can take limits over finite-sheeted covers of framed n-manifolds to form something like TC.

Recovers the "covering homology" of Brun-Carlsson-Dundas, structures of Carlsson-Douglas-Dundas in the commutative case.

Perspective: should be a higher trace, related to the "iterated trace"

 $K(K(\cdots K(\mathcal{C})) \rightarrow THH(THH(\cdots THH(\mathcal{C})))$

This arises as the "color by an object" map (generalizing the Dundas-McCarthy inclusion of objects model of the trace) into composition cohomology (Ayala-Rozenblyum).

Can take limits over finite-sheeted covers of framed n-manifolds to form something like TC.

Recovers the "covering homology" of Brun-Carlsson-Dundas, structures of Carlsson-Douglas-Dundas in the commutative case.

Perspective: should be a higher trace, related to the "iterated trace"

 $K(K(\cdots K(\mathcal{C})) \rightarrow THH(THH(\cdots THH(\mathcal{C})))$

This arises as the "color by an object" map (generalizing the Dundas-McCarthy inclusion of objects model of the trace) into composition cohomology (Ayala-Rozenblyum).

Can take limits over finite-sheeted covers of framed n-manifolds to form something like TC.

Recovers the "covering homology" of Brun-Carlsson-Dundas, structures of Carlsson-Douglas-Dundas in the commutative case.

Th-th-that's all, folks

Andrew J. Blumberg (blumberg@math.utexas.edu) New directions for trace methods