Kate Poirier

UC Berkeley

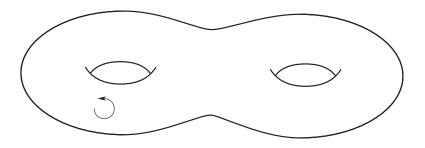
Algebraic Topology: Applications and New Developments Stanford University, July 24, 2012

・ロト ・ 日 ・ モート ・ モー・ うへで

What is the algebraic topology of a manifold?

What can we say about the algebraic structure of the homology-or chains-of the free loop space of a manifold?

Fix an oriented surface Σ .

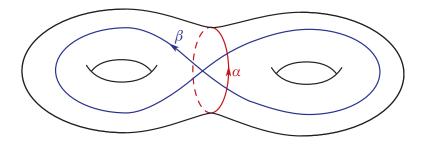


Compactifying string topology

July 24, 2012

▲□▶▲□▶▲□▶▲□▶▲□▶▲□▶▲□

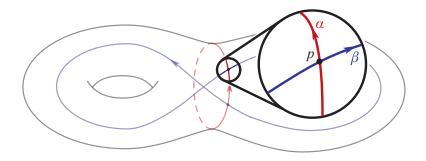
Consider two free homotopy classes α and β of closed curves on Σ .



Compactifying string topology

July 24, 2012

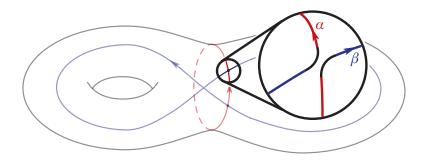
Consider representative curves that intersect one another only in transverse double points p.



Compactifying string topology

July 24, 2012

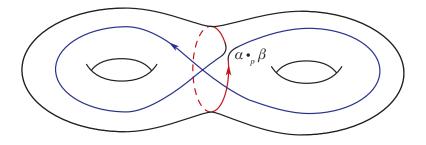
Cut α and β at ${\it p}$ and reconnect the strands in the other way that respects their orientation.



Compactifying string topology

July 24, 2012

Let $\alpha \cdot_{\mathbf{p}} \beta$ be the closed curve obtained by cutting and reconnecting.



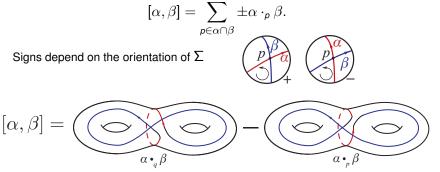
Compactifying string topology

July 24, 2012

Each intersection point *p* of α and β gives a free homotopy class of closed curves $\alpha \cdot_p \beta$.

Let *H* be the \mathbb{Q} -vector space generated by the set of free homotopy classes of closed curves on Σ . (In general, *H* is infinite dimensional.)

Define



(ロ) (日) (日) (日) (日) (日) (日)

Definition (Goldman Bracket)

Extend [,] linearly to obtain a map $[,]: H \otimes H \rightarrow H$.

Theorem (Goldman)

The bracket is well defined and gives H the structure of a Lie algebra.

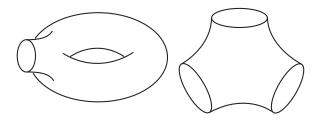
Idea of proof of Jacobi identity: terms cancel in pairs.

 $[[\alpha, \beta], \gamma] = [[\beta, \gamma], \alpha] = [[\gamma, \alpha], \beta]$

(ロ) (局) (目) (日) (日) (の)

Theorem (Gadgil)

A homotopy equivalence between compact, connected, oriented surfaces is homotopic to a homeomorphism if and only if it commutes with the Goldman bracket.



Compactifying string topology

July 24, 2012

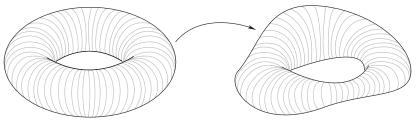
String bracket

Let *M* be a closed, oriented *d*-dimensional manifold.

Let d = 3.

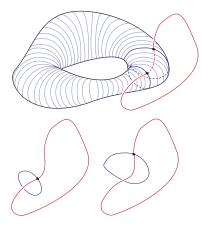
Let

- *H*₀ be the Q-vector space generated by free homotopy classes of loops in *M*.
- *H*₁ be the Q-vector space generated by homotopy classes of fibered tori in *M*.



