
Compactifying string topology

Kate Poirier

UC Berkeley

Algebraic Topology: Applications and New Developments

Stanford University, July 24, 2012



What is the algebraic topology of a manifold?

What can we say about the algebraic structure of the homology–or chains–of

the free loop space of a manifold?
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The Goldman Bracket

Fix an oriented surface Σ. space space space space space space space

space space space space space space space space space space space
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The Goldman Bracket

Consider two free homotopy classes α and β of closed curves on Σ. space

space space space space space space space space space

 α

β
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The Goldman Bracket

Consider representative curves that intersect one another only in transverse

double points p.

 α

βp
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The Goldman Bracket

Cut α and β at p and reconnect the strands in the other way that respects their

orientation.

 α

β
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The Goldman Bracket

Let α ·p β be the closed curve obtained by cutting and reconnecting. space

space space space space space space space space space space

 α •p β
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The Goldman Bracket
Each intersection point p of α and β gives a free homotopy class of closed

curves α ·p β.

Let H be the Q-vector space generated by the set of free homotopy classes of

closed curves on Σ. (In general, H is infinite dimensional.)

Define

[α, β] =
∑

p∈α∩β
±α ·p β.

Signs depend on the orientation of Σ
 α
β

p

-

 α
βp

+

 α •p β α •q β

–
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The Goldman Bracket

Definition (Goldman Bracket)

Extend [ , ] linearly to obtain a map [ , ] : H ⊗ H → H.

Theorem (Goldman)

The bracket is well defined and gives H the structure of a Lie algebra.

Idea of proof of Jacobi identity: terms cancel in pairs.

Kate Poirier (UC Berkeley) Compactifying string topology July 24, 2012



The Goldman Bracket

Theorem (Gadgil)

A homotopy equivalence between compact, connected, oriented surfaces is

homotopic to a homeomorphism if and only if it commutes with the Goldman

bracket.
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String bracket

Let M be a closed, oriented d-dimensional manifold.

Let d = 3.

Let

H0 be the Q-vector space generated by free homotopy classes of loops in

M.

H1 be the Q-vector space generated by homotopy classes of fibered tori

in M.
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String bracket

Intersections

H0 ⊗ H1 → H0
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String bracket

Intersections

H0 ⊗ H1 → H0 H1 ⊗ H1 → H1
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String bracket

The string bracket for d-dimensional manifolds M is defined analogously.

Theorem (Chas-Sullivan)

Let M be a closed, oriented d-dimensional manifold, let LM = Maps(S1,M)
be its free loop space and let HS1

∗ (LM) be the S1-equivariant homology of LM.

Then the string bracket gives HS1

∗ (LM) the structure of a graded Lie algebra.

When d = 2 and ∗ = 0, then the string bracket coincides with the Goldman

bracket.

H0 ⊗ H1 → H0 H1 ⊗ H1 → H1
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Turaev’s cobracket

 α

p

Let H′ be the quotient of H by the subspace generated by nullhomotopic loops.

Theorem (Turaev)

The string bracket induces a well-defined bracket [ , ] : H′ ⊗ H′ → H′, the

cobracket ∆ : H′ → H′ ⊗ H′ is well defined and (H′, [ , ],∆) is a Lie

bialgebra.

Again, the cobracket ∆ generalizes to higher dimensions.

Theorem (Chas-Sullivan)

Let M ⊂ LM be the subspace of constant loops. Then (HS1

∗ (LM,M), [ , ],∆)
is a graded involutive Lie bialgebra.
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String topology operations

Cutting and reconnecting at intersection points yields generalized operations

H⊗k → H⊗`.
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String topology operations

inputs

outputs
cobracketbracket

Cutting and reconnecting at intersection points yields generalized operations

H⊗k → H⊗`.
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Fatgraphs

String diagrams organize more complicated intersections giving rise to
k -to-` operations.

Definition
A fatgraph is a graph together with a cyclic order of half-edges at each vertex.
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Fatgraphs

String diagrams organize more complicated intersections giving rise to
k -to-` operations.

Definition
A fatgraph is a graph together with a cyclic order of half-edges at each vertex.

A fatgraph determines an orientable ribbon surface with boundary that
contains the fatgraph as a deformation retract.
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String Diagrams

Definition

A string diagram of type (g, k, `) is a sequence of marked metric fatgraphs

Γ0 ⊂ Γ1 ⊂ · · · ⊂ ΓN , constructed inductively:

Γ0 is k disjoint “input” circles (each of length 1)

Γn+1 is constructed from Γn by adjoining a collection of metric trees

(each satisfying a metric condition) along their leaves

such that ΓN has genus g and k + ` boundary components, k of which

correspond to Γ0, the remaining ` are called “outputs,” together with “spacing

parameters” s ∈ (0, 1]N−1.

Definition

A string diagram is simple if N = 1 and Γ1−edges(Γ0) is a forest.

Definition
A chord diagram is a string diagram where N = 1 and each tree attached is an

interval.
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String Diagrams

Definition

A string diagram is simple if N = 1 and Γ1−edges(Γ0) is a forest.

Definition
A chord diagram is a string diagram where N = 1 and each tree attached is an

interval.

Proposition

Let S be the space of string diagrams, SS the space of simple string

diagrams, and C be the space of chord diagrams. Then S is a finite cell

complex, SS is a union of open cells, and C is a subcomplex.
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String diagrams and string topology operations

Maps( ,M)
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String diagrams and string topology operations

Maps( ,M)
ρin←− Maps( ,M)

ρout−→ Maps( ,M)
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String diagrams and string topology operations

(LM)k ρin←− Maps( ,M)
ρout−→ (LM)`

Let χ = 2g − 2 + k + `.