String bracket

Intersections

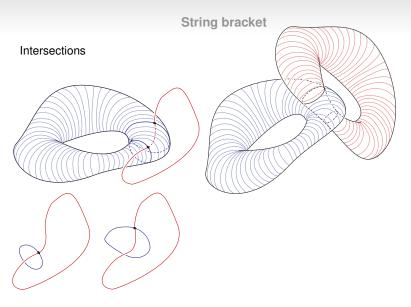


 $H_0 \otimes H_1 \rightarrow H_0$

Kate Poirier (UC Berkeley)

Compactifying string topology

July 24, 2012



 $H_0 \otimes H_1 \rightarrow H_0$

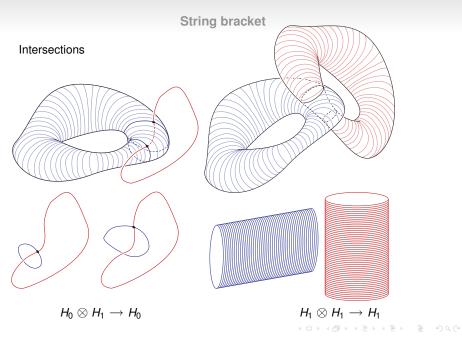
 $H_1 \otimes H_1 \rightarrow H_1$

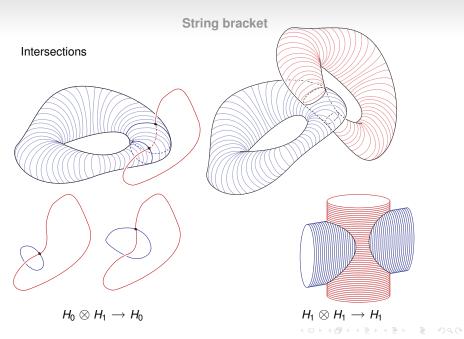
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへぐ

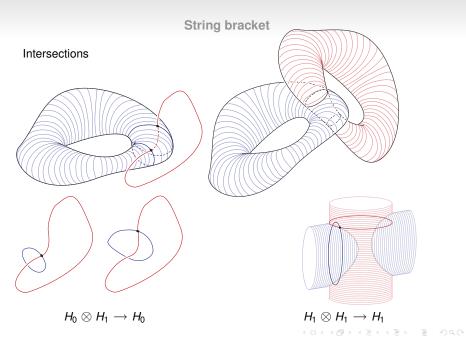
Kate Poirier (UC Berkeley)

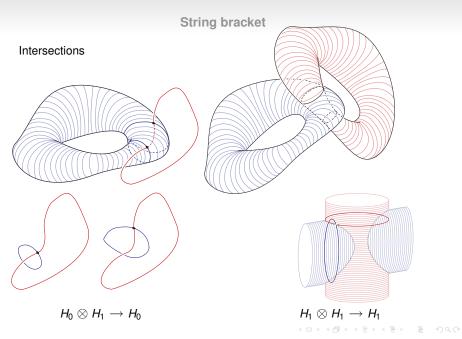
Compactifying string topology

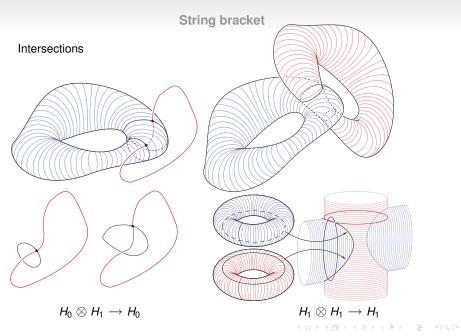
July 24, 2012







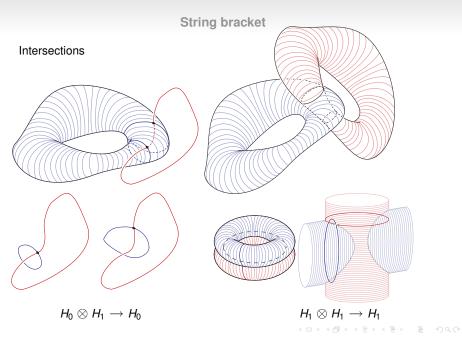


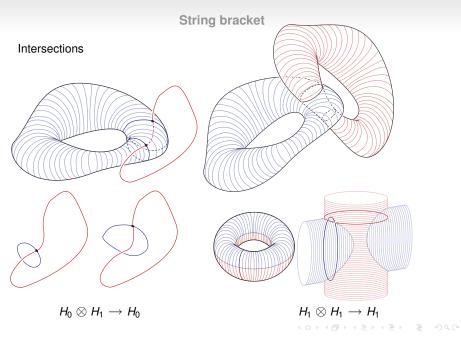


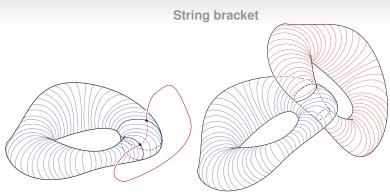
Kate Poirier (UC Berkeley)

Compactifying string topology

July 24, 2012





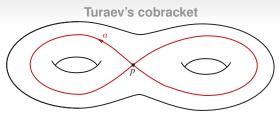


The string bracket for *d*-dimensional manifolds *M* is defined analogously.

Theorem (Chas-Sullivan)

Let M be a closed, oriented d-dimensional manifold, let $LM = Maps(S^1, M)$ be its free loop space and let $H_*^{S^1}(LM)$ be the S^1 -equivariant homology of LM. Then the string bracket gives $H_*^{S^1}(LM)$ the structure of a graded Lie algebra. When d = 2 and * = 0, then the string bracket coincides with the Goldman bracket.

Kate Poirier (UC Berkeley)



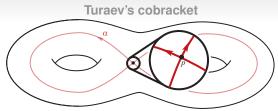
Theorem (Turaev)

The string bracket induces a well-defined bracket $[,]: H' \otimes H' \to H'$, the cobracket $\Delta : H' \to H' \otimes H'$ is well defined and $(H', [,], \Delta)$ is a Lie bialgebra.

Again, the cobracket Δ generalizes to higher dimensions.

Theorem (Chas-Sullivan)

Let $M \subset LM$ be the subspace of constant loops. Then $(H_*^{S^1}(LM, M), [,], \Delta)$ is a graded involutive Lie bialgebra.



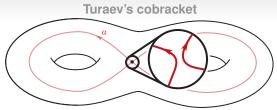
Theorem (Turaev)

The string bracket induces a well-defined bracket $[,] : H' \otimes H' \to H'$, the cobracket $\Delta : H' \to H' \otimes H'$ is well defined and $(H', [,], \Delta)$ is a Lie bialgebra.

Again, the cobracket Δ generalizes to higher dimensions.

Theorem (Chas-Sullivan)

Let $M \subset LM$ be the subspace of constant loops. Then $(H_*^{S^1}(LM, M), [,], \Delta)$ is a graded involutive Lie bialgebra.



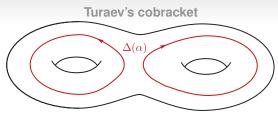
Theorem (Turaev)

The string bracket induces a well-defined bracket $[,]: H' \otimes H' \to H'$, the cobracket $\Delta : H' \to H' \otimes H'$ is well defined and $(H', [,], \Delta)$ is a Lie bialgebra.

Again, the cobracket Δ generalizes to higher dimensions.

Theorem (Chas-Sullivan)

Let $M \subset LM$ be the subspace of constant loops. Then $(H_*^{S^1}(LM, M), [,], \Delta)$ is a graded involutive Lie bialgebra.



Theorem (Turaev)

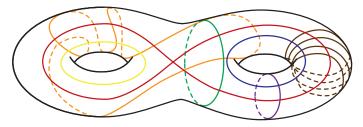
The string bracket induces a well-defined bracket $[,] : H' \otimes H' \to H'$, the cobracket $\Delta : H' \to H' \otimes H'$ is well defined and $(H', [,], \Delta)$ is a Lie bialgebra.

Again, the cobracket Δ generalizes to higher dimensions.

Theorem (Chas-Sullivan)

Let $M \subset LM$ be the subspace of constant loops. Then $(H_*^{S^1}(LM, M), [,], \Delta)$ is a graded involutive Lie bialgebra.