Definition (Cohen-Godin)

Given Γ ∈ SS , (ρin)! : H∗(LM)⊗k → H∗−χd (Maps(Γ,M)) and

µΓ = (ρout)∗ ◦ (ρin)! : H∗(LM)⊗k −→ H∗−χd (LM)⊗`.

Theorem
Simple string diagrams satisfy a gluing condition and the construction respects

gluing. (H0(SS) acts on H∗(LM); the construction yields a “positive boundary”

TQFT.)

Theorem (Chataur)

H∗(SS) acts on H∗(LM).
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String diagrams and string topology operations

(LM)k ρin←− Maps( ,M)
ρout−→ (LM)`

Let χ = 2g − 2 + k + `.

Definition (P.-Rounds)

Let C∗(C) be the cellular chains of C and let C∗(LM) be the singular chains of

LM.

λ : C∗(C)⊗ C∗(LM)⊗k −→ C∗−χd (LM)⊗`

Theorem

λ is a chain map.

For Γ ∈ C ∩ SS , λ(Γ,−) induces µΓ on homology.
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Idea of chain-level construction

C∗(C)⊗ C∗(LMk ) −→ C∗−χd (LM`)

Let M be a compact, oriented, Riemannian manifold of dimension d , with

injectivity radius ε.

Fix Γ =

Let σ : ∆n → LM × LM be a singular simplex, σ(t) : S1 t S1 → M.

Ingredients:

Let Nε be an ε-neighborhood of the diagonal

M → M × M

Representative of Thom class of diagonal

U ∈ Cd (Nε, ∂Nε)
Evaluation map evΓ : ∆n → M × M,

evaluate σ(t) at chord endpoints of Γ.

Let Sε = ev−1
Γ (Nε).

M

M

Kate Poirier (UC Berkeley) Compactifying string topology July 24, 2012



Idea of chain-level construction

Nε: ε-neighborhood of diagonal

U ∈ Cd (Nε, ∂Nε)
Evaluation map evΓ : ∆n → M × M

Sε = ev−1
Γ (Nε)

Step 1:

C∗(∆n)
j→ C∗(∆n,∆n − Sε)

s→ C∗(Sε, ∂Sε)
∩ev∗(U)−→ C∗−d (Sε)

Step 2:
If t ∈ Sε, then σ(t) : S1 t S1 → M sends chord endpoints of Γ into an ε-ball

in M.

Sε
♥−→ Maps(Γ,M)

Step 3:
Restrict to outputs.

Maps(Γ,M)
ρout→ LM
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Idea of chain-level construction
Step 1:

C∗(∆n)
j→ C∗(∆n,∆n − Sε)

s→ C∗(Sε, ∂Sε)
∩ev∗(U)−→ C∗−d (Sε)

Step 2:
Sε

♥−→ Maps(Γ,M) C∗(Sε)
♥∗−→ C∗(Maps(Γ,M))

Step 3:
Maps(Γ,M)

ρout→ LM  C∗(Maps(Γ,M))
(ρout )∗→ C∗(LM)

Definition

Define λ(Γ, σ) ∈ C∗−d (LM) as

((ρout)∗ ◦ ♥∗ ◦ ∩ev∗(U) ◦ s ◦ j)([∆n])

where [∆n] is the fundamental chain of ∆n. Extend linearly to

λ(Γ,−) : C∗(LM × LM)→ C∗−d (LM).

The construction generalizes C∗(C)⊗ C∗(LMk ) −→ C∗−χd (LM`).
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Moduli space and string topology operations

The space of metric fatgraphs is a model for the moduli space of Riemann

surfacesM. Therefore SS ↪→M. This inclusion is not a homotopy

equivalence in general.

Theorem (Godin, Kupers)

H∗(M) acts on H∗(LM).

Theorem (Drummond-Cole-P.-Rounds, in progress)

C∗(S) acts on C∗(LM).
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Moduli space and string topology operations

Conjecture (To-do list)

The space of string diagrams S is homeomorphic to a compactification of

moduli spaceM with the homotopy type ofM.

The action of C∗(S) acts on C∗(LM) induces known action of H∗(M)
on H∗(LM).

The chain map C∗(S)⊗ C∗(LM)⊗k → C∗−χd (LM)⊗` factors through

C∗(S)⊗ C∗(LM)⊗k → C∗(S/∼)⊗ C∗(LM)⊗k induced by

S → S/∼, quotient by an equivalence relation.

The quotient space S/∼ is homotopy equivalent to Bödigheimer’s

harmonic compactificationM ofM.

Relations among chain-level operations–algebraic structure of C∗(LM)–

which are not evident in homology-level construction are revealed by

action of C∗(M).

Formulate the full open-closed theory.
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Dreams

Basu has used a (different) string topology construction to define a coalgebra

structure which is not a homotopy invariant.

Question

To what extent is the algebraic structure of C∗(LM) an invariant of the

homotopy type of M?

Tamanoi has shown that homology classes in the image of the stabilization map

H∗(Mg,k+`)→ H∗(Mg+1,k+`)

act trivially on H∗(LM).

Question
Is there a manifold M and a homology class in the image of

H∗(M)→ H∗(M) for which the associated string topology operation on is

nontrivial?
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Thank you!
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