Kate Poirier (UC Berkeley)



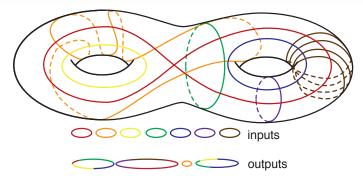
Cutting and reconnecting at intersection points yields generalized operations

$$H^{\otimes k} \to H^{\otimes \ell}.$$

Kate Poirier (UC Berkeley)

Compactifying string topology

July 24, 2012



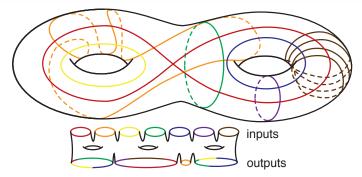
Cutting and reconnecting at intersection points yields generalized operations

$$H^{\otimes k} \to H^{\otimes \ell}.$$

Kate Poirier (UC Berkeley)

Compactifying string topology

July 24, 2012



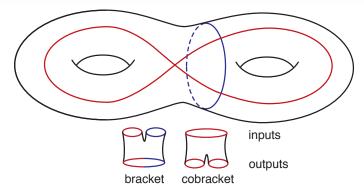
Cutting and reconnecting at intersection points yields generalized operations

$$H^{\otimes k} \to H^{\otimes \ell}.$$

Kate Poirier (UC Berkeley)

Compactifying string topology

July 24, 2012



Cutting and reconnecting at intersection points yields generalized operations

$$H^{\otimes k} \to H^{\otimes \ell}.$$

Kate Poirier (UC Berkeley)

Compactifying string topology

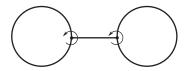
July 24, 2012

Fatgraphs

String diagrams organize more complicated intersections giving rise to k-to- ℓ operations.

Definition

A fatgraph is a graph together with a cyclic order of half-edges at each vertex.

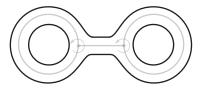


Fatgraphs

String diagrams organize more complicated intersections giving rise to k-to- ℓ operations.

Definition

A fatgraph is a graph together with a cyclic order of half-edges at each vertex.



A fatgraph determines an orientable *ribbon* surface with boundary that contains the fatgraph as a deformation retract.

Compactifying string topology

(ロ) (日) (日) (日) (日) (日) (日)

Definition

A *string diagram* of type (g, k, ℓ) is a sequence of marked metric fatgraphs $\Gamma_0 \subset \Gamma_1 \subset \cdots \subset \Gamma_N$, constructed inductively:

- Γ_0 is *k* disjoint "input" circles (each of length 1)
- Γ_{n+1} is constructed from Γ_n by adjoining a collection of metric trees (each satisfying a metric condition) along their leaves

such that Γ_N has genus g and $k + \ell$ boundary components, k of which correspond to Γ_0 , the remaining ℓ are called "outputs," together with "spacing parameters" $s \in (0, 1]^{N-1}$.

Definition

A string diagram is *simple* if N = 1 and Γ_1 -edges(Γ_0) is a forest.

Definition

A *chord diagram* is a string diagram where N = 1 and each tree attached is an interval.

Kate Poirier (UC Berkeley)

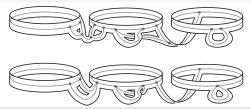
String Diagrams

Definition

A string diagram is *simple* if N = 1 and Γ_1 -edges(Γ_0) is a forest.

Definition

A *chord diagram* is a string diagram where N = 1 and each tree attached is an interval.



Proposition

Let S be the space of string diagrams, SS the space of simple string diagrams, and C be the space of chord diagrams. Then S is a finite cell complex, SS is a union of open cells, and C is a subcomplex.

Kate Poirier (UC Berkeley)

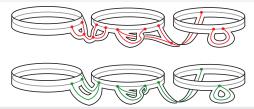
String Diagrams

Definition

A string diagram is *simple* if N = 1 and Γ_1 -edges(Γ_0) is a forest.

Definition

A *chord diagram* is a string diagram where N = 1 and each tree attached is an interval.



Proposition

Let *S* be the space of string diagrams, *SS* the space of simple string diagrams, and *C* be the space of chord diagrams. Then *S* is a finite cell complex, *SS* is a union of open cells, and *C* is a subcomplex.

String diagrams and string topology operations

Maps(_____, M)

イロト イポト イヨト イヨト ヨー わくぐ

String diagrams and string topology operations

$Maps(\bigcirc \bigcirc, M) \xleftarrow{\rho_{in}} Maps(\bigcirc \frown, M) \xrightarrow{\rho_{out}} Maps(\bigcirc \frown, M)$

Kate Poirier (UC Berkeley)

Compactifying string topology

July 24, 2012

 $(LM)^{k} \xleftarrow{\rho_{in}} Maps(\bigcirc, M) \xrightarrow{\rho_{out}} (LM)^{\ell}$

July 24, 2012

イロト イポト イヨト イヨト ヨー わくぐ

 $(LM)^k \xleftarrow{\rho_{in}} Maps(\bigcirc , M) \xrightarrow{\rho_{out}} (LM)^\ell$

Compactifying string topology

July 24, 2012

イロト イポト イヨト イヨト ヨー わくぐ

$$(LM)^{k} \xleftarrow{\rho_{in}} Maps(\bigcirc , M) \xrightarrow{\rho_{out}} (LM)^{\ell}$$
$$= 2g - 2 + k + \ell.$$

Definition (Cohen-Godin)

Given
$$\Gamma \in \mathcal{SS}$$
, $(\rho_{in})_!$: $H_*(LM)^{\otimes k} \to H_{*-\chi d}(Maps(\Gamma, M))$ and
 $\mu_{\Gamma} = (\rho_{out})_* \circ (\rho_{in})_!$: $H_*(LM)^{\otimes k} \longrightarrow H_{*-\chi d}(LM)^{\otimes \ell}$

Theorem

Let χ

Simple string diagrams satisfy a gluing condition and the construction respects gluing. ($H_0(SS)$ acts on $H_*(LM)$; the construction yields a "positive boundary" TQFT.)

Theorem (Chataur) $H_*(SS)$ acts on $H_*(LM)$.

Kate Poirier (UC Berkeley)

Compactifying string topology

$$(LM)^{k} \xleftarrow{\rho_{in}} Maps(\bigcirc , M) \xrightarrow{\rho_{out}} (LM)^{\ell}$$

Let $\chi = 2g - 2 + k + \ell$.

Definition (P.-Rounds)

Let $C_*(\mathcal{C})$ be the cellular chains of \mathcal{C} and let $C_*(LM)$ be the singular chains of LM.

$$\lambda: {\it C}_{*}({\it C})\otimes {\it C}_{*}({\it LM})^{\otimes k} \longrightarrow {\it C}_{*-\chi d}({\it LM})^{\otimes \ell}$$

Theorem

 λ is a chain map. For $\Gamma \in \mathcal{C} \cap SS$, $\lambda(\Gamma, -)$ induces μ_{Γ} on homology.

Kate Poirier (UC Berkeley)

Compactifying string topology

July 24, 2012

$$C_*(\mathcal{C})\otimes C_*(LM^k)\longrightarrow C_{*-\chi_d}(LM^\ell)$$

Let *M* be a compact, oriented, Riemannian manifold of dimension *d*, with injectivity radius ε .

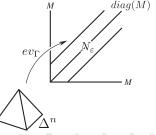
Fix
$$\Gamma =$$

Let $\sigma : \Delta^n \to LM \times LM$ be a singular simplex, $\sigma(t) : S^1 \sqcup S^1 \to M$. Ingredients:

• Let N_{ε} be an ε -neighborhood of the diagonal

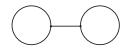
$$M \to M \times M$$

- Representative of Thom class of diagonal
 U ∈ C^d(N_ε, ∂N_ε)
- Evaluation map ev_Γ : Δⁿ → M × M, evaluate σ(t) at chord endpoints of Γ.
 Let S_ε = ev_Γ⁻¹(N_ε).



Kate Poirier (UC Berkeley)

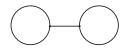
- N_{ε} : ε -neighborhood of diagonal
- $U \in C^d(N_{\varepsilon}, \partial N_{\varepsilon})$
- Evaluation map $ev_{\Gamma}: \Delta^n \to M \times M$
- $S_{\varepsilon} = ev_{\Gamma}^{-1}(N_{\varepsilon})$



Step 1:

$$\mathcal{C}_*(\Delta^n) \stackrel{j}{
ightarrow} \mathcal{C}_*(\Delta^n, \Delta^n - S_arepsilon) \stackrel{s}{
ightarrow} \mathcal{C}_*(S_arepsilon, \partial S_arepsilon) \stackrel{\cap ev^*(U)}{\longrightarrow} \mathcal{C}_{*-d}(S_arepsilon)$$

- N_{ε} : ε -neighborhood of diagonal
- $U \in C^d(N_{\varepsilon}, \partial N_{\varepsilon})$
- Evaluation map $ev_{\Gamma}: \Delta^n \to M \times M$
- $S_{\varepsilon} = ev_{\Gamma}^{-1}(N_{\varepsilon})$



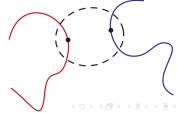
Step 1:

$$\mathcal{C}_*(\Delta^n) \stackrel{j}{
ightarrow} \mathcal{C}_*(\Delta^n, \Delta^n - S_arepsilon) \stackrel{s}{
ightarrow} \mathcal{C}_*(S_arepsilon, \partial S_arepsilon) \stackrel{\cap ev^*(U)}{
ightarrow} \mathcal{C}_{*-d}(S_arepsilon)$$

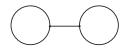
Step 2:

If $t \in S_{\varepsilon}$, then $\sigma(t) : S^1 \sqcup S^1 \to M$ sends chord endpoints of Γ into an ε -ball in M.

$$S_{\varepsilon} \xrightarrow{\heartsuit} Maps(\Gamma, M)$$



- N_{ε} : ε -neighborhood of diagonal
- $U \in C^d(N_{\varepsilon}, \partial N_{\varepsilon})$
- Evaluation map $ev_{\Gamma}: \Delta^n \to M \times M$
- $S_{\varepsilon} = ev_{\Gamma}^{-1}(N_{\varepsilon})$



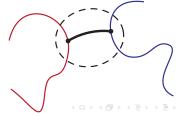
Step 1:

$$\mathcal{C}_*(\Delta^n) \stackrel{j}{
ightarrow} \mathcal{C}_*(\Delta^n, \Delta^n - S_arepsilon) \stackrel{s}{
ightarrow} \mathcal{C}_*(S_arepsilon, \partial S_arepsilon) \stackrel{\cap ev^*(U)}{
ightarrow} \mathcal{C}_{*-d}(S_arepsilon)$$

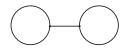
Step 2:

If $t \in S_{\varepsilon}$, then $\sigma(t) : S^1 \sqcup S^1 \to M$ may be extended to $\Gamma \to M$: map chord to geodesic segment

$$S_{\varepsilon} \stackrel{\heartsuit}{\longrightarrow} Maps(\Gamma, M)$$



- N_{ε} : ε -neighborhood of diagonal
- $U \in C^d(N_{\varepsilon}, \partial N_{\varepsilon})$
- Evaluation map $ev_{\Gamma}: \Delta^n \to M \times M$
- $S_{\varepsilon} = ev_{\Gamma}^{-1}(N_{\varepsilon})$



Step 1:

$$\mathcal{C}_*(\Delta^n) \stackrel{j}{
ightarrow} \mathcal{C}_*(\Delta^n, \Delta^n - S_arepsilon) \stackrel{s}{
ightarrow} \mathcal{C}_*(S_arepsilon, \partial S_arepsilon) \stackrel{\cap ev^*(U)}{\longrightarrow} \mathcal{C}_{*-d}(S_arepsilon)$$

Step 2:

If $t \in S_{\varepsilon}$, then $\sigma(t) : S^1 \sqcup S^1 \to M$ may be extended to $\Gamma \to M$: map chord to geodesic segment

$$S_{\varepsilon} \stackrel{\heartsuit}{\longrightarrow} Maps(\Gamma, M)$$

Step 3:

Restrict to outputs.

$$Maps(\Gamma, M) \stackrel{\rho_{out}}{\rightarrow} LN$$

Kate Poirier (UC Berkeley)

Compactifying string topology

July 24, 2012

Step 1: $C_*(\Delta^n) \xrightarrow{j} C_*(\Delta^n, \Delta^n - S_{\varepsilon}) \xrightarrow{s} C_*(S_{\varepsilon}, \partial S_{\varepsilon}) \xrightarrow{\cap ev^*(U)} C_{*-d}(S_{\varepsilon})$ Step 2: $S_{\varepsilon} \xrightarrow{\heartsuit} Maps(\Gamma, M) \rightsquigarrow C_*(S_{\varepsilon}) \xrightarrow{\heartsuit_*} C_*(Maps(\Gamma, M))$

Step 3:

$$Maps(\Gamma, M) \stackrel{
ho_{out}}{\rightarrow} LM \rightsquigarrow C_*(Maps(\Gamma, M)) \stackrel{(
ho_{out})_*}{\rightarrow} C_*(LM)$$

Definition

Define $\lambda(\mathsf{\Gamma},\sigma)\in \mathit{C}_{*-\mathit{d}}(\mathit{LM})$ as

$$((\rho_{\mathit{out}})_* \circ \heartsuit_* \circ \cap \mathit{ev}^*(U) \circ s \circ j)([\Delta^n])$$

where $[\Delta^n]$ is the fundamental chain of Δ^n . Extend linearly to

$$\lambda(\Gamma, -): C_*(LM \times LM) \rightarrow C_{*-d}(LM).$$

The construction generalizes $C_*(\mathcal{C}) \otimes C_*(LM^k) \longrightarrow C_{*-\chi q}(LM^\ell)$.

Kate Poirier (UC Berkeley)

Compactifying string topology

July 24, 2012

The space of metric fatgraphs is a model for the moduli space of Riemann surfaces \mathcal{M} . Therefore $\mathcal{SS} \hookrightarrow \mathcal{M}$. This inclusion is not a homotopy equivalence in general.

Theorem (Godin, Kupers)

 $H_*(\mathcal{M})$ acts on $H_*(LM)$.

The space of metric fatgraphs is a model for the moduli space of Riemann surfaces \mathcal{M} . Therefore $\mathcal{SS} \hookrightarrow \mathcal{M}$. This inclusion is not a homotopy equivalence in general.

Theorem (Godin, Kupers)

 $H_*(\mathcal{M})$ acts on $H_*(LM)$.

Theorem (Drummond-Cole-P.-Rounds, in progress) $C_*(S)$ acts on $C_*(LM)$.

Moduli space and string topology operations

Conjecture (To-do list)

- The space of string diagrams S is homeomorphic to a compactification of moduli space M with the homotopy type of M.
- The action of C_{*}(S) acts on C_{*}(LM) induces known action of H_{*}(M) on H_{*}(LM).
- The chain map $C_*(S) \otimes C_*(LM)^{\otimes k} \to C_{*-\chi d}(LM)^{\otimes \ell}$ factors through $C_*(S) \otimes C_*(LM)^{\otimes k} \to C_*(S/_{\sim}) \otimes C_*(LM)^{\otimes k}$ induced by $S \to S/_{\sim}$, quotient by an equivalence relation.
- The quotient space $S/_{\sim}$ is homotopy equivalent to Bödigheimer's harmonic compactification $\overline{\mathcal{M}}$ of \mathcal{M} .
- Relations among chain-level operations–algebraic structure of $C_*(LM)$ which are not evident in homology-level construction are revealed by action of $C_*(\overline{\mathcal{M}})$.
- Formulate the full open-closed theory.

イロン 不良 とくほど 不良 とうほう

Dreams

Basu has used a (different) string topology construction to define a coalgebra structure which is *not* a homotopy invariant.

Question

To what extent is the algebraic structure of $C_*(LM)$ an invariant of the homotopy type of M?

Dreams

Basu has used a (different) string topology construction to define a coalgebra structure which is *not* a homotopy invariant.

Question

To what extent is the algebraic structure of $C_*(LM)$ an invariant of the homotopy type of M?

Tamanoi has shown that homology classes in the image of the stabilization map

$$H_*(\mathcal{M}_{g,k+\ell}) \to H_*(\mathcal{M}_{g+1,k+\ell})$$

act trivially on $H_*(LM)$.

Question

Is there a manifold *M* and a homology class in the image of $H_*(\mathcal{M}) \to H_*(\overline{\mathcal{M}})$ for which the associated string topology operation on is nontrivial?

Kate Poirier (UC Berkeley)

Compactifying string topology

July 24, 2012

Thank you!

July 24, 2012

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